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Abstract

This paper develops two parameter-free methods for solving convex and strongly convex hybrid com-
posite optimization problems, namely, a composite subgradient type method and a proximal bundle type
method. Both functional and stationary complexity bounds for the two methods are established in terms
of the unknown strong convexity parameter. To the best of our knowledge, the two proposed methods are
the first universal methods for solving hybrid strongly convex composite optimization problems that do
not rely on any restart scheme nor require the knowledge of the optimal value.
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1 Introduction

This paper considers convex hybrid composite optimization (HCO) problem

ϕ∗ := min {ϕ(x) := f(x) + h(x) : x ∈ Rn} , (1)

where f, h : Rn → R∪{+∞} are proper lower semi-continuous convex functions such that domh ⊆ dom f and
the following conditions hold: there exist scalars Mf ≥ 0 and Lf ≥ 0 and a first-order oracle f ′ : domh→ Rn

(i.e., f ′(x) ∈ ∂f(x) for every x ∈ domh) satisfying the (Mf , Lf )-hybrid condition that ∥f ′(x) − f ′(y)∥ ≤
2Mf + Lf∥x − y∥ for every x, y ∈ domh. Moreover, assume that µ ≥ 0 is the largest scalar such that
ϕ(·)− µ∥ · ∥2/2 is convex, i.e., µ is the intrinsic convex parameter of ϕ.

This work is concerned with parameter-free (PF) methods for solving (1), i.e., ones that do not require
knowledge of any of parameters associated with the instance (f, h), such as the parameter pair (Mf , Lf ) or the
intrisic convexity parameter µ of ϕ. More specifically, it considers PF methods whose complexities for solving
(1) are expressed in terms of µ (in addition to other parameters associated with (f, h)). We refer to them
as µ-universal methods. PF methods whose (provable) complexities do not depend on µ are called universal
ones (even if µ > 0). Moreover, PF methods whose complexities are given in terms of the intrinsic convex
parameter µf for f (resp., µh for h) are called µf -universal (resp., µh-universal). It is worth noting that µ
can be substantially larger than µf + µh (e.g., for α ≫ 0, f(x) = α exp(x), and h(x) = α exp(−x), we have
µ = 2α≫ 0 = µf +µh). Hence, complexities for µ-universal methods are usually better than µf -universal and
µh-universal methods, and even (universal or non-universal) methods whose complexities depend on µf + µh.

Related literature. We divide our discussion here into universal and µ-universal methods.
Universal methods: The first universal methods for solving (1) under the condition that ∇f is Hölder

continuous have been presented in [21] and [10]. Specifically, the first paper develops universal variants of
the primal gradient, the dual gradient, and the accelerated gradient methods, while the second one shows
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that acceleration versions of the bundle-level and the prox-level methods are universal. Additional universal
methods for solving (1) have been studied in [14, 16, 19, 25] under the condition that f is smooth, and in
[13, 15, 17] for the case where f is either smooth or nonsmooth. The methods in [15, 17] (resp., [19, 25]) are
also shown to be µh-universal (resp., µf -universal under the condition that h = 0). The papers [14, 16] present
universal accelerated composite gradients methods for solving (1) under the more general condition that f is
a smooth m-weakly convex function. Since any convex function is m-weakly convex for any m > 0, the results
of [14, 16] also apply to the convex case and yield complexity bounds similar to the ones of [19, 25].

µ-Universal methods: Under the assumption that f is a smooth function (i.e., Mf = 0), various works

[1, 2, 3, 4, 5, 6, 8, 12, 20, 23] have developed µ-universal (or µf -universal) methods for (1) with a Õ(
√
Lf/µ) (or

Õ(
√
Lf/µf )) iteration complexity bound. For the sake of our discussion, we refer to a convex (resp., strongly

convex) version of an accelerated gradient method as ACG (resp., S-ACG). Among papers concerned with
finding an ε-solution of (1), [20] proposes the first µf -universal method based on a restart S-ACG scheme where
each iteration adaptively updates an estimate of µf and calls S-FISTA (see also [8] for a µ-universal variant
along this venue); moreover, using restart ACG schemes motivated by previous works such as [11, 22, 24],
paper [23] develops µ-universal methods under the assumption that ϕ∗ is known.

Among papers concerned with finding an ε-stationary solution of (1), [1, 2, 3, 4, 6] (resp., [12]) develop
µ-universal (resp., µf -universal) methods based on restart ACG (resp., S-ACG) schemes that estimate the
condition number Lf/µ (resp., µf ), or some related quantity; [3, 4, 6] then use the estimation to determine
the number of iterations of each ACG call while the SCAR method of [12] uses a stationary termination to
end each S-ACG call. Moreover, under the assumption that ϕ∗ and Lf are known, [5] develops a µ-universal
method that performs only one call to an ACG variant (for convex CO).

Under the assumption that f is non-smooth (i.e., Mf > 0), [23] (see also [9] for an extension) proposes
µ-universal methods under the assumption that ϕ∗ is known. Specifically, the µ-universal method of [23]
repeatedly invokes a universal oracle that halves the primal gap ϕ(x)− ϕ∗ on each call.1

Our contribution. The goal of this work is to present two µ-universal methods for problem (1), namely:
a composite subgradient (U-CS) type method and a proximal bundle (U-PB) type method. The first method
is a variant of the universal primal gradient method of [21] (see also Appendix C.2 of [17]), which is still
not known to be µ-universal. The second one is a variant of the generic proximal bundle (GPB) method of
[17] that bounds the number of consecutive null iterations and adaptively chooses the prox stepsize under
this policy. Both methods are analyzed in a unified manner using a general framework for strongly convex
optimization problems (1) (referred to as FSCO) which specifies sufficient conditions for its PF instances to
be µ-universal. Both functional and stationary complexities are established for FSCO in terms of µ, which
are then used to obtain complexity bounds for both U-CS and U-PB. Interestingly, in contrast to previous
µ-universal methods, both U-CS and U-PB do not perform any restart scheme nor require ϕ∗ to be known.

Organization of the paper. Subsection 1.1 presents basic definitions and notation used throughout the
paper. Section 2 formally describes FSCO and the assumptions on the problem of interest, and provides both
functional and stationarity complexity analyses of FSCO. Section 3 presents U-CS and U-PB, as two instances
of FSCO, for solving problem (1) and establishes their corresponding complexity bounds. Section 4 presents
some concluding remarks and possible extensions. Finally, Appendix A provides technical results of FSCO
and U-PB.

1.1 Basic definitions and notation

Let R denote the set of real numbers. Let R+ (resp., R++) denote the set of non-negative real numbers (resp.,
the set of positive real numbers). Let Rn denote the standard n-dimensional Euclidean space equipped with
inner product and norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively. Let log(·) denote the natural logarithm.

For given Φ : Rn → (−∞,+∞], let domΦ := {x ∈ Rn : Φ(x) < ∞} denote the effective domain of Φ and
Φ is proper if domΦ ̸= ∅. A proper function Φ : Rn → (−∞,+∞] is µ-convex for some µ ≥ 0 if

Φ(αx+ (1− α)y) ≤ αΦ(x) + (1− α)Φ(y)− α(1− α)µ
2

∥x− y∥2

for every x, y ∈ domΦ and α ∈ [0, 1]. Let Convµ (Rn) denote the set of all proper lower semicontinuous
µ-convex functions. We simply denote Convµ (Rn) by Conv (Rn) when µ = 0. For ε ≥ 0, the ε-subdifferential

1Paper [23] removes the assumption that ϕ∗ is known but forces its method to make multiple parallel calls to the universal
oracle.
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of Φ at x ∈ domΦ is denoted by

∂εΦ(x) := {s ∈ Rn : Φ(y) ≥ Φ(x) + ⟨s, y − x⟩ − ε,∀y ∈ Rn} .

We denote the subdifferential of Φ at x ∈ domΦ by ∂Φ(x), which is the set ∂0Φ(x) by definition. For a given
subgradient Φ′(x) ∈ ∂Φ(x), we denote the linearization of convex function Φ at x by ℓΦ(·, x), which is defined
as

ℓΦ(·, x) = Φ(x) + ⟨Φ′(x), · − x⟩. (2)

2 A framework for strongly convex optimization

This section presents a general framework, namely FSCO, for convex optimization problems and establishes
both functional and stationary complexity bounds for any of its instances. These results will then be used in
Subsections 3.1 and 3.2 to analyze the complexities of two specific algorithms, namely: U-CS and U-PB. This
section is divided into two subsections. Subsection 2.1 focuses on the functional complexity analysis, while
Subsection 2.2 provides the stationary complexity analysis.

FSCO is presented in the context of the convex optimization problem

ϕ∗ := min {ϕ(x) : x ∈ Rn} (3)

for which the following conditions are assumed:

(A1) the set of optimal solutions X∗ of problem (3) is nonempty;

(A2) ϕ ∈ Convµ (Rn) for some µ ≥ 0.

Clearly, the HCO problem (1) with the assumptions described underneath it is a special case of (3) where
ϕ = f + h.

We now describe FSCO.

FSCO

0. Let χ ∈ [0, 1), ε > 0, and x̂0 ∈ domϕ be given, and set k = 1;

1. Compute λk > 0, Γ̂k ∈ Conv (Rn), Γ̂k ≤ ϕ, and ŷk ∈ domϕ satisfying

ϕ(ŷk) +
χ

2λk
∥ŷk − x̂k−1∥2 − min

u∈Rn

{
Γ̂k(u) +

1

2λk
∥u− x̂k−1∥2

}
≤ ε, (4)

and set

x̂k := argmin
u∈Rn

{
Γ̂k(u) +

1

2λk
∥u− x̂k−1∥2

}
; (5)

2. Check whether a termination criterion holds and if so stop; else go to step 3;

3. Set k ← k + 1 and go to step 1.

FSCO does not specify how sequences {x̂k} and {ŷk} are generated, how models {Γ̂k} are updated, and
how stepsizes {λk} are computed. Rather, it provides sufficient conditions on these sequences to ensure that
its instances are µ-universal.

