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Abstract

In the branch-and-bound algorithm, branching is the key step to deal with the
nonconvexity of the problem. For Mixed Integer Linear Optimization (MILO)
problems and, in general, Mixed Integer Nonlinear Optimization (MINLO) prob-
lems whose continuous relaxation is convex, branching on integer and binary
variables suffices, because fixing all integer variables yields a convex relax-
ation. General, nonconvex MINLO problems, on the other hand, require spatial
branching, i.e., branching on continuous variables.
While spatial branching could be seen as necessary for the general MINLO class
only, we show that when the branching point is carefully chosen, spatial branching
can be more effective than its integer counterpart for a special class of prob-
lems arising from Support Vector Machines with Ramp Loss (SVMRL), which
can be modeled as mixed integer problems with linear constraints and a convex
quadratic objective. We present a strong spatial branching approach for SVMRL
coupled with a procedure to strengthen the continuous relaxation, then report on
computational tests on known instances from the literature where our approach
yields a significant improvement in solve time.

Keywords: Spatial Branching, Mixed Integer Optimization, Support Vector Machines

1 Introduction

The branch-and-bound algorithm (BB) is at the core of most algorithms for nonconvex
optimization problems [1]. Nonconvexity can arise from modeling constructs: integral-
ity of one or more variables in the class of mixed-integer problems with a convex
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continuous relaxation, which we refer to as MICO (Mixed Integer Convex Optimiza-
tion); and from nonlinear, nonconvex constraints or objective function in the MINLO
class. The branching operation tackles nonconvexity by removing infeasible solutions:
those that violate integrality (MICO) or nonlinear constraints (MINLO).

Given the importance of the branching step, most commercial and open-source
solvers for MICO problems implement branching techniques like strong branching [2],
pseudocosts [3], and reliability branching [4], or combinations thereof. Some of these
have been ported to the MINLO world [5], while other branching techniques such as
violation transfer [6] have been developed for MINLO specifically.

For MICO problems, branching is needed for integer/binary variables only: assum-
ing the integer variables are have finite lower and upper bounds, there is a finite set
of subproblems where all discrete variables are fixed and for which any convex opti-
mization solver can obtain a global optimum. It is therefore unnecessary to branch on
continuous variables to ensure termination of BB for solving a MICO problem.

We present a BB variant for a special class of Mixed Integer Quadratic Optimiza-
tion (MIQO) problems, described in Section 2, where spatial branching, i.e., branching
on continuous variables, outperforms the default branching rules of a MIQO solver.
This is not the first time a MINLO technique is used on a MIQO problem: Section 3
recaps on two MINLO-born techniques that helped solve this problem in the past [7],
and that originated from an application in Machine Learning [8]. In Section 4 we pro-
pose a new approach to solve this problem: a strong spatial branching approach for
the selection of a continuous branching variable and its branching point. We report
on our computational results in Section 5, where the instances from [7, 8] are used to
showcase the advantages of our proposed technique.

2 Support Vector Machines with Ramp Loss

We are given a set of n vectors xi ∈ Rd, i ∈ [n] (here we denote [n] = {1, 2, . . . , n})
and a set of n scalars yi ∈ {−1, 1}, i ∈ [n]. Ideally, one seeks a vector w ∈ Rd and a
scalar b such that wTxi − b ≤ −1 for all i ∈ [n] such that yi = −1 and wTxi − b ≥ 1
for all i ∈ [n] such that yi = +1. Support Vector Machines (SVM) [9] are a well-known
paradigm for classification of vectors xi, i ∈ [n], and a long line of research works
exists for the problem of finding (w, b) for correct classification.

Correct classification of all points requires yi(w
Txi−b) ≥ 1 for all i ∈ [n]. Enforcing

all such constraints would likely yield an empty feasible set, so usually a ramp loss (RL)
penalty term is introduced: the original constraint is relaxed to yi(w

Txi − b) ≥ 1− δi
after introducing a surplus variable δi. The ramp loss penalty term is

p(δ) =

 0 if δ ≤ 0
δ if δ ∈ (0, 2]
2 if δ > 2.

