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Abstract

An interior-point algorithm framework is proposed, analyzed, and tested for solving nonlinearly con-
strained continuous optimization problems. The main setting of interest is when the objective and
constraint functions may be nonlinear and/or nonconvex, and when constraint values and derivatives are
tractable to compute, but objective function values and derivatives can only be estimated. The algorithm
is intended primarily for a setting that is similar for stochastic-gradient methods for unconstrained opti-
mization, namely, the setting when stochastic-gradient estimates are available and employed in place of
gradients of the objective, and when no objective function values (nor estimates of them) are employed.
This is achieved by the interior-point framework having a single-loop structure rather than the nested-
loop structure that is typical of contemporary interior-point methods. For completeness, convergence
guarantees for the framework are provided both for deterministic and stochastic settings. Numerical
experiments show that the algorithm yields good performance on a large set of test problems.

1 Introduction

The interior-point methodology is one of the most popular and effective derivative-based algorithm method-
ologies for solving inequality-constrained continuous optimization problems. Indeed, while there has been a
long history of development of other types of algorithms—e.g., of the augmented-Lagrangian and sequential-
quadratic-optimization varieties [16]—interior-point methods are arguably the most effective class of ap-
proaches for solving many constrained continuous optimization problems. In the setting of nonconvex opti-
mization, which is the setting of interest in this paper, the effectiveness of interior-point methods is evidenced
by the fact that the most popular software packages for solving such problems are based on interior-point
methods. These include the packages Ipopt [19], Knitro [5], and LOQO [18]. This popularity withstands
despite the fact that interior-point methods for solving nonconvex problems do not necessarily achieve the
same optimal worst-case complexity properties that can be achieved in convex settings.

Despite its widespread success, little work has been done on extending the interior-point methodology
to the stochastic regime. Here, we are focused on the setting in which constraint values and derivatives
are tractable to compute, but objective values and derivatives are not. Furthermore, like in the setting of
stochastic-gradient-based methods for solving unconstrained problems, our focus is to have an interior-point
method that employs stochastic-gradient estimates (in place of exact objective gradients) and no objective
function evaluations. Given the success of interior-point methods in the deterministic regime, there is ample
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motivation to explore their potential theoretical and practical behavior in such a stochastic regime. This is
the main motivation for the work presented in this paper.

We contend that there are at least a few significant obstacles to the design and analysis of a stochastic
interior-point method, which may be at least part of the reason that there has been little prior work on
this topic. Firstly, interior-point methods often have a nested-loop structure wherein an inner loop is
designed to solve (approximately) a so-called barrier subproblem for a fixed value of a barrier parameter
and the outer loop involves decreasing the barrier parameter. Determining when to terminate the inner loop
typically involves evaluating a measure of stationarity. However, in the aforementioned stochastic setting,
evaluating such a measure is not tractable since objective-gradient evaluations are not tractable. Secondly,
the barrier functions introduced in interior-point methods have corresponding gradient functions that are
not Lipschitz continuous nor bounded. This presents major difficulties since for many stochastic-gradient-
based methods, Lipschitz continuity and boundedness of the gradients are necessary features for ensuring
convergence guarantees. Thirdly, interior-point methods regularly involve globalization mechanisms such as
line searches or trust-region step-acceptance mechanisms that require exact function evaluations, but these
are not tractable to perform in the aforementioned stochastic setting that is of interest here.

1.1 Contributions and Limitations

To provide a significant advancement in the design and analysis of stochastic-gradient-based interior-point
methods, in this paper we propose and analyze a single-loop interior-point algorithm framework that offers
rigorous convergence guarantees in both deterministic and stochastic settings. Let us emphasize upfront
that we do not expect our method to be competitive with state-of-the-art interior-point methods in the
deterministic regime, and especially not with those that employ second-order derivatives of the objective.
Nevertheless, we present an algorithm and analyze its convergence properties for that setting for complete-
ness and since it helps to elucidate the essential features of an algorithm that are necessary for achieving
convergence guarantees in the stochastic regime.

Our method is an extension of the approach proposed in [7], which was proposed and analyzed for the
bound-constrained setting. We go beyond the bound-constrained setting and propose a framework that is
applicable for problems with nonlinear inequality constraints, at least as long as a strictly feasible initial point
for the algorithm can be provided. For the sake of generality, we present the framework in a manner such
that linear equality constraints can also be present, although we emphasize that our convergence guarantees
in neither the deterministic nor stochastic regime allow for the presence of nonlinear equality constraints.
Along with our concluding remarks, we discuss the challenges that would be faced when trying to extend
our approach to settings with nonlinear equality constraints.

Most of the assumptions that are required for our convergence guarantees are standard in the literature
on interior-point algorithms, specifically for that on so-called feasible interior-point methods that maintain
feasibility (with respect to all of the constraints) at all algorithm iterates. However, we require one additional
assumption that is not standard. This assumption essentially requires that, when an algorithm iterate is
close to a constraint boundary, a direction of sufficient descent can be computed that moves sufficiently away
from the boundary. It is, in essence, an assumption that combines two aspects: (a) a type of nondegeneracy
assumption and (b) an assumption that the barrier parameter is initialized to be sufficiently large compared
to a neighborhood parameter that is introduced in our algorithm. We demonstrate these aspects through
some illustrative examples. Since, to the best of our knowledge, there are no other interior-point methods
in the literature that possess convergence guarantees in a stochastic setting that is comparable to ours, we
contend that our algorithm and analysis together constitute a notable contribution to the literature despite
our method being a feasible interior-point method and our need to introduce a nonstandard assumption.
Future research may reveal techniques that can offer convergence guarantees for a stochastic-gradient-based
interior-point method in other settings.

We also provide the results of numerical experiments showing that our algorithms performs well when
employed to solve challenging test problems.
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1.2 Notation

We use R to denote the set of real numbers and, given a ∈ R, we use R≥a (resp., R>a) to denote the set
of real numbers that are greater than or equal to a (resp., strictly greater than a). Superscripts are used
to indicate the dimension of a vector or matrix whose elements are restricted to such a set; e.g., the set of
n-dimensional vectors is denoted as Rn. The set of positive integers is denoted as N := {1, 2, . . . } and, given
n ∈ N, the set of positive integers up to n is denoted as [n] := {1, . . . , n}. The set of n-by-n-dimensional
symmetric positive semidefinite (resp., definite) matrices is denoted as Sn⪰0 ⊂ Rn×n (resp., Sn≻0 ⊂ Rn×n).

A real-valued sequence is always introduced as {vk} ⊂ R, where R is a real vector (sub)space and the
subset notation indicates that vk ∈ R for each index k ∈ N (although elements in the sequence may repeat).
Here, subscripts are used to indicate index number in a sequence, although in some situations a subscript is
used to indicate an element number of a vector or vector-valued function. When indicating the ith element
of a vector vk, the notation [vk]i is used. In all cases, the meaning of a subscript is clear from the context.
The notation {vk} → v indicates that the sequence {vk} converges to v. The notation {vk} ↘ 0 indicates
that {vk} is a sequence of positive real numbers that vanishes monotonically.

Given a vector v ∈ Rn, we use diag(v) to denote the diagonal matrix for which, for all i ∈ [n], the (i, i)
element is vi ∈ R. Given two vectors z ∈ Rm and c ∈ Rm, their Hadamard (i.e., component-wise) product is
denoted as z ◦ c ∈ Rm. We use 1 to denote a vector whose elements are all equal to one; the length of such a
vector is determined by the context in which it appears. Given A ∈ Rl×n, the null space of A is denoted as
Null(A). Given (A,B) ∈ Sn⪰0 × Sn⪰0, we use A ⪰ B (resp., A ⪯ B) to indicate that A− B (resp., B − A) is
positive semidefinite. Given v ∈ Rp and M ∈ Sp≻0, the M -norm of v is written as ∥v∥M =

√
vTMv. Finally,

given a set P, its interior is denoted as int(P) and its polar cone is denoted as

P◦ := {y ∈ Rn : pT y ≤ 0 for all p ∈ P}.

1.3 Outline

In §2, we present our problem of interest and preliminary commentary. In §3, we present our proposed
framework and prove basic facts about its behavior. Section 4 contains our assumptions and convergence
analyses for the deterministic and stochastic settings. As previously mentioned, our analyses rely on an
assumption that is not standard; we discuss this assumption in detail in §5, highlighting certain settings of
interest in which it indeed holds. Details about a practical implementation of our algorithm and resulting
numerical experiments are presented in §6. Concluding remarks are provided in §7.

2 Problem Formulation and Preliminaries

Our proposed algorithm framework (Algorithm 1 on page 7) is designed to solve nonlinearly constrained
optimization problems of the form

min
x∈Rn

f(x) subject to Ax = b and c(x) ≤ 0, (1)

where A ∈ Rl×n (with l < n), b ∈ Rl, and the functions f and c satisfy the following assumption with respect
to the feasible region of problem (1), namely,

F := E ∩ C≤0, where

{
E := {x ∈ Rn : Ax = b};
C≤0 := {x ∈ Rn : c(x) ≤ 0}.

Assumption 2.1. There exists an open set F ⊃ F over which the objective function f : F → R is
continuously differentiable and bounded below by finf ∈ R and the constraint function c : F → Rm is
continuously differentiable. In addition, the matrix A ∈ Rl×n has full row rank. Finally, there exists x ∈ F
such that c(x) < 0 (i.e., where the inequality holds strictly, component-wise).
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The elements of Assumption 2.1 pertaining to f and c are mostly common for the literature on smooth
nonlinearly constrained optimization. The only exception is the assumption that there exists x ∈ F such that
c(x) < 0. This aspect of the assumption precludes the presence of nonlinear equality constraints (through
two-sided inequalities). It is needed in our setting since our algorithm requires a feasible initial point that is
strictly feasible with respect to the nonaffine constraints.

Assumption 2.1 does not require that the feasible region F is bounded, although our convergence analysis
in §4 requires that the iterates remain within a set such that c remains component-wise bounded below, and
that the functions f , c, ∇f : F → Rn, and ∇ci : F → Rn for all i ∈ [m] are Lipschitz continuous; see
Assumption 4.1 on page 7. Our analysis could be extended to the setting in which the matrix A does not
have full row rank as long as the linear system Ax = b is consistent. Our algorithm framework requires that
the initial iterate is contained in E and that each step lies in the null space of A, which inductively implies
that each iterate lies in E . These requirements remain reasonable when A has linearly dependent rows as
long as a projection operator onto the null space of A is available. Merely for ease of notation, we assume A
has full row rank.

In fact, our algorithm framework ensures that all iterates remain in the set

F<0 := E ∩ C<0, where C<0 := {x ∈ Rn : c(x) < 0}. (2)

Observe that this set is guaranteed to be nonempty under Assumption 2.1. In each iteration, our framework
involves the computation of a search direction that, for a given barrier parameter µ ∈ R>0, aims to reduce
the value of the objective augmented with the logarithmic barrier function defined with respect to the
inequality-constraint functions of (1), namely, the function ϕ(·, µ) : C<0 → R defined by

ϕ(x, µ) = f(x)− µ
∑
i∈[m]

log(−ci(x)).

Going forward, we refer to this as the barrier-augmented objective function. Observe that if xµ is a local
solution of the problem to minimize ϕ(·, µ) over F<0 = E ∩ C<0, then there exists a Lagrange multiplier
vector yµ ∈ Rl such that, along with zµi := −µ(ci(xµ))−1 for all i ∈ [m], one finds that

∇f(xµ) +AT yµ +∇c(xµ)zµ = 0, Axµ = b, c(xµ) < 0, zµ > 0, and − zµ ◦ c(xµ) = µ1.

Any tuple (xµ, yµ, zµ) satisfying this system is referred to as a stationary point for the problem to mini-
mize ϕ(·, µ) over F<0. This system should be compared to the Karush-Kuhn-Tucker (KKT) conditions for
problem (1); in particular, under a constraint qualification—such as the Mangasarian-Fromovitz constraint
qualification (MFCQ) [13]—if x is a local solution of problem (1), then there exists y ∈ Rl and z ∈ Rm such
that the following system of KKT conditions is satisfied:

∇f(x) +AT y +∇c(x)z = 0, Ax = b, c(x) ≤ 0, z ≥ 0, and − z ◦ c(x) = 0. (3)

Any tuple (x, y, z) satisfying this system is referred to as a stationary point (or KKT point) for problem (1).
As is generally the case for an interior-point method, our algorithm framework aims to find such a KKT
point by taking steps to reduce the barrier-augmented objective function for a diminishing sequence of
barrier parameters—a procedure that can be motivated by the fact that the stationarity conditions for the
minimization of ϕ(·, µ) over F<0 tend toward those of (1).

