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Abstract

Peak cost is a novel objective for flows over time that describes the amount of workforce necessary to
run a system. We focus on minimising peak costs in the context of maximum temporally repeated flows
and formulate the corresponding MPC-MTRF problem. First, we discuss the limitations that emerge
when restricting the solution space to integral temporally repeated flows, which is motivated by practical
applications. We show that, in general, MPC-MTRF has an integrality gap of Ω(

√
n) and an arbitrarily

bad approximation ratio compared to general flows over time.
We proceed with a complexity analysis for MPC-MTRF and show that both the decision version and

the optimisation version of integral MPC-MTRF are strongly NP-hard, even under strong restrictions.
On the positive side, we identify two special cases that are solvable in polynomial time: unit-cost series-
parallel networks and networks with time horizon at least twice as long as the longest path in the network
with respect to the transit time. Moreover, in both cases we provide an explicit algorithm that constructs
an integral optimal solution.
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1 Introduction
Network flows are one of the fundamental models in operations research [1, 11, 27]. In most of the models the
flows are considered to be static; however, in many applications, time plays a crucial role. To integrate the
temporal aspect, traditional (capacitated) flow networks can be extended by transit times, which describe
the time that flow particles need to traverse an arc [10, 11]. The resulting models are called flows over time,
or dynamic flows in some early literature. Similarly to the traditional case, we can also extend flows over
time by arccosts, leading to the min-cost flow over time problem. In general, for min-cost flow over time,
cost is measured as the sum over the costs at each time step [24].

In this work, we propose an alternative objective for min-cost flows over time, namely min-peak-cost flows
over time. The motivation for this work originally derived from bed transports in a hospital, which can be
modelled as flows over time. The real costs of bed transportation do not depend on the number of patients
transported, but on the peak number of staff needed in each shift to perform bed transports. That means
that the maximum amount of staff needed for transports simultaneously, the peak cost, is the objective to
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be minimised. For this, we model the required workforce per unit of flow along an arc of a graph by arc
costs. The total amount of workforce required at a certain moment during the transportation process is then
described by the notion of cost at a time point. A flow over time that minimises the maximum cost at a time
point over the time horizon of the flow, i.e. the peak cost, thus reduces the workforce needed to be reserved
for a system. A similar setting arises whenever some type of transportation, for instance, public transport,
is modelled as a flow over time: the peak cost determine the minimum amount of resources, e.g. busses, that
need to be available to solve a given transportation problem.

In this contribution, we first formally introduce the problem and then derive complexity results for both
the general setting and two special cases, as outlined in Section 1.2. We work under the following two
assumptions. First, we assume a finite time horizon. Second, we only look at maximum flows, so that
minimising the amount of staff or resources needed comes at no expense in terms of service quality.

Solutions for instances of flow over time problems might lack helpful structures. Especially if the trans-
portation plan has to be memorised and executed by humans or primitive machines, simple and comprehen-
sive solutions become more relevant. One class of flows over time with an intuitive structure and a compact
description of solutions are temporally repeated flows. Here, we are allowed to choose a set of paths connect-
ing the source and sink at the beginning and have to stick with this choice for the rest of the time horizon.
Due to their favorable structure, we focus on temporally repeated flows in the remainder of this work.

1.1 Related work
Flows over time, or dynamic flows, were first introduced by Ford and Fulkerson [10, 11], who established the
maximum dynamic flow problem. The computational complexity of dynamic flow problems depends on the
choice of objectives and the existence of arc costs, as we see next.

Maximum and quickest flows Ford and Fulkerson show in their seminal work that a flow over time of
maximum value is computed in polynomial time [10]. In the quickest flow over time problem, the objective is
to minimise the arrival time, i.e. the makespan, for a given flow value; the problem is also solvable in strongly
polynomial time [5, 9]. Well-studied extensions of this problem are the quickest transshipment problem [15],
lexicographic flows [26, 14] and earliest arrival flows [12, 18]. The first two problems admit exact polynomial
algorithms, the earliest arrival flow problem an FPTAS; Skutella gives a more detailed overview [26].

These algorithms were originally obtained for the discrete time model introduced by Ford and Fulkerson,
in which the time is measured in discrete steps of length one. Fleischer and Tardos introduce a continuous
counterpart to the time model and transfer several exact algorithms and approximation schemes to work in
the continuous model as well [9].

Flows over time with costs When arc costs are added to the network, already the minimum-cost
maximum flow over time problem is NP-hard, as is finding a minimum-cost maximum temporally repeated
flow [16]. However, the minimum-cost flow problem admits an FPTAS [7]. Somewhat surprisingly, flipping
the objective leads to the polynomial-time solvable quickest minimum cost transshipment problem [25].

For bi-objective optimisation of cost and travelling time, Parpalea and Ciurea propose a pseudo-
polynomial algorithm [19]. The maximum energy-constrained flow problem, where each node has a bound
on the total amount of flow passing through it, is a special case from the complexity theory point of view:
not only is the integral decision problem strongly NP-complete, but the optimisation problem is also APX-
hard [4]. However, for the general, fractional case an FTPAS exists [6], and the problem can be solved in
(pseudo)-polynomial time for graphs with bounded tree width [4] or uniform transit times [6]. Still, finding
an exact solution is generally NP-hard, and solutions using a path representation may require an exponential
number of paths [6].

Temporally repeated flows A reoccurring challenge in dynamic flow problems is that solutions may
consist of an exponential number of paths, and within each of these paths, flow may take an arbitrary
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number of different values. In this context, Ford and Fulkerson introduce temporally repeated flows – a
special class of flows over time distinguished by a compact representation [10].

Temporally repeated flows can be used to realise maximum and quickest flows [10, 5]. They present
"structurally easier solution[s]" to the quickest transshipment problem [23]. Fleischer and Skutella also use
temporally repeated flows to construct a 2-approximate solution for quickest transshipment with costs [8].
However, for the min-cost maximum flow problem, temporally repeated flows are sub-optimal, and finding
them is strongly NP-hard [16].

Furthermore, finding robust maximum flows for networks with uncertain transit times is NP-hard in
general. An optimal robust temporally repeated flow, in contrast, can be found in polynomial time if the
time horizon is sufficiently long [13]. Finally, temporally repeated-flows are a 2-approximation for maximum
flow with load-dependent transit times [17].

A broader class of problems admits varying, time- or flow-dependent capacities and transit times, as well
as flows with infinite time horizons. These research areas are beyond the the scope of this paper. For a more
detailed overview, see the surveys [2, 21].

1.2 Our contribution
As mentioned in the introduction, minimising peak costs is a reoccurring theme in transportation. Neverthe-
less, to the best of our knowledge, there has been no research on this type of objective in the context of flows
over time, and of temporally repeated flows in particular. We initiate the study of this field by introducing
a first formal definition of the Minimum-Peak-Cost Maximum Flow problem (MPC-MF), see Section 2.