The optimization model associated with the problem above consists in minimizing the
sum of all penalty terms,

∑
i∈[n] p(δi). To avoid solutions where w and b have large

values due to the 1 on the right-hand side, several works in the literature add an ℓ2-
norm stabilization term 1

2 ||w||22 to the objective function (or in some cases an ℓ1-norm
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term [10]), but the emphasis is kept on the penalty part of the objective function by
multiplying it by C

n for a large constant C. The Ramp Loss penalty terms p(δi) can
be implemented with one continuous variable ξi and one binary variable zi for each
constraint. Then the Support Vector Machine with Ramp Loss (SVMRL) problem is
modeled as follows [8]:

minw,b,ξ,z
1
2 ||w||22 + C

n

∑
i∈[n] (ξi + 2zi)

s.t. (zi = 0) ⇒ (yi(w
Txi − b) ≥ 1− ξi) ∀i ∈ [n]

(w, b) ∈ Rd+1, ξ ∈ [0, 2]n, z ∈ {0, 1}n.
(1)

The main class of constraints, here written as an implication, is made of indicator
constraints; we outline below three ways of modeling them.

The term 1
2 ||w||22 makes the problem a mixed integer quadratic optimization

(MIQO) problem. However, the large value of C implies that (1) is, for all practical
purposes, a problem where the linear penalty part of the objective function largely
determines the solution.

We first introduce a more convenient notation that will be used in the remainder of
this paper. Define the (d+1)-dimensional variable vector g := (w, b) and the constant
(d + 1)-vectors vi := yi(x

i,−1) for i ∈ [n]. We also denote as a[k] the subvector of
a ∈ Rp containing the first k ≤ p entries of a. Problem (1) can be rewritten as follows:

ming,ξ,z
1
2 ||g[d]||22 + C

n

∑
i∈[n] (ξi + 2zi)

s.t. (zi = 0) ⇒ (gTvi ≥ 1− ξi) ∀i ∈ [n]
g ∈ Rd+1, ξ ∈ [0, 2]n, z ∈ {0, 1}n.

(2)

Constraint (zi = 0) ⇒ (gTvi ≥ 1− ξi) can be formulated in three ways:

1. as the linear, big-M constraints gTvi ≥ 1− ξi −Mizi for an appropriate choice of
Mi that is, at the same time, small enough to ensure numerical stability but also
large enough so that optimal solutions are not excluded;

2. by specifying it as an actual indicator constraint, which is possible in most
commercial solvers such as FICO Xpress [11], Gurobi [12], and IBM-Cplex [13];

3. as the nonlinear constraint

(1− zi)(g
Tvi − 1 + ξi) ≥ 0. (3)

The big-M and indicator constraint formulations are best-known in the literature
[8, 14, 15] for several reasons, most importantly as a way to use a MILO solver. The
nonlinear nonconvex constraint (3) can only be handled by MINLO solvers such as
Antigone [16], Baron [6], Couenne [5], SCIP [17], and FICO Xpress [11].

3 MINLO techniques for the SVMRL problem

The MIQO model (1) for the problem of finding optimal (w, b) was used in [8], with
the big-M formulation for the main class of constraints. Variants of this model have
been proposed for feature selection, i.e., for constraining the support of w [14, 18, 19].
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An efficient solution method based on a MIQO solver was presented in [7]. It uses two
basic building blocks of MINLO solvers, which we outline below. As observed in [7],
tight bounds on the g variables translate to tighter (i.e., smaller) big-M parameters,
with significant impact on performance, as shown for instance in [20] where a technique
for tightening big-M ’s is presented.

The special structure of the SVMRL model makes it amenable for other solution
techniques such as rounding heuristics to obtain a feasible solution from a solution
to the continuous relaxation [15]. Also, if n ≫ d, then the sparsity of the coefficient
matrix for the ξ and z variables makes Benders decomposition a suitable choice [21].