3 Algorithm

Our algorithm framework is stated as Algorithm 1 on page 7. The framework presumes that it is given an
initial neighborhood parameter θ0 ∈ R>0 and an initial iterate x1 ∈ E ∩ N (θ0), where for all θ ∈ R>0 we
define

N (θ) := {x ∈ Rn : c(x) ≤ −θ1} ⊆ C<0.
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Observe that the existence of such θ0 and x1 is guaranteed under Assumption 2.1. Moreover, the steps of
Algorithm 1 ensure that, for a prescribed, monotonically decreasing sequence {θk} ⊂ R>0 with θ1 < θ0, one
finds xk ∈ E ∩N (θk−1) for all k ∈ N. Hence, to describe the main steps of the algorithm for each k ∈ N, we
may presume that for all k ∈ N the algorithm has an iterate xk ∈ E ∩ N (θk−1).

Following [7], Algorithm 1 also employs a prescribed, monotonically decreasing sequence of barrier pa-
rameters {µk} ⊂ R>0 such that {µk/θk−1} is a constant sequence. Other inputs required by Algorithm 1
in the deterministic setting are η ∈ (θ0/µ1, 1), η ∈ (θ0,∞), ζ ∈ R>0, ζ ∈ R>0 with ζ ≤ ζ, and ζ ∈ (0, 1),
each of which influences the search direction computation. Given these inputs along with k ∈ N and
xk ∈ E ∩N (θk−1), the computation proceeds as follows. Firstly, a set of indices of constraints that are nearly
active with respect to xk is identified as

Ak := {i ∈ [m] : −ηµk < ci(xk)}.

Observe that since xk ∈ N (θk−1) it follows that ci(xk) ≤ −θk−1 for all i ∈ [m], and, since the facts
that η ∈ (θ0/µ1, 1) and {µk/θk−1} is a constant sequence together ensure −ηµk < −θk−1, it follows that
−ηµk < ci(xk) ≤ −θk−1 for all i ∈ Ak. Secondly, a vector qk ∈ Rn is computed, the value of which is distinct
between the deterministic and stochastic settings. In particular, the framework employs

qk :=

{
∇f(xk)− µk∇c(xk) diag(c(xk))−11 (deterministic)

gk − µk∇c(xk) diag(c(xk))−11 (stochastic)
(4)

where in the stochastic setting the vector gk is a stochastic estimate of ∇f(xk). Third, with P := I −
AT (AAT )−1A denoting the orthogonal projection matrix onto the null space of A, a search direction dk ∈ Rn

is computed such that

Adk = 0, (5a)

ζ∥Pqk∥2 ≤ ∥dk∥2, (5b)

ζ∥Pqk∥2 ≥ ∥dk∥2, (5c)

−(Pqk)T dk ≥ ζ∥Pqk∥2∥dk∥2, and (5d)

∇ci(xk)T dk ≤ − 1
2η∥dk∥2 for all i ∈ Ak. (5e)

In the deterministic setting, all that is required of the search direction dk is that it satisfies (5). For the
stochastic setting, we introduce in our analysis a particular strategy for computing the search direction that
implies that (5) holds along with other useful properties for our analysis for that setting.

Let us now discuss (5) in detail. Firstly, condition (5a) requires that the search direction satisfies
dk ∈ Null(A), i.e., it lies in the null space of A, which, since xk ∈ E , ensures that the subsequent iterate
will also lie in E . Secondly, conditions (5b) and (5c) require that the norm of the search direction dk is
proportional to the norm of Pqk = (I−AT (AAT )−1A)qk, i.e., the norm of the projection of qk onto Null(A).
Thus, conditions (5b) and (5c) require that the norm of the search direction is proportional to that of a
projected gradient (estimate), which is a common type of requirement for a search direction in an algorithm
for minimizing a smooth objective function over an affine set. Thirdly, condition (5d) requires that dk makes
an angle with Pqk that is sufficiently obtuse. Again, this is a common type of requirement; e.g., in the
deterministic setting, it ensures that any nonzero dk is a direction of sufficient descent with respect to the
barrier-augmented objective function. Together, conditions (5a)–(5d) define a nonempty set and computing
a search direction to satisfy these conditions is straightforward; e.g., one can compute the projection of −qk
onto Null(A) and scale the resulting direction, if needed, to satisfy (5b)–(5c). However, it remains finally
to consider condition (5e). Unfortunately, this is a requirement that is not always satisfiable along with the
other conditions, namely, (5a)–(5d). That said, we contend that all of (5) can be satisfied as long as (a)
the constraints are not degenerate in some sense and (b) the initial barrier parameter µ1 is sufficiently large
relative to θ0. Denoting the conical hull of nearly active constraint gradients as

Pk :=

{∑
i∈Ak

∇ci(xk)σi : σ ∈ R|Ak|
≥0

}
,
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condition (5e) requires that dk lies sufficiently within the interior of the polar cone of Pk, i.e., int(P◦
k ).

Hence, to satisfy (5), there needs to exist a direction sufficiently within this interior that also satisfies (5a)–
(5d). For our purposes now, let us simply introduce Assumption 3.1 below, which implicitly means that
Algorithm 1 is being applied to a problem such that a search direction satisfying (5) always exists. We defer
until §5 a more detailed discussion Assumption 3.1, where in particular we provide (a) example problems
for which the assumption can be shown to hold or cannot be shown to hold, (b) further explanation about
why the assumption can be viewed as a type of nondegeneracy assumption and an assumption about µ1/θ0
being sufficient large (which is reminiscient of a requirement in Corollary 3.8 and Lemma 3.15 in [7] for the
bound-constrained setting), and (c) a procedure for computing dk to satisfy (5) when such a direction exists.

Assumption 3.1. For all k ∈ N generated in a run of Algorithm 1, there exists a search direction dk ∈ Rn

satisfying the conditions (5).

Upon computation of the search direction, Algorithm 1 chooses a step size αk ∈ R>0. For simplicity, our
analyses for the deterministic and stochastic settings consider conservative rules for selecting the step sizes
that each depend on the barrier- and neighborhood-parameter sequences, {µk} and {θk}. We conjecture
that it would be possible to generalize our algorithm and analyses to allow more flexibility in the step-size
selection rules, as is done in [7]. However, for our purposes here, we present conservative strategies that are
sufficient for proving convergence.

The algorithm’s last major step in the kth iteration is to compute a positive real number γk ∈ R>0 such
that the line segment [xk, xk + γkαkdk] is contained in the neighborhood N (θk). The subsequent iterate is
then set as xk+1 ← xk + γkαkdk. As mentioned at the beginning of this section, from the facts that the
kth iterate has xk ∈ E ∩ N (θk−1), the kth search direction satisfies (5a), and the choice of γk ensures that
xk + γkαkdk ∈ N (θk), it follows that xk+1 ∈ E ∩ N (θk). For the sake of formality, we state the following
lemma that has been proved.

Lemma 3.1. For all k ∈ N generated in any run of Algorithm 1, it follows that the iterate satisfies xk ∈
E ∩ N (θk−1) ⊆ F<0 and the search direction satifies dk ∈ Null(A).

Algorithm 1 Single-Loop Interior-Point (SLIP) Method

Require: initial neighborhood parameter θ0 ∈ R>0, initial iterate x1 ∈ E ∩ N (θ0), barrier-parameter se-
quence {µk} ↘ 0, neighborhood-parameter sequence {θk} ↘ 0 with θ1 < θ0 such that {µk/θk−1}
is a constant sequence, maximum neighborhood-parameter sequence {γk,max} ⊂ (0, 1], η ∈ (θ0/µ1, 1),
η ∈ (θ0,∞), ζ ∈ R>0, ζ ∈ R>0 with ζ ≤ ζ, and ζ ∈ (0, 1)

1: for all k ∈ N do
2: Compute qk ∈ Rn by (4)
3: Compute dk ∈ Rn to satisfy (5)
4: Choose αk ∈ R>0

5: Compute γk ∈ (0, γk,max] such that [xk, xk + γkαkdk] ⊆ N (θk)
6: Set xk+1 ← xk + γkαkdk
7: end for

4 Analysis

We prove theoretical convergence guarantees for Algorithm 1 in both deterministic and stochastic settings.
For both settings, we make the following additional, standard type of assumption beyond Assumptions 2.1
and 3.1.

Assumption 4.1. Let X be an open convex set containing the sequence of line segments between iterates,
namely, {[xk, xk + αkdk]}, generated in any run of Algorithm 1. There exist constants κ∇f ∈ R>0, L∇f ∈
R>0, {κci}i∈[m] ⊂ R>0, {Lci}i∈[m] ⊂ R>0, {κ∇ci}i∈[m] ⊂ R>0, and {L∇ci}i∈[m] ⊂ R>0 such that:
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• f is Lipschitz with constant κ∇f over X , so (under Assumption 2.1) it follows that ∇f is bounded in
ℓ2 (Euclidean) norm by κ∇f over X .

• ∇f is Lipschitz with constant L∇f with respect to ∥ · ∥2 over X .

• For all i ∈ [m], ci is bounded in absolute value by κci over X .

• For all i ∈ [m], ci is Lipschitz with constant Lci over X , so (under Assumption 2.1) it follows that ∇ci
is bounded in ℓ2 (Euclidean) norm by κ∇ci := Lci over X .

• For all i ∈ [m], ∇ci is Lipschitz with constant L∇ci with respect to ∥ · ∥2 over X .

Under Assumption 4.1, with {κci}i∈[m] ⊂ R>0 defined in the assumption, we introduce C[−κc,0) :=
{x ∈ Rn : ci(x) ∈ [−κci , 0) for all i ∈ [m]} along with the shifted barrier-augmented objective function
ϕ̃ : C[−κc,0) × R>0 → R defined by

ϕ̃(x, µ) = f(x)− µ
∑
i∈[m]

log

(
−ci(x)

κci

)
.

Important properties of the shifted barrier-augmented objective function are that (a) it is bounded below by
finf := infx∈F<0 f(x) ∈ R whose existence follows under Assumption 2.1 and (b) it shares the same gradient
function with respect to its first argument as that of the (unshifted) barrier-augmented objective function;
i.e., for all (x, µ) ∈ C[−κc,0) × R>0, one finds that

∇xϕ(x, µ) = ∇xϕ̃(x, µ), (6)

where ∇x denotes the gradient operator with respect to a function’s first argument. These follow since
for any i ∈ [m] and δ ∈ (0, κci ] one has − log(δ/κci) ≥ 0 and − log(δ/κci) = − log(δ) + log(κci), so
(x, µ) ∈ C[−κci

,0) × R>0 implies

ϕ(x, µ) + µ
∑
i∈[m]

log(κci) = ϕ̃(x, µ) ≥ finf . (7)

In addition, the shifted barrier-augmented objective function is monotonically increasing in its second argu-
ment in the sense that for any x ∈ C[−κc,0) one finds that ϕ̃(x, µ) < ϕ̃(x, µ̄) for any (µ, µ̄) ∈ R>0 ×R>0 with

µ < µ̄. These properties make the function ϕ̃ useful for our analysis. Indeed, even though the algorithm
is not aware of the constants {κci}i∈[m] in Assumption 4.1, we shall show that it follows from the former
property above that it computes steps that lead to (expected) decrease in the shifted barrier-augmented
objective function ϕ̃. Also, with the latter property above, decreases in the barrier parameter also lead to
decreases in ϕ̃.

Our first result is useful for both the deterministic and stochastic settings. It shows that, for any θ ∈ R>0,
the gradient of the shifted barrier-augmented objective function with respect to its first argument is Lipschitz
over line segments in N (θ) with a Lipschitz constant that depends on θ. This is a critical property, especially
since this function is not globally Lipschitz over F<0 ⊃ N (θ). The proof follows standard techniques for
such a result; we provide it for completeness.