This work focuses on finding maximum temporally repeated flows that minimise the peak cost, which
we call the MPC-MTRF problem. We show in Section 3 that the integral problem is strongly NP-hard
already on series-parallel graphs and with simple arc parameters: unit transit times and capacities, and
costs with values either zero or one. This result is tight in the sense that fixing arc costs to one for all arcs
leads to a polynomial-time algorithm for series-parallel graphs, as presented in Section 4. This algorithm
emerges from a relation between MPC-MTRF and the earliest-arrival flow problem noted above. Finally, we
present a different approach to a polynomial-time algorithm, presented in Section 5, which solves instances
of MPC-MTRF with sufficiently long time horizons. Here we modify the method of Ford and Fulkerson
for maximum flows and adjust it to our objective of minimum peak cost. Section 6 gives a summary and an
outlook on further research.

2 Preliminaries and definitions
In this section, we first discuss important notation and preliminaries for flows over time. Afterwards, we
give a formal definition for the MPC-MTRF as well as some of its immediate properties.

2.1 Notation and preliminaries
For an integer n ∈ N, we denote by [n] the set {1, . . . , n} ⊆ N. Throughout this work, let G = (V,A) be a
digraph with node set V and arc set A ⊆ V 2. For a node v ∈ V , we denote by δ+(v) the set of outgoing arcs
and by δ−(v) the set of ingoing arcs of v. A (simple) path is a sequence p = (v1, . . . , vk) of pairwise distinct
nodes v1, . . . , vk ∈ V such that two subsequent nodes are adjacent, i.e. (vi, vi+1) ∈ A for i = 1, . . . , k − 1.
We use the notation p|vi,vj

for i < j to denote the sub-path (vi . . . , vj) of p between vi and vj .
We assume that every graph has a distinguished source s ∈ V and sink t ∈ V . Then, we denote the set

of all s-t paths in G with P and the set of all cycles with C. Moreover, each arc a ∈ A is equipped with a
capacity ua ∈ N and a cost ca ∈ N. Before we continue to define networks over time and flows over time,
note that we say static flow in order to refer to a classical (s, t)-flow f (without a time component) in a
network (G, u, c). We write | f | to denote the value of f and we use the notation y : P ∪ C → R (y : P → R)
to describe a flow decomposition (path decomposition) of f .
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In networks over time, we have an additional arc property τa ∈ N called transit time. For a path p
in graph G, we define its transit time τ(p) ∈ N as the sum of the transit times of all arcs of the path,
i.e. τ(p) :=

∑
a∈p τa. We call a graph G together with the three arc functions u, τ and c a network (over

time) and write N = (G, u, τ, c).
There are two common time models used to define flows over time: the discrete and the continuous

model. In the former model, a flow unit is compactly transported, i.e. the unit departs as a whole at the one
point in time and arrives as a unit too. In the latter model, the flow is viewed as a collection of infinitesimal
particles that are injected into the network at some rate and follow each its own trajectory. A unit of flow is
the set of particles injected into the network during one unit of time. The two models are to a great extent
equivalent for combinatorial problems [9]. We follow the more recent contributions and use the continuous
time model in this work.

Given a network N = (G, u, τ, c), we define a flow over time as follows:

Definition 1 (Flow over time [24]). Let N = (G, u, τ, c) be a network over time with distinguished terminal
vertices s, t ∈ V . An (s, t)-flow over time f , from now on called flow over time for short, in N with time
horizon T ⩾ 0 consists of Lebesgue-measurable functions fa : R+

0 → R+
0 for each a ∈ A, where fa(θ) = 0 for

all θ > T − τa. The function fa represents the inflow rate into the arc a at its head. Furthermore, the flow
rates satisfy the following constraints.

• Capacity constraint
0 ⩽ fa(θ) ⩽ ua for all a ∈ A, θ ∈ [0, T );

• Weak flow conservation

∑
a∈δ−(v)

∫ θ−τa

0

fa(ξ) dξ −
∑

a∈δ+(v)

∫ θ

0

fa(ξ) dξ ⩾ 0 for all v ∈ V \ {s, t}, θ ∈ [0, T ).

The value of a flow over time is defined as follows.

Definition 2 (Value of a flow over time [24]). Let N = (G, u, τ, c) be a network over time and let f = (fa)a∈A

be a flow over time in N with time horizon T ⩾ 0. The value of f is given by the expression

| f | :=
∑

a∈δ+(s)

∫ T

0

fa(ξ) dξ −
∑

a∈δ−(s)

∫ T−τa

0

fa(ξ) dξ.

A flow over time in a network is called maximum for a given time horizon T if it has the maximum value
among all flows over time with time horizon T .

Temporally repeated flows are a special type of flows over time, where a static flow is sent repeatedly
along the components of its flow decomposition as long as the time horizon allows. More precisely, temporally
repeated flows are defined as follows.

Definition 3 (Temporally repeated flow; [24]). Let x be a static flow and y : P∪C → R its flow decomposition.
The corresponding temporally repeated flow with time horizon T is defined by

fa(θ) :=
∑

p∈Pa(θ)

y(p) for a ∈ A, θ ∈ [0, T ),

where
Pa(θ) := {p ∈ P | a = (v, w) ∈ p and τ(p|s,v) ⩽ θ and τ(p|v,t) < T − θ}

is the set of paths of the decomposition that contain arc a and can transport flow over a at time θ without
violating the time horizon. For θ /∈ [0, T ) we set fa(θ) = 0 for all a ∈ A.

The intuition behind temporally repeated flows is better captured in an alternative path-based represen-
tation.
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Remark 4. A temporally repeated flow f corresponding to a path decomposition y : P → R and for a time
horizon T is a sum of chain flows f =

∑
p∈P fT

p , where a chain flow fT
p sends the flow at rate y(p) into a

path p during the time interval
[
0, T − τ(p)

)
.

The following lemma provides a connection between the value of a temporally repeated flow and the
value of its underlying static flow.

Lemma 5 ([24]). Let x be a feasible static flow in a network N with flow decomposition y : P ∪C → R such
that y(p) = 0 for all p ∈ P with τ(p) > T and for all p ∈ C. Then the value of the corresponding temporally
repeated flow f is

| f | = T · |x| −
∑
a∈A

τa · x(a).

In particular, the value of the flow over time f does not depend on the chosen path decomposition of the
static flow x.

The transit time restriction in Lemma 5 is crucial. We refer to path decompositions that respect the
time restriction as T -bounded.

Definition 6 (T -bounded path decomposition). We call a path decomposition y : P → R of a static flow
in a flow network T -bounded for a time horizon T ∈ N if all flow-carrying paths, i.e. paths p ∈ P with
y(p) > 0, have length at most T .

Ford and Fulkerson show that maximum temporally repeated flows are maximum flows, and that they
can be computed in polynomial time by the following algorithm [10].

Theorem 7 ([10]). The following algorithm computes a maximum flow over time for a network N =
(G, u, τ, c) and a time horizon T .