3.1 Locally implied bound cuts

Exact MINLO solvers create a reformulation of a nonconvex nonlinear problem by
introducing auxiliary variables for all nonlinear operators and creating a Linear
Optimization (LO) relaxation comprising all such auxiliary variables. Model (2) is
reformulated by introducing two variables si and ti and rewriting constraint (3) as the
system

si = gTvi − 1 + ξi
ti = (1− zi)si
ti ≥ 0.

Then, given lower and upper bounds ℓi, ui on si := gTvi − 1 + ξi, a LO relaxation
contains two of the well-known McCormick inequalities [22], namely those providing
the upper envelope of the product of two variables:

ti ≤ ℓi(1− zi) + si − ℓi
ti ≤ ui(1− zi).

Given that ti ≥ 0 and ui is assumed non-negative (as otherwise vi cannot be
classified for any g and thus one can set zi = 1) the second inequality is redundant.
Therefore, the LO relaxation can be simply created with only the si variables amended
with the inequality ℓi(1− zi) + si − ℓi ≥ 0, or, more succinctly,

si − ℓizi = gTvi − 1 + ξi − ℓizi ≥ 0,

which is just a big-M constraint with Mi = −ℓi, the opposite of the lower bound on
si = gTvi−1+ ξi. While big-M constraints are already in the MILO model, the ever-
tightening ℓi with the progressing of the branch-and-bound yields a tighter big-M and
thus faster convergence. These cuts are known as locally implied bound cuts and their
separator is implemented in IBM-Cplex [7].

3.2 Optimization-based bound tightening (OBBT)

Given the generic MINLO problem minx{f(x) : x ∈ X ∩ [ℓ,u]}, where [ℓ,u] ⊆ Rn is
a bounding box, it is well known that solvers aiming at finding a global optimum can
benefit from tighter bounds ℓ and u, and several techniques are normally employed
by most MINLO solvers. Among them is OBBT, which uses a relaxation minx{f(x) :
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x ∈ XR ∩ [ℓ,u]} of the problem at hand, with XR ⊇ X. In order to obtain better
bounds on x, one solves the following 2n problems, two for each xi, i ∈ [n]:

ℓ̌i = minx{xi : x ∈ XR ∩ [ℓ,u]} ≥ ℓi
ǔi = maxx{xi : x ∈ XR ∩ [ℓ,u]} ≤ ui.

While solving 2n relaxations is computationally expensive, it has been proven exper-
imentally (see e.g. [5]) that OBBT is an effective tool for improving the performance
of a MINLO solver. An effective variant of OBBT used in [7] proceeds as follows:

1. Run a branch-and-bound solve on (2) using a relatively small BB node limit of
100k nodes, which yields a primal bound ρ from an integer feasible solution.

2. Set an even smaller BB node limit of 10k nodes, then run OBBT on all gj variables
using the mixed integer feasible set of (2), further restricted by an upper bound ρ
on the objective function: 1

2 ||g[d]||22+ C
n

∑
i∈[n](ξi+2zi) ≤ ρ. While the best integer

solution found cannot be used because of the BB node limit, the dual bound at the
end of each MIP solve is a valid (lower or upper) bound on gj .

3. Relax the BB node limit and run the BB on (2) with gj ’s tightened as above.

A baseline algorithm, which we use for comparison with the approach described below,
combines locally implied bound cuts with OBBT.

4 Spatial Branching

The main idea of this paper is to introduce spatial branching on the problem at hand.
The idea stems from a simple observation: for the SVMRL problem, the branch-and-
bound must choose among all n ≫ d binary variables for branching operations, while
it is the g variables that, in fact, determine the classification or misclassification of all
points of the instance, their violation and, ultimately, the objective function value.

