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Abstract

Based on recent advances in Benders decomposition and two-stage stochastic integer
programming we present a new generalized framework to generate Lagrangian cuts in mul-
tistage stochastic mixed-integer linear programming. This framework can be incorporated
into existing solution methods, such as the stochastic dual dynamic integer programming
(SDDiP) algorithm. We show how different normalization techniques can be applied in
order to generate cuts satisfying specific properties with respect to the convex hull of the
epigraph of the value functions, e.g. having a maximum depth or being facet-defining.
We provide computational results to evaluate the efficacy and performance of different
normalizations in our new framework, showing that compared to existing techniques from
the literature significantly better lower bounds can be obtained.

1 Introduction

In this paper, we study cut generation strategies that can be applied in decomposition
methods for solving multi-stage stochastic mixed-integer linear programs (MS-MILP).
More precisely, we present an alternative framework for the generation of Lagrangian
cuts, as they are used for instance in stochastic dual dynamic integer programming
(SDDiP) proposed by [33].

1.1 Motivation and Prior Work

Multistage stochastic programs are very relevant to model decision-making processes
in practice because often sequential decisions have to be made over a finite number of
stages and under uncertainty considering the problem data of the following stages. For
the solution of these problems, tailored decomposition methods are most widely used,
among the most prominent ones nested Benders decomposition (BD) [6] and stochastic
dual dynamic programming (SDDP) [25]. These methods decompose the large-scale
problem into stage- and scenario-specific subproblems, coupled by state variables and
so-called value functions, denotedQn(·). For linear problems. these functions are convex
polyhedral and can be exactly represented by finitely many affine functions called cuts
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[7]. However, in many applications some of the decision variables have to be integer
or binary. In this case, we obtain an MS-MILP and the value functions are in general
non-convex and discontinuous.

A key challenge is that in this case, linear under-estimators are in general not tight.
They may at best yield the closed convex envelope co(Qn)(·) of Qn(·), which is the
pointwise supremum of all affine functions majorized by Qn(·) [4]. Even this property
is not achieved by classical Benders cuts in general. Therefore, more focus has been put
on Lagrangian cuts lately, which are constructed by solving special Lagrangian dual
problems [33]. These Lagrangian cuts have useful properties: They are valid under-
estimators of Qn(·) [33] and they can be used to recover co(Qn)(·) [19]. As shown in
[33], if all state variables of the MS-MILP are binary, this even ensures tightness for
Qn(·), which is sufficient to establish almost sure finite convergence of SDDiP.

Nonetheless, applying Lagrangian cuts computationally in practice comes with some
considerable challenges: First, Lagrangian dual problems are often degenerate with
multiple optimal solutions. Even if all the cuts associated with these solutions are tight,
their approximation quality may differ significantly. This issue is especially common for
the binary state space required in SDDiP because all cuts are constructed at extreme
points of the state space.

Second, even if the Lagrangian dual is a convex optimization problem, it may be
very costly to solve repeatedly due to its non-smooth objective function. This is only
aggravated if the state space is artificially increased by a binary expansion, as proposed
in SDDiP for the case of non-binary state variables [33]. This drawback is already
identified in the original SDDiP work [33]. It is concluded that performance-wise the
improvement in cut quality is often not worth the significant increase in solution time.

Finally, tight Lagrangian cuts are crucial to ensure theoretical convergence of SDDiP,
but this convergence may be quite slow. At worst, a complete enumeration of the binary
state space is required. It is plausible that there exist alternative, possibly non-tight,
cuts that may significantly speed-up the convergence process.

For the aforementioned reasons, in this paper we address the question of how to
improve the generation and usage of Lagrangian cuts in decomposition methods for
MS-MILP such as SDDiP.

Some first attempts with this aim have been made recently. In the original SDDiP
paper it is proposed to combine tight cuts with strengthened Benders cuts that are not
tight in general, but outperform classical Benders cuts and are efficient to compute [33].
Rahmaniani et al. [26] present a heuristic to generate Lagrangian cuts more efficiently
using inner approximations or partial relaxations. Chen and Luedtke [11] suggest to
restrict the feasible set of dual multipliers to the span of Benders cut coefficients of
previous iterations for two-stage problems.