1. Construct an extended network N ′ from N by adding an arc (t, s) with u(t,s) =∞ and τ(t,s) = −T .

2. Compute a minimum cost circulation in N ′ with respect to arc costs τa; extract the corresponding static
(s, t)-flow x in N .

3. Compute a flow decomposition y : P ∪ C → R of x.

4. Return the temporally repeated flow induced by the decomposition y.

The flow decomposition attained in Step 3 is in fact a T -bounded path decomposition. Theorem 7
implies that the maximum flow value is attained by temporally repeated flows, and that maximum flows are
computed in polynomial time.

2.2 Problem statement and properties
We seek to find a flow over time of maximum value while keeping the cost caused by the flow small for each
point in time. The cost of a flow at a time point θ is the accumulated amount of flow present in the network
at time θ, weighted for each arc a by its cost coefficient ca. More precisely, the cost at a time point is defined
as follows.

Definition 8 (Cost at a time point). Let N = (G, u, τ, c) be a network and f a flow over time with time
horizon T . For a time point θ ∈ [0, T ), the cost at a time point θ is

c(f, θ) :=
∑
a∈A

ca ·

(∫ θ

θ−τa

fa(ξ) dξ

)
.
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We seek to minimise the peak cost of a flow f , which is the maximum cost of the flow over the time
horizon [0, T ), i.e.

cmax(f) := max
θ∈[0,T )

c(f, θ).

Given a network N and a time horizon T , we refer to the problem of finding a maximum flow over time
with minimum peak cost as Minimum-Peak-Cost Maximum Flow (MPC-MF).

We are particularly interested in maximum temporally repeated flows because of their sparse structure
and compact representation. In the remainder of this work, we consider a variant of MPC-MF that seeks to
minimise the peak cost exclusively on maximum temporally repeated flows. Below, we give a precise problem
definition of MPC-MTRF and three observations on the properties thereof.

Definition 9 (MPC-MTRF). An instance of Minimum-Peak-Cost Maximum Temporally Repeated Flow
(MPC-MTRF) consists of a network N = (G, u, τ, c) with a distinguished source s and sink t, and of a
time horizon T ∈ N. MPC-MTRF asks for a maximum temporally repeated flow in N with horizon T that
minimises the peak cost.

Remark 10. The peak cost of a temporally repeated flow depends not only on the underlying static flow, but
also on the chosen path decomposition.

Proof. Temporally repeated flows resulting from different path decompositions of the same static flow and
with the same time horizon can have different peak costs, as an example in Figure 1 demonstrates.

s

v1

v2

v3

t
1

1 1 1

1

1

x

Figure 1: An instance of MPC-MTRF with unit capacities, transit times and costs. The displayed static
flow x admits two different path decompositions.

Consider the network shown in the figure and time horizon T = 6. As we will prove in Section 4, the
peak cost for any temporally repeated flow in this network is attained at time θ = T

2 = 3, and every chain
flow along a path p with flow rate y(p) contributes the cost y(p) ·max{τ(p), T − τ(p)} to the total peak cost.

Consider the first path decomposition

y : P(G)→ R,
p1 := ( ) = (s, v1, v2, v3, t) 7→ 1,
p2 := ( ) = (s, v2, t) 7→ 1,
p 7→ 0 otherwise.

The corresponding temporally repeated flow f consists of two nontrivial chain flows with total peak cost

cmax(f) = c(f, 3) = y(p1) · (T − τ(p1)) + y(p2) · τ(p2) = (6− 4) + 2 = 4.

For the second path decomposition

y′ : P(G)→ R,
p3 := ( ) = (s, v1, v2, t) 7→ 1,
p4 := ( ) = (s, v2, v3, t) 7→ 1,
p 7→ 0 otherwise,

the corresponding temporally repeated flow f ′ has peak cost

cmax(f ′) = c(f ′, 3) = y′(p3) · τ(p3) + y′(p4) · τ(p4) = 3 + 3 = 6 > cmax(f).

It is easy to see that both flows f and f ′ are maximum temporally repeated flows of value 6. Thus, our
claim holds.
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In contrast to the maximum flow over time problem, temporally repeated flows have arbitrarily bad
objective values compared to general flows over time on the same instance, i.e. they have no constant
approximation ratio.

Lemma 11. Temporally repeated maximum flows do not provide a constant factor approximation of mini-
mum peak costs of maximum flows over time.

Proof. Let k ∈ N be arbitrary but fixed. Consider a network on a graph G = (V,A) with nodes V =
{s, v, w, t} and arcs A = {(s, v), (v, t), (v, w), (w, t)}, shown in Fig. 2, and a time horizon T := 2k + 2. All
arcs have unit capacity; transit times and costs are as follows:

τ(s,v) = 1, τ(v,t) = k, τ(v,w) = 1, τ(w,t) = k,
c(s,v) = 0, c(v,t) = 1, c(v,w) = 0, c(w,t) = 0.

s v

w

t
1 / 0

1 / 0
k / 1

k / 0
τa / ca

Figure 2: An instance of MPC-MF with unit capacities, for which the gap between the optimal peak cost
and the peak cost of an optimal temporally repeated flow is equal to k ∈ N.

Note that G contains exactly two s-t paths p1 = (s, v, t) and p2 = (s, v, w, t). Since τ(p) ⩽ T holds for
both paths, Theorem 7 implies that a maximum temporally repeated flow is induced by the unique static
minimum-cost circulation, which has value |x| = 1 and uses only the shorter path p1.

The unique maximum temporally repeated flow fTR thus uses only the path p1 and sends flow at rate
y(p1) = 1 along path p1 in the time period

[
0, T − τ(p1)

)
= [0, T − k − 1). The maximum flow value is∣∣ fTR

∣∣ = T − k − 1, and the resulting flow rates on arcs are as follows:

fTR
(s,v)(θ) = 1 for θ ∈ [0, T − k − 1),

fTR
(v,t)(θ) = 1 for θ ∈ [1, T − k),

and zero otherwise.
Since only arc (v, t) has a positive cost coefficient, the cost of the temporally repeated flow fTR at a time

point θ is

c(fTR, θ) = c(v,t) ·
∫ θ

θ−τ(v,t)

f(v,t)(ξ) dξ = 1 ·
∫ θ

θ−k

f(v,t)(ξ) dξ.

For instance, at time point θ = 1, no flow particles have reached arc (v, t) yet, so the cost at this time point
is zero. The peak cost of flow fTR is attained when the arc (v, t) carries flow on its entire length, i.e. at each
time point between k + 1 and T − k; we calculate the cost at time point θ = k + 1 and obtain

cmax(fTR) =

∫ k+1

1

fTR
(v,t)(ξ) dξ = k.