Lemma 4.1. For any (µ, θ, θ̄) ∈ R>0 × R>0 × R>0 with θ̄ ∈ (0, θ], x ∈ N (θ), x ∈ N (θ̄), and γ ∈ [0, 1], one
finds with

Lµ,θ,θ̄ := L∇f +
µ

θθ̄

m∑
i=1

(Lciκ∇ci + κciL∇ci) ∈ R>0

that one has both

∥∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ)∥2 ≤ γLµ,θ,θ̄∥x− x∥2
and ϕ̃(x, µ) ≤ ϕ̃(x, µ) +∇xϕ̃(x, µ)

T (x− x) + 1
2Lµ,θ,θ̄∥x− x∥22
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Proof. For arbitrary (µ, θ, θ̄, x, x, γ) satisfying the conditions of the lemma, it follows from Assumption 2.1,
Assumption 4.1, (6), and the triangle inequality that

∥∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ)∥2

=

∥∥∥∥∥∇f(x+ γ(x− x))−∇f(x)− µ

(
m∑
i=1

∇ci(x+ γ(x− x))
ci(x+ γ(x− x))

−
m∑
i=1

∇ci(x)
ci(x)

)∥∥∥∥∥
2

≤ γL∇f∥x− x∥2 + µ

m∑
i=1

∥∥∥∥ci(x+ γ(x− x))∇ci(x)− ci(x)∇ci(x+ γ(x− x))
ci(x)ci(x+ γ(x− x))

∥∥∥∥
2

≤ γL∇f∥x− x∥2 +
µ

θθ̄

m∑
i=1

∥ci(x+ γ(x− x))∇ci(x)− ci(x)∇ci(x)

+ ci(x)∇ci(x)− ci(x)∇ci(x+ γ(x− x))∥2

≤ γL∇f∥x− x∥2 +
µ

θθ̄

m∑
i=1

(|ci(x+ γ(x− x))− ci(x)|∥∇ci(x)∥2

+ |ci(x)|∥∇ci(x)−∇ci(x+ γ(x− x))∥2)

≤ γL∇f∥x− x∥2 +
µ

θθ̄

m∑
i=1

(γLciκ∇ci∥x− x∥2 + γκciL∇ci∥x− x∥2),

from which the first desired conclusion follows. Hence, for arbitrary (µ, θ, θ̄, x, x) satisfying the conditions of
the lemma, it follows from the Fundamental Theorem of Calculus and the Cauchy–Schwarz inequality that

ϕ̃(x, µ)− ϕ̃(x, µ)

=

∫ 1

0

∂ϕ̃(x+ γ(x− x), µ)
∂γ

dγ =

∫ 1

0

∇xϕ̃(x+ γ(x− x), µ)T (x− x)dγ

= ∇xϕ̃(x, µ)
T (x− x) +

∫ 1

0

(∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ))
T (x− x)dγ

≤ ∇xϕ̃(x, µ)
T (x− x) + ∥x− x∥2

∫ 1

0

∥∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ))∥2dγ

≤ ∇xϕ̃(x, µ)
T (x− x) + Lµ,θ,θ̄∥x− x∥2

∫ 1

0

γdγ,

so the desired conclusion follows from the fact that
∫ 1

0
γdγ = 1

2 .

4.1 Deterministic Setting

In this subsection, we prove convergence guarantees for Algorithm 1 in the deterministic setting, i.e., when
qk = ∇f(xk) − µk∇c(xk) diag(c(xk))−11 = ∇xϕ̃(xk, µk) (see (4) and (6)) for all k ∈ N. For ease of
exposition, we refer to this instance of the method as Algorithm 1(D). In particular, we prove that under
a certain rule for choosing the step-size parameters, the algorithm is well defined, generates a sequence of
iterates over which a measure of stationarity vanishes, and under a constraint qualification can produce a
sequence of Lagrange multipliers such that convergence to a KKT point is guaranteed. This algorithm for
the deterministic setting is not expected to be competitive with state-of-the-art (second-order) interior-point
methods for solving problems in many real-world settings. That said, our analysis for the deterministic
setting provides a useful precursor for our subsequent analysis for the stochastic setting for which state-of-
the-art methods are not applicable (since they do not possess known convergence guarantees in the stochastic
setting that we consider in our analysis in §4.2).
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The class of step-size parameters that we consider for our analysis in this subsection is that satisfying
the following parameter rule. We state the rule, then summarize the reasons that the rule has been designed
in this manner.

Parameter 1. Given tα ∈ (−∞, 0], for all k ∈ N, Algorithm 1(D) employs

αk ← ktα

(
ζζ

ζ
2
Lk

)
,

where Lk := L∇f +
µk

θkθk−1

m∑
i=1

(Lciκ∇ci + κciL∇ci) ∈ R>0. In addition, for all k ∈ N, Algorithm 1(D)

employs γk,max ← 1 and γk ← mini∈[m] γk,i, where, for all i ∈ [m],

γk,i ← min

{
1,
−∇ci(xk)T dk +

√
(∇ci(xk)T dk)2 + 2L∇ci∥dk∥22(−ci(xk)− θk)

L∇ciαk∥dk∥22

}
;

hence, γk,i ∈ (0, 1] for all k ∈ N and i ∈ [m], so γk ∈ (0, 1] for all k ∈ N.

The fundamental aspects of Parameter Rule 1 can be understood as follows. First, the choice of αk ensures
that this step size is chosen sufficiently small such that it ensures sufficient decrease in the barrier-augmented
objective function with each step. Intuitively, this can be seen in the fact that the step size is proportional
to the reciprocal of a Lipschitz-type constant for the gradient of the barrier function (see Lemma 4.1), as is
common in basic descent methods for gradient-based optimization algorithms. For additional flexibility and
since it is required in the stochastic setting, we introduce the factor ktα such that the step size may diminish
faster, namely, when a choice tα < 0 is made. (That said, our analysis shows that tα = 0 is a valid choice in
the deterministic setting.) Finally, the rule for the choice of γk is shown in our analysis to guarantee that
[xk, xk + γkαkdk] ⊆ N (θk) for all k ∈ N, which is necessary for our analysis to employ Lemma 4.1.

For our next lemma, we prove this critical property of γk for all k ∈ N.

Lemma 4.2. Suppose that Assumptions 2.1, 3.1, and 4.1 hold and that Algorithm 1(D) is run with Parameter
Rule 1. Then, for all k ∈ N. the choice of γk ∈ (0, 1] in Parameter Rule 1 ensures that [xk, xk + γkαkdk] ⊆
N (θk), i.e., the condition in Step 5 of Algorithm 1(D) holds. Consequently, under Parameter Rule 1,
Algorithm 1(D) is well defined in the sense that it will generate an infinite sequence of iterates.

Proof. Consider arbitrary k ∈ N and i ∈ [m]. We prove that the choice of γk,i ∈ (0, 1] in Parameter Rule 1
ensures that ci(xk + γαkdk) ≤ −θk for all γ ∈ [0, γk,i], after which the desired conclusion follows directly
from the fact that γk ← mini∈[m] γk,i for all k ∈ N. Under Assumptions 2.1 and 4.1, one has for all γ ∈ [0, 1]
that

ci(xk + γαkdk) ≤ ci(xk) + γαk∇ci(xk)T dk + 1
2L∇ciγ

2α2
k∥dk∥22.

Therefore, ci(xk + γαkdk) ≤ −θk is ensured as long as γ ∈ [0, 1] yields

ci(xk) + γ̄αk∇ci(xk)T dk + 1
2L∇ci γ̄

2α2
k∥dk∥22 ≤ −θk for all γ̄ ∈ [0, γ]. (8)

Recalling that Lemma 3.1 ensures xk ∈ N (θk−1), which means that ci(xk) ≤ −θk−1 < −θk, it follows that
(8) holds for all γ ∈ [0, 1] when dk = 0, and otherwise (when dk ̸= 0) one finds that the left-hand side
of (8) is a strongly convex quadratic function of γ̄. The second term in the minimum in the definition
of γk,i in Parameter Rule 1 is the unique positive root of this quadratic function, where we remark that
−ci(xk)− θk > 0 since, as previously mentioned, ci(xk) < −θk.

We now go beyond Lemma 4.2 and prove a lower bound for γk that will be critical for our ultimate
convergence guarantee in this subsection.
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Lemma 4.3. Suppose that Assumptions 2.1, 3.1, and 4.1 hold and that Algorithm 1(D) is run with Parameter
Rule 1. In addition, define

β := ζ

κ∇f +
µ1

θ0

∑
j∈[m]

κ∇cj

 ∈ R>0,

and for all i ∈ [m] define

γk,i,min := min

1,
−κ∇ci +

√
κ2∇ci

+ 2L∇ci(ηµk − θk)

αkβL∇ci

,
η − θk
αkβL∇ci

 ∈ (0, 1].

Then, γk ≥ γk,min := mini∈[m] γk,i,min for all k ∈ N.

Proof. Consider arbitrary k ∈ N and i ∈ [m]. Our aim is to prove that γk,i ≥ γk,i,min, from which the
desired conclusion follows due to the fact that γk ← mini∈[m] γk,i under Parameter Rule 1. Toward this end,
observe that if Parameter Rule 1 yields γk,i = 1, then, clearly, γk,i ≥ γk,i,min ∈ (0, 1] and there is nothing
left to prove. Therefore, we may proceed under the assumption that Parameter Rule 1 yields γk,i ∈ (0, 1).
It follows under this condition that

γk,i =

−∇ci(xk)
T dk

∥dk∥2
+

√(
∇ci(xk)T dk

∥dk∥2

)2
+ 2L∇ci(−ci(xk)− θk)

αk∥dk∥2L∇ci

. (9)

On the other hand, by Assumptions 2.1, 3.1, and 4.1, the fact that the matrix norm ∥·∥2 is submultiplicative,
the triangle inequality, (5c), the fact that xk ∈ N (θk−1), the fact that {µk/θk−1} is a constant sequence,
and the fact that for the orthogonal projection matrix P one has ∥P∥2 ≤ 1, one finds that

∥dk∥2 ≤ ζ∥P (∇f(xk)− µk∇c(xk) diag(c(xk))−11)∥2

≤ ζ

∥∇f(xk)∥2 + µk

∑
j∈[m]

∥∥cj(xk)−1∇cj(xk)
∥∥
2

 ≤ β. (10)

Let us now proceed by considering two cases.

1. Suppose ci(xk) ≤ −ηµk. (The ith constraint is not nearly active.) Observe that Assumption 4.1
and the Cauchy-Schwarz inequality together imply that ∇ci(xk)T dk ≤ κ∇ci∥dk∥2. At the same time,
observe that the numerator of the right-hand side of (9) can be viewed as the value of the function

h : (−∞, κ∇ci ]→ R defined by h(a) = −a+
√
a2 + b at a = ∇ci(xk)

T dk

∥dk∥2
for b ∈ R>0, where positivity of

b follows since xk ∈ N (θk−1) implies −ci(xk)−θk ≥ θk−1−θk > 0. One finds that h is a monotonically
decreasing function of a over (−∞, κ∇ci ]. Hence, from (9), (10), and the condition of this case, one has

γk,i ≥
−κ∇ci +

√
κ2∇ci

+ 2L∇ci(−ci(xk)− θk)

αkβL∇ci

≥
−κ∇ci +

√
κ2∇ci

+ 2L∇ci(ηµk − θk)

αkβL∇ci

.

(11)

2. Suppose ci(xk) > −ηµk. (The ith constraint is nearly active.) Under Assumption 3.1, it follows from
(5e) that ∇ci(xk)T dk ≤ − 1

2η∥dk∥2. Consequently, by θk > 0, the fact that xk ∈ N (θk−1) implies
−ci(xk)− θk > 0, and the fact that the conditions of the lemma ensure η − θk > 0, it follows that

−
η

2
≥ ∇ci(xk)

T dk
∥dk∥2
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=⇒ L∇ci

(
−ci(xk)− θk

η − θk

)
−
η − θk

2
≥ ∇ci(xk)

T dk
∥dk∥2

=⇒ 2L∇ci(−ci(xk)− θk)− (η − θk)2 ≥ 2(η − θk)
∇ci(xk)T dk
∥dk∥2

=⇒
(
∇ci(xk)T dk
∥dk∥2

)2

+ 2L∇ci(−ci(xk)− θk) ≥
(
∇ci(xk)T dk
∥dk∥2

+ (η − θk)
)2

=⇒

√(
∇ci(xk)T dk
∥dk∥2

)2

+ 2L∇ci(−ci(xk)− θk) ≥
∇ci(xk)T dk
∥dk∥2

+ (η − θk),

which with (9) and (10) implies

γk,i ≥
η − θk
αkβL∇ci

.

Combining the results from the two cases, one can conclude that γk,i ≥ γk,i,min for all i ∈ [m], which, as
previously mentioned, completes the proof.

For our next lemma, we prove the aforementioned sufficient decrease condition that is guaranteed by the
choices in Parameter Rule 1. In particular, one finds in the lemma that the amount of decrease is at least
proportional to a squared norm of the projected gradient of the barrier-augmented objective function, which
makes sense since, under Lemma 3.1, xk ∈ E and dk ∈ Null(A) for all k ∈ N.

Lemma 4.4. Suppose that Assumptions 2.1, 3.1, and 4.1 hold and that Algorithm 1(D) is run with Parameter
Rule 1. Then, for all k ∈ N, one finds

ϕ̃(xk+1, µk+1)− ϕ̃(xk, µk) ≤ − 1
2ζζγkαk∥P∇xϕ(xk, µk)∥22.

Proof. Consider arbitrary k ∈ N. By Lemmas 4.1–4.2, (6), (5), dk = Pdk, and P = PT , it follows with
Lk ∈ R>0 defined as in Parameter Rule 1 that

ϕ̃(xk+1, µk)− ϕ̃(xk, µk) ≤ ∇xϕ̃(xk, µk)
T (xk+1 − xk) + 1

2Lk∥xk+1 − xk∥22
= γkαkq

T
k dk + 1

2γ
2
kα

2
kLk∥dk∥22

= γkαk(Pqk)
T dk + 1

2γ
2
kα

2
kLk∥dk∥22

≤ − γkαkζ∥Pqk∥2∥dk∥2 + 1
2γ

2
kα

2
kLk∥dk∥22

≤ − γkαk(ζζ − 1
2ζ

2
γkαkLk)∥Pqk∥22. (12)

Due to Parameter Rule 1, one finds that γk ∈ (0, 1], ktα ∈ (0, 1], and

ζζ − 1
2ζ

2
γkαkLk ≥ ζζ − 1

2ζ
2
αkLk ≥ ζζ − 1

2k
tαζζ ≥ 1

2ζζ. (13)

Combining (12) and (13), and since µk+1 ≤ µk implies ϕ̃(xk+1, µk+1) ≤ ϕ̃(xk+1, µk) (see the discussion
following (7)), the desired conclusion follows.