The complexity analysis of FSCO requires two additional assumptions, namely:

(F1) there exists ν ∈ [0, µ] such that Γ̂k ∈ Convν (Rn);

(F2) there exists λ > 0 such that λk ≥ λ for every iteration k of the FSCO.
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2.1 Functional complexity analysis

This subsection studies the iteration complexity for the framework FSCO to obtain an iterate ŷk such that
ϕ(ŷk)− ϕ∗ ≤ ε̄. Its main result is stated in Theorem 2.3.

The following lemma will be useful in the sequel.

Lemma 2.1 Consider sequences {x̂k}, {ŷk}, {Γ̂k}, and {λk} generated by FSCO. Define for k ≥ 1,

s̃k :=
x̂k−1 − x̂k

λk
− νx̂k, (6)

η̃k := ϕ̃(ŷk)− Γ̃k(x̂k)− ⟨s̃k, ŷk − x̂k⟩, (7)

where
ϕ̃ := ϕ− ν

2
∥ · ∥2, Γ̃k := Γ̂k −

ν

2
∥ · ∥2. (8)

Then for k ≥ 1, we have:

a) s̃k ∈ ∂Γ̃k(x̂k) and for every u ∈ Rn,

Γ̃k(u) ≥ Γ̃k(x̂k) + ⟨s̃k, u− x̂k⟩; (9)

b) s̃k ∈ ∂η̃k
ϕ̃(ŷk) and

0 ≤ 2λkη̃k ≤ 2λkε− (1 + νλk)∥ŷk − x̂k∥2 + (1− χ)∥ŷk − x̂k−1∥2; (10)

c) for any χ ∈ [0, 1) and every u ∈ domϕ, we have

ϕ̃(u) ≥ ϕ̃(ŷk) + ⟨s̃k, u− ŷk⟩+
χ(µ− ν)

2
∥u− ŷk∥2 −

η̃k
1− χ

. (11)

Proof: (a) The optimality condition of (5) yields 0 ∈ ∂Γ̂k(x̂k) + (x̂k − x̂k−1)/λk. This inclusion and the fact
that ∂Γ̂k(u) = ∂Γ̃k(u) + νu for every u ∈ Rn imply that

0 ∈ ∂Γ̃k(x̂k) + νx̂k +
x̂k − x̂k−1

λk

(6)
= ∂Γ̃k(x̂k)− s̃k

where the identity is due to the definition of s̃k in (6). Hence, the inclusion in a) holds. Relation (9)
immediately follows from the inclusion in a) and the definition of the subdifferential.

(b) It follows from the relation ϕ ≥ Γ̂k (see step 1 of FSCO) and the definition of ϕ̃ and Γ̃k in (8) that
ϕ̃ ≥ Γ̃k. This inequality, (9), the definition of η̃k in (7) imply that for every u ∈ domϕ,

ϕ̃(u) ≥ Γ̃k(u)
(9)

≥ Γ̃k(x̂k) + ⟨s̃k, u− x̂k⟩
(7)
= ϕ̃(ŷk) + ⟨s̃k, u− ŷk⟩ − η̃k,

which yields the inclusion in b). Taking u = ŷk in the above inequality gives η̃k ≥ 0, and hence the first
inequality in (10) holds. Using the definitions of s̃k and η̃k in (6) and (7), respectively, the definitions of ϕ̃
and Γ̃k in (8), and (4) and (5), we have

η̃k
(7),(8)
= ϕ(ŷk)− Γ̂k(x̂k) +

ν

2

(
∥x̂k∥2 − ∥ŷk∥2

)
− ⟨s̃k, ŷk − x̂k⟩

(4),(5)

≤
[
ε− χ

2λk
∥ŷk − x̂k−1∥2 +

1

2λk
∥x̂k − x̂k−1∥2

]
+
ν

2

(
∥x̂k∥2 − ∥ŷk∥2

)
− ⟨s̃k, ŷk − x̂k⟩

(6)
= ε− χ

2λk
∥ŷk − x̂k−1∥2 +

1

2λk
∥x̂k − x̂k−1∥2 +

ν

2

(
∥x̂k∥2 − ∥ŷk∥2

)
+

〈
x̂k − x̂k−1

λk
+ νx̂k , ŷk − x̂k

〉
= ε+

1− χ
2λk

∥ŷk − x̂k−1∥2 −
1

2λk
∥ŷk − x̂k∥2 −

ν

2
∥ŷk − x̂k∥2.

Hence, the second inequality in (10) holds.
(c) Using the inclusion in b), the fact that ϕ̃ is (µ − ν)-convex, and Lemma A.1 of [18], we have for any

ζ ∈ (0,∞] and every u ∈ domϕ,

ϕ̃(u) ≥ ϕ̃(ŷk) + ⟨s̃k, u− ŷk⟩+
µ− ν

2(1 + ζ)
∥u− ŷk∥2 − (1 + ζ−1)η̃k.

Now, (11) follows from the above inequality with ζ = (1− χ)/χ where χ is as in step 0 of FSCO.
Before showing Theorem 2.3 on the complexity of FSCO, we also need the following Proposition 2.2.
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Proposition 2.2 Consider sequences {x̂k}, {ŷk}, and {λk} generated by FSCO. For every u ∈ Rn, we have
for every k ≥ 1, u ∈ Rn, and χ ∈ [0, 1), we have:

χ(1 + νλ)∥x̂k − ŷk∥2 ≤ (1− χ)∥x̂k−1 − x∗∥2 + 2λkε. (12)

and

2λk [ϕ(ŷk)− ϕ(u)] ≤
2λkε

1− χ
+ ∥x̂k−1 − u∥2 − (1 + σ)∥x̂k − u∥2, (13)

where

σ = σ(λ) :=
λ[ν(1 + µλ) + χ(µ− ν)]
1 + µλ+ χλ(ν − µ)

. (14)

Proof: Let A(u) := ∥x̂k−1 − u∥2 − (1 + νλk)∥x̂k − u∥2. Since A(u) is a quadratic function in u, its Taylor’s
expansion gives

A(u) = A(ŷk) + ⟨∇A(ŷk), u− ŷk⟩+
1

2
⟨∇2A(ŷk)(u− ŷk), u− ŷk⟩,

where ∇2A(ŷk) = −2νλkI and

∇A(ŷk) = 2(ŷk − x̂k−1)− 2(1 + νλk)(ŷk − x̂k)
(6)
= −2νλkŷk − 2λks̃k.

Using the above formulas, we have for A(u)−A(ŷk) the expresssion

∥x̂k−1 − u∥2 − (1 + νλk)∥x̂k − u∥2 −
(
∥x̂k−1 − ŷk∥2 − (1 + νλk)∥x̂k − ŷk∥2

)
= −2λk⟨νŷk + s̃k, u− ŷk⟩ − νλk∥u− ŷk∥2 = −2λk⟨s̃k, u− ŷk⟩ − νλk(∥u∥2 − ∥ŷk∥2)
(11)

≥ 2λk

[
ϕ̃(ŷk)− ϕ̃(u) +

χ(µ− ν)
2

∥u− ŷk∥2 −
η̃k

1− χ

]
− νλk(∥u∥2 − ∥ŷk∥2)

(8)
= 2λk [ϕ(ŷk)− ϕ(u)] + χ(µ− ν)λk∥u− ŷk∥2 −

2λkη̃k
1− χ

, (15)

where the inequality is due to (11) and the last identity is due to the definition of ϕ̃ in (8). Rearranging the
terms in (15) and using Lemma 2.1(b), we have

∥x̂k−1 − u∥2 − (1 + νλk)∥x̂k − u∥2 − 2λk [ϕ(ŷk)− ϕ(u)]
(15)

≥ ∥x̂k−1 − ŷk∥2 − (1 + νλk)∥x̂k − ŷk∥2 + χ(µ− ν)λk∥u− ŷk∥2 −
2λkη̃k
1− χ

(10)

≥ − 2λkε

1− χ
+
χ(1 + νλ)

1− χ
∥x̂k − ŷk∥2 + χ(µ− ν)λ∥u− ŷk∥2,

where in the last inequality we have used Assumption (F1).
Rearranging the terms and using Assumption (F1), we have

2λk [ϕ(ŷk)− ϕ(u)] ≤
2λkε

1− χ
+ ∥x̂k−1 − u∥2 − (1 + νλ)∥x̂k − u∥2

− χ
(
1 + νλ

1− χ
∥x̂k − ŷk∥2 + (µ− ν)λ∥u− ŷk∥2

)
. (16)

It is clear that (12) follows from (16) with u = x∗ and observing that ϕ(ŷk) − ϕ(x∗) ≥ 0. Using the triangle
inequality and the fact that (a1 + a2)

2 ≤ (b−1
1 + b−1

2 )(a21b1 + a22b2) with (a1, a2) = (∥x̂k − ŷk∥, ∥u − ŷk∥) and
(b1, b2) = ((1 + νλ)/(1− χ), (µ− ν)λ) we have

∥x̂k − u∥2 ≤
(

1− χ
1 + νλ

+
1

(µ− ν)λ

)(
1 + νλ

1− χ
∥x̂k − ŷk∥2 + (µ− ν)λ∥u− ŷk∥2

)
. (17)

Plugging the above ineqaulity into (16), we have

2λk [ϕ(ŷk)− ϕ(u)] ≤
2λkε

1− χ
+ ∥x̂k−1 − u∥2 −

[
1 + νλ+ χ

(
1− χ
1 + νλ

+
1

(µ− ν)λ

)−1
]
∥x̂k − u∥2,
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which is the same as (13) after simplification.
Before giving the first main complexity result for FSCO, namely, a complexity bound for obtaining a ε̄-

solution of (3), we first introduce some terminology used throughout our analysis. Let x∗ denote the closest
solution of (3) to the initial point x̂0 of FSCO and let d0 denote its distance to x̂0, i.e.,

∥x̂0 − x∗∥ = min{∥x− x̂0∥ : x ∈ X∗}, d0 = ∥x̂0 − x∗∥. (18)

Theorem 2.3 For a given tolerance ε̄ > 0, consider FSCO with ε = (1−χ)ε̄/2, where χ ∈ [0, 1) is as in step
0 of FSCO. Then, the number of iterations of FSCO to generate an iterate ŷk satisfying ϕ(ŷk)− ϕ∗ ≤ ε̄ is at
most

Cfunc(ε̄) := min

{
min

[
1

χ

(
1 +

1

λµ

)
, 1 +

1

λν

]
log

(
1 +

λ0µd
2
0

λε̄

)
,
d20
λε̄

}
. (19)

Proof: It is easy to see that (13) with u = x∗ where x∗ is given by (18) satisfies (93) with σ is as in (14) and

γk = 2λk, ηk = ϕ(ŷk)− ϕ∗, αk = ∥x̂k − x∗∥2, δ =
ε

1− χ
. (20)

Also, note that

γ = 2λ, 2δ =
2ε

1− χ
= ε̄.