Now consider a non temporally repeated flow f∗, which sends the flow at rate 1 over the longer but
cheaper path p2 in the time period [0, τ(p2)) = [0, T − k − 2). The last missing unit of flow is sent over the
path p1, departing in period [T − k − 2, T − k − 1). Formally, the flow f∗ is defined by the following flow
rates on the arcs:

f∗
(s,v)(θ) = 1 for θ ∈ [0, T − k − 1),

7



f∗
(v,w)(θ) = 1 for θ ∈ [1, T − k − 1),

f∗
(w,t)(θ) = 1 for θ ∈ [2, T − k),

f∗
(v,t)(θ) = 1 for θ ∈ [T − k − 1, T − k).

The flow rates outside of the given intervals are zero. It is easy to see that f∗ is a feasible flow with
| f∗| = T −k−1; hence, flow f∗ is also a maximum flow. Flow f∗ also attains its peak cost when the amount
of flow on arc (v, t) is maximised, i.e. at each time point θ ∈ [T − k, T − 1). We compute the peak cost of
flow f∗ as cost at time point θ = T − k and obtain

cmax(f∗) =

∫ θ

θ−k

f∗
(v,t)(ξ) dξ =

∫ T−k

T−k−1

1 dξ = 1.

Hence, the ratio between the optimal peak cost of a temporally repeated flow and of an unrestricted optimal
flow is at least cmax(fTR)

cmax(f∗) = k.

Numerous applications of flows over time involve units of flow that are discrete by nature, for instance
cars in traffic management or beds in a hospital. In these cases, we seek integral flows over time, i.e. flows
with integral flow rates. For the maximum flow over time problem, the integrality constraint can be imposed
without loss of generality: if arc capacities are integers, then there always exists an integral minimum cost
static circulation, which then always yields an integral path decomposition and induces an integral maximum
temporally repeated flow. We lose this property when we consider the minimum-peak-cost objective.

Lemma 12. For MPC-MTRF, the peak cost of an optimal integral solution is, in the worst case, Ω(
√
n)

times higher than the optimal peak cost, where n is the number of nodes in the network.

Proof. Consider the following network N = (G, u, τ, c). Source s has one outgoing edge to node v. Node v
and target t are connected by k internally disjoint paths, each of length k, for some integer k ∈ N; see Fig. 3.
Formally, we have

s v t

w1
1 w1

2 w1
3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3

1
1

1
1

c

Figure 3: A network for k = 4 with unit transit times and capacities, for which any optimal integral solution
for MPC-MTRF with T = k + 2 is by a factor k more expensive than the optimal fractional solution. Arc
costs that are not indicated are zero.

V ={s, v, t} ∪ {wi
j | i ∈ [k], j ∈ [k − 1]},

A ={(s, v)} ∪
{
(wi

j−1, wi
j) | i ∈ [k], j ∈ {2, . . . , k − 1}

}
∪ {(v, wi

1), (wi
k−1, t) | i ∈ [k]}.

Hence, the network contains n = k(k − 1) + 3 nodes.
All capacities and transit times are equal to one. The cost of the i-th arc on the i-th v-t path, i ∈ [k],

equals one, and other arc costs are zero, i.e.

ca =

{
1, if a = (wi

i−1, wi
i) for i ∈ [k],

0, otherwise,
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where we overwrite the notation via wi
0 := v and wi

k := t to simplify the presentation. Finally, we set the
time horizon T = k + 2. Since each s-t path has length k + 1 = T − 1, the flow can depart at node s only
within the time interval [0, 1). The arc (s, v) presents a capacity bottleneck and ensures that at most one
unit of flow traverses the graph in the period [0, 1); hence, any maximum flow over time has value 1.

Under the integrality constraint, the entire flow unit flows over one v-t path (v, wi
1, . . . , w

i
k−1, t) for some

choice of i ∈ [k]. Any integral maximum temporally repeated flow f int, which sends flow through the i-th
path, is given by the following flow rates:

f int
(s,v)(θ) = 1 for θ ∈ [0, 1),

f int
(wi

j−1, wi
j)
(θ) = 1 for θ ∈ [j, j + 1) for all j ∈ {1, . . . , k},

f int
a (θ) = 0 otherwise.

For any choice of index i, the flow incurs a peak cost of cmax(f int) = 1 when passing the unique arc with
cost 1 on the flow-carrying path:

cmax(f int) = c(f int, i+ 1) =

∫ i+1

i

1 · f(wi
i−1,w

i
i)
(ξ) dξ = 1.

Without the integrality constraint, we can distribute the load and send a flow f∗ at rate 1
k over each of

the k parallel paths. Formally, we define flow f∗ by the underlying flow decomposition

y∗ : P → R, p 7→ 1

k
,

which yields the following arc flow rates:

f∗
(s,v)(θ) = 1 for θ ∈ [0, 1),

f∗
(wi

j−1, wi
j)
(θ) = 1

k for θ ∈ [j, j + 1) for all j ∈ {1, . . . , k}, i ∈ [k],

f∗
a (θ) = 0 otherwise.

Observe that flow f∗ is still temporally repeated. At any point in time, only a 1
k -fraction of the flow traverses

the arcs with nonzero costs; therefore, the peak cost of this fractional flow f∗ is

cmax(f∗) = max
θ

k∑
i=1

(
1 ·
∫ θ

θ−1

f(wi
i−1, wi

i)
(ξ)dξ

)
= max

θ

k∑
i=1

(
1

k
·
∣∣[i, i+ 1) ∩ [θ − 1, θ)

∣∣) =
1

k
.

Hence, since n ∼ k2, the ratio between the best objective value of an integral and a fractional solution is at
least

cmax(f int)

cmax(f∗)
= k ∈ Ω(

√
n)

in worst case.

The above example shows that restricting the solution space to integral temporally repeated flows may
lead to an arbitrarily large increase in peak costs; that is, general optimal solution are better. However, we
cannot state anything about the complexity and structure of general optimal solutions.

3 Complexity of the integral MPC-MTRF
Similarly to the min-cost maximum temporally repeated flow problem, the integer MPC-MTRF and its
decision counterpart are NP-hard already in a very restricted case.

9



Theorem 13. Let a number z ∈ R+ be given. It is NP-hard to decide whether there exists an integer
maximum temporally repeated flow for a given time horizon T ∈ N with peak cost at most z, even for
two-terminal series-parallel graphs with unit transit times, unit capacity and costs equal to zero or one.

Proof. We prove the statement by a reduction from 3-SAT with a restriction that each clause contains
exactly three pairwise different literals. This restriction can be ensured by padding shorter clauses with
dummy literals.

Let I be an instance of 3-SAT with n variables Xi, i ∈ [n] and m clauses Cj , j ∈ [m]. We construct
an instance Ĩ = (N , T ) of the decision version of MPC-MTRF similarly to the construction in Lemma 12.
The network N = (G, u, τ, c) is based on a graph G = (V,A) that contains a source s, a sink t, nodes vi
connected to the sink for each variable Xi, i ∈ [n], and a simple s-vi path of length m+2 for each literal Xi

or Xi; see also Fig. 4. The (j + 1)-th arc of every path corresponds to clause Cj .
Formally, we have

V ={s, t} ∪
{
vi | i ∈ [n]

}
∪
{
wj

i , w
j
i | i ∈ [n], j ∈ {0, . . . ,m}

}
and

A =
{
(s, w0

i ), (s, w
0
i ), (w

m
i , vi), (w

m
i , vi), (vi, t) | i ∈ [n]

}
∪
{
(wj−1

i , wj
i ), (w

j−1
i , wj

i ) | i ∈ [n], j ∈ [m]
}
.