Consider a BB algorithm that can branch both on the zi’s and by using the
following disjunction on gj , for some j ∈ [d+ 1], with branching point τ :

gj ≤ τ ∨ gj ≥ τ. (4)

At each BB node, the branching decision consists in choosing which, among the zi
and the gj variables, to branch on. If the latter is chosen, then the branching point τ
must be selected as well. Branching variable and branching point selection have been
studied in the context of MINLO [5, 6].

In general, unlike branching on integer variables, spatial branching does not rely on
the single disjunction (4) only: branching on a continuous variable does not eliminate
any solution from the relaxation of the problem. Indeed the union of the feasible
sets of the two subproblems obtained from the mere (4) would be the same as the
feasible set of the BB node they are created from. The full spatial branching technique
for MINLO consists in propagating the disjunction (4) to obtain, for example via
bound reduction, tighter bounds on other variables. These new bounds in turn yield
a tightened LO relaxation. The resulting two subproblems exclude the solution to the
continuous relaxation and are therefore valid for the BB scheme.
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Spatial branching is hence much more than a single branching operation: it adds
stronger linear constraints (whose coefficients depend on the new variable bounds) to
the LO relaxation, whose quality, i.e., how good its lower bound is, ultimately depends
on a good choice of branching variable and branching point.

Our spatial branching scheme is based on the big-M formulation of problem (2).
We rewrite it here with a slight change in the main constraint class:

ming,ξ,z
1
2 ||g[d]||22 + C

n

∑
i∈[n](ξi + 2zi)

s.t. ξi +Mizi ≥ 1− gTvi ∀i ∈ [n]
ξ ∈ [0, 2]n, z ∈ {0, 1}n, g ∈ [ℓ,u].

Lower and upper bounds ℓ,u on g imply lower/upper bounds on all terms 1− gTvi.
For i ∈ [n], any upper bound on 1−gTvi is a valid big-M . Therefore, we compute Mi

as follows (we denote as vij the j-th component of vector vi, for j ∈ [d+ 1]):

Mi(ℓ,u) = 1−
∑

j∈[d+1]:vij<0

vijuj −
∑

j∈[d+1]:vij>0

vijℓj . (5)

Because the penalty-related variables ξi and zi are those that most heavily influence
the objective function, it is important that, at every stage of the solver process (i.e.,
at every BB node), such Mi is valid and as tight as possible.

4.1 Strong spatial branching on gj

After applying a given branching decision gj ≤ τ ∨gj ≥ τ , which we represent with the
pair (j, τ), the new bounding boxes (one for each of the two subproblems) are defined
as [ℓ, ũ(j, τ)] = {g ∈ [ℓ,u] : gj ≤ τ} and [ℓ̃(j, τ),u] = {g ∈ [ℓ,u] : gj ≥ τ}, where
ℓ̃(j, τ) and ũ(j, τ) are vectors whose components are as follows:

ℓ̃k(j, τ) =

{
ℓk if k ̸= j
τ otherwise

ũk(j, τ) =

{
uk if k ̸= j
τ otherwise

∀k ∈ [d+ 1].

Using a similar observation to what brought to locally implied bound cuts described
in Section 3.1, new bounds should be explicitly taken into account by changing the
constraints, if any, that depend on them, i.e., the big-M constraints in the model,
specifically by tightening the Mi coefficients.

Therefore, lower bounds on the optimal objective value of the two new subproblems
could be obtained by solving the two following continuous problems (strong branching
schemes usually solve convex relaxations, rather than their integer version, in order to
keep the computational cost low):

β(j, τ,≤) = ming,ξ,z
1
2 ||g[d]||22 + C

n

∑
i∈[n](ξi + 2zi)

s.t. ξi +Mi(ℓ, ũ(j, τ))zi ≥ 1− gTvi ∀i ∈ [n]
ξ ∈ [0, 2]n, z ∈ [0, 1]n, g ∈ [ℓ, ũ(j, τ)];
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β(j, τ,≥) = ming,ξ,z
1
2 ||g[d]||22 + C

n

∑
i∈[n](ξi + 2zi)

s.t. ξi +Mi(ℓ̃(j, τ),u)zi ≥ 1− gTvi ∀i ∈ [n]

ξ ∈ [0, 2]n, z ∈ [0, 1]n, g ∈ [ℓ̃(j, τ),u].