It follows from Lemma A.1(c) with the above parameters and the definition of σ in (14) that the complexity
to find a ε̄-solution is

min

{
1 + σ

σ
log

(
1 +

σd20
λε̄

)
,
d20
λε̄

}
(14)
= min

{
(1 + νλ)(1 + µλ)

λ[ν(1 + µλ) + χ(µ− ν)]
log

(
1 +

σd20
λε̄

)
,
d20
λε̄

}
. (21)

Since χ ∈ [0, 1), it is easy to verify that

1 + νλ

ν(1 + µλ) + χ(µ− ν)
≤ 1

χµ
,

and hence that
(1 + νλ)(1 + µλ)

λ[ν(1 + µλ) + χ(µ− ν)]
≤ 1 + µλ

χλµ
=

1

χ

(
1 +

1

λµ

)
.

Moreover, noting that χ ∈ [0, 1) and µ ≥ ν, we also have

(1 + νλ)(1 + µλ)

λ[ν(1 + µλ) + χ(µ− ν)]
≤ 1 +

1

λν
.

Combining the above two inequalities, we obtain

(1 + νλ)(1 + µλ)

λ[ν(1 + µλ) + χ(µ− ν)]
≤ min

{
1

χ

(
1 +

1

λµ

)
, 1 +

1

λν

}
.

The result now immediately follows from (21), the above inequality, and the fact that

σ ≤ λ[ν(1 + µλ) + χ(µ− ν)]
1 + µλ

≤ λ
(
ν +

χ(µ− ν)
1 + µλ

)
≤ λ0

(
ν +

χ(µ− ν)
1 + µλ0

)
≤ λ0 (ν + (µ− ν)) ≤ λ0µ.

We now comment on the complexity bound obtained in Theorem 2.3. First, the bound

min

{
1

χ

(
1 +

1

λµ

)
, 1 +

1

λν

}
log

(
1 +

λ0µd
2
0

λε̄

)
(22)

implied by (19) is meaningful only when χ > 0 or ν > 0 (otherwise, it should be understood as being infinity).
Second, the validity of the second bound in (22) is well-known and can be found for example in [7, 15]. Third,
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if µ≫ ν (see the assumption (F2) in Section 1) and χ is sufficiently close to one, the smallest term in (22) is
the first one, in which case (19) reduces to

1

χ

(
1 +

1

λµ

)
log

(
1 +

λ0µd
2
0

λε̄

)
= Õ

(
1

λµ

)
.

Fourth, since the second bound does not depend on ν, µ and χ, it holds for any parameters µ ≥ ν ≥ 0 and
χ ∈ [0, 1).

The drawback of using the termination criterion ϕ(x̄) − ϕ∗ ≤ ε̄ is that it requires knowledge of ϕ∗. The
next subsection presents the complexity of FSCO to obtain a point satisfying a stopping criterion that is easily
checkable for any instance of (3).

2.2 Stationarity complexity analysis

This subsection studies the iteration complexity for FSCO to obtain a near-stationary solution of (3) (see the
definition below). Its main result is stated in Theorem 2.8.

We start by defining the notion of near-stationary solutions considered in this subsection.

Definition 2.4 A triple (x, v, η) is called ϕ-compatible if it satisfies the inclusion v ∈ ∂ηϕ(x). For a given
tolerance pair (ρ̂, ε̂), a ϕ-compatible triple (x, v, η) is called a (ρ̂, ε̂)-stationary solution of (3) if it satisfies
∥v∥ ≤ ρ̂ and η ≤ ε̂.

We now comment on the benefits of using near-stationary solutions as a way to terminate an algorithm.
First, many algorithms, including the ones considered in this paper, naturally generate a sequence of ϕ-
compatible triples {(ȳk, s̄k, ε̄k)} where the sequence of residual pairs {(s̄k, ε̄k)} can be made arbitrarily small
(see Proposition 2.7 below). As a consequence, some (ȳk, s̄k, ε̄k) will eventually become a (ρ̂, ε̂)-stationary
solution of (3). Moreover, verifying this only requires checking whether the two inequalities ∥s̄k∥ ≤ ρ̂ and
ε̄k ≤ ε̂ hold as the inclusion s̄k ∈ ∂ε̄kϕ(ȳk) is guaranteed to hold for every k ≥ 1. Second, this notion is related
to the one considered in Subsection 2.1 as follows. If (ȳk, s̄k, ε̄k) is a (ρ̂, ε̂)-stationary solution and domϕ has
a finite diameter D, then it follows that ȳk is a (ε̂+Dρ̂)-solution of (3).

The following lemma will be useful to derive such complexity for stationary conditions:

Lemma 2.5 For every k ≥ 1, define

ȳk = argmin {ϕ(y) : y ∈ {ŷ1, . . . , ŷk}} (23)

and

Sk =

k∑
j=1

(1 + σ)j−1λj (24)

where σ is as in (14). Then, for every u ∈ domϕ, we have:

ϕ(ȳk)− ϕ(u) ≤
∥x̂0 − u∥2 − (1 + σ)k∥x̂k − u∥2

2Sk
+

ε

1− χ
, (25)

∥x̂k − x∗∥2 ≤
d20

(1 + σ)k
+

2εSk

(1− χ)(1 + σ)k
, (26)

where x∗ and d0 are as in (18).

Proof: First note that (13) is a special case of (93) with

γk = 2λk, ηk = ϕ(ŷk)− ϕ(u), αk = ∥x̂k − u∥2, δ =
ε

1− χ
.

Then, (25) follows from Lemma A.1(a). It is also easy to verify that (13) with u = x∗ satisfies (93) with
parameters as in (20). Then, (26) follows from Lemma A.1(b).
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Lemma 2.6 For every k ≥ 1, we have

∥x̂0 − x̂k∥2 ≤ 4

(
d20 +

Skε

1− χ

)
, (27)

∥x̂0 − ȳk∥2 ≤
1

χ

(
5d20 +

8Skε

1− χ

)
. (28)

Proof: Using (26) and the fact that σ ≥ 0, we have for every i ∈ {1, 2, . . . , k},

∥x̂i − x∗∥2
(26)

≤ d20
(1 + σ)i

+
2εSi

(1− χ)(1 + σ)i
≤ d20 +

2εSi

1− χ
≤ d20 +

2εSk

1− χ
. (29)

It follows from the triangle inequality that

∥x̂0 − x̂k∥2 ≤ (∥x̂0 − x∗∥+ ∥x̂k − x∗∥)2 ≤ 2
[
d20 + ∥x̂k − x∗∥2

]
.

which together with (29) implies (27). Using the triangle inequality and the fact that (a1 + a2)
2 ≤ (b−1

1 +
b−1
2 )(a21b1 + a22b2) with (a1, a2) = (∥x̂0 − x̂k∥, ∥x̂k − ŷk∥) and (b1, b2) = (1, χ(1 + νλ)/(1− χ)), we have

∥x̂0 − ŷk∥2 ≤ (∥x̂0 − x̂k∥+ ∥x̂k − ŷk∥)2

≤
(
1 +

1− χ
χ(1 + νλ)

)[
∥x̂0 − x̂k∥2 +

χ(1 + νλ)

1− χ
∥x̂k − ŷk∥2

]
(12)

≤ 1

χ

(
∥x̂0 − x̂k∥2 + ∥x̂k−1 − x∗∥2 +

2λkε

1− χ

)
, (30)

where the last inequality is due to (12). Noting that ȳk = ŷi for some i ∈ {1, 2, . . . , k}, and using (27), (29),
and (30), we have

∥x̂0 − ȳk∥2 = ∥x̂0 − ŷi∥2
(30)

≤ 1

χ

[
∥x̂0 − x̂i∥2 + ∥x̂i−1 − x∗∥2 +

2λiε

1− χ

]
(27),(29)

≤ 1

χ

(
4d20 +

4εSk

1− χ
+ d20 +

2εSk

1− χ
+

2λiε

1− χ

)
≤ 1

χ

(
5d20 +

8εSk

1− χ

)
,

where the last inequality is due to the fact that Sk ≥ (1 + σ)i−1λi ≥ λi. Hence, (28) is proved.
The following results shows that FSCO naturally generates a sequence of residual pairs {(v̂k, ε̂k)} such

that (ẑk, v̂k, ε̂k) is ϕ-compatible for every k ≥ 1 and provides suitable bounds for it.

Proposition 2.7 For every k ≥ 1, define

s̄k =
x̂0 − x̂k
Sk

, ε̄k =
∥x̂0 − ȳk∥2 − ∥x̂k − ȳk∥2

2Sk
+

ε

1− χ
(31)

where ȳk is as in (23). Then, the following statements hold for every k ≥ 1:

a) s̄k ∈ ∂ϕε̄k(ȳk);

b) the residual pair (s̄k, ε̄k) is bounded by

∥s̄k∥ ≤
2d0
Sk

+

√
2ε√

(1− χ)Sk

, ε̄k ≤
∥x̂0 − ȳk∥2

2Sk
+

ε

1− χ
, (32)

where Sk is as in (24).

Proof: (a) Using (25) and the fact that σ ≥ 0, we have for every u ∈ Rn,

ϕ(ȳk)− ϕ(u) ≤
∥x̂0 − u∥2 − ∥x̂k − u∥2

2Sk
+

ε

1− χ

=
∥x̂0 − ȳk∥2 − ∥x̂k − ȳk∥2 + 2⟨x̂0 − x̂k, ȳk − u⟩

2Sk
+

ε

1− χ
(31)
= ⟨s̄k, ȳk − u⟩+ ε̄k,
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where the last identity is due to the definitions of s̄k and ε̄k in (31). Hence, the statement holds.
(b) Using the triangle inequality, (26), and the fact that

√
a+ b ≤

√
a+
√
b, we have

∥s̄k∥ ≤
d0 + ∥x̂k − x∗∥

Sk

(26)

≤ d0
Sk

+
1

Sk

(
d0√

(1 + σ)k
+

√
2εSk√

(1− χ)(1 + σ)k

)
.