All capacities and transit times are equal to one. The arc costs are defined as follows:

c : A→ R+, a 7→


1, if a = (wj−1

i , wj
i ) and Xi ∈ Cj ,

1, if a = (wj−1
i , wj

i ) and Xi ∈ Cj ,

0, otherwise;

that is, for each literal ℓ in a clause C, the arc corresponding to this clause in the path of the negated literal
ℓ has cost of one. This choice of costs later allows us to encode the number of negative literals in each clause
by the cost at a corresponding time point. We set the time horizon T to m + 4 and ask for a maximum
temporally repeated flow over time for this horizon with peak cost at most z = 2.

s t

w0
1

w0
1

w0
2

w0
2

w0
3

w0
3

w1
1

w1
1

w2
1

w2
1

v1

w1
2

w1
2

w2
2

w2
2

v2

w1
3

w1
3

w2
3

w2
3

v3

1

1

1 1

1

1

C1 C2

c

A1 A2

C1 = X1 ∨X2 ∨
X3

C2 = X1 ∨X2 ∨
X3

Figure 4: Left: an instance of 3-SAT with m = 2 clauses and n = 3 variables. Right: the corresponding
flow over time network. Transit times and capacitites are all equal to one; arc costs that are not explicitly
indicated are equal to zero.

We denote by
Aj :=

{
(wj−1

i , wj
i ), (w

j−1
i , wj

i ) | i ∈ [n]
}
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the set of arcs corresponding to the clause Cj , j ∈ [m]. For ease of notation, we analogously define arc sets

A0 :=
{
(s, w0

i ), (s, w
0
i ) | i ∈ [n]

}
and Am+1 :=

{
(wm

i , vi), (w
m
i , vi) | i ∈ [n]

}
.

All s-t paths in the graph have transit time m + 3 = T − 1. To meet the time horizon, the flow is sent
from the source only in the period [0, 1). Any maximum flow has value n, which is dictated by the capacity
available on arcs {vi, t} with i ∈ [n]. Any feasible, i.e. integral maximum temporally repeated flow f in the
constructed network thus has the following structure: it uses n internally-disjoint paths pi, i ∈ [n], at full
capacity, where pi is one of the paths

qi := (s, w0
i , . . . , w

m
i , vi, t) or qi := (s, w0

i , . . . , w
m
i , vi, t).

Formally, the underlying path decomposition is y : P → R with y(p) = 1 if and only if p ∈ {pi}i∈[n] and
y(p) = 0 otherwise.

Hence, a feasible flow f satisfies

fa(θ) =

{
1, if a = (v, w) ∈ pi for some i ∈ [n] and θ ∈

[
τ(pi|s,v), τ(pi|s,v) + 1

)
,

0, otherwise.

In particular, for an arc a ∈ Aj belonging to a flow-carrying path we have fa(θ) = 1[j,j+1)(θ)
1, as j = τ(pi|s,v)

is the length of each subpath up to an arc a = (v, w) ∈ Aj .
Next, we compute the cost at each time point. The cost at each time point θ /∈ [1,m + 2) is zero. For

θ ∈ [1,m+ 2), the cost is a sum of costs of chain flows fi over paths pi:

c(f, θ) =

n∑
i=1

c(fi, θ).

For the chain flow fi over a path pi, i ∈ [n], departing in the period [0, 1), cost at a time point θ ∈ [1,m+2)
is

c(fi, θ) =
∑
a∈pi

ca ·
∫ θ

θ−τa

fa(ξ) dξ =
∑
a∈pi

ca ·
∫ θ

θ−1

fa(ξ) dξ

(1)
=

∑
j∈[m]∪{0,m+1}:
[j,j+1)∩[θ−1,θ] ̸=∅

c(aji ) ·
∫ θ

θ−1

faj
i
(ξ) dξ

(2)
= c(a

⌊θ⌋−1
i ) ·

∫ θ

θ−1

f
a
⌊θ⌋−1
i

(ξ) dξ + c(a
⌊θ⌋
i ) ·

∫ θ

θ−1

f
a
⌊θ⌋
i

(ξ) dξ

(3)
= c(a

⌊θ⌋−1
i ) ·

∫ θ

θ−1

1[
⌊θ⌋−1,⌊θ⌋

)(ξ) dξ + c(a
⌊θ⌋
i ) ·

∫ θ

θ−1

1[
⌊θ⌋,⌊θ⌋+1

)(ξ) dξ
= c(a

⌊θ⌋−1
i ) · (bθc − θ + 1) + c(a

⌊θ⌋
i ) · (θ − bθc),

where aji is the unique arc in pi ∩ Aj for j ∈ {0, . . . ,m + 1}. Equality (1) preserves in the sum only those
arcs of path pi that have non-zero flow rate in time period [θ − 1, θ]. Equality (2) is true since bθc − 1 and
bθc are exactly the two integers with [j, j + 1) ∩ [θ − 1, θ] 6= ∅. It expresses the fact that, as the flow is sent
for exactly one time unit, at most two incident arcs of pi carry flow and have an impact on the cost. For
equality (3), we substitute the expression for the flow rate.

Equations above imply that the cost at an integer time point θ ∈ N is

c(fi, θ) = c(aθ−1
i ),

1Function 1S : R → {0, 1} for a set S ⊆ R is the indicator function with 1S(x) = 1 if and only if x ∈ S.
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while the cost at a fractional time point θ /∈ N is a convex combination of the costs of the two surrounding
integer time points, and thus

c(fi, θ) ⩽ max
{
c(fi, bθc), c(fi, dθe)

}
.

The entire flow thus also attains its peak cost at an integer time point:

cmax(f) = max
θ∈{1, ..., m+2}

n∑
i=1

c(fi, θ) = max
j∈{0, ..., m+1}

n∑
i=1

c(aji ) = max
j∈{1, ..., m}

n∑
i=1

c(aji ),

as c(a0i ) = c(am+1
i ) = 0 for all i ∈ [n].

The considerations above hold for any integral maximum temporally repeated flow in the constructed
instance Ĩ. Next, we show that instance I is a Yes-instance of 3-SAT if and only if Ĩ is a Yes-instance of
MPC-MTRF, i.e. if it admits a flow with peak cost at most 2.

Let I be a Yes-instance, and let φ : {Xi}ni=1 → {True, False} be a satisfying truth assignment. Then
each clause contains at least one literal with value True. We construct a corresponding flow over time f for
instance Ĩ as follows: for each i ∈ [n] with φ(Xi) = True, send flow at rate one in time period [0, 1) over the
path

pi := qi = (s, w0
i , . . . , w

m
i , vi, t),

and for each i ∈ [n] with φ(Xi) = False, send one unit of flow over the path

pi := qi = (s, w0
i , . . . , w

m
i , vi, t).