A strong branching approach to finding the right branching rule consists in finding
(j, τ) that maximize a branching score defined as min{β(j, τ,≤), β(j, τ,≥)}.

One could think of evaluating β(j, τ,≤) and β(j, τ,≥) for m values of τ in the
interval [ℓj , uj ] for all j ∈ [d + 1]. However, this approach would entail solving 2(d +
1)m quadratic optimization problems and would be even more impractical than pure
MICO-based strong branching, where only two continuous problems must be solved
for each variable.

Therefore, we simplify the strong branching mechanism by solving the above prob-
lems with respect to the ξ and the z variables only. Specifically, for a given solution
(g∗, ξ∗, z∗) to the LO relaxation of the problem and for a given (j, τ), we fix gk to
g̃k := g∗k for k ̸= j, then fix gj to

g̃j := min{g∗j , τ} for the left-branch problem;
g̃j := max{g∗j , τ} for the right-branch problem.

This simplification ensures that the right-hand side of the big-M constraints is within
the bounds of the newly-created subproblem and close enough to the solution to the
continuous relaxation of the current BB node.

We then solve the following new branching selection problems:

η(j, τ,≤) = 1
2 ||g̃[d]||22+ minξ,z

C
n

∑
i∈[n](ξi + 2zi)

s.t. ξi +Mi(ℓ, ũ(j, τ))zi ≥ 1− g̃Tvi ∀i ∈ [n]
ξ ∈ [0, 2]n, z ∈ [0, 1]n;

(6)

η(j, τ,≥) = 1
2 ||g̃[d]||22+ minξ,z

C
n

∑
i∈[n](ξi + 2zi)

s.t. ξi +Mi(ℓ̃(j, τ),u)zi ≥ 1− g̃Tvi ∀i ∈ [n]
ξ ∈ [0, 2]n, z ∈ [0, 1]n.

(7)

Fixing g simplifies the strong branching problem dramatically although it returns
a less reliable estimate of the dual bound improvement. In the next section we show
that this simplified strong branching still yields significant computational advantage.
For now we observe that these new problems are separable and admit a closed-form
solution.
Proposition 1. An optimal objective function value for the two problems (6) and (7)
is

η(j, τ,≤) = 1
2 ||g̃[d]||22 + C

n

∑
i∈[n] γ(1− g̃Tvi,Mi(ℓ, ũ(j, τ)))

η(j, τ,≥) = 1
2 ||g̃[d]||22 + C

n

∑
i∈[n] γ(1− g̃Tvi,Mi(ℓ̃(j, τ),u)),

where

γ(α,M) :=

 0 if α ≤ 0,
α if α > 0 ∧M ≤ 2,
2 α
M if α > 0 ∧M > 2.

(8)

7



Proof. Problems (6) and (7) become decomposable after fixing the only linking
variables g. For fixed g = g̃ we have

η(j, τ,≤) = 1
2 ||g̃[d]||22 + C

n

∑
i∈[n] minξi,zi (ξi + 2zi)

s.t. ξi +Mi(ℓ, ũ(j, τ))zi ≥ 1− g̃Tvi

ξi ∈ [0, 2], zi ∈ [0, 1].