Hence, the first inequality in (32) follows from the fact that σ ≥ 0. Moreover, the second inequality in (32)
follows immediately from the definition of ε̄k in (31).

The following Theorem 2.8 provides the complexity for stationary conditions announced in the beginning
of this section.

Theorem 2.8 For a given tolerance pair (ε̂, ρ̂) ∈ R2
++, FSCO with

χ ∈ (0, 1), ε =
χ(1− χ)ε̂

10
, (33)

generates a triple (ȳk, s̄k, ε̄k) satisfying

s̄k ∈ ∂ϕε̄k(ȳk), ∥s̄k∥ ≤ ρ̂, ε̄k ≤ ε̂ (34)

in at most

min

{
min

[
1

χ

(
1 +

1

λµ

)
, 1 +

1

λν

]
log [1 + λ0µβ(ε̂, ρ̂)] , β(ε̂, ρ̂)

}
(35)

iterations where

β(ε̂, ρ̂) =
1

λ

(
4χε̂

5ρ̂2
+

5d20
χε̂

)
. (36)

Proof: First, it follows from Proposition 2.7(a) that the inclusion s̄k ∈ ∂ϕε̄k(ȳk) holds for every k ≥ 1. We
next show that the number of iterations required for (34) is at most

k0 := min

{
1 + σ

σ
log [1 + σβ(ε̂, ρ̂)] , β(ε̂, ρ̂)

}
. (37)

Hence, it suffices to show that ∥s̄k∥ ≤ ρ̂ and ε̄k ≤ ε̂ for every k ≥ k0. Using the definition of Sk in (24),
assumption (F2), and (98), we have

Sk ≥ λ
k∑

j=1

(1 + σ)j−1
(98)

≥ λmax

{
eσk/(1+σ) − 1

σ
, k

}
. (38)

It is easy to verify that for every k ≥ k0, we have

Sk ≥ λβ(ε̂, ρ̂). (39)

It immediately follows from the inequality that a2 + b2 ≥ 2ab and the definition of β(ε̂, ρ̂) in (36) that

β(ε̂, ρ̂) ≥ 4d0
λρ̂

. (40)

Using Lemma 2.6, Proposition 2.7(b), (33), the definition of β(ε̂, ρ̂) in (36), and the above observation, we
have

∥s̄k∥
(32),(33)

≤ 2d0
Sk

+

√
χε̂√
5Sk

(36),(40)

≤ β(ε̂, ρ̂)λρ̂

2Sk
+

√
β(ε̂, ρ̂)λρ̂

2
√
Sk

, (41)

ε̄k
(28),(32)

≤ 5d20
2χSk

+
4ε

χ(1− χ)
+

ε

1− χ
(33)

≤ 5d20
2χSk

+
ε̂

2

(36)

≤ β(ε̂, ρ̂)λε̂

2Sk
+
ε̂

2
. (42)

Finally, plugging (39) into (41) and (42), we conclude that ∥s̄k∥ ≤ ρ̂ and ε̄k ≤ ε̂ for every k ≥ k0, where k0 is
as in (37). It follows from the same argument as in the proof of Theorem 2.3 that (35) is an upper bound on
k0. Finally, we conclude that the theorem holds.

We now make some remarks about Theorem 2.8. In contrast to Theorem 2.3, it does not apply to the case
where χ = 0 because the quantity β(ε̂, ρ̂) that appears in (35) depends on χ−1 (see in (36)). The following
result considers two special cases which cover the case χ = 0.
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Theorem 2.9 For a given tolerance pair (ε̂, ρ̂) ∈ R2
++, the following statements hold for FSCO with χ ∈ [0, 1):

a) if domϕ is bounded with diameter D > 0, then FSCO with ε = (1− χ)ε̂/2 generates a triple (ȳk, s̄k, ε̄k)
satisfying (34) within a number iterations bounded by (35) but with β(ε̂, ρ̂) now given by

β(ε̂, ρ̂) =
2

λ

(
2ε̂

ρ̂2
+
d20 +D2

ε̂

)
; (43)

b) the special case of FSCO, where ε = (1−χ)ε̂/6 and ŷk = x̂k for every k ≥ 1, generates a triple (ȳk, s̄k, ε̄k)
satisfying (34) within a number iterations bounded by (35) but with β(ε̂, ρ̂) now given by

β(ε̂, ρ̂) =
4

λ

(
ε̂

3ρ̂2
+
d20
ε̂

)
. (44)

Proof: a) Since ŷk and x∗ are in domϕ, it follows from the boundedness assumption that ∥ŷk − x∗∥ ≤ D.
Using the inequality and the triangle inequality, we have

∥x̂0 − ȳk∥2 ≤ (∥x̂0 − x∗∥+ ∥x∗ − ȳk∥)2 ≤ 2(d20 +D2).

Thus, it follows the second inequality in (32) and the fact that ε = (1− χ)ε̂/2 that

ε̄k
(32)

≤ d20 +D2

Sk
+
ε̂

2

(43)

≤ β(ε̂, ρ̂)λε̂

2Sk
+
ε̂

2
,

where the last inequality is due to the definition of β(ε̂, ρ̂) in (43). Similarly, using the first inequality in (32),
the fact that ε = (1− χ)ε̂/2, and (43), we have

∥s̄k∥
(32)

≤ 2d0
Sk

+

√
ε̂√
Sk

(43)

≤ β(ε̂, ρ̂)λρ̂

2Sk
+

√
β(ε̂, ρ̂)λρ̂

2
√
Sk

,

where the second inequality is also due to the observation that β(ε̂, ρ̂) ≥ 4d0/(λρ̂) in view of (43). Finally,
the rest of the proof follows from the same argument as in the proof of Theorem 2.8.

b) Since ŷk = x̂k for every k ≥ 1, we know ȳk = ŷi = x̂i for some i ∈ {1, 2, . . . , k}. This observation, (27),
and the second inequality in (32) imply that

ε̄k
(32)

≤ ∥x̂0 − x̂i∥
2

2Sk
+

ε

1− χ
(27)

≤ 2d20
Sk

+
2εSi

(1− χ)Sk
+

ε

1− χ
≤ 2d20

Sk
+

3ε

1− χ
,

where the last inequality is due to the fact that Si ≤ Sk for i ≤ k. It follows from the fact that ε = (1−χ)ε̂/6
and the definition of β(ε̂, ρ̂) in (44) that

ε̄k ≤
2d20
Sk

+
ε̂

2

(44)

≤ β(ε̂, ρ̂)λε̂

2Sk
+
ε̂

2
.

Similarly, using the first inequality in (32), the fact that ε = (1− χ)ε̂/6, and (44), we have

∥s̄k∥
(32)

≤ 2d0
Sk

+

√
ε̂√

3Sk

(44)

≤ β(ε̂, ρ̂)λρ̂

2Sk
+

√
β(ε̂, ρ̂)λρ̂

2
√
Sk

,

where the second inequality is also due to the observation that β(ε̂, ρ̂) ≥ 4d0/(λρ̂) in view of (44). Finally,
the rest of the proof follows from the same argument as in the proof of Theorem 2.8.

Compared to the complexity result of Theorem 2.8 (which does not apply to χ = 0) where term χ appears
in the denominator, the one of Theorem 2.9 (which applies to χ = 0) involves a term β(ε̂, ρ̂) where the term
χ is now removed from the denominator.
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3 Universal composite subgradient and proximal bundle methods

This section presents the two µ-universal methods for solving (1), namely, U-CS in Subsection 3.1 and U-PB in
Subsection 3.2. We prove that both methods are instances of FSCO and establish their iteration complexities
in terms of function value and stationarity based on the analysis in Section 2.

We assume that conditions (A1) and (A2) hold for (1). We also assume that

(A3) h ∈ Convν (Rn) for some 0 ≤ ν ≤ µ;

(A4) f ∈ Conv (Rn) is such that domh ⊂ dom f , and a subgradient oracle, i.e., a function f ′ : domh → Rn

satisfying f ′(x) ∈ ∂f(x) for every x ∈ domh, is available;

(A5) there exists (Mf , Lf ) ∈ R2
+ such that for every x, y ∈ domh,

∥f ′(x)− f ′(y)∥ ≤ 2Mf + Lf∥x− y∥.

It is well known that (A5) implies that for every x, y ∈ domh,

f(x)− ℓf (x; y) ≤ 2Mf∥x− y∥+
Lf

2
|x− y|2. (45)

Also, for a given tolerance ε > 0, the fact that the set Ω := {(Mf , Lf ) ∈ R2
+ : (A5) holds with (Mf , Lf )}

is a (nonempty) closed convex set implies that there exists a unique pair (Mf , Lf ) := (Mf (ε), Lf (ε)) that
minimizes M2

f + εLf over Ω (referred to as the ε-best pair).

3.1 A universal composite subgradient method

The U-CS method is a variant of the universal primal gradient method of [21] by introducing a parameter
χ ∈ [0, 1). It can also be shown as an instance of FSCO, and we thus establish its complexity using the analysis
in Section 2. The method is described below.

U-CS

0. Let x̂0 ∈ domh, χ ∈ [0, 1), λ0 > 0, and ε > 0 be given, and set λ = λ0 and j = 1;

1. Compute

x = argmin
u∈Rn

{
ℓf (u; x̂j−1) + h(u) +

1

2λ
∥u− x̂j−1∥2

}
;

2. If f(x)− ℓf (x; x̂j−1)− (1− χ)∥x− x̂j−1∥2/(2λ) ≤ ε does not hold, then set λ = λ/2 and go to step 1;
else, go to step 3;

3. Set λj = λ, x̂j = x, j ← j + 1, and go to step 1.

We now make some remarks about U-CS. First, no stopping criterion is added to it since our goal is to
analyze its iteration-complexity for obtaining two types of approximate solutions, i.e., either a ε̄-solution (see
Theorem 3.2 below) or a (ρ̂, ε̂)-stationary solution (see Theorem 3.3 below). Second, U-CS with χ = 0 and
ε = ε̄/2 is exactly the universal primal gradient method analyzed in [21]. Hence, with the introduction of the
damping parameter χ, U-CS can be viewed as a generalization of the method of [21].