As discussed above, the constructed flow f is a feasible flow of value n for time horizon T . Its cost at any
integer time point θ ∈ {2, . . . ,m+ 1} and for the corresponding clause number j := θ − 1 is

c(f, θ) =

n∑
i=1

c(f |pi , θ)
(1)
=

n∑
i=1

c(pi ∩Aj) (∗)

(2)
=

∑
i :Xi∈Cj

1qi(pi) +
∑

i :Xi∈Cj

1qi(pi)

(3)
=

∑
i : Xi∈Cj

φ(Xi)=False

1 +
∑

i : Xi∈Cj

φ(Xi)=True

1

=
∑
ℓ∈Cj ,

φ(ℓ)=False

1

⩽ 2.

Equality (1) holds since only arcs corresponding to the j-th clause incur costs at time point θ. Equality (2)
is true since only the occurrence of the positive literal Xi in clause Cj implies cost of one on path qi, and
only the occurrence of negative literal Xi in clause Cj implies cost of one on path qi; these cost apply
only if the said path coincides with pi, which is denoted by the indicator functions. Equality (3) uses the
correspondence between the paths of the constructed flow f and the truth assignment. The last inequality
is true, since clause Cj contains, by assumption, at least one literal ℓ with value φ(ℓ) = True. Overall, since
the cost at every integer time point is at most two, we obtain cmax(f) ⩽ 2.

Now let the instance Ĩ be a Yes-instance, and let f be a flow with cmax(f) ⩽ 2. There is exactly one
flow unit traversing either the path qi or the path qi for each i ∈ [n]. We define a truth assignment φ of the
variables in instance I as follows: φ(Xi) := True if and only if f(qi) > 0. By equations (∗), the number of
unsatisfied literals in a clause Cj , j ∈ [m], is

|{ℓ ∈ Cj | φ(ℓ) = False}|=c(f, j + 1) ⩽ cmax(f) ⩽ 2.

Hence, φ is a satisfying assignment for instance I, and I is a Yes-instance.
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We conclude that optimising the peak cost over integer temporally repeated flows is at least NP-hard
as well.

Theorem 14. Finding an integer minimum-peak-cost maximum temporally repeated flow for a given time
horizon T ∈ N is at least strongly NP-hard, even for two-terminal series-parallel graphs with unit transit
times, unit capacity and costs equal to zero or one.

The key mechanism of the reduction in the proof of Theorem 13 is that each unit of flow corresponds to
a variable and decides for strictly one of the two alternative paths qi or qi corresponding to the two literals
of the variable. Let us call flows with this property unsplit. In the reduction above, the unsplit property is
ensured by the requirement for the flow to be temporally repeated and integral.

The statement of Theorem 13 as well as the reduction construction hold analogously for the discrete time
model. In the discrete model, the flow is partitioned into singleton units that move through the network as
a whole and can depart only at given discrete time points. Since, by design of the network, the flow can
depart at the source only at time point 0, any feasible flow for the instance is temporally repeated; hence,
we can relax this requirement on the sought flow. However, the reduction design still requires the flow to be
unsplit. In the discrete time model, this property is ensured by the integrality constraint alone.

We conclude: in the discrete time model, finding a minimum-peak-cost maximum integral flow is NP-
hard already on series-parallel graphs with unit capacities and transit times.

4 Unit-cost networks
Having seen that the problem is strongly NP-hard in general, we identify two polynomially solvable cases
in this and the next section. In the proof of Theorem 13, the cost function used in the reduction has values
in {0, 1}. The proof transfers to any cost function with at least two different cost values.

Now we consider the complementary case of unit arc costs.

Lemma 15. Let f be a temporally repeated flow with time horizon T on a network (G, u, τ, c) with unit
costs, i.e. c ≡ 1. Then the flow f attains peak cost at time θ̂ := bT2 c, i.e.

cmax(f) = c(f,

⌊
T

2

⌋
).

Proof. Let y : P → R be the underlying path decomposition of the flow f . Recall that flow f is a sum of
chain flows fT

p for p ∈ P with y(p) > 0 (see Remark 4). Since the arc costs are all equal to one, the flow’s
cost at a time point θ ∈ [0, T ] is equal to the amount of flow present in the network at the considered time
point θ, denoted by val(f, θ). We calculate the flow value for each time point and for each chain flow fT

p

separately.
The chain flow fT

p for p ∈ P departs at node s in time period
[
0, T − τ(p)

)
and reaches the sink t in

period [τ(p), T ). Flow that reaches the sink node disappears from the network. Hence, the amount of flow
in the network grows in the period

[
0, T − τ(p)

)
and diminishes in the period [τ(p), T ). If the transit time

of a path is τ(p) ⩽ T
2 and thus τ(p) ⩽ T − τ(p), then

val(fT
p , θ) = y(p) ·


θ, if θ < τ(p),

τ(p), if τ(p) ⩽ θ ⩽ T − τ(p),

T − θ, if θ > T − τ(p).

Hence, the maximum amount of flow is contained in the network in period
[
τ(p), T−τ(p)

)
, and, in particular,

at time θ̂.
If the transit time of the path is τ(p) > T

2 and τ(p) > T − τ(p), then the last unit of the flow departs
form the source before the first unit arrives at the sink, and the amount of flow on the path is thus
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val(fT
p , θ) = y(p) ·


θ, if θ < T − τ(p),

T − τ(p), if T − τ(p) ⩽ θ ⩽ τ(p),

T − θ, if θ > τ(p),

which attains its maximum at θ = θ̂.
In total, the value of the peak cost is

cmax(f) = c(f,

⌊
T

2

⌋
) =

∑
p∈P

val(fT
p ,

⌊
T

2

⌋
) =

∑
p∈P,

τ(p)⩽T
2

y(p) · τ(p) +
∑
p∈P,

τ(p)>T
2

y(p) ·
(
T − τ(p)

)
. (⋆)

Next we establish a link between minimum-peak-cost flows and earliest arrival flows, and show how a
minimum-peak-cost maximum temporally repeated flow can be found in polynomial time.

For a flow over time f and a time point θ ⩾ 0, let arrf (θ) denote the amount of flow that has reached
the sink by time θ. An earliest arrival flow f is a feasible flow over time with the following property: the
amount of flow arrf (θ) arrived at the sink by time θ is maximal for all θ ∈ [0, T ] simultaneously. Clearly,
earliest arrival flows are maximum flows.

For a temporally repeated flow f with a path decomposition y : P → R, the flow amount that reached
the sink by time θ is

arrf (θ) =
∑
p∈P

y(p) ·max{θ − τ(p), 0} =
∑
p∈P

τ(p)⩽θ

y(p) ·
(
θ − τ(p)

)
.