For each i ∈ [n], three cases arise depending on τ and g̃:

1. 1− g̃Tvi ≤ 0, i.e., point vi is correctly classified by g̃ and the only linear constraint
is redundant; then ξi = zi = 0 is an optimal solution with objective function value
equal to 0;

2. 1 − g̃Tvi > 0 and Mi(ℓ, ũ(j, τ)) ≤ 2; then the solution (ξi, zi) = (0, 0) is excluded
and the coefficient of zi in the objective is greater than its coefficient in the only
linear constraint, implying that an optimal solution to the linear relaxation is
(ξ∗i , z

∗
i ) = (1− g̃Tvi, 0), with objective function value equal to ξ∗i = 1− g̃Tvi;

3. 1 − g̃Tvi > 0 and Mi(ℓ, ũ(j, τ)) > 2; then for zi the ratio of objective function
coefficient to constraint coefficient is less than 1, which implies that an optimal

solution is (ξ∗i , z
∗
i ) =

(
0, 1−g̃T vi

Mi(ℓ,ũ(j,τ))

)
with objective function value equal to 2z∗i =

2 1−g̃T vi

Mi(ℓ,ũ(j,τ)) .

The extension of the above to η(j, τ,≥) is straightforward.

Given that both g̃ and either of the new bounds ℓ,u depend on τ , so do (1− g̃Tvi)
and the two big-M ’s, i.e., Mi(ℓ, ũ(j, τ)) and Mi(ℓ̃(j, τ),u). Also, by construction of
Mi(·) in (5) we have 1 − g̃Tvi ≤ Mi(ℓ, ũ(j, τ)) for the left branch and 1 − g̃Tvi ≤
Mi(ℓ̃(j, τ),u) for the right branch (each may obviously have a distinct vector g̃).
Then it is easy to show that the function γ(α,M) defined in (8), while nonlinear, is
continuous for (α,M) ∈ R2, because α > 0 implies M > 0.

4.2 Branching algorithm

By fixing g to g̃, we obtain an efficient strong (spatial) branching algorithm that
consists in evaluating the η function (i) for every j ∈ [d + 1]; (ii) for τ ∈ Tj , to be
defined below; and (iii) for both left (≤) and right (≥) subproblems. Let us define Tj

as a set of m equally spaced internal points to the interval [ℓj , uj ] for a given m:

Tj =
{
ℓj +

k
m+1 (uj − ℓj)∀k ∈ [m]

}
.

Therefore, a heuristic branching strategy amounts to finding

(j, τ) ∈ argmaxj,τ{min{η(j, τ,≤), η(j, τ,≥)} : j ∈ [d+ 1], τ ∈ Tj}.

In principle, this heuristic requires 2(d+1)m calls to a function that computes 1−g̃Tvi

andMi = Mi(j, τ) for i ∈ [n], which has a complexity of O(nd), for an overall complex-
ity of O(nmd2). We developed an efficient implementation which keeps intermediate
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values of 1− g̃Tvi and similar for Mi computations, achieving a slightly better com-
plexity of O(nmd). Even for m = 50, which was our choice in the computational tests,
it can be argued that this heuristic is far more efficient than computing β(j, τ,≤) and
β(j, τ,≥) explicitly.

If the estimated gain in dual bound is lower than a given threshold, then our
proposed algorithm lets the branch-and-bound solver make its own selection, which will
certainly be on one of the zi variables. Otherwise, for the choice of branching variable
gj and branching value τ , the two subproblems are created so that the respective
bound on gj is changed. We only add branching constraints, i.e., tightened big-M
constraints, when they are violated by the solution of the parent node, in order to
avoid introducing too many extra linear constraints.

5 Computational tests

We have implemented the strong spatial branching technique described in the previous
section using callbacks from two commercial solvers: FICO Xpress [11] and IBM Cplex
[13]. Both solvers use callbacks to access and modify the branch-and-bound solution
process, specifically to generate user cuts and user branching rules. We only present
below the results we obtained from using the callback library of IBM-Cplex v22.1 with
locally implied bound cuts activated; we performed tests using FICO Xpress v9.2 as
well, but we do not report on this solver here for two reasons: (i) we obtained almost
equivalent results in terms of the performance improvement with our strong spatial
branching scheme; (ii) we aimed at including locally implied bound cuts (see Section
3.1) in the tests, which FICO Xpress does not have.