We are now prepared to prove our guarantee for the deterministic setting. For the sake of notational
clarity, the following theorem introduces the parameters tµ and tθ that dictate the rates of decrease of {µk}
and {θk}, respectively. However, the theorem requires tµ = tθ, and indeed one can see in the details of the
proof that both tµ ≤ tθ and tµ ≥ tθ are required to prove the theorem.

Theorem 4.1. Suppose that Assumptions 2.1, 3.1, and 4.1 hold and that Algorithm 1(D) is run with
Parameter Rule 1. Suppose, in addition, that for some (tµ, tθ, tα) ∈ (−∞, 0) × (−∞, 0) × (−∞, 0] with
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tµ = tθ and tµ + tα ∈ [−1, 0) and for some µ1 ∈ R>0 and θ0 ∈ R>0 the algorithm employs µk = µ1k
tµ and

θk−1 = θ0k
tθ for all k ∈ N. Then,

∞∑
k=1

γkαk =∞ and lim inf
k→∞

∥P∇xϕ(xk, µk)∥22 = 0. (14)

If, in addition, there exists K ⊆ N with |K| =∞ such that

• {P∇xϕ(xk, µk)}k∈K → 0,

• {xk}k∈K → x for some x ∈ F , and

• at x the linear independence constraint qualification (LICQ) holds with respect to problem (1) in the
sense that with Ā := {i ∈ [m] : ci(x) = 0} the columns of AT combined with the vectors in {∇ci(x)}i∈Ā
form a linearly independent set,

then x is a KKT point for problem (1) in the sense that there exists a pair of Lagrange multipliers (y, z) ∈
Rl × Rm such that (x, y, z) satisfies (3).

Proof. It follows from (7) that ϕ̃ is bounded below by finf over X ×R≥0. Then, by summing the expression
in Lemma 4.4 over k ∈ N and (6), one finds that

∞ > ϕ̃(x1, µ1)− finf ≥
∞∑
k=1

(ϕ̃(xk, µk)− ϕ̃(xk+1, µk+1))

≥
∞∑
k=1

1
2ζζγkαk∥P∇xϕ(xk, µk)∥22.

To complete the proof of (14), let us now show that {γkαk} is unsummable. To begin, first observe that the
lower bound on {γk} stated in Lemma 4.3 holds, i.e., there exist κ ∈ R>0, L ∈ R>0, and L ∈ R>0 such that,
for all k ∈ N, one has

γk,min ≥ min

{
1,
−κ+

√
κ2 + 2L(ηµk − θk)
αkβL

,
η − θk
αkβL

}
.

Consequently, it holds for all k ∈ N that

γkαk ≥ γk,minαk ≥ min

{
αk,
−κ+

√
κ2 + 2L(ηµk − θk)

βL
,
η − θk
βL

}
=: min{αk, ρk, υk}. (15)

Let us now consider the sequences {αk}, {ρk}, and {υk} in turn. Our aim is to show that each of these
sequences is unsummable, which will complete the proof of (14). With respect to the step-size sequence
{αk}, one finds by Parameter Rule 1, υ :=

∑m
i=1 (Lciκ∇ci + κciL∇ci), and the conditions of the theorem

that

αk =
ktαζζζ

−2

L∇f + µ1θ
−2
0 ktµk−tθ (k + 1)−kθυ

. (16)

Observe that tµ ∈ (−∞, 0), tθ ∈ (−∞, 0), and tµ = tθ show that ktµk−tθ (k + 1)−tθ ≤ ktµ−tθ (2k)−tθ =
2−tθktµ−2tθ = 2−tµk−tµ . With (16) and tµ ∈ (−∞, 0), this shows

αk ≥
ktαζζζ

−2

L∇f + µ1θ
−2
0 2−tµυk−tµ

=
ktµ+tαζζζ

−2

L∇fktµ + µ1θ
−2
0 2−tµυ

≥
ktµ+tαζζζ

−2

L∇f + µ1θ
−2
0 2−tµυ

,
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which since tµ + tα ∈ [−1, 0) implies that {αk} is unsummable, as desired. Now, with respect to {ρk}, one
finds under the conditions of the theorem that

ρk =
−κ+

√
κ2 + 2L(ηµ1ktµ − θ0(k + 1)tθ )

βL
. (17)

Observe that tµ ∈ (−∞, 0) and tµ = tθ show that

ηµ1k
tµ − θ0(k + 1)tθ ≥ ηµ1k

tµ − θ0ktθ = (ηµ1 − θ0)ktµ .

In fact, tµ ∈ [−1, 0), so the bound above along with (17) shows that {ρk} is unsummable, as desired. Finally,
{υk} can be seen to be unsummable since υk = η − θk > η − θ0 for all k ∈ N. Having reached the desired
conclusion that {αk}, {ρk}, and {υk} are unsummable, it follows through (15) that {γkαk} is unsummable,
which, as previously mentioned, completes the proof of (14).

Now suppose that there exists an infinite-cardinality set K ⊆ N as described in the theorem. By con-
struction of the algorithm, it follows that Axk = b and c(xk) < 0 for all k ∈ N. Now, for all k ∈ K, define
the Lagrange multiplier estimates

zk := −µk diag(c(xk))
−11 and yk := −(AAT )−1A(∇f(xk) +∇c(xk)zk). (18)

Since µk > 0 and c(xk) < 0 for all k ∈ N, it follows that zk ≥ 0 for all k ∈ N. In addition, the fact that
{P∇ϕ(xk, µk)}k∈K → 0 shows that

{∥∇f(xk) +AT yk +∇c(xk)zk∥2}k∈K

= {∥(∇f(xk) +∇c(xk)zk)−AT (AAT )−1A(∇f(xk) +∇c(xk)zk)∥2}k∈K

= {∥P∇ϕ(xk, µk)∥2}k∈K → 0. (19)

Consider Ā = {i ∈ [m] : ci(x) = 0}. Since c(xk) ◦ zk = −µk1 for all k ∈ N and {µk} ↘ 0, it follows that
{[zk]i}k∈K → 0 for all i ̸∈ Ā. Combining this with (19) and using the fact that {∇ci}k∈K is bounded for all
i ∈ [m] under Assumption 4.1,{∥∥∥∥∇f(xk) +AT yk +

∑
i∈Ā

∇ci(xk)[zk]i
∥∥∥∥
2

}
k∈K
→ 0.

Under the LICQ, it follows from this limit that {(yk, zk)}k∈K converges to some pair (y, z) such that (x, y, z)
satisfies (3), as desired.

4.2 Stochastic Setting

We now prove convergence guarantees for Algorithm 1 in a stochastic setting, i.e., when qk = gk −
µk∇c(xk) diag(c(xk))−11 (see (4)) for all k ∈ N where gk is a stochastic estimate of ∇f(xk). Formally,
let us consider the probability space (Ω,G,P), where Ω captures all outcomes of a run of Algorithm 1. As
mentioned shortly, we make assumptions that guarantee that each iteration is well defined, which implies
that each such outcome corresponds to an infinite sequence of iterates. In this manner, each realization of
a run of the algorithm can be associated with ω ∈ Ω, an infinite-dimensional tuple whose kth element de-
termines the stochastic gradient-of-the-objective estimate in iteration k ∈ N. The stochastic process defined
by the algorithm can thus be expressed as

{(Xk(ω), Gk(ω), Qk(ω), Dk(ω),Ak(ω),Γk(ω))},

where, for all k ∈ N, the random variables are the iterate Xk(ω), stochastic objective-gradient estimator
Gk(ω), stochastic gradient estimator

Qk(ω) := Gk(ω)− µk∇c(Xk(ω)) diag(c(Xk(ω)))
−11, (20)
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direction Dk(ω), step size Ak(ω), and neighborhood-enforcement parameter Γk(ω). Observe that the state-
ment of Algorithm 1 on page 7 instantiates a particular realization of a run, expressed as {(xk, gk, qk, dk, αk, γk)}.

Given the initial conditions of the algorithm (including for simplicity that X1(ω) = x1 for all ω ∈ Ω), let
G1 denote the sub-σ-algebra of G corresponding to the initial conditions and, for all k ∈ N\{1}, let Gk denote
the sub-σ-algebra of G corresponding to the initial conditions and {G1(ω), . . . , Gk−1(ω)}. In this manner,
the sequence {Gk} is a filtration. For our analysis, with respect to this filtration, we make the following
assumption. For the sake of brevity, here and for the remainder of our analysis, we drop from our notation
the dependence of the stochastic process on an element ω of Ω, since this dependence remains obvious.

Assumption 4.2. For all k ∈ N, it holds that E[Gk|Gk] = ∇f(Xk). In addition, there exists σ ∈ R≥0 such
that, for all k ∈ N, one has ∥P (Gk −∇f(Xk))∥2 ≤ σ.

Assumption 4.2 amounts to the stochastic-gradient estimators being unbiased with bounded error. This
is consistent with the stochastic setting in [7]. Looser assumptions are possible for stochastic-gradient-based
methods in the unconstrained setting, but for the context of stochastic-gradient-based interior-point methods
we know of no analysis that can avoid a bounded-error assumption.

We also carry forward our prior assumptions, namely, Assumptions 2.1, 3.1, and 4.1. However, we
strengthen Assumption 3.1 somewhat to impose additional structure on the manner in which the search
direction is defined. In particular, for all k ∈ N, we define the search direction Dk through the linear system[

Hk AT

A 0

] [
Dk

Yk

]
= −

[
Qk

0

]
, (21)

where the sequence {Hk} satisfies the following assumption.

Assumption 4.3. For all k ∈ N, the matrix Hk ∈ Sn⪰0 is Gk-measurable and Dk satisfies (21). In addition,

there exist constants (λ, λ) ∈ (0, 1] × R>0 with λ ≤ λ such that, over any run of Algorithm 1, one finds
uTHku/∥u∥2 ∈ [λ, λ] for all u ∈ Null(A).

All combined, Assumptions 3.1 and 4.3 amount to the assumption that Dk is computed by (21) with a
choice of Hk such that (5e) holds. Here, we are remarking on the fact that, under Assumption 4.3, the search
direction satisfies the null-space and angle conditions imposed by the combination of (5a)–(5d). Indeed, one
finds

Dk = −Z(ZTHkZ)
−1ZTQk, (22)

where Z ∈ Rn×(n−l) is an orthogonal matrix whose columns form an orthonormal basis for Null(A), through
which one can in turn show that ADk = 0 along with

∥Dk∥2 ∈ [λ
−1∥PQk∥2, λ−1∥PQk∥2] and − (PQk)

TDk ≥ λλ
−1∥PQk∥2∥Dk∥2. (23)

Hence, we employ (λ, λ) and (23) in place of (ζ, ζ, ζ) and (5b)–(5d) in this section. For our analysis, it is

worthwhile to emphasize that the tuple of parameters (η, η̄, λ, λ) is presumed to be determined uniquely
for any given instance of problem (1). Therefore, the parameters in Assumption 3.1 (i.e., in (5)) and (as
explicitly stated) in Assumption 4.3 are presumed to be uniform over all possible runs of the algorithm.
Similarly, for Assumption 4.1 in this section, the set X and stated constants are assumed to be uniform over
all possible realizations of {Xk}.

Our convergence guarantees for this stochastic setting rely on Parameter Rule 2, stated below, that
we employ for choosing step-size- and neighborhood-enforcement parameter sequences, namely, {αk} and
{(γk,min, γk, γk,max)}. Like in the deterministic setting, in this stochastic setting, the step sizes depend
on a parameter tα ∈ (−∞, 0), with one difference being that the choice tα = 0 is not allowed for the
stochastic setting. However, unlike in the deterministic setting, in this stochastic setting we prescribe a
particular dependence of the neighborhood-enforcement values {(γk,min, γk, γk,max)} on the barrier-parameter
sequence {µk} and neighborhood-parameter sequence {θk}, which in turn are determined by parameters
(tµ, tθ) ∈ (−∞, 0) × (−∞, 0). Whereas in the deterministic setting our ultimate requirements for the tuple
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(tµ, tθ, tα) (specified between Parameter Rule 1 and Theorem 4.1) were that tµ = tθ < 0, tα ≤ 0, and
tµ + tα ∈ [−1, 0), the requirements for these parameters is stricter in this stochastic setting. For the sake of
simplicity, rather than introduce separate parameters tµ and tθ for {µk} and {θk}, respectively, in Parameter
Rule 2 we introduce a single parameter t. This is reasonable since, even in the deterministic setting, our
analysis requires tµ = tθ. It is worthwhile to emphasize upfront that the restrictions of the rule are satisfiable;
e.g., one may consider t = −0.99 and tα = −0.01 as one acceptable setting.