Next, we consider expression (⋆) for the peak cost of a temporally repeated flow in the case of unit costs
and transform it as follows:

cmax(f) =
∑
p∈P

τ(p)⩽T
2

y(p) · τ(p) +
∑
p∈P

τ(p)>T
2

y(p) ·
(
T − τ(p)

)
=

∑
p∈P

τ(p)⩽T
2

y(p) ·
(
2τ(p)− T + T − τ(p)

)
+

∑
p∈P

τ(p)>T
2

y(p) ·
(
T − τ(p)

)
=

∑
p∈P

τ(p)⩽T
2

y(p) · (2τ(p)− T ) +
∑
p∈P

y(p) ·
(
T − τ(p)

)
=

∑
p∈P

τ(p)⩽T
2

y(p) · (2τ(p)− T ) + | f |

=− 2
∑
p∈P

τ(p)⩽T
2

y(p) ·
(
T

2
− τ(p)

)
+ | f |

= | f | − 2 · arrf (
T

2
).

Hence, for maximum temporally repeated flows on unit-cost networks, minimising the peak cost is equivalent
to maximising the amount of flow reaching the sink by time T

2 . Consequently, earliest arrival temporally
repeated flows have the smallest peak cost among maximum temporally repeated flows.

Earliest arrival flows always exist in a network with a single source and a single sink [12, 20]; however, in
general, temporally repeated flows do not have the earliest arrival property. Series-parallel graphs present
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an exception: Ruzika et al. [22] show existence of a temporally repeated flow which is an earliest arrival
flow; moreover, this flow is found by a greedy polynomial-time algorithm. The algorithm is a variant of
the successive shortest path algorithm by Bein et al. [3] and builds the solution iteratively starting with an
empty flow. In each step, it finds an s-t path p with the shortest transit time. As long as the path’s transit
time is smaller than the time horizon T , the algorithm adds a chain flow along path p with a flow rate equal
to its bottleneck capacity u(p) := mina∈A ua to the solution. Capacities of all arcs of path p are then reduced
by u(p). The algorithm stops once there are no s-t paths shorter than T .

If all capacities are integral, then so are the resulting flow values. This final observation leads to the
following result.

Theorem 16. An integral minimum-peak-cost maximum temporally repeated flow in a unit-cost series-
parallel network can be found in polynomial time.

The described relation between MPC-MTRF and earliest arrival flows aligns well with the result of
Fleischer and Skutella on minimum-cost flows: they show that in networks with unit costs, the universally
quickest flow, i.e. a flow with both the earliest-arrival and latest-departure property, has minimum cost [7].

The greedy algorithm described above constructs an integral solution automatically, as long as the arc
capacities are integral. In other words, on unit-cost series-parallel networks, MPC-MTRF has optimal
integral solutions.

5 Long time horizons
In the instance constructed in the proof of Theorem 13, transit times of all s-t paths in the network are
almost as long as the time horizon. If, on the contrary, the time horizon is at least twice as long as the
longest transit time of a path, we can solve the MPC-MTRF problem in polynomial time.

Theorem 17. Let N = (G, u, τ, c) be a network over time. Further, let T be a time horizon such that any
s-t path p in G satisfies τ(p) ⩽ T

2 . Then a maximum temporally repeated flow with minimum peak cost can
be found in time polynomial in the size of the network.

We prove Theorem 17 in three steps. First, we generalise the result from Section 4 and show in Lemma 18
that for a long time horizon, any feasible flow attains the peak cost in the middle of the time horizon,
and express the peak cost analytically. Second, in Lemma 19, we observe that minimising the peak cost
is equivalent to maximising a function dependent only on the corresponding static flow and on network
parameters. Finally, in Lemma 20, we transform the maximisation of the latter function into a minimum
cost circulation problem on an auxiliary network. Since the minimum-cost circulation problem is polynomial-
time solvable, we obtain a polynomial algorithm for MPC-MTRF with long time horizon.

Lemma 18. Let N = (G, u, τ, c) be a network and T ∈ N a time horizon such that all paths in N have
transit time not greater than T

2 . Then a maximum temporally repeated flow f associated with a static flow
x has peak cost

cmax(f) =
∑
a∈A

ca · τa · x(a),

which is attained at time θ̂ =
⌊
T
2

⌋
.

Proof. First, observe that the term
∑

a∈A ca · τa · x(a) is an upper bound on cost at a time point. It is thus
enough to show that this cost is indeed attained at time θ̂.

Since transit times are integer, any path p in the network, and thus in the path decomposition, has transit
time τ(p) ⩽ θ̂. Consider an arbitrary arc a = (v, w) ∈ G and a path p ∈ P in the flow decomposition of flow
f such that y(p) > 0 and a ∈ p. Then we have p ∈ Pa(ξ) for each ξ ∈ [θ̂ − τa, θ̂) (see Definition 3), as

τ(p|s,v) ⩽ τ(p)− τa ⩽ θ̂ − τa ⩽ ξ
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and
τ(p|w,t) ⩽ τ(p) ⩽ θ̂ =

⌊
T

2

⌋
⩽ T − θ̂

ξ<θ̂
< T − ξ.

Hence, every path of the flow f containing arc a uses this arc in time interval [θ̂ − τa, θ̂), and the flow rate
on arc a for any ξ ∈ [θ̂ − τa, θ̂) is

fa(ξ) =
∑

p∈Pa(ξ)

y(p) =
∑
p∈P,
a∈p

y(p) = x(a).

The cost of flow f at time θ̂ is thus

c(f, θ̂) =
∑
a∈A

ca ·
∫ θ̂

θ̂−τa

fa(ξ) dξ =
∑
a∈A

ca · x(a) · (θ̂ − θ̂ + τa) =
∑
a∈A

ca · τa · x(a) = cmax(f).

The next result establishes a relation between the peak cost of a flow over time and the underlying static
flow.

Lemma 19. For a network (G, u, τ, c), define a number M :=
∑

a∈A ca · τa · ua + 1. Let T ∈ N be a time
horizon. Let x′ be a feasible static flow that admits a T -bounded path decomposition and that maximises the
term

Φ(x) := M · T · |x| −
∑
a∈A

(
M + ca

)
· τa · x(a). (1)

Then any associated temporally repeated flow f ′ is a maximum temporally repeated flow, and the static flow
x′ minimises the sum

∑
a∈A ca · τa · x(a) among all static flows that induce maximum temporally repeated

flows.

Proof. Let f be a temporally repeated flow associated with a static flow x. We transform term (1) as follows:

Φ(x) =M · T · |x| −
∑
a∈A

(
M + ca

)
· τa · x(a)

=M · T · |x| −M ·
∑
a∈A

τa · x(a)−
∑
a∈A

ca · τa · x(a)

Lemma 5
= M · | f | −

∑
a∈A

ca · τa · x(a).

Suppose a static flow x′ maximises expression (1), but the associated temporally repeated flow f ′ is not
maximum. Then there exists a temporally repeated flow f ′′ that corresponds to a static flow x′′ and whose
value is strictly greater than the value of f ′, i.e. | f ′′| > | f ′|.