The following result shows that U-CS is an instance of FSCO and that assumptions (F1) and (F2) of
Section 2 are satisfied.

Proposition 3.1 The following statements hold for U-CS:

a) {λk} is a non-increasing sequence;
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b) for every k ≥ 1, we have

x̂k = argmin
u∈Rn

{
ℓf (u; x̂k−1) + h(u) +

1

2λk
∥u− x̂k−1∥2

}
, (46)

f(x̂k)− ℓf (x̂k; x̂k−1) +
χ− 1

2λk
∥x̂k − x̂k−1∥2 ≤ ε, (47)

λk ≥ λ(ε) := min

 (1− χ)ε

4
(
M

2

f + εLf

) , λ0
 . (48)

c) U-CS is a special case of FSCO where:

i) ŷk = x̂k and Γ̂k(·) = ℓf (·; x̂k−1) + h(·) for every k ≥ 1;

ii) assumptions (F1) and (F2) are satisfied with λ = λ(ε) given by (48) and ν from assumption (A3).

Proof: a) This statement directly follows from the description of U-CS.
b) Relations (46) and (47) directly follow from the description of U-CS. Using (45) with (Mf , Lf , u, v) =

(Mf , Lf , x̂k, x̂k−1) and the inequality a2 + b2 ≥ 2ab for a, b ∈ R, we have

f(x̂k)− ℓf (x̂k; x̂k−1) +
χ− 1

2λk−1
∥x̂k − x̂k−1∥2

(45)

≤ 2Mf∥x̂k − x̂k−1∥+
Lf

2
∥x̂k − x̂k−1∥2 +

χ− 1

2λk−1
∥x̂k − x̂k−1∥2

= 2Mf∥x̂k − x̂k−1∥ −
1− χ− λk−1Lf

2λk−1
∥x̂k − x̂k−1∥2

≤
2λk−1M

2

f

1− χ− λk−1Lf

. (49)

Observe that λk−1 ≤ (1− χ)ε/(2(M2

f + Lfε)) implies that λk−1 ≤ (1− χ)ε/(2M2

f + Lfε), and hence that

2λk−1M
2

f

1− χ− λk−1Lf

≤ ε.

The above inequality and (49) thus imply that (47) holds with λk replaced by λk−1. This indicates that if λ
is small enough, then it will remain unchanged. Therefore, following from the update scheme of λ in step 2 of
U-CS, there is a lower bound λ(ε) as in (48).

c) Relations (46) and (47) are the analogues of relations (4) and (5) of FSCO with ŷk = x̂k and Γ̂k as in
(i). Inequality (48) shows that Assumption (F2) is satisfied with λ = λ(ε). Finally, in the k-th iteration of
U-CS, the model Γ̂k for ϕ = f + h being simply the linearization ℓf (·, x̂k−1) + h(·) with h ∈ Convν (Rn) for
some 0 ≤ ν ≤ µ (from Assumption (A3)), we obtain that Assumption (F1) is satisfied.

We are now in a position to state the main result for the functional complexity of U-CS.

Theorem 3.2 Let ε̄ > 0 be given and consider U-CS with ε = (1− χ)ε̄/2, where χ ∈ [0, 1) is as in step 0 of
U-CS. Then, the number of iterations of U-CS to generate an iterate x̂k satisfying ϕ(x̂k)− ϕ∗ ≤ ε̄ is at most

min

{
min

[
1

χ

(
1 +

Qf (ε̄)

µε̄

)
, 1 +

Qf (ε̄)

νε̄

]
log

(
1 +

λ0µQf (ε̄)d
2
0

ε̄2

)
,
d20Qf (ε̄)

ε̄2

}
+

⌈
2 log

λ0Qf (ε̄)

ε̄

⌉
(50)

where

Qf (ε̄) =
8M

2

f

(1− χ)2
+ ε̄

(
λ−1
0 +

8Lf

(1− χ)2

)
(51)

Proof: Define

k̄ =

⌈
2 logmax

{
4λ0(M

2

f + εLf )

(1− χ)ε
, 1

}⌉
. (52)
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Observe that λ0/2
k ≤ λ(ε) for k ≥ k̄, and from Lemma 3.1 that we cannot halve λ more than k̄ iterations. It

follows from ε ≤ ε̄ that M
2

f + εLf ≤M
2

f + ε̄Lf , which together with ε = (1− χ)ε̄/2 implies that

k̄ ≤
⌈
2 log

λ0Qf (ε̄)

ε̄

⌉
.

Therefore, the second term on the right-hand side of (50) gives an upper bound on the number of iterations
with backtracking of λ. We now provide a bound on the number of remaining iterations to obtain a ε̄-solution
with U-CS. Theorem 2.3 (which can be applied since we have shown that U-CS is a special case of FSCO)
gives for U-CS the upper bound

min

{
min

[
1

χ

(
1 +

1

λ(ε)µ

)
, 1 +

1

λ(ε)ν

]
log

(
1 +

λ0µd
2
0

λ(ε)ε̄

)
,
d20

λ(ε)ε̄

}
(53)

on the number of the remaining iterations (where λ is not halved) required to find an ε-optimal solution of
(1) with λ(ε) given by (48). Using the inequality

1

λ(ε)
= max

{
4(M

2

f + εLf )

(1− χ)ε
,
1

λ0

}
≤

4(M
2

f + εLf )

(1− χ)ε
+

1

λ0
, (54)

the assumption that ε = (1− χ)ε̄/2, and the definition of Qf (ε̄) in (51), we conclude that 1/λ(ε) ≤ Qf (ε̄)/ε̄.
This observation and (53) thus imply that the first term in (50) is an upper bound on the number of the
remaining iterations (where λ is not halved). This completes the proof.

We now make some comments about Theorem 3.2. First, Theorem 3.2 applies to any χ ∈ [0, 1), and hence
to the universal primal gradient method of [21]. In this case, if λ−1

0 = O(1), then the strong convexity part of
the bound in (50) is

Õ
(
Qf (ε̄)

νε̄

)
= Õ

(
M

2

f

νε̄
+
Lf

ν

)
, (55)

which is identical to the one in Proposition C.3 of [17]. Second, if χ > 0 and λ−1
0 = O(1), then the complexity

bound (50) is also

Õ
(
Qf (ε̄)

χµε̄

)
= Õ

(
M

2

f

χµε̄
+
Lf

χµ

)
, (56)

which is smaller than (55) whenever χµ ≥ ν. For example, if χ = 1/2 and µ ≫ ν, then (56) is quite smaller
than (55). In summary, the performance of the U-CS with the damping parameter χ > 0 depends on the
strong convexity parameter µ of the overall objective function ϕ and hence is potentially more universal than
the universal primal gradient method of [21] whose complexity bound depends only on the strong convexity
parameter ν of the composite function h.

The following result states the complexity of stationary complexity of U-CS.

Theorem 3.3 For a given tolerance pair (ε̂, ρ̂) ∈ R2
++, consider U-CS with χ ∈ [0, 1) and ε = (1 − χ)ε̂/6.

Define ȳk as in (23) with sequence {ŷk} replaced by {x̂k}, and let s̄k and ε̄k be as in (31) where the sequence
{x̂k} is generated by U-CS. Then for every k ≥ 1, U-CS generates a triple (ȳk, s̄k, ε̄k) satisfying (34) within a
number of iterations bounded by

min

{
min

[
1

χ

(
1 +

Qs(ε̂)

µε̂

)
, 1 +

Qs(ε̂)

νε̂

]
logC(ε̂, ρ̂) ,

4Qs(ε̂)

ε̂

(
ε̂

3ρ̂2
+
d20
ε̂

)}
+

⌈
2 log

λ0Qs(ε̂)

ε̂

⌉
(57)

where

C(ε̂, ρ̂) = 1 +
4λ0µQs(ε̂)

ε̂

(
ε̂

3ρ̂2
+
d20
ε̂

)
, Qs(ε̂) =

24M
2

f

(1− χ)2
+ ε̂

(
1

λ0
+

24Lf

(1− χ)2

)
.

Proof: Same as in the proof of Theorem 3.2, integer k̄ given by (52) gives an upper bound on the number of

iterations where λ is halved. Using ε = (1− χ)ε̂/6 and M
2

f + εLf ≤M
2

f + ε̂Lf , we have that

k̄ ≤
⌈
2 log

λ0Qs(ε̂)

ε̂

⌉
,
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which gives the second term on the right-hand side of (57). Next, using Theorem 2.9(b) (observe that this
theorem can be applied to U-CS since we have ŷk = x̂k for U-CS and we consider the possibility for χ to be
0), the number of remaining iterations to satisfy (34) is upper bounded by

min

{
min

[
1

χ

(
1 +

1

λ(ε)µ

)
, 1 +

1

λ(ε)ν

]
log [1 + λ0µβ(ε̂, ρ̂)] , β(ε̂, ρ̂)

}
(58)

where

β(ε̂, ρ̂) =
4

λ(ε)

(
ε̂

3ρ̂2
+
d20
ε̂

)
with λ(ε) given by (48). Now, using the inequality (54), the assumption that ε = (1−χ)ε̂/6, and the definition
of Qs(ε̂) in (51), we conclude that 1/λ(ε) ≤ Qs(ε̂)/ε̂. This observation and (58) then imply that the first
term in (57) is an upper bound on the number of the remaining iterations (where λ is not halved) required to
satisfy (34). This completes the proof.

It is easy to see that when λ0 is large, χ is close to 1, and µ≫ ν, the upper bound (57) on the number of
iterations for U-CS to generate a triple (ȳk, s̄k, ε̄k) satisfying (34) reduces again to (56).

3.2 A universal proximal bundle method

This subsection describes the U-PB method and establishes its iteration complexities. More specifically, § 3.2.1
describes U-PB and states the main results, namely Theorems 3.6 and 3.7, and § 3.2.2 is devoted to the proof
of a technical result (i.e., Proposition 3.4) that is crucial to the proof of the main results. Conditions (A1)-(A5)
are assumed to hold in this subsection.