Parameter 2. Suppose the following are given:

• (t, tα) ∈ (−∞, 0)2 such that t+ tα ∈ [−1, 0), 2t+ tα < −1, and t+ 2tα < −1;

• µ1 ∈ R>0 and θ0 ∈ R>0; and

• γbuff ∈ R≥0 and {γk,buff} ⊂ R≥0 such that γk,buff ≤ γbuffkt for all k ∈ N.

Algorithm 1 employs, for all k ∈ N, the following:

• µk = µ1k
t and θk−1 = θ0k

t;

• αk ← ktα
(
λ2

λLk

)
, where Lk ∈ R>0 is defined as in Parameter Rule 1; and

• γk ← mini∈[m] γk,i where

γk,i ← min{γ̃k,i, γk,max} for all i ∈ [m],

γ̃k,i ←
−∇ci(xk)T dk +

√
(∇ci(xk)T dk)2 + 2L∇ci∥dk∥22(−ci(xk)− θk)

L∇ciαk∥dk∥22
for all i ∈ [m],

βσ ← λ−1

κ∇f + σ +
µ1

θ0

∑
j∈[m]

κ∇cj

 ,

γk,i,min ← min

1,
−κ∇ci +

√
κ2∇ci

+ 2L∇ci(ηµk − θk)

αkβσL∇ci

,
η − θk

αkβσL∇ci


for all i ∈ [m],

γk,min ← min
i∈[m]

γk,i,min, and

γk,max ← min{1, γk,min + γk,buff}.

The strategy for selecting {αk} in Parameter Rule 2 is consistent with that in Parameter Rule 1. Observe
that since {µk} and {θk} are set in advance of any run of the algorithm, it follows under Parameter Rule 2
that {Lk} and so {αk} are determined in advance of a run of the algorithm as well. Thus, our analysis can
consider {Ak} = {αk}, where {αk} is a prescribed sequence that is uniform over all runs of Algorithm 1
employed for any given instance of problem (1). The choice of {(γk,min, γk, γk,max)} in Parameter Rule 2, on
the other hand, is more stringent than that in Parameter Rule 1. Observe that Parameter Rule 1 amounts
to choosing γk ← mini∈[m] γk,i for all k ∈ N, where γk,i ← min{γ̃k,i, 1} for all (k, i) ∈ N× [m]. The choice in
Parameter Rule 2 is similar, but with γk,i ← min{γ̃k,i, γk,max} for all (k, i) ∈ N × [m], where for any given
k ∈ N the upper limit γk,max ∈ (0, 1] might be less than 1. The particular strategy for setting γk,max for all
k ∈ N in Parameter Rule 2 involves first setting a lower value γk,min ∈ R>0 for each k ∈ N that is defined
only by values that are set in advance of a run of the algorithm. This fact is critical, since it ensures that
{(γk,min, γk,max)} is prescribed and uniform over all runs of Algorithm 1 employed for any given instance of
problem (1). For each (k, i) ∈ N × [m], the values γ̃k,i and γk may differ between runs, but importantly the
sequence {(γk,min, γk,max)} does not.
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Many of our prior results from the deterministic setting carry over here to our present analysis for the
stochastic setting. Firstly, Lemma 3.1 holds, as does Lemma 4.1 since it has been proved irrespective of any
particular algorithm. Secondly, following the arguments in Lemmas 4.2 and 4.3, it follows that Parameter
Rule 2 ensures that γk,min ≤ γk ≤ γk,max for all k ∈ N in any given run of the algorithm. We formalize
this in Lemma 4.5 below, the proof of which is omitted since it would follow the same lines of arguments
as in the proofs of Lemmas 4.2 and 4.3. The only significant difference that would be in the proof is that
the bound ∥P∇f(xk)∥2 ≤ κ∇f needs to be replaced by ∥PGk∥2 ≤ κ∇f + σ for all k ∈ N, which follows
under Assumption 4.2. This is the reason that βσ in Parameter Rule 2 involves an additional σ term, as
opposed to β in Lemma 4.3, which does not. This affects the denominators in the expression for γk,i,min for
all (k, i) ∈ N × [m]. Otherwise, γk,i,min is consistent between Lemma 4.3 and Parameter Rule 2.

Lemma 4.5. Suppose that Assumptions 2.1, 3.1, 4.1, 4.2, and 4.3 hold and that Algorithm 1 is run with
Parameter Rule 2. Then, for all k ∈ N, the choice of Γk ∈ (0, γk,max] in Parameter Rule 2 ensures that
[Xk, Xk + ΓkαkDk] ⊆ N (θk), i.e., the condition in Step 5 of Algorithm 1 holds. Consequently, under
Parameter Rule 2, Algorithm 1 is well defined in the sense that it will generate an infinite sequence of
iterates. Moreover, Parameter Rule 2 ensures that ∥Dk∥2 ≤ βσ and Γk ∈ [γk,min, γk,max] for all k ∈ N.

Now let us turn to results for the stochastic setting that are distinct from those for the deterministic
setting. Our first main goal is to prove an upper bound on the expected decrease in the shifted barrier-
augmented function that occurs with each iteration. Toward this end, let us begin with the following
preliminary bound.

Lemma 4.6. Suppose that Assumptions 2.1, 3.1, 4.1, 4.2, and 4.3 hold and that Algorithm 1 is run with
Parameter Rule 2. Then, for all k ∈ N, one finds that

ϕ̃(Xk+1, µk+1)− ϕ̃(Xk, µk)

≤ − Γkαkλ
−1∥P∇xϕ̃(Xk, µk)∥22 + 1

2Γ
2
kα

2
kLkλ

−2∥PQk∥22
+ Γkαk∇xϕ̃(Xk, µk)

TZ(ZTHkZ)
−1ZT (∇xϕ̃(Xk, µk)−Qk).

Proof. Consider arbitrary k ∈ N. By Lemmas 4.1 and 4.5, (6), (5), (22), and the fact that ∥ZT∇xϕ̃(xk, µk)∥2 =
∥P∇xϕ̃(xk, µk)∥2, it follows with Lk ∈ R>0 defined as in Parameter Rule 2 (and 1) that

ϕ̃(Xk+1, µk)− ϕ̃(Xk, µk)

≤ ∇xϕ̃(Xk, µk)
T (Xk+1 −Xk) +

1
2Lk∥Xk+1 −Xk∥22

= Γkαk∇xϕ̃(Xk, µk)
TDk + 1

2Γ
2
kα

2
kLk∥Dk∥22

= − Γkαk∇xϕ̃(Xk, µk)
TZ(ZTHkZ)

−1ZTQk + 1
2Γ

2
kα

2
kLk∥Z(ZTHkZ)

−1ZTQk∥22
= − Γkαk∥ZT∇xϕ̃(Xk, µk)∥2(ZHkZ)−1 + 1

2Γ
2
kα

2
kLk∥(ZTHkZ)

−1ZTQk∥22
+ Γkαk∇xϕ̃(Xk, µk)

TZ(ZTHkZ)
−1ZT (∇xϕ̃(Xk, µk)−Qk)

≤ − Γkαkλ
−1∥P∇xϕ̃(Xk, µk)∥22 + 1

2Γ
2
kα

2
kLkλ

−2∥PQk∥22
+ Γkαk∇xϕ̃(Xk, µk)

TZ(ZTHkZ)
−1ZT (∇xϕ̃(Xk, µk)−Qk).

Finally, since µk+1 ≤ µk implies ϕ̃(Xk+1, µk+1) ≤ ϕ̃(Xk+1, µk) (see the discussion following (7)), the desired
conclusion follows.

Lemma 4.6 shows that the change in the shifted barrier-augmented function with each iteration is bounded
above by the sum of a negative term and two terms that may be considered noise terms. The goal of our
next two lemmas is to bound these noise terms. We start with the second term on the right-hand side in
Lemma 4.6.

17



Lemma 4.7. Suppose that Assumptions 2.1, 3.1, 4.1, 4.2, and 4.3 hold and that Algorithm 1 is run with
Parameter Rule 2. Then, for all k ∈ N, one finds that

1
2Γ

2
kα

2
kLkλ

−2∥PQk∥22 ≤ 3
4Γ

2
kα

2
kLkλ

−2∥P∇xϕ̃(Xk, µk)∥22 + 3
2α

2
kLkλ

−2σ2.

Proof. Consider arbitrary k ∈ N. Observe that, for any (a, b) ∈ Rn × Rn,

0 ≤ ∥P ( 12a− b)∥
2
2 = 1

4∥Pa∥
2
2 − aTPTPb+ ∥Pb∥22,

from which it follows that

∥P (a+ b)∥22 = ∥Pa∥22 + 2aTPTPb+ ∥Pb∥22 ≤ 3
2∥Pa∥

2
2 + 3∥Pb∥22.

Consequently, with (6) it holds that

1
2∥PQk∥22 = 1

2∥P (∇xϕ̃(Xk, µk) +Qk −∇xϕ̃(Xk, µk))∥22
≤ 3

4∥P∇xϕ̃(Xk, µk)∥22 + 3
2∥P (Qk −∇xϕ̃(Xk, µk))∥22

≤ 3
4∥P∇xϕ̃(Xk, µk)∥22 + 3

2σ
2.

Therefore, since Γk ≤ 1 under Parameter Rule 2, the proof is complete.

The next lemma provides an upper bound on a conditional expectation of the last term on the right-hand
side of the inequality in Lemma 4.6.

Lemma 4.8. Suppose that Assumptions 2.1, 3.1, 4.1, 4.2, and 4.3 hold and that Algorithm 1 is run with
Parameter Rule 2. Then, for all k ∈ N, one finds that

E[Γkαk∇xϕ̃(Xk, µk)
TZ(ZTHkZ)

−1ZT (∇xϕ̃(Xk, µk)−Qk)|Gk] ≤ γk,buffαkB
σ,

where

Bσ := λ−1

κ∇f +
µ1

θ0

∑
j∈[m]

κ∇cj

σ.

Proof. Consider arbitrary k ∈ N. The inner product in the expected value of interest may be nonnegative
or nonpositive. Hence, let us invoke the Law of Total Expectation in order to handle each case separately.
Let Ik be the event that Ik ≥ 0, where Ik := ∇xϕ̃(Xk, µk)

TZ(ZTHkZ)
−1ZT (∇xϕ̃(Xk, µk) − Qk), and let

Ick be the complementary event that Ik < 0. By Parameter Rule 2, the fact that E[Ik|Gk] = 0 under
Assumption 4.2, and Lemma 4.5, it follows that

E[ΓkαkIk|Gk]
= E[ΓkαkIk|Gk ∧ Ik]P[Ik|Gk] + E[ΓkαkIk|Gk ∧ Ick]P[Ick|Gk]
≤ γk,maxαkE[Ik|Gk ∧ Ik]P[Ik|Gk] + γk,minαkE[Ik|Gk ∧ Ick]P[Ick|Gk]
≤ γk,minαk(E[Ik|Gk ∧ Ik]P[Ik|Gk] + E[Ik|Gk ∧ Ick]P[Ick|Gk])

+ γk,buffαkE[Ik|Gk ∧ Ik]P[Ik|Gk]
= γk,buffαkE[Ik|Gk ∧ Ik]P[Ik|Gk]. (24)

Furthermore, by Assumptions 2.1–4.3, the Cauchy–Schwarz inequality, the triangle inequality, ∥P∥2 ≤ 1,
and the fact that ∥ZT q∥2 = ∥Pq∥2 for any q ∈ Rn one has

E[Ik|Gk ∧ Ik]P[Ik|Gk]
= E[∇xϕ̃(Xk, µk)

TZ(ZTHkZ)
−1ZT (∇xϕ̃(Xk, µk)−Qk)|Gk ∧ Ik]P[Ik|Gk]

≤ λ−1E[∥P∇xϕ̃(Xk, µk)∥2∥P (∇xϕ̃(Xk, µk)−Qk)∥2|Gk ∧ Ik]P[Ik|Gk]
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≤ λ−1

κ∇f +
µ1

θ0

∑
j∈[m]

κ∇cj

σ.

Combining this inequality with (24) yields the desired conclusion.

Combining the preliminary bound in Lemma 4.6 with the previous two lemmas, we are now prepared to
prove an upper bound on the expected decrease in the shifted barrier-augmented function that occurs with
each iteration.

Lemma 4.9. Suppose that Assumptions 2.1, 3.1, 4.1, 4.2, and 4.3 hold and that Algorithm 1 is run with
Parameter Rule 2. Then, for all k ∈ N, one finds that

E[ϕ̃(Xk+1, µk+1)|Gk]− ϕ̃(Xk, µk)

≤ − 1
4γk,minαkλ

−1∥P∇xϕ̃(Xk, µk)∥22 + 3
2α

2
kLkλ

−2σ2 + γk,buffαkB
σ,

where Bσ is defined as in Lemma 4.8.