In addition, there has been a lot of research on alternative cut generation techniques
for BD, which may be applicable to the stochastic and Lagrangian setting as well.
To address degeneracy and dominated cuts in BD, Magnanti and Wong [23] present
a two-step approach to generate Pareto-optimal cuts. Their ideas are improved by
[24] who shows that it is sufficient to solve a single optimization problem to generate
Pareto-optimal cuts. Sherali and Lunday [29] propose to generate certain maximal
non-dominated Benders cuts by solving a perturbation of the original subproblem.

A novel framework to generate Benders cuts is introduced in [17]. In contrast to
standard BD, it allows to generate optimality and feasibility cuts in a unified way
using the same cut generation problem. Even more, several different cut generation
techniques can be explored. More precisely, applying the framework initially leads to
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an unbounded separation problem. For the actual cut generation, unbounded rays have
to be identified, which allows for a lot of methodological flexibility.

Fischetti et al. [17] show that using a special normalization of the cut generation
problem, the obtained cuts can be proven to correspond to minimal infeasible subsys-
tems. Hosseini and Turner [22] use a different normalization to generate deep cuts
in BD, which are characterized by their property to maximize the distance between
the separating hyperplane and the point to separate. They report considerable perfor-
mance gains compared to classical BD. The idea of deep cuts is not new, but priorly
discussed in context of disjunctive programming [10, 13]. Brandenberg and Stursberg
[9] show how facet-defining and Pareto-optimal cuts can be generated in BD using the
unified framework and the so-called reverse polar set, see also [30]. It is shown that the
performance improvement using this approach is significant. The same cut generation
procedure is put forward in [27], but motivated from a different angle, that is geomet-
rically. A different approach to separate facet-defining cuts is presented by [12] for
disjunctive programming. To our knowledge, only the work by Fischetti et al. has been
applied to the stochastic setting and to Lagrangian cuts so far [11]. The authors use
the unified framework and a specific normalization technique to generate Lagrangian
cuts for two-stage stochastic MILPs.

In this paper, we provide a more general framework for the multistage case and com-
pare various different normalization techniques from a theoretical and computational
perspective. In particular, we analyze the Lagrangian cuts that are obtained if the
Lagrangian dual is normalized using norm constraints or linear constraints. We show
that under some assumptions, these cuts are deep, facet-defining or Pareto-optimal.

1.2 Contribution

The key contributions of this paper are summarized below.

(1) We show how the alternative cut generation framework proposed for BD from [17]
can be applied to the generation of Lagrangian cuts for MS-MILPs. This idea has
already been used by [11] in two-stage stochastic MILPs, but to our knowledge
has not been extended to the multistage case yet.

(2) As the Lagrangian dual problems in this framework are unbounded, some nor-
malization is required to select cut coefficients in a reasonable way. We draw
on recent concepts for cut selection in BD, such as optimizing over the reverse
polar set [9] or generating deep cuts [22], and extend them to the stochastic and
Lagrangian setting. This way, we obtain a variety of different normalization tech-
niques and by that generalize the cut generation approach from [11]. We show
that depending on the chosen normalization, cuts satisfying different quality cri-
teria can be obtained, e.g., deep cuts, facet-defining cuts or Pareto-optimal cuts.
Moreover, we investigate in detail the geometrical ideas and relations behind these
normalizations.

(3) We show that linear normalizations are closely related to the identification of core
points in the epigraphs epi(Qn), which can be challenging for multistage stochastic
problems. Therefore, we propose four heuristic approaches for the computation
of core point candidates.

(4) We perform extensive computational tests for SDDiP incorporating the new cut
generation framework on a capacitated lot-sizing problem from the literature. We
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show that the obtained lower bounds in SDDiP are majorly improved using cuts
from our proposed generation framework compared to classical Lagrangian cuts
or Benders cuts. We also observe that this does not necessarily guarantee an
improvement of the in-sample performance of the obtained policies, though.

1.3 Structure

This paper is structured as follows. In Sect. 2 we formally introduce MS-MILPs and
our notation. In Sect. 3 we introduce the new cut generation framework for Lagrangian
cuts. We then present different types of Lagrangian cuts that can be obtained by
using special normalizations. In Sect. 4, we present computational experiments for
SDDiP incorporating these cuts for two MS-MILPs from the literature. We finish with
a conclusion in Sect. 5. For reasons of space, the proofs of our theoretical results are
shifted to the appendix.