3.2.1 Description of U-PB and related complexity results

The U-PB method is an extension of the GPB method of [17]. In contrast to GPB, we use an adaptive stepsize
and introduce a maximal number N (which can be as small as one) of iterations for all cycles. Similarly to
U-CS, U-PB is another instance of FSCO and we establish both functional and stationary complexities for
U-PB using the results of Section 2. Compared with the complexity results in [17], those obtained in this
paper are sharper, since they are expressed in terms of µ = µϕ instead of µh.

U-PB is based on the following bundle update (BU) blackbox which builds a model f+M + h for f + h on
the basis of a previous model fM of f and of a new linearization ℓf (·, x) of f . This blackbox BU(xc, x, fM , λ)
is given below and takes as inputs a prox-center xc, a current approximate solution x, an initial model fM for
f , and a stepsize λ > 0.

BU(xc, x, fM , λ)

Inputs: λ ∈ R++ and (xc, x, fM ) ∈ Rn × Rn × Conv(Rn) such that fM ≤ f and

x = argmin
u∈Rn

{
fM (u) + h(u) +

1

2λ
∥u− xc∥2

}
.

Find function f+M such that

f+M ∈ Conv(Rn), max{f, ℓf (·;x)} ≤ f+M ≤ f, (59)

where ℓf (·; ·) is as in (2) and f is such that

f ≤ f, f ∈ Conv(Rn), f(x) = f(x), x = argmin
u∈Rn

{
f(u) + h(u) +

1

2λ
∥u− xc∥2

}
. (60)

Output: f+M .

In the following, we give two examples of BU, namely two-cuts and multiple-cuts schemes. The proofs for
the two schemes belonging to BU can be provided similarly to Appendix D of [17].
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(E1) two-cuts scheme: We assume that fM is of the form fM = max{Af , ℓf (·;x−)} where Af is an affine
function satisfying Af ≤ f . The scheme then sets A+

f (·) := θAf (·) + (1− θ)ℓf (·;x−) and updates f+M as

f+M (·) := max{A+
f (·), ℓf (·;x)}, where θ ∈ [0, 1] satisfies

1

λ
(x− xc) + ∂h(x) + θ∇Af + (1− θ)f ′(x−) ∋ 0,

θAf (x) + (1− θ)ℓf (x;x−) = max{Af (x), ℓf (x;x
−)}.

(E2) multiple-cuts scheme: We assume that fM has the form fM = fM (·;B) where B ⊂ Rn is the current
bundle set and fM (·;B) is defined as fM (·;B) := max{ℓf (·; b) : b ∈ B}. This scheme selects the next
bundle set B+ so that B(x)∪ {x} ⊂ B+ ⊂ B ∪ {x} where B(x) := {b ∈ B : ℓf (x; b) = fM (x)}, and then
outputs f+M = fM (·;B+).

Before giving the motivation of U-PB, we briefly review the GPB method of [17]. GPB is an inexact
proximal point method (PPM, with fixed stepsize) in that, given a prox-center x̂k−1 ∈ Rn and a prox stepsize
λ > 0, it computes the next prox-center x̂k as a suitable approximate solution of the prox subproblem

x̂k ≈ argmin
u∈Rn

{
(f + h)(u) +

1

2λ
∥u− x̂k−1∥2

}
. (61)

More specifically, a sequence of prox bundle subproblems of the form

xj = argmin
u∈Rn

{
(fj + h)(u) +

1

2λ
∥u− x̂k−1∥2

}
, (62)

where fj ≤ f is a bundle approximation of f , is solved until for the first time an iterate xj as in (62)
approximately solves (61), and such xj is then set to be x̂k. The bundle approximation fj is sequentially
updated, for example, according to either one of the schemes (E1) and (E2) described above.

U-PB is also an inexact PPM but with variable prox stepsizes (i.e., with λ in (61) replaced by λk) instead
of a constant one as in GPB. Given iteration upper limit N ≥ 1 and prox-center x̂k−1, it adaptively computes
λk > 0 as follows: starting with λ = λk−1, it solves at most N prox subproblems of the form (62) in an
attempt to obtain an approximate solution of (61) and, if it fails, repeats this procedure with λ divided by 2;
otherwise, it sets λk to be the first successful λ and x̂k as described in the previous paragraph.

U-PB is given below.

U-PB

0. Let x̂0 ∈ domh, λ1 = λ > 0, χ ∈ [0, 1), ε > 0, and integer N ≥ 1 be given, and set y0 = x̂0, N = 0,
j = 1, and k = 1. Find f1 ∈ Conv(Rn) such that ℓf (·; x̂0) ≤ f1 ≤ f ;

1. Compute xj as in (62);

2. Choose yj ∈ {xj , yj−1} such that

ϕ(yj) +
χ

2λ
∥yj − x̂k−1∥2 = min

{
ϕ(xj) +

χ

2λ
∥xj − x̂k−1∥2, ϕ(yj−1) +

χ

2λ
∥yj−1 − x̂k−1∥2

}
, (63)

and set N = N + 1 and

tj = ϕ(yj) +
χ

2λ
∥yj − x̂k−1∥2 −

(
(fj + h)(xj) +

1

2λ
∥xj − x̂k−1∥2

)
; (64)

3. If tj > ε and N < N then
perform a null update, i.e.: set fj+1 = BU(x̂k−1, xj , fj , λ);

else
if tj > ε and N = N

perform a reset update, i.e., set λ← λ/2;
else (i.e., tj ≤ ε and N ≤ N)
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perform a serious update, i.e., set x̂k = xj , Γ̂k = fj + h, ŷk = yj , λk = λ, and k ← k + 1;
end if
set N = 0 and find fj+1 ∈ Conv(Rn) such that ℓf (·; x̂k−1) ≤ fj+1 ≤ f ;

end if

4. Set j ← j + 1 and go to step 1.

We now give further explanation about U-PB. U-PB performs three types of iterations, namely, null, reset,
and serious, corresponding to the types of updates performed at the end. A reset (resp., serious) cycle of U-PB
consists of a reset (resp., serious) iteration and all the consecutive null iterations preceding it. The index j
counts the total iterations including null, reset, and serious ones. The index k counts the serious cycles which,
together with the quantities x̂k, ŷk, and Γ̂k computed at the end of cycle k, is used to cast U-PB as an instance
of FSCO. All iterations within a cycle are referred to as inner iterations. The quantity N counts the number of
inner iterations performed in the current cycle. Each cycle of U-PB performs at most N iterations. A serious
cycle successfully finds tj ≤ ε within N iterations, while a reset cycle fails to do so. In both cases, U-PB resets
the counter N to 0 and starts a new cycle. The differences between the two cases are: 1) the stepsize λ is
halved at the end of a reset cycle, while it is kept as is at the end of a serious cycle; and 2) the prox-center is
kept the same at the end of a reset cycle, but it is updated to the latest xj at the end of a serious cycle.

We now make some remarks about U-PB. First, it follows from the fact that fj ≤ f and the definition of tj
in (64) that the primal gap of the prox subproblem in (61) is upper bounded by tj +(1−χ)∥yj− x̂k−1∥2/(2λ).
Hence, if tj ≤ ε, then yj is an εj-solution of (61) where εj = ε+ (1− χ)∥yj − x̂k−1∥2/(2λ). Second, the GPB
method of [17] (resp., [15]) computes yj using (63) with χ = 0 (resp., χ = 1). In the case where χ = 1, it can
be easily seen that tj is an upper bound on the primal gap of the prox subproblem in (61), and hence that yj
is an ε-solution of (61) if tj ≤ ε. Third, the iterate yj computed in step 2 of U-PB satisfies

yj ∈ Argmin
{
ϕ(x) +

χ

2λ
∥x− x̂k−1∥2 : x ∈ {ŷk−1, xℓ0 , . . . , xj}

}
, (65)

where ℓ0 denotes the first iteration index of the cycle containing j. In other words, yj is the best point in
terms of ϕ(·) + χ∥ · −x̂k−1∥2/(2λ) among all the points obtained in the course of solving (62) and the point
ŷk−1 obtained at the end of the previous cycle.

The next proposition shows some useful relations about the sequences {x̂k}, {ŷk} and {λk} generated at
the end of the serious cycles of U-PB. This proposition will be proved in § 3.2.2.

Proposition 3.4 Define

U(ε) = ε

[
1

λ0
+

40Lf

1− χ

]
+

32M
2

f

(1− χ)N
(
1 + log(N)

)
. (66)

The following statements hold for U-PB:

a) every cycle in U-PB has at most N inner iterations;

b) each stepsize λk generated by U-PB satisfies

λk ≥
ε

U(ε)
; (67)

c) the number of reset cycles is upper bounded by⌈
2 log

λ0U(ε)

ε

⌉
; (68)

d) for a serious cycle, the pair (x̂k, ŷk) of U-PB satisfies

x̂k = argmin
u∈Rn

{
Γ̂k(u) +

1

2λk
∥u− x̂k−1∥2

}
, (69)

ϕ(ŷk) +
χ

2λk
∥ŷk − x̂k−1∥2 −

[
Γ̂k(x̂k) +

1

2λk
∥x̂k − x̂k−1∥2

]
≤ ε. (70)
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The following result shows that serious iterations of U-PB generate sequences {x̂k}, {ŷk}, {λk}, and {Γ̂k}
satisfying the requirements of FSCO.

Proposition 3.5 U-PB is a special case of FSCO where:

a) the pair (x̂k, ŷk) satisfies relations (4) and (5);

b) conditions (F1) and (F2) used in the analysis of FSCO are satisfied.

Proof: a) Relations (4) and (5) are given in Proposition 3.4(d).
b) By Assumption (A3) we have that Γ̂k ∈ Convν (Rn) and therefore Assumption (F1) of FSCO is satisfied

for U-PB. Assumption (F2) is given for U-PB in Proposition 3.4(b).
We now state the first main result of this subsection where the functional iteration complexity of U-PB is

established.

Theorem 3.6 Given tolerance ε̄ > 0, consider U-PB and ε = (1 − χ)ε̄/2, where χ ∈ [0, 1) is as in step 0
of U-PB. Let {x̂k} and {ŷk} be the sequences generated by U-PB. Then, the number of iterations of U-PB to
generate an iterate ŷk satisfying ϕ(ŷk)− ϕ∗ ≤ ε̄ is at most

min

{
min

[
1

χ

(
N +

Rf (ε̄)

µε̄

)
, N +

Rf (ε̄)

νε̄

]
log

(
1 +

λ0µRf (ε̄)d
2
0

ε̄2N

)
,
d20Rf (ε̄)

ε̄2N

}
+N

⌈
2 log

λ0Rf (ε̄)

ε̄N

⌉
(71)

where

Rf (ε̄) = ε̄N

[
1

λ0
+

40Lf

1− χ

]
+

64M
2

f

(1− χ)2
(
1 + log(N)

)
.