Proof. Consider arbitrary k ∈ N. One finds from Lemmas 4.6, 4.7, and 4.8 that

E[ϕ̃(Xk+1, µk+1)|Gk]− ϕ̃(Xk, µk)

≤ − Γkαk(λ− 3
4ΓkαkLkλ

−2)∥P∇xϕ̃(Xk, µk)∥22 + 3
2α

2
kLkλ

−2σ2 + γk,buffαkB
σ.

Then, under Parameter Rule 2, one has Γk ≤ 1 and ktα ≤ 1, so

αk = ktαλ2λ
−1
L−1
k =⇒ λ− 3

4ΓkαkLkλ
−2 = λ

−1 − 3
4λ

−1
Γkk

tα ≥ 1
4λ

−1
,

which when combined with the prior conclusion completes the proof.

Using this sufficient decrease result and looking further into the selections in Parameter Rule 2, we obtain
the following result.

Lemma 4.10. Suppose that Assumptions 2.1, 3.1, 4.1, 4.2, and 4.3 hold and that Algorithm 1 is run with
Parameter Rule 2. Then, (ν, ς) ∈ R>0 × R>0 exists such that, for all k ∈ N,

E[ϕ̃(Xk+1, µk+1)|Gk]− ϕ̃(Xk, µk)

≤ −νkt+tα∥P∇xϕ̃(Xk, µk)∥22 + ςkmax{2t+tα,t+2tα}.

Proof. We prove the result by building on Lemma 4.9. By Parameter Rule 2, there exist κ ∈ R>0, L ∈ R>0,
and L ∈ R>0 such that for all k ∈ N one finds

γk,minαk = min

{
αk,
−κ+

√
κ2 + 2L(ηµk − θk)
βσL

,
η − θk
βσL

}
.

Since this is the same type of lower bound as in (15), the same argument in the proof of Theorem 4.1 shows

that there exists ν ∈ R>0 such that 1
4γk,minαkλ

−1 ≥ νkt+tα for all k ∈ N. Hence, by Lemma 4.9, all that
remains is to prove that there exists ς ∈ R>0 such that for all k ∈ N one finds that

3
2α

2
kLkλ

−2σ2 + γk,buffαkB
σ ≤ ςkmax{2t+tα,t+2tα}. (25)

Starting with the first term in (25), one finds that

3
2α

2
kLkλ

−2σ2 = 3
2αk(αkLkλ

−2)σ2 = 3
2λ

2λ
−2
σ2 k

2tα

Lk
,
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where with υ :=
∑m

i=1 (Lciκ∇ci + κciL∇ci) one finds that

k2tα

Lk
=

k2tα

L∇f + µ1ktθ
−2
0 k−t(k + 1)−tυ

≤ k2tα

L∇f + µ1θ
−2
0 υk−t

≤ kt+2tα

µ1θ
−2
0 υ

.

As for the second term in (25), one similarly finds that

γk,buffαkB
σ ≤ γbuffktktα

(
λ2Bσ

λ
2
Lk

)
≤

(
γbuffλ

2Bσ

µ1θ
−2
0 υλ

2

)
k2t+tα .

Combining these bounds yields (25) for some ς ∈ R>0.

Our final theorem, presented next, now follows similarly to Theorem 3.16 in [7]. We provide a complete
proof for the sake of completeness.

Theorem 4.2. Suppose that Assumptions 2.1, 3.1, 4.1, 4.2, and 4.3 hold and that Algorithm 1 is run with
Parameter Rule 2. Then,

lim inf
k→∞

∥P∇xϕ(Xk, µk)∥22 = 0 almost surely.

Consequently, if in a given run there exists K ⊆ N with |K| =∞ such that

• {P∇xϕ(xk, µk)}k∈K → 0,

• {xk}k∈K → x for some x ∈ F , and

• at x the linear independence constraint qualification (LICQ) holds with respect to problem (1) in the
sense that with Ā := {i ∈ [m] : ci(x) = 0} the columns of AT combined with the vectors in {∇ci(x)}i∈Ā
form a linearly independent set,

then x is a KKT point for problem (1) in the sense that there exists a pair of Lagrange multipliers (y, z) ∈
Rl × Rm such that (x, y, z) satisfies (3).

Proof. It follows from Lemma 4.10 and the Law of Total Expectation that there exists (ν, ς) ∈ R>0 × R>0

such that, for all k ∈ N, one finds that

E[ϕ̃(Xk+1, µk+1)]− E[ϕ̃(Xk, µk)]

≤ −νkt+tαE[∥P∇xϕ̃(Xk, µk)∥22] + ςkmax{2t+tα,t+2tα}.

Consider arbitrary K ∈ N. Summing over k ∈ [K] yields

finf − E[ϕ̃(x1, µ1)] ≤ E[ϕ̃(XK+1, µK+1)]− E[ϕ̃(x1, µ1)]

≤ −ν
K∑

k=1

kt+tαE[∥P∇xϕ̃(Xk, µk)∥22] + ς

K∑
k=1

kmax{2t+tα,t+2tα}.

After rearrangement, this yields

K∑
k=1

kt+tαE[∥P∇xϕ̃(Xk, µk)∥22] ≤ 1
ν (E[ϕ̃(x1, µ1)]− finf) + ς

ν

K∑
k=1

kmax{2t+tα,t+2tα}.

Since 2t + tα ∈ (−∞,−1) and t + 2tα ∈ (−∞,−1), the right-hand side of this inequality converges to a
finite limit as K →∞. Furthermore, by

∑∞
k=1 k

t+tα =∞, nonnegativity of ∥P∇xϕ̃(Xk, µk)∥22, and Fatou’s
lemma, one almost surely has

0 = lim inf
k→∞

E[∥P∇xϕ̃(Xk, µk)∥22] ≥ E
[
lim inf
k→∞

∥P∇xϕ̃(Xk, µk)∥22
]
= 0.
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Now consider Φ := lim infk→∞ ∥P∇xϕ̃(Xk, µk)∥22, the expectation of which has been shown above to be
zero. Nonnegativity of ∥P∇xϕ̃(Xk, µk)∥22 for all k ∈ N and the Law of Total Expectation imply that
0 = E[Φ] ≥ P[Φ > 0]E[Φ|Φ > 0], so 0 = P[Φ > 0] = P[lim infk→∞ ∥P∇xϕ̃(Xk, µk)∥22 > 0]. This is the first
desired conclusion of the theorem. The second desired conclusion, on the other hand, follows by using the
same argument as in the proof of Theorem 4.1.

5 Discussion of Assumptions 3.1 and 4.3

Our aim in this section is to discuss Assumptions 3.1 and 4.3. In particular, first for the deterministic
setting, we provide (a) example problems for which Assumption 3.1 can be shown to hold or cannot be
shown to hold, (b) further explanation about why Assumption 3.1 can be viewed as a combination of a
nondegeneracy assumption and an assumption about µ1/θ0 being sufficiently large, and (c) a procedure
for computing dk to satisfy (5) when such a direction exists. We follow this with a discussion about the
combination of Assumptions 3.1 and 4.3 for the stochastic setting. We emphasize upfront that, generally
speaking, a straightforward procedure for computing dk to satisfy the conditions of our convergence analysis
(for either the deterministic or stochastic settings) may not be available in practice. For example, for one
thing, determining a sufficiently large value for the ratio µ1/θ0 may rely on problem-specific constants that
are not known in advance of a run of the algorithm. That being said, in this section we provide guidance
for how to compute dk in practice such that, along with parameter tuning (as is common for stochastic-
gradient-based methods in practice), one obtains good practical performance.

Throughout this section, for the sake of clarity, we drop the subscript notation that indicates the iteration
index of an algorithm—rather, in this section, a subscript only refers to an index of a component of a vector.
In particular, in this section, we denote x ≡ xk (which in turn means, e.g., that x1 refers to the first
component of the vector x), µ ≡ µk, θ ≡ θk−1, q ≡ qk, and d ≡ dk.

Let us begin with some example problems for the deterministic setting. Firstly, recall that under As-
sumption 2.1 a strictly feasible point must exist. This means that one can rule out problems with, e.g., the
affine constraint x1 = 0 and the inequality constraint x1 ≤ 0, or any problems with such a combination
of constraints that implies the lack of a strictly feasible point. Secondly, observe that the existence or not
of a direction satisfying (5) depends on the feasible region reduced to Null(A). This means that one can
distinguish cases of whether (5) holds or not by presuming that one has already restricted attention to this
reduced space and consider only the geometry of the feasible region with respect to inequality constraints
where the ambient space of the variables is this reduced space.

Let us now present an example for which Assumption 3.1 can be shown to hold. In particular, the
following example shows that there exists a value of the tuple (µ, θ, η, η, ζ, ζ, ζ) under the ranges specified by
Algorithm 1 such that at all x ∈ F<0 there exists d satisfying (5). The main aspect of the example is that µ
must be sufficiently large relative to θ. We remark that the case a ∈ R>0 that is considered in the example
is the more challenging case to consider. Indeed, if a ∈ R≤0, then, using similar arguments, the parameter
requirements are less restrictive than in the following example. We expound on this claim further after the
example.

Example 1. To start, let (µ, θ, η, η, ζ, ζ, ζ) be arbitrary positive constants under the ranges specified by
Algorithm 1. (A further restriction on the relationship between µ and θ is developed during the discussion of
this example, when it is needed.) Consider a two-dimensional problem where f(x) = vTx for some v ∈ R2,
c1(x) = −x1, c2(x) = ax1 − x2 for some a ∈ R>0, and g = ∇f(x) = v (see (4)), so

q = v + µ

(
1

−c1(x)

)
∇c1(x) + µ

(
1

−c2(x)

)
∇c2(x). (26)

Defining A(x) := {i ∈ {1, 2} : −ηµ < ci(x) ≤ −θ}, the conditions (5) reduce to

ζ∥q∥2 ≤ ∥d∥2 ≤ ζ∥q∥2, (27a)

−qT d ≥ ζ∥q∥2∥d∥2, (27b)
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and ∇ci(x)T d ≤ − 1
2η∥d∥2 for all i ∈ A(x). (27c)

Since the gradient vectors ∇f(x), ∇c1(x), and ∇c2(x) are constant over x ∈ F<0 and the latter two gradient
vectors are nonzero, it follows from (26) that for any x ∈ F<0 one finds that q/∥q∥2 → qlim/∥qlim∥2 as
µ → ∞, where qlim = ∇c1(x)/(−c1(x)) + ∇c2(x)/(−c2(x)). At the same time, for any pair of constants
(χ1, χ2) ∈ R>0 × R>0 and with the search direction defined by

d = −v − µ
(

χ1

−c1(x)

)
∇c1(x)− µ

(
χ2

−c2(x)

)
∇c2(x), (28)

one has for any x ∈ F<0 that d/∥d∥2 → dlim/∥dlim∥2 as µ → ∞, where the limiting direction is dlim =
(χ1/c1(x))∇c1(x) + (χ2/c2(x))∇c2(x).

Now suppose that the constants (µ, θ, η) and point x ∈ F<0 are such that both constraints are nearly active
at x, i.e., A(x) = {1, 2}. Since one has χ3 := (−∇c1(x)T∇c2(x))/(∥∇c1(x)∥2∥∇c2(x)∥2) = a/

√
1 + a2 ∈

(0, 1), it follows that

∇c1(x)T dlim = χ1
∥∇c1(x)∥22
c1(x)︸ ︷︷ ︸
<0

+χ2χ3
∥∇c1(x)∥2∥∇c2(x)∥2

−c2(x)︸ ︷︷ ︸
>0

and ∇c2(x)T dlim = χ1χ3
∥∇c1(x)∥2∥∇c2(x)∥2

−c1(x)︸ ︷︷ ︸
>0

+χ2
∥∇c2(x)∥22
c2(x)︸ ︷︷ ︸
<0

.

Now suppose χ1 = c1(x)∥∇c2(x)∥2/(c2(x)∥∇c1(x)∥2) and χ2 = 1. (The effect of these choices is to normalize
the contributions of the two terms in the definition of dlim.) These choices and the fact that η = ψθ/µ for
some ψ ∈ R>1 implies that

∇c1(x)T dlim < −
(
1− χ3

ψθ

)
∥∇c1(x)∥2∥∇c2(x)∥2

and ∇c2(x)T dlim < −
(
1− χ3

ψθ

)
∥∇c2(x)∥22.

On the other hand, one has that ∥dlim∥2 ≤ 2∥∇c2(x)∥2/θ. Thus, one may conclude that there exists χ4 ∈
R>0 such that ∇c1(x)T dlim ≤ −χ4∥dlim∥2 and ∇c2(x)T dlim ≤ −χ4∥dlim∥2 for all x ∈ F<0 such that both
constraints are nearly active.