Since all arc parameters are integers, so are all flow values: for static flows this follows from the main
result of Ford and Fulkerson on maximum flows over time [10], and for associated flows over time from
Lemma 5. Hence, we have | f ′′| ⩾ | f ′|+ 1, and obtain

Φ(x′′) = M · | f ′′| −
∑
a∈A

ca · τa · x′′(a)

⩾ M · | f ′|+M −
∑
a∈A

ca · τa · x′′(a)

⩾ M · | f ′| −
∑
a∈A

ca · τa · x′(a) +M −
∑
a∈A

ca · τa · (x′′(a)− x′(a))
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⩾ M · | f ′| −
∑
a∈A

ca · τa · x′(a) +M −
∑
a∈A

ca · τa · ua

> M · | f ′| −
∑
a∈A

ca · τa · x′(a)

= Φ(x′),

so flow x′ does not maximise term (1), which is a contradiction. Hence, flow x′ induces a maximum temporally
repeated flow, and thus maximises the value M · | f |. Furthermore, since x′ maximises Φ(x), it has a minimal
value of the sum

∑
a∈A ca ·τa ·x(a) among all static flows x inducing maximum temporally repeated flows.

A static flow maximising expression (1) is found via an auxiliary minimum cost circulation problem,
similar to the one used for finding maximum temporally repeated flows [10].

Lemma 20. Let a network N = (G, u, τ, c) and a time horizon T be given. Then a static flow x in network
N that maximises expression (1) and has a T -bounded path decomposition can be found in polynomial time.

Proof. We transform the graph G into an auxiliary graph G by adding an arc (t, s) with capacity u(t,s) =∞.
For a number M ∈ N defined as in Lemma 19, we define arc costs in network G as follows:

γ : A(G)→ Z, a 7→

{
−M · T, a = (t, s),

M · τa + ca · τa, otherwise.
(∗∗)

Let x be a circulation in G. A static s-t flow x in networkN corresponding to x is a flow that results from x
by removing the flow over the arc (t, s). Observe that the value of the circulation and of the corresponding
flow is equal to the flow value on the arc (t, s) – the only ingoing arc of the source s.

Now let x be a minimum cost circulation in G and x the corresponding flow in G. We show that x
maximises expression (1) and that any of its flow decompositions is T -bounded.

We express the costs of circulation x as

γ(x) = −M · T · x(t, s) +
∑
a∈A

γ(a) · x(a)

= −M · T · x(t, s) +
∑
a∈A

γ(a) · x(a)

= −M · T · |x|+
∑
a∈A

γ(a) · x(a)

= −Φ(x).

Hence, a minimum cost circulation yields a static flow x that maximises term (1).
It remains to show that flow x admits a T -bounded path decomposition and thus produces a feasible

temporally repeated flow. Let y : P ∪ C → R be an arbitrary flow decomposition of the flow x of size at
most |A|. Such a decomposition exists and can be computed in polynomial time by the well-known Flow
Decomposition Theorem [1]. We show that we can transform the flow decomposition y into a T -bounded
path decomposition y′ in linear time, i.e. a decomposition for which y′(p) = 0 for any path p ∈ P with
τ(p) > T and any cycle p ∈ C.

First, let p ∈ P be an s-t path in G with τ(p) > T and a positive flow value y(p) > 0. Then

γ(p) =
∑
a∈p

γ(a) ⩾ M ·
∑
a∈p

τa = M · τ(p) > M · T.

Since y(p) > 0, there exists a backward path ←−p in the residual network of the circulation x such that the
cycle ←−p ∪ (s, t) has costs

γ(←−p ∪ (s, t)) < −M · T +M · T = 0.
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Hence, there is a negative-cost cycle in the residual graph, which contradicts the minimality of x. So we
have τ(p) ⩽ T for any path p ∈ P with y(p) > 0.

If p ∈ C is a cycle in G with y(p) > 0 and γ(p) 6= 0, then either p or its reverse ←−p is a negative cycle in
the residual network, which contradicts the optimality of circulation x. Hence, the cycle p has cost γ(p) = 0,
and the flow along p can be removed without changing the value or the cost of the circulation. Hence, we
obtain a T -bounded path decomposition y′ : P → R by setting y′(p) := 0 for all cycles p ∈ C and y′(p) := y(p)
otherwise.

Observe that if all arc parameters are integers, then the resulting static flow x is integral, and a path
decomposition obtained by, for instance, a greedy Edmonds-Karp heuristic is integral as well. Hence, the
static flow found in Lemma 20 yields an integral temporally repeated flow.

Overall, instances of MPC-MTRF with sufficiently long time horizons are solved by the following steps:

1. Compute M :=
∑

a∈A ca · τa · ua + 1.

2. Construct an auxiliary network G =
(
V (G), A(G) ∪ (t, s)

)
with u(t,s) = ∞ and with an arc cost

function as in (∗∗).

3. Find a minimum-cost circulation x in G and the corresponding static flow x in the original network G.

4. Compute an integral path decomposition of the flow x.

5. The path decomposition yields an integral maximum temporally repeated flow with minimum peak
cost.

Note that again, as in Section 4, the described procedure is not enforcing the solution to be integral,
but yields integral solutions nonetheless. This implies that on instances of MPC-MTRF with long time
horizon, we always construct an integral optimal solution.

6 Conclusion and outlook
In this work, we introduced peak cost as a novel objective for flows over time and motivated its relevance. We
then looked at peak costs in the context of maximum temporally repeated flows and formulated the MPC-
MTRF problem. We showed that MPC-MTRF has an integrality gap of Ω(

√
n). For quickest min-cost

flows, we know that temporally repeated flows yield a (2 + ϵ)-approximation. For the minimum-peak-cost
objective and maximum flows, we showed that the corresponding approximation ratio is unbounded.

Similarly to the minimum-cost objective, the decision version of MPC-MTRF is strongly NP-hard, even
for two-terminal series parallel graphs with unit transit times, capacities, and costs equal to zero or one.
This implies that the optimisation version is strongly NP-hard, even under the above restrictions.

However, we indicated two special cases for which we have polynomial algorithms constructing integral
optimal solutions. For unit cost networks, we showed that an optimal solution on series-parallel graphs can
be found by a greedy algorithm proposed by Ruzika et al. [22] for earliest arrival flows, which are temporally
repeated flows in this case. For the special case of long time horizons, we computed optimal solutions by
constructing a static minimum cost circulation in an auxiliary graph.

There are multiple avenues for future work: For example, can our polynomial algorithms be adjusted to
finding flows of given, not maximal, value? As this work focused on integer flows, another research question
would be the complexity of finding optimal fractional solutions to the MPC-MTRF. Finally, temporally
repeated flows lend themselves to path-based integer programming formulations. For solving MPC-MTRF
in a real-world setting, these might be promising, especially if the number of paths is bounded or a branch-
and-price algorithm is employed.
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