Proof: Since every serious cycle of U-PB has at mostN inner iterations (by Proposition 3.4(a)), the complexity
of serious cycles of U-PB is that of FSCO, given by (19) in Theorem 2.3, multiplied by N (observe that the
functional complexity of FSCO can be applied to U-PB since we have shown in Proposition 3.5 that serious
iterates of U-PB follow the FSCO framework). In this expression, by Proposition 3.4(b), we can bound from
above 1/λ by U(ε)/ε ≤ Rf (ε̄)/(ε̄N) which gives the first term in (71). By Proposition 3.4(c), the number of
reset cycles is at most (68) which is bounded from above by⌈

2 log
λ0U(ε)

ε

⌉
≤
⌈
2 log

λ0Rf (ε̄)

ε̄N

⌉
,

and each of these cycles also has at most N inner iterations (by Proposition 3.4(a)). This gives the second
term in (71) and the result follows.

The complexity result of Theorem 3.6 for the case where λ0 is not too small, χ is neither close to one nor
to zero, and µ≫ ν reduces to

Õ
(
Rf (ε̄)

µε̄

)
= Õ

(
M

2

f

µε̄

)
(72)

and we obtain the functional complexity (56) of U-CS. For the case where Lf = 0, the above complexity is
optimal up to logarithmic terms.

We now state the second main result of this subsection where the stationary iteration complexity of U-PB
is established.

Theorem 3.7 For a given tolerance pair (ε̂, ρ̂) ∈ R2
++, U-PB with

χ ∈ (0, 1), ε =
χ(1− χ)ε̂

10
, (73)

generates a triple (ȳk, s̄k, ε̄k) satisfying (34) in at most

min

{
min

[
1

χ

(
N +

Rs(ε̂)

ε̂µ

)
, N +

Rs(ε̂)

ε̂ν

]
logC(ε̂, ρ̂),

Rs(ε̂)

ε̂N

(
4χε̂

5ρ̂2
+

5d20
χε̂

)}
+N

⌈
2 log

λ0Rs(ε̂)

ε̂N

⌉
(74)

iterations where

C(ε̂, ρ̂) = 1 +
λ0µRs(ε̂)

ε̂N

(
4χε̂

5ρ̂2
+

5d20
χε̂

)
and

Rs(ε̂) = ε̂N

[
1

λ0
+

40Lf

1− χ

]
+

320M
2

f

χ(1− χ)2
(
1 + log(N)

)
.

(75)
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Proof: The complexity of serious cycles of U-PB to satisfy stationarity conditions (34) is that of FSCO, given
by (35) in Theorem 2.8, multiplied by N . In this expression

min

{
min

[
1

χ

(
1 +

1

λµ

)
, 1 +

1

λν

]
log [1 + λ0µβ(ε̂, ρ̂)] , β(ε̂, ρ̂)

}
where

β(ε̂, ρ̂) =
1

λ

(
4χε̂

5ρ̂2
+

5d20
χε̂

)
, (76)

using the expression (73) for ε, we can bound from above 1/λ by U(ε)/ε ≤ Rs(ε̂)/(ε̂N) which gives the first
term in (74). By Proposition 3.4(c), the number of reset cycles is at most (68) which is bounded from above
by ⌈

2 log
λ0Rs(ε̂)

ε̂N

⌉
,

and each of these cycles also has at most N inner iterations (by Proposition 3.4(a)). This gives the second
term in (74) and the result follows.

Theorem 3.7 does not hold for χ = 0 since the definitions of C(ε̂, ρ̂) and Rs(ε̂) in (75) depend on χ−1.
However, if χ = 0 and the domain of ϕ is bounded with diameter D, then we can apply Theorem 2.9(b)
to conclude that U-PB with ε = (1 − χ)ε̂/2 generates a triple (ȳk, s̄k, ε̄k) satisfying (34) within a number
iterations bounded by (35) but with β(ε̂, ρ̂) now given by (43) and 1/λ bounded from above by Ws(ε̂)/ε̂ where

Ws(ε̂) = ε̂

[
1

λ0
+

40Lf

1− χ

]
+

64M
2

f

(1− χ)2N
(
1 + log(N)

)
.

3.2.2 Proof of Proposition 3.4

To prove Proposition 3.4, we first state Lemmas 3.8 and 3.9. Lemma 3.8 will be used to show Lemma 3.9.
Lemma 3.9 plays an important role in the analysis of the null iterates and establishes a key recursive formula
for the sequence {tj} defined in (64).

Lemma 3.8 For the j-th iteration of a cycle with prox stepsize λ and prox-center x̂k−1, define

mj := (fj + h)(xj) +
1

2λ
∥xj − x̂k−1∥2. (77)

If j is not the last iteration of the cycle, then

mj+1 − τmj

≥ (1− τ)

[
ℓf (xj+1;xj) + h(xj+1) +

1

2λ
∥xj+1 − x̂k−1∥2 +

(
Lf

2
+

2M
2

f

ε

)
∥xj+1 − xj∥2

]
, (78)

where

τ = 1−

(
1 +

4λ(M
2

f + εLf )

ε

)−1

. (79)

Proof: It follows from the definitions of τ in (79) that

τ

2λ(1− τ)
(79)
= 2Lf +

2M
2

f

ε
≥ Lf

2
+

2M
2

f

ε
. (80)

Using the definition of mj in (77), and relations (99) and (101) with u = xj+1, we have

mj+1
(77)
= (fj+1 + h)(xj+1) +

1

2λ
∥xj+1 − x̂k−1∥2

(99)

≥ (1− τ)
[
ℓf (xj+1;xj) + h(xj+1) +

1

2λ
∥xj+1 − x̂k−1∥2

]
+ τ

(
(f j + h)(xj+1) +

1

2λ
∥xj+1 − x̂k−1∥2

)
(101)

≥ (1− τ)
[
ℓf (xj+1;xj) + h(xj+1) +

1

2λ
∥xj+1 − x̂k−1∥2

]
+ τ

(
mj +

1

2λ
∥xj+1 − xj∥2

)
.

This inequality and (80) then imply (78).
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Lemma 3.9 The following statements about U-PB hold:

a) for every iteration j that is not the last one of the cycle, we have

tj+1 −
ε

2
≤ τ

(
tj −

ε

2

)
(81)

where τ is as in (79);

b) if i is the first iteration of the cycle and λ ≤ (1− χ)/(2Lf ), then

ti ≤
4λM

2

f

1− χ
. (82)

Proof: a) In what follows, we use the notation

ψ(·) := ϕ(·) + χ

2λ
∥ · −x̂k−1∥2. (83)

It follows from the above notation and the definitions of tj and mj in (64) and (77), respectively, that

tj = ψ(yj)−mj and ψ(yj+1)
(83),(63)

= min{ψ(xj+1), ψ(yj)). (84)

Using (45) with (Mf , Lf , u, v) = (Mf , Lf , xj+1, xj) and the fact that ϕ = f + h, we have

ℓf (xj+1;xj) + h(xj+1) +
Lf

2
∥xj+1 − xj∥2 ≥ ϕ(xj+1)− 2Mf∥xj+1 − xj∥. (85)

This inequality, the definition of ψ in (83), and relation (78), imply that

mj+1 − τmj

(78)

≥ (1− τ)

[
ℓf (xj+1;xj) + h(xj+1) +

1

2λ
∥xj+1 − x̂k−1∥2 +

(
Lf

2
+

2M
2

f

ε

)
∥xj+1 − xj∥2

]
(85)

≥ (1− τ)
(
ϕ(xj+1) +

1

2λ
∥xj+1 − x̂k−1∥2

)
+

1− τ
ε

(
2M

2

f∥xj+1 − xj∥2 − 2Mfε∥xj+1 − xj∥
)

(83)
= (1− τ)

(
ψ(xj+1) +

1− χ
2λ
∥xj+1 − x̂k−1∥2

)
+

1− τ
ε

(
2M

2

f∥xj+1 − xj∥2 − 2Mfε∥xj+1 − xj∥
)

≥ (1− τ)ψ(xj+1)−
(1− τ)ε

2
, (86)

where the last inequality follows from the fact that χ < 1 and the inequality a2 − 2ab ≥ −b2 with a =
2Mf∥xj+1 − xj∥ and b = ε. Using relations (84) and (86), we conclude that

tj+1 − τtj
(84)
= ψ(yj+1)−mj+1 − τtj
(86)

≤ ψ(yj+1)− τ(mj + tj)− (1− τ)ψ(xj+1) +
(1− τ)ε

2
(84)
= ψ(yj+1)− τψ(yj)− (1− τ)ψ(xj+1) +

(1− τ)ε
2

(84)

≤ (1− τ)ε
2

,

and hence that (81) holds.
b) Using relations (77), (83), and (84), we have

ti
(77),(84)

= ψ(yi)− Γi(xi)−
1

2λ
∥xi − x̂k−1∥2

(84)

≤ ψ(xi)− Γi(xi)−
1

2λ
∥xi − x̂k−1∥2

(83)
= ϕ(xi)− Γi(xi) +

χ− 1

2λ
∥xi − x̂k−1∥2 = f(xi)− fi(xi) +

χ− 1

2λ
∥xi − x̂k−1∥2,
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where the last equality follows from the facts that ϕ = f + h and Γi = fi + h. It follows from U-PB that if i
is the first iteration of the cycle, then

fi(·) ≥ ℓf (·; x̂k−1). (87)

Combining the above two inequalities and using (45), we obtain

ti
(87)

≤ f(xi)− ℓf (xi; x̂k−1) +
χ− 1

2λ
∥xi − x̂k−1∥2

(45)

≤ 2Mf∥xi − x̂k−1∥+
Lf

2
∥xi − x̂k−1∥2 +

χ− 1

2λ
∥xi − x̂k−1∥2

= 2Mf∥xi − x̂k−1∥ −
1− χ− λLf

2λ
∥xi − x̂k−1∥2.