We used a computer with an Intel i7-10750H CPU with clock speed 2.6GHz and
32GB RAM memory; all code for setting up the solver and for callbacks was compiled
with gcc version 11.2 with option ‘-O3’. All tests had a time limit of two hours.

We used the same 23 instances as in [7], which are instances of type B with
d = 2 and n = 100 originated from [8]. All instances are available for download
from https://github.com/merraksh/data/tree/main/SVMRL. We run a comparison
between two algorithms:

Algorithm A0: the three-step algorithm described in Section 3.2, which uses OBBT to
tighten g variables, plus, for the IBM-Cplex solver, locally implied bound cuts enabled;
Algorithm SB: the same as A0 with the addition of the strong spatial branching
scheme shown in the previous section.

The extra options included in both algorithms (locally implied bound cuts, OBBT)
were chosen after a few preliminary tests in which these options were found to be
beneficial for both, and thus to ensure that both algorithms had the best setup.

Results. Table 1 summarizes the computational results we have obtained for the 23
instances in the test set. The table shows the following data:

• timeOBBT: The time spent in steps 1,2 of the algorithm outlined in Section 3.2 for
tightening bounds on g;

• timeBB, nodes: for both A0 and SB, the wall-clock time and the number of BB
nodes for the final branch-and-cut solver, after g bounds are tightened;

9
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A0 SB Ratio
Instance timeOBBT timeBB nodes timeBB nodes timeBB nodes
1 8.65 2.98 13524 5.32 4511 0.56 3.00
2 9.99 32.37 294411 4.37 3593 7.41 81.94
3 9.45 224.24 940931 5.66 4074 39.62 230.96
4 9.09 1.35 10310 4.64 4045 0.29 2.55
5 8.64 2.54 14322 4.15 3392 0.61 4.22
6 7.67 725.46 7273236 7.22 6085 100.48 1195.27
7 10.26 89.61 824963 5.76 4877 15.56 169.15
8 9.39 55.04 913255 8.28 7755 6.65 117.76
9 9.26 329.12 3612792 13.95 14186 23.59 254.67
10 9.63 160.52 1367008 5.56 4499 28.87 303.85
11 9.57 23.84 239005 7.04 6537 3.39 36.56
12 8.44 41.56 325585 11.39 10959 3.65 29.71
13 9.15 81.66 787430 5.04 4057 16.20 194.09
14 8.79 9.04 34997 6.51 5552 1.39 6.30
15 8.73 116.43 1391074 8.81 8673 13.22 160.39
16 5.97 188.99 1593382 13.10 14011 14.43 113.72
17 6.74 605.07 8476978 24.41 25489 24.79 332.57
18 7.67 1120.04 10033031 7.53 5961 148.74 1683.11
19 7.81 83.92 614554 11.44 11185 7.34 54.94
20 6.49 448.93 5492667 20.39 21822 22.02 251.70
21 9.04 363.32 3584341 6.12 5347 59.37 670.35
22 9.33 168.99 1327778 10.69 9710 15.81 136.74
23 8.13 100.99 808066 17.05 18021 5.92 44.84

Table 1 Comparison of all instances of type B from [8], also used in [7]. All instances are
numbered from 1 to 23 (column 1). Column timeOBBT shows the times (in seconds) spent
in the OBBT phase, which is common to both algorithms A0 and SB. Then for each of the
two algorithms two columns timeBB and nodes show the time spent by the subsequent
branch-and-cut and the number of BB nodes. The two columns under Ratio show the
ratios between A0 and SB of both branch-and-bound time and number of BB nodes, and
indicate the performance gain obtained with SB.

• Ratio: The ratio of BB time of A0 to that of SB, and similar for BB nodes; the
higher the ratio, the more advantageous SB is.

Excluding the easiest of these 23 instances, the total solution time improves signifi-
cantly with our strong spatial branching. The ratio w.r.t. BB nodes is about an order
of magnitude larger than the time ratio. An explanation of the different ratios is per-
haps the overhead of handling subproblems with the additional branching constraints
(with tighter big-M ’s) and perhaps the time taken by the procedure for branching
variable and branching point selection.