On the other hand, with dlim defined as in the previous paragraph (i.e., with χ1 = c1(x)∥∇c2(x)∥2/(c2(x)∥∇c1(x)∥2)
and χ2 = 1), it follows that

− qTlimdlim

=

(
1

c1(x)
∇c1(x) +

1

c2(x)
∇c2(x)

)T (
χ1

c1(x)
∇c1(x) +

χ2

c2(x)
∇c2(x)

)
=

1

c1(x)c2(x)
∥∇c1(x)∥2∥∇c2(x)∥2 +

1

c2(x)2
∥∇c2(x)∥22

+

(
1

c1(x)c2(x)
+

∥∇c2(x)∥2
c2(x)2∥∇c1(x)∥2

)
∇c1(x)T∇c2(x)

=
1− χ3

c1(x)c2(x)
∥∇c1(x)∥2∥∇c2(x)∥2 +

1− χ3

c2(x)2
∥∇c2(x)∥22

≥ 1− χ3

θ2
(∥∇c1(x)∥2∥∇c2(x)∥2 + ∥∇c2(x)∥22).

On the other hand, ∥dlim∥2 ≤ 2∥∇c2(x)∥2/θ and ∥qlim∥2 ≤ 2∥∇c2(x)∥2/θ. Thus, one may conclude that
there exists χ5 ∈ R>0 such that −qTlimdlim ≥ χ5∥qlim∥2∥dlim∥2 for all x ∈ F<0 such that both constraints are
nearly active.
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The arguments in the preceding two paragraphs involve the limiting directions dlim and qlim, where it was
shown that there exist positive constants χ4 and χ5—that are uniform with respect to x ∈ F<0—such that
conditions of the form (27b)–(27c) hold for these limit directions. All that remains is to observe that, since
these are the limiting directions for any given x ∈ F<0 as µ→∞, such conditions and (27a) hold for (d, q)
for some positive constants as long as µ is sufficiently large relative to θ. All together from our observations,
it follows that with µ sufficiently large relative to θ, η ∈ (θ/µ, 1), x ∈ F<0 such that both constraints are
nearly active, η sufficiently small, ζ sufficiently small, ζ sufficiently large, and ζ sufficiently small, one finds
d in (28) with the aforementioned choices of χ1 and χ2 satisfies (5).

Finally, observe that for any x ∈ F<0 such that both constraints are not nearly active, the situation is
simpler than above. In such a setting, one does not need condition (27c) to hold for both constraints; it only
needs to hold for whichever constraint, if any, is nearly active. This offers much more flexibility in the choice
of d. Overall, since the constraint gradients are constant over x ∈ F<0, one can again derive the existence
of uniform parameter choices, including that µ is sufficiently large relative to θ, to ensure that d satisfying
(5) exists at all such x.

The analysis in Example 1 can be extended to any problem with polyhedral constraints (for arbitrary
n ∈ N and m ∈ N) as long as at any strictly feasible point in F<0 the interior of the polar cone of the nearly
active constraint gradients is nonempty. Intuitively, this can be understood as follows. With µ sufficiently
large relative to θ, the gradient of the barrier term corresponding to nearly active constraints pushes the vector
−q (through more emphasis on the barrier term) to point with the interior of the polar cone of the nearly
active constraint gradients. This means that, as long as a direction d is chosen appropriately to compensate
for the different magnitudes of the norms of the constraint gradients, the desired conditions in (5) hold.
Admittedly, the parameter choices that ensure that such a direction d always exists are not straightforward
to determine in advance of a run of the algorithm. This means that, in practice, the algorithm parameters
require tuning and/or adaptive choices to be made, as we discuss further shortly. To illustrate the situation
that we have described in Example 1, please see Figure 1, on the left.

∇c1(x)

∇c2(x)

x

x− q
x+ d

∇c1(x)
∇c2(0)

x

x− q
x+ d

Figure 1: On the left, an illustration of Example 1 for which Assumption 3.1 holds as long as the barrier
parameter µ is sufficiently large relative to θ (recall that µk/θk−1 is constant in the algorithm) amongst
other parameter choices. Since µ is sufficiently large relative to θ, it follows that a direction d pointing into
the interior of the polar cone of nearly active constraint gradients is also one of sufficient decrease for the
barrier-augmented objective function. On the right, an illustration of Example 2 for which Assumption 3.1
fails to hold since, as x approaches the origin from within the feasible region, there is no minimum value for
the ratio µ/θ such that a direction into the interior of the polar cone of nearly active constraint gradients
satisfies (5).

Now let us briefly describe an example for which we are unable to show that Assumption 3.1 holds with
uniform parameter choices; see Figure 1, on the right.

Example 2. Consider a two-dimensional problem where f(x) = vTx for some v ∈ R2, c1(x) = −x1,
c2(x) = x1−x22, and g = ∇f(x) = v (see (4)). Defining, as before, A(x) := {i ∈ {1, 2} : −ηµ < ci(x) ≤ −θ},
(5) reduces to (27). The situation is similar to that in Example 1, except that ∇c2(x) = [1 − 2x2]

T is not
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constant over x. Attempting to follow a similar analysis as in Example 1, one finds that the arguments break
down since χ3 = −∇c1(x)T∇c2(x)/(∥∇c1(x)∥2∥∇c2(x)∥2) → 1 as x → 0 from within the interior of the
feasible region.

Intuitively, Example 2 has the property that the constraint gradients point in opposite directions as
x → 0 from within the interior of the feasible region. This means that, if the algorithm were to compute
x → 0 (say, since 0 is the optimal solution), the barrier terms for the two constraints would push against
each other, in the limit. Consequently, we are not able to show that there exists a uniform ratio µ/θ such
that a direction d satisfying (5) always exists over the feasible region.

One sees in Figure 1 our claim that Assumption 3.1 is a type of nondegeneracy assumption. When, at
any strictly feasible point, the polar cone of the nearly active constraint gradients is sufficiently wide, the
situation is favorable, like on the left in Figure 1. On the other hand, if the polar cone collapses as x → x
for some x, like in the situation on the right in Figure 1, then the situation is not favorable since the barrier
terms for different constraints push against each other.

We close this section by observing that a procedure for computing a direction to satisfy (5), if one exists,
has been suggested in Example 1. In particular, at any iterate x one can compute d by (a) determining the
set of nearly active constraints, (b) computing weights for the nearly active constraints, as in (28), such that
the contribution from each nearly active constraint gradient is normalized in some sense in order to satisfy
(5). Concretely, one can consider the feasibility problem

find {χi}i∈[m] ∈ Rm
>0 such that d = g − µ

∑
i∈[m]

χi

ci(x)
∇ci(x) satisfies (5).

However, in practice, we suspect such a procedure not to be worth the required computational effort. Instead,
we suggest that, in practice, a reasonable choice is to initialize µ and θ to positive values, and in each iteration
compute d by solving a linear system of the form (21), as we specify in Assumption 4.3 for the stochastic
setting. For example, Hk can simply be an identity matrix, or it might be chosen as an identity matrix plus
(an approximation of) the Hessian of the barrier function, which may involve second-order derivatives of
{ci}i∈[m], but does not require derivatives (of any order) of the objective function f . In any case, if d fails to
satisfy (5) (specifically, (5e)) for some choices of the algorithm parameters, then the algorithm might “reset”
the barrier parameter to a larger value. This may be allowed to occur iteratively, at least up to some upper
limit for practical purposes. In the worst case, the algorithm may need to compute smaller values of γ than
as stated in our theoretical results. However, at least this is a practical approach that worked well in our
experiments.

6 Numerical Experiments

As previously stated, we do not claim that the deterministic version of our algorithm would be competitive
with state-of-the-art derivative-based interior-point methods, especially not with such methods that allow
infeasible iterates and/or employ second-order derivatives. On the other hand, for the stochastic setting,
we know of no other stochastic interior-point method like ours that can solve generally constrained, smooth
optimization problems, meaning that there is no such method in the literature against which our algorithm
can be compared on a level playing field. All of this being said, it is illustrative to demonstrate the practical
performance of our method through numerical experiments, both on a well-established and diverse set of test
problems and on a couple of relatively straightforward test problems that represent the settings for which
the algorithm has been designed. In this section, we present the results of such numerical experiments. For
our experiments, each run of the algorithm was conducted on a compute node with an 16 AMD Opteron
Processor 6128 with 32GB of memory.

First, we conducted an experiment with a large test set of problems in order to demonstrate the broad
applicability of our algorithm. For such a demonstration, in these experiments we considered only the
deterministic version of our algorithm. (Our second and third sets of experiments consider the stochastic
version.) We generated our test set from the CUTEst collection [12], specifically using the PyCUTEst
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interface [11]. This collection includes 1315 unconstrained or constrained smooth optimization problems. To
generate the subset of problems that we employed for our experiments, we proceeded as follows. Firstly,
we removed all problems with nonlinear equality constraints, with no inequality constraints, or that were
too large to be loaded into memory. This resulted in a set of 396 problems of the form (1). Second, since
our algorithm requires a strictly feasible initial point, we ran a so-called Phase I algorithm (implemented in
Python) starting from the initial point provided by PyCUTEst; see Algorithm 2 in Appendix A. Of the 396
problems on which the Phase I algorithm was run, 10 encountered function evaluation errors through the
interface and 59 resulted in a failure to find a strictly feasible point; these were all removed. Our test set
is the remainder of these problems—327 in total—for which a strictly feasible initial point could be found.
These points were stored as the initial points for this first set of our experiments.

We implemented Algorithm 1 in Python. We refer to the software as SLIP. For each test problem, for
which x1 was determined by Algorithm 2, the input parameters for the algorithm were set as follows. The
initial neighborhood parameter was set as θ0 ← −0.9max{c(x1)} > 0 and the initial barrier parameter was
set as µ1 ← max{10−1, 2θ0}. The corresponding sequences of neighborhood and barrier parameters were
then prescribed such that θk−1 ← θ0k

−t and µk ← µ1k
−t with t ← 0.7 for all k ∈ N. Estimates of κ∇f ,

L∇f , {κci}i∈[m], {Lci}i∈[m], {κ∇ci}i∈[m], and {L∇ci}i∈[m] were determined by randomly generating n points
from a normal distribution centered at x1, then computing constraint function and derivative values at these
points to compute bound and Lipschitz-constant estimates. These values were employed to set the step sizes
{αk} as stated in Parameter Rule 1 with tα ← 0. (This ensures t + tα ∈ [−1, 0), which means that the
condition on these exponents in Theorems 4.1 was satisfied.) Finally, SLIP employed the parameter values
η ← (θ0/µ1 + 1)/2, η ← θ0 + 10−8, ζ ← 1, ζ ← 1, and ζ ← 1. Rather than attempt to ensure that (5) holds
for all k ∈ N, SLIP follows the strategy described at the end of §5 to reset µ1 whenever a search direction is
computed that does not satisfy (5). In particular, µ1 was multiplied by a factor of 2 in such cases, although
we imposed an overall limit of 104 beyond which µ1 was not increased. One additional feature that we
included in the implementation is that we allowed the algorithm to explore values of γk greater than 1, since
we believe this would be a useful feature in any practical implementation of the method. Specifically, if
xk + αkdk ̸∈ N (θk), then the algorithm would iteratively reduce γk from 1 until xk + γkαkdk ∈ N (θk) was
found. On the other hand, if xk + αkdk ∈ N (θk), then the algorithm would iteratively increase γk from 1
as long as xk + γkαkdk ∈ N (θk) and the barrier term in the barrier-augmented objective function did not
increase.

We ran SLIP with an iteration budget of K := 2 × 104 in order to determine the progress that the
algorithm could make within a budget. (To resemble the stochastic setting, our implementation of SLIP

does not employ second-order derivatives of the objective function, so one should not expect the algorithm
to converge at a fast rate like other interior-point methods that employ second-order derivatives.) Let
xK ∈ Rn be the final iterate generated by a run of the algorithm on a test problem. Since our algorithm
is a feasible method, one can compare f(x1) and f(xK) for each run in order to determine if the algorithm
has made progress. We confirmed that, indeed, in all of our runs of SLIP over our entire test set, we found
that f(xK) < f(x1). However, without knowledge of finf := infx∈F f(x) for each problem in our test set, it
is not possible to compare f(xK) with finf . Instead, we considered the relative stationarity measure (recall
Theorem 4.1):

relative stationarity :=
∥P∇xϕ(xK , µK)∥2

min{∥P∇xϕ(x1, µ1)∥2, ∥P∇xϕ(x1, µK)∥2}
. (29)

Here, the min in the denominator respects the fact that different choices of the barrier parameter correspond
to different multiplier estimates at the initial point (see (18)), which in turn give different stationarity
measures at the initial point. Our use of the min in the denominator in this definition of relative stationarity
means that we are determining the better of the stationarity measures at the initial point to compare against
our stationarity measure at the final iterate.