By maximizing the right-hand side with respect to ∥xi − x̂k−1∥ we deduce ti ≤ (2λkM
2

f )/(1− χ− λLf ) and

using the fact that λ ≤ (1− χ)/(2Lf ), we obtain (82).

Before presenting the proof of Proposition 3.4, we also need the following technical lemma.

Lemma 3.10 Assume that the prox stepsize λ of some cycle of U-PB is such that λ ≤ λ̃(ε) where

λ̃(ε) =


min

{
(N − 1)ε

8(M
2

f + εLf ) log(N)
,
(1− χ) exp(−1/2)Nε

8M
2

f

,
1− χ
2Lf

}
if N ≥ 2,

min

{
(1− χ)ε
4M

2

f

,
1− χ
2Lf

}
if N = 1.

(88)

Then, this cycle must be a serious one.

Proof: Let i denote the first iteration of a cycle whose prox stepsize λ satisfies (88). It suffices to prove that
tℓ ≤ ε where ℓ = i + N − 1 is the last iteration of the cycle. We consider two cases: N = 1 and N ≥ 2. If
N = 1, using Lemma 3.9(b) (which can be applied since λ < (1− χ)/(2Lf )) and (88), we have

tℓ = ti ≤
4λM

2

f

1− χ
(88)

≤ ε

which shows that the cycle is a serious one (with one iteration only). Let us now consider the case N ≥ 2.
Lemma 3.9 implies that

tℓ −
ε

2

(81)

≤ τN−1
(
ti −

ε

2

)
≤ τN−1ti

(82)

≤
4λM

2

f

1− χ
τN−1. (89)

It then suffices to show that the right-hand side of (89) is bounded above by ε/2, or equivalently, that

log

(
8λM

2

f

(1− χ)ε

)
≤ (N − 1) log(τ−1). (90)

Using (88), we have

λ ≤ ε

4(M
2

f + εLf )

(
N − 1

2 log(N)

)
≤ ε

4(M
2

f + εLf )

(
N − 1

2 log(N)− 1

)

=
ε

4(M
2

f + εLf )

(
N − 1

2 log(exp(−1/2)N)

)

≤ ε

4(M
2

f + εLf )

(
N − 1

log(exp(−1/2)N)
− 1

)
(91)
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where the last inequality above is easily checked for N ≥ 2. Using (88), (79), and (91), we have

τ−1

τ−1 − 1
= (1− τ)−1 (79)

= 1 +
4(M

2

f + εLf )λ

ε

(91)

≤ N − 1

log(exp(−1/2)N)

(88)

≤ N − 1

log

(
8M

2
fλ

(1−χ)ε

) ,
which, because of the inequality log(τ−1) ≥ (τ−1 − 1)/τ−1, implies inequality (90).

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. a) This statement immediately follows from the description of U-PB.
b) By Lemma 3.10, if for a cycle we have λ ≤ λ̃(ε) with λ̃(ε) given in (88), then the cycle ends with a

serious step and λ is kept unchanged for all subsequent cycles and all subsequent cycles are serious cycles.
Therefore, if λ0 ≤ λ̃(ε)/2 we have λk = λ0 = min{λ0, λ̃(ε)/2} ≥ (ε/U(ε)) for all k (where the last inequality
can be easily checked using the definitions of λ̃(ε) and U(ε)). Otherwise, if λ0 > λ̃(ε)/2, we cannot have
λk < λ̃(ε)/2 for some k, i.e., λk ≥ λ̃(ε)/2 = min{λ0, λ̃(ε)/2} ≥ ε/U(ε) for all k.

c) This statement immediately follows from (b) and the update rule of λ in U-PB.
d) Relations (69) and (70) (which are (5) and (4) in FSCO, respectively) follow from (62) and tj ≤ ε with

x̂k = xj , Γ̂k = fj + h, ŷk = yj , and λk = λ (see the serious update in step 3 of U-PB).

4 Concluding remarks

In this paper, we present two µ-universal methods, namely U-CS and U-PB, to solve HCO (1). We propose
FSCO to analyze both methods in a unified manner and establish both functional and stationary complexity
bounds. We then prove that both U-CS and U-PB are instances of FSCO and apply the complexity bounds
for FSCO to obtain iteration complexities for the two methods. One interesting property of our proposed
methods is that they do not rely on any restart scheme based on estimating µ or knowing ϕ∗.

Some papers about universal methods (see for example [10, 21]) assume that, for some α ∈ [0, 1], f in (1)
has α-Hölder continuous gradient, i.e., there exists Lα ≥ 0 such that ∥∇f(x)−∇f(y)∥ ≤ Lα∥x−y∥α for every
x, y ∈ domh. It is shown in [21] that the universal primal gradient method proposed on it (i.e., the U-CS
method with χ = 0) finds a ε̄-solution of (1) in

Õ

d20L 2
α+1
α

ε̄
2

α+1

 (92)

iterations. This result also follows as a consequence of our results in this paper. Indeed, first note that

the dominant term in the iteration complexity (50) for the U-CS method is Õ(d20(M
2

f + ε̄Lf )/ε̄
2). Second,

Proposition 2.1 of [17] implies that there exists a pair (Mf , Lf ) as in (A5) and that the ε̄-best pair (Mf , Lf )
defined below (45) satisfies

M
2

f + ε̄Lf ≤ 2ε̄
2α

α+1L
2

α+1
α .

Hence, it follows from these two observations that (50) is sharper than bound (92) obtained in [21].
We finally discuss some possible extensions of our analysis in this paper. First, it is shown in Theorems 3.2

and 3.3 (resp., Theorem 3.6) that U-CS (resp., U-PB) is µ-universal if χ > 0 and is ν-universal if χ = 0. It
would be interesting to investigate whether they are also µ-universal for χ = 0 too. Note that this question is
related to whether the universal primal gradient of [21] (which is the same as U-CS with χ = 0) is µ-universal.
Finally, it would also be interesting to study whether the general results obtained for the FSCO framework
can also be used to show that other methods for solving the HCO problem (1) are µ-universal.
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A Technical results

A.1 Technical results for FSCO

Lemma A.1 Assume that sequences {γj}, {ηj}, and {αj} satisfy for every j ≥ 1, γj ≥ γ and

γjηj ≤ αj−1 − (1 + σ)αj + γjδ (93)

for some σ ≥ 0, δ ≥ 0 and γ > 0. Then, the following statements hold:

a) for every k ≥ 1,

min
1≤j≤k

ηj ≤
α0 − (1 + σ)kαk∑k
j=1(1 + σ)j−1γj

+ δ; (94)

b) if the sequence {ηj} is nonnegative, then for every k ≥ 1,

αk ≤
α0

(1 + σ)k
+

∑k
j=1(1 + σ)j−1γjδ

(1 + σ)k
; (95)

c) if the sequence {αj} is nonnegative, then min1≤j≤k ηj ≤ 2δ for every k ≥ 1 such that

k ≥ min

{
1 + σ

σ
log

(
σα0

γδ
+ 1

)
,
α0

γδ

}
with the convention that the first term is equal to the second term when σ = 0. (Note that the first term
converges to the second term as σ ↓ 0.)

Proof: a) Multiplying (93) by (1 + σ)j−1 and summing the resulting inequality from j = 1 to k, we have

k∑
j=1

(1 + σ)j−1γj

[
min

1≤j≤k
ηj

]
≤

k∑
j=1

(1 + σ)j−1γjηj ≤
k∑

j=1

(1 + σ)j−1 (αj−1 − (1 + σ)αj + γjδ)

= α0 − (1 + σ)kαk +

k∑
j=1

(1 + σ)j−1γjδ. (96)

Inequality (94) follows immediately from the above inequality.
b) This statement follows immediately from (96) and the fact that ηj ≥ 0.
c) It follows from (94), and the facts that αk ≥ 0 and γj ≥ γ that

min
1≤j≤k

ηj ≤
α0

γ
∑k

j=1(1 + σ)j−1
+ δ. (97)

Using the fact that 1 + σ ≥ eσ/(1+σ) for every σ ≥ 0, we have

k∑
j=1

(1 + σ)j−1 = max

{
(1 + σ)k − 1

σ
, k

}
≥ max

{
eσk/(1+σ) − 1

σ
, k

}
. (98)
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Plugging the above inequality into (97), we have for every k ≥ 1,

min
1≤j≤k

ηj ≤
α0

γ
min

{
σ

eσk/(1+σ) − 1
,
1

k

}
+ δ,

which can be easily seen to imply (c).

A.2 Technical results for U-PB

Lemma A.2 The following statements hold for a cycle of U-PB with stepsize λ:

a) for every iteration j that is not the last iteration of the cycle, there exists a function f j(·) such that

τ(f j + h) + (1− τ)[ℓf (·;xj) + h] ≤ fj+1 + h ≤ ϕ, (99)

f j + h ∈ Convν (Rn), f j(xj) = fj(xj), xj = argmin
u∈Rn

{
f j(u) + h(u) +

1

2λ
∥u− x̂k−1∥2

}
, (100)

where τ is as in (79);

b) for every iteration j of the cycle and u ∈ Rn, we have

f j(u) + h(u) +
1

2λ
∥u− x̂k−1∥2 ≥ mj +

1

2λ
∥u− xj∥2. (101)

Proof: a) Since j is not the last iteration of a cycle, we have fj+1 = BU(x̂k−1, xj , fj , λ). Using the properties
of the BU blackbox, it follows that there exists f j such that f j + h ∈ Convν (Rn), f j(xj) = fj(xj),

max{f̄j + h, ℓf (·;xj) + h} ≤ fj+1 + h ≤ ϕ, (102)

and

xj = argmin
u∈Rn

{
f j(u) + h(u) +

1

2λ
∥u− x̂k−1∥2

}
.

We have therefore checked that (100) holds while (99) is an immediate consequence of (102).
b) Since the objective function in the last identity of (100) is λ−1-strongly convex, we have

f j(u) + h(u) +
1

2λ
∥u− x̂k−1∥2 ≥ f j(xj) + h(xj) +

1

2λ
∥xj − x̂k−1∥2 +

1

2λ
∥u− xj∥2. (103)

The statement follows from (103), the first identity in (100), and the definition of mj in (77).
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