We have also carried out computational tests using the branching technique
described in the previous section where the branching rule only contained the disjunc-
tion gj ≤ τ ∨gj ≥ τ and not the additional tightened big-M constraints. A comparison
of our variant of the branch-and-cut to the standard solver A0 was not impressive: for
all instances at hand, the spatial branching variant timed out and exhibited a very
slow increase in dual bound. The performance is below par even if we use the indi-
cator constraint formulation, and it confirms that spatial branching must combine a
simple branching rule with the derived branching constraints on both subproblems,
unlike MICO solvers where only the single variable branching rule is enforced.
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We conclude this section with a remark on performance. For all instances we tested,
d = 2, hence g has support 3; several other classes of classification instances have
d ≤ 10. While any g∗ yields a feasible solution (after computing the corresponding
value for z, ξ), finding a solution with a good objective function value is far from
trivial. Yet both MICO solvers we have tested find a good feasible solution at the
beginning of the BB process.

The objective function value associated to these solutions can be used to reduce
bounds on g[d]: a cutoff of ρ implies that 1

2 ||g[d]||22 ≤ 1
2 ||g[d]||22+ C

n

∑
i∈[n](ξi+2yi) ≤ ρ,

hence gj ≤ 2
√
ρ∀j ∈ [d]. For some instances we observed solutions of objective function

value around 10,000, which yields bound intervals [−200, 200].
Observe that the BB algorithm for A0 takes, in some cases (instances 6, 9, 10, 15-

18, 19, 20-22), millions of BB nodes to find an optimal solution. Instead of this many
node solves and large CPU time, one could obtain a solution in a much shorter time
by means of a brute-force algorithm (which is also very easily parallelized): by creating
a grid of k× k boxes in the g[d] space, with k = ⌈√q⌉ and q the number of BB nodes,
one obtains a much easier set of q problems where g[d] is almost fixed and where the
remaining variables gd+1, ξ, and z can be easily determined.

6 Open questions and ongoing research

This paper presents a solution technique for a class of MIQO problems arising in the
fields of Support Vector Machines with Ramp Loss, which are used for classifying d-
dimensional vectors with a binary attribute using n training vectors. Our proposed
algorithm outperforms the state-of-the art for MIQO-based solvers of SVMRL, in some
cases by a large margin. This result is perhaps due to all instances having d ≪ n and
the problem structure where all d continuous weight variables effectually determine
the value of all other 2n variables, which in turn heavily impact the objective function.

Perhaps the most striking fact is that after a branching rule tightens the bounds
on such important variables within a new subprolem, the solver makes no use of
it unless the branching rule is amended with a set of valid branching inequalities.
This observation suggests that in MICO solvers (i) this task is only performed after
an integer branch, which alone suffices to exclude a portion of the LO relaxation’s
feasible set, or (ii) MICO solvers delegate to the LO solver the treatment of bounds
on continuous variables.

A few research directions are possible, the first two currently being pursued:

Extension to general MICO problems: If a problem min{cTx : Ax ≤ b} has a small
subset of variables that drive other variables (integer or continuous), then an approach
similar to that of Section 4 can be applied.
SVM with bounded support in g: Branching on the weight variables gj allows for con-
trolling the support of the g vector, which is useful in SVM applications with feature
selection [14, 18, 19].
Bound reduction: When should a MICO solver apply bound reduction on continuous
variables? Some solvers already apply OBBT to MICO problems, but new bounds on
continuous variables seem to be overlooked in new branch-and-bound subproblems.

11



In general, this article brings yet another example of MICO and MINLO algorithms
that can be successfully applied across the divide. We believe that, while solution
techniques for MICO (and especially MILO) have been extended to MINLO, several
other effective algorithms that were devised for MINLO could make a difference in
MILO solvers.
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