Figure 2 shows a histogram of relative stationarity values over our test set of problems from the CUTEst
collection. The results show that, generally speaking, the relative stationarity values were quite small,
meaning that the final iterates in most runs appeared to be much closer to stationarity than the initial
iterates, thus indicating that within the iteration budget the algorithm made substantial progress toward
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stationarity. We conjecture that the problems on which the relative stationarity value was higher may be
ones that are very nonlinear and/or have constraints that are degenerate near the iterates generated by the
algorithm.

Figure 2: Histogram of relative stationarity values for experiments with a deterministic version of SLIP over
problems from the CUTEst collection with a strictly feasible initial point.

As a second experiment, we tested stochastic runs of SLIP on a randomly generated instance of a second-
order conic optimization problem, namely,

min
x∈Rn

cTx s.t. Ax = b and ∥x1:n−1∥2 ≤ xn. (30)

Specifically, we randomly generated A and b such that a strictly feasible point existed, and randomly gener-
ated c such that the problem had a finite optimal value. We chose a problem of this type since it is nonlinear,
but convex, so for our first demonstration of stochastic runs of our algorithm we could avoid challenging
situations that arise due to nonconvexity, such as the algorithm potentially converging to different minimiz-
ers. (By contrast, our third experiment considers a nonconvex problem.) First, as a benchmark, we ran
deterministic SLIP with the same parameter choices as our experiments with the CUTEst collection, except
for two differences: (a) we set tα = −0.151 so that t+tα ∈ [−1, 0) and t+2tα < −1, as required in Parameter
Rule 2, and (b) our procedure for computing γk for all k ∈ N did not observe barrier-augmented objective
function values, since this would require objective function values that are not tractable to compute in a
stochastic setting. Instead, we allowed γk to increase above 1, but only up to a limit of 10, when doing so
maintained all constraint values less than or equal to −θk.

Second, we ran stochastic SLIP with 10 different seeds for the random number generator. These runs
used the same values for x1, θ0, initial µ1, η, and η as the deterministic algorithm along with γk,max = 10
for all k ∈ N. It also employed the same Lipschitz constant estimates and employed the same procedured for
“resetting” µ1 (up to a limit of 104) as the deterministic algorithm. Thus, the main difference between the
deterministic and stochastic runs of the algorithm were that the latter employed stochastic objective gradient
estimates of the form c +∆C, where for all k ∈ N in each run the vector ∆C was drawn randomly from a
standard normal distribution. By design of the algorithm, the final iterates generated by the deterministic
and all stochastic runs of the algorithm were feasible with respect to all of the constraints. Table 1 shows
the final objective values for each of the 10 stochastic runs of SLIP. For reference, f(x1) = 1.80561e+03 for
all runs, deterministic SLIP achieved f(xK) = 6.31100e+02, and the relative stationarity measure achieved
by deterministic SLIP (see (29)) was 1.65377e-02. Thus, overall, one can observe that the deterministic and
stochastic runs of SLIP yielded final iterates that were relatively very close to stationarity.

As a third experiment, we tested stochastic runs of SLIP to train a binary classifier subject to a norm
constraint for the mushrooms data set from the LIBSVM collection [6]. The model that we trained was
an artificial neural network with a single hidden layer with 512 nodes, tanh activation, and cross-entropy
loss. This objective function is nonconvex. We trained the model subject to the constraint that the neural
network weights had squared ℓ2-norm less than or equal to 100. This feasible region is convex. Like for
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Table 1: Final objective function values over 10 runs of stochastic SLIP to solve (30).
run 1 2 3 4 5
f(xK) 6.31103e+02 6.31102e+02 6.31100e+02 6.31101e+02 6.31100e+02

run 6 7 8 9 10
f(xK) 6.31101e+02 6.31102e+02 6.31101e+02 6.31101e+02 6.31103e+02

our second experiment, we chose a convex feasible region to ensure that it would be reasonable to expect
multiple stochastic runs of the algorithm to converge to a point of similar solution quality in terms of the final
objective function values (our measure of comparison), despite the nonconvexity of the objective function.
The experimental setup was the same as for our second experiment, except that, rather than artificial noise
in the stochastic-gradient estimates, we employed mini-batch gradient estimates with a mini-batch size of
256. (The mushrooms dataset has 8124 data points, each with 112 features.)

Table 6 shows the final objective values for each of the 10 stochastic runs of SLIP. For reference, f(x1) =
6.93137e-01 for all runs, deterministic SLIP achieved f(xK) = 7.77697e-03, and the relative stationarity
measure achieved by deterministic SLIP (see (29)) was 7.06457610e-02. Thus, one can observe that the
deterministic and stochastic runs of SLIP yielded final iterates of comparable quality.

run 1 2 3 4 5
f(xK) 7.77711e-03 7.76221e-03 7.79686e-03 7.82982e-03 7.78385e-03

run 6 7 8 9 10
f(xK) 7.79379e-03 7.80981e-03 7.80194e-03 7.75375e-03 7.77848e-03

7 Conclusion

We have proposed, analyzed, and tested a single-loop interior-point framework for solving constrained op-
timization problems. Of particular interest is a stochastic-gradient-based version of the framework, which
can be employed for solving problems with affine equality constraints and (potentially nonconvex) nonlinear
inequality constraints, at least when a strictly feasible initial point can be provided (or at least computed
through a so-called Phase I algorithm, such as the method that we present in Appendix A). We have shown
that the algorithm possesses convergence guarantees in both the deterministic and stochastic settings. We
have also shown that a deterministic version of the algorithm performs reliably on a large test set of prob-
lems, and that a stochastic version of the algorithm yields good results both in the setting of artificial noise
and in the context of a mini-batch stochastic-gradient-based algorithm for the training an artificial neural
network for binary classification subject to a norm constraint.

A few significant open questions remain in the study of stochastic-gradient-based interior-point methods
for solving nonlinearly constrained optimization problems. For example, our theoretical convergence guar-
antees requires that the ratio µ1/θ0 is sufficiently large and that each computed search direction satisfies
the conditions in Assumptions 3.1 and/or 4.3, but, as we have explained throughout the paper, a computa-
tionally effective strategy for computing search directions that adhere to our theoretical guarantees is not
straightforward to design. A related open question is whether it is possible to design a single-loop infeasible
interior-point framework that possesses theoretical convergence guarantees that are at least on par with
those that we offer for the algorithm proposed in this paper. The main challenge in the design of such an
approach is that our theoretical guarantees, which employ a prescribed sequence {µk} ↘ 0, rely heavily on
the fact that the iterates generated by our algorithm are feasible in every iteration. There exist stochastic-
gradient-based infeasible Newton-type methods for solving equality-constrained optimization problems; see,
e.g., [3, 1, 2, 4, 9, 8, 10, 14, 15, 17]. Hence, one might expect it to be possible to employ such methods
for solving the equality-constrained subproblems that arise in an infeasible interior-point method. However,
even if one were to introduce slack variables for which the barrier functions are introduced, it remains un-
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clear how to merge such an approach with our strategy for ensuring feasibility at all iterates. Concretely,
suppose that inequality constraints c(x) ≤ 0 are reformulated with slack variables as c(x)+ s = 0 along with
s ≥ 0, where the latter inequalities are handled with a barrier function. Attempting to follow the strategy
for bound-constrained optimization in [7], one is confronted with the challenge that the search direction in
the slack variables, call it dsk, depends on the search direction in the original variables, say dxk, where it
may be possible that c(xk) ̸≤ 0. It is difficult to follow a strategy such as ours to ensure, e.g., that there
exists γ uniformly bounded below such that sk+γαkd

s
k is sufficiently positive, say to stay within a prescribed

neighborhood. The difficulties of designing such an approach led us to propose the feasible method that
has been presented in this paper, although it is possible that such an approach, or one based on alternative
strategies, could be designed with convergence guarantees.

A Appendix: Algorithm for Finding a Strictly Feasible Point

Our algorithm for finding a strictly feasible initial point for our numerical experiments with problems from
the CUTEst collection [12] is presented as Algorithm 2 in this appendix. For simplicity, for our discussion
here we state user-defined parameters in terms of the specific values that we used in our implementation
rather than introduce a generic parameter range.

The algorithm can be understood as an infeasible interior-point method, where line searches on a merit
function are performed as a step-acceptance mechanism. Rather than attempt to solve an optimization
problem to high accuracy, the aim of the algorithm is merely to find a strictly feasible point, i.e., a point in
F<0 (recall (2)) satisfying affine equality constraints and strictly satisfying (potentially nonlinear) inequality
constraints. Hence, the barrier parameter is fixed at 1 and the algorithm terminates as soon as a strictly
feasible point is found. A strictly feasible point is defined as follows. As opposed to problem (1), which
is stated in terms of only one-sided inequality constraints, our definition here of a strictly feasible point
distinguishes between one- and two-sided inequalities. With respect to any one-sided inequality, say, φ(x) ≤
φu, strict feasibility of a point x is defined as φ(x) ≤ φu − 10−4. With respect to any two-sided inequality,
say, φl ≤ φ(x) ≤ φu, strict feasibility of a point x is defined as

φl + 10−4 min{φu − φl, 1} ≤ φ(x) ≤ φu − 10−4 min{φu − φl, 1}

Supposing again that the inequality constraints are stated as in problem (1), the algorithm can be
understood as an iterative method toward solving

min
(x,s)∈Rn×Rm

−
∑
i∈[m]

log(si) s.t.

{
Ax = b

c(x) + s = 0
(31)

the first-order optimality conditions for which are

−S−1e+ z = 0, AT y +∇c(x)z = 0, c(x) + s = 0, and Ax = b.

Given an initial point x0 ∈ Rn, the algorithm commences by attempting to compute x1 ∈ Rn with Ax1 = b by
solving a least-squares problem. (If this yields ∥Ax1 − b∥2 ≤ 10−6, then the algorithm continues; otherwise,
the run is a failure.) Then, up to an iteration limit, the algorithm follows a standard infeasible interior-point
approach with line searches on a merit function; in particular, the merit function ϕ : Rn × Rm × R>0 → R
is defined by

ϕ(x, s, τ) = −τ
m∑
i=1

log(si) + ∥c(x) + s∥1,

where τ ∈ R>0 is a merit parameter that is updated adaptively. (If the iteration limit is exceeded, then the
run is a failure.) Firstly, a Hessian approximation is determined with a modification, if necessary, to ensure
that it is sufficiently positive definite. To represent potential use in practice with our proposed Algorithm 1,
the Hessian approximation does not employ second-order derivatives of the objective function, although it
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does employ second-order derivatives of the constraint functions. Secondly, a search direction is determined
by solving a linear system. Thirdly, the merit parameter is updated using a standard technique from the
literature; see, e.g., [5]. Specifically, defining the predicted reduction in the merit function corresponding to
the tuple (xk, τk) and search direction components (dxk, d

s
k) as

∆q(xk, sk, d
x
k, d

s
k, τk) = −τk(−dsk

TS−1
k 1+ 1

2d
x
k
THkd

x
k + 1

2d
s
k
TS−2

k dsk) + ∥c(xk) + sk∥1,

the update ensures that τk is sufficiently small such that ∆q(xk, sk, d
x
k, d

s
k, τk) is sufficiently large relative to

∥c(xk)+sk∥1. Fourthly, the largest step size in (0, 1] satisfying a fraction-to-the-boundary rule is determined.
Finally, a line search is conducted to compute a step size that satisfies the fraction-to-the-boundary rule and
yields sufficient decrease in the merit function.

Algorithm 2 Finding a Strictly Feasible Point

Require: x0 ∈ Rn, τ0 = 1
1: Set x1 ← argminx∈Rn

1
2∥x− x0∥

2
2 s.t. Ax = b

2: Set s1 ← max{−c(x1), 1} and z1 ← s−1
1 (component-wise)

3: for k ∈ [103] do
4: if c(xk) is sufficiently interior, component-wise then
5: terminate and return xk
6: end if
7: Set Hk ← I +

∑
i∈[m][yk]i∇2ci(xk) + λkI for λk ≥ 0 such that Hk ⪰ 10−4I

8: Solve 
Hk 0 AT ∇c(xk)
0 S−2

k 0 I
A 0 0 0

∇c(xk)T I 0 0



dxk
dsk
yk
dzk

 = −


∇c(xk)zk
−S−1

k 1+ zk
0

c(xk) + sk


9: Set, with Θk := −dsk

TS−1
k 1+ dxk

THkd
x
k + dsk

TS−2
k dsk, first

τ trialk ←

{
∞ if Θk ≤ 0
0.5∥c(xk)+sk∥1

Θk
otherwise

then τk ←

{
τk−1 if τk−1 ≤ τ trialk

(1− 10−6)τ trialk otherwise

10: Set αftb
k ← min{α ∈ (0, 1] : sk + αdsk ≥ 0.1sk}

11: Set αk ← αjαftb
k , where j is the minimum value in {0} ∪ N such that

ϕ(xk + αjαftb
k dxk, sk + αjαftb

k dsk, τk) ≤ ϕ(xk, sk, τk)− 10−4αjαftb
k ∆q(xk, sk, d

x
k, d

s
k, τk)

12: end for
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