2 Problem Formulation

We start by introducing MS-MILPs and their decomposition formally, mostly following
the notation from [33]. We consider MS-MILPS with a finite number T ∈ N of stages,
where some of the problem data is uncertain and evolves according to a known stochastic
process ξ := (ξ1, . . . , ξT ) with deterministic ξ1. We assume that the random data vectors
ξt, t = 1, . . . , T, are discrete and finite, such that the uncertainty can be modeled by a
finite scenario tree. Let N denote the set of nodes of this tree. For each node n ∈ N , the
unique ancestor node is denoted by a(n) and the set of child nodes is denoted by C(n).
The probability for some node n is pn > 0 and assumed to be known. The transition
probabilities between adjacent nodes n,m ∈ N can then be determined as pnm := pm

pn
.

For the root node r, we assume a(r) = ∅ and pr = 1. We define N := N \ {r} to

address the set of nodes without the root node, ‹N to address the set of nodes without
leaf nodes and denote by N (t) the nodes at stage t.

For each node n ∈ N , we distinguish state variables xn ∈ Rdn , which also appear
in child nodes of n, and local variables yn ∈ Rd̃n . fn(·) denotes the objective function
of node n and Fn(xa(n)) denotes the feasible set of node n, which depends on the state
variable xa(n) from the ancestor node. We assume that fn(·) is a linear function in xn

and yn, and that Fn(·) is a mixed-integer polyhedral set for all xa(n). More precisely,
we assume it to be defined by

Fn(xa(n)) :=
{
(xn, yn) ∈ Rdn × Rd̃n : xn ∈ Xn, yn ∈ Yn,

Anxa(n) +Bnxn + Cnyn ≥ bn

}
.

(1)

Here, An, Bn, Cn, bn denote appropriately defined data matrices and vectors. The sets
Xn and Yn are intersections of polyhedral sets X̄n, Ȳn and possible integrality constraints.
In the following, we also refer to Xn as the state space.

An MS-MILP can then be expressed by its dynamic programming equations. For
the root node, we obtain

v∗ := min
xr ,yr

ß
fr(xr, yr) +

∑
m∈C(r)

prmQm(xr) : (xr, yr) ∈ Fr(xa(r))

™
(2)
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with xa(r) = 0, and v∗ is the optimal value of the original problem. Let R := R∪{+∞}.
For all n ∈ N , the value function Qn : Rda(n) → R is defined by

Qn(xa(n)) := min
xn,yn

ß
fn(xn, yn) +

∑
m∈C(n)

pnmQm(xn) : (xn, yn) ∈ Fn(xa(n))

™
.

For the leaf nodes n ∈ N \ ‹N , we set
∑

m∈C(n) pnmQm(xn) ≡ 0. Moreover, we set
Qn(xa(n)) = +∞ if Fn(xa(n)) = ∅, and denote by dom(Qn) the effective domain of
Qn(·).
Remark 2.1. Note that regarding Qn(·) as a function on Rda(n) is not standard in
stochastic programming. Often it is (implicitly) assumed to be defined only on the domain
Xa(n). However, from our view, allowing Qn(·) to be defined on Rda(n) with extended real
values appears more suitable for the following steps.

As this proves beneficial in the cut generation process, we introduce local variables
zn and accompany them with copy constraints xa(n) = zn and constraints zn ∈ Za(n),
with Za(n) ⊇ Xa(n). The most natural choice is Za(n) = Xa(n), but also other choices are
possible, e.g., Za(n) = conv(Xa(n)). For more details we refer to [19]. This reformulation
yields the equivalent subproblems

Qn(xa(n)) = min
xn,yn,zn

ß
fn(xn, yn) +

∑
m∈C(n)

pnmQm(xn) : (zn, xn, yn) ∈ Fn,

zn = xa(n), zn ∈ Za(n)

™
,

(3)

where, Fn :=
¶
(xn, yn, zn) ∈ Rda(n) × Rdn × Rd̃n : (xn, yn) ∈ Fn(zn)

©
.

For the remainder of this article, we make some basic assumptions.

Assumption 1. The following conditions are satisfied by (1)-(3):

(A1) For all n ∈ N , the sets Xn and Yn are compact.

(A2) For all n ∈ N , all coefficients in An, Bn, Cn, bn, fn, X̄n and Ȳn are rational.

(A3) For all n ∈ N , Za(n) is compact, rational MILP-representable and Za(n) = dom(Qn).

Note that (A1) immediately implies that Fn(xa(n)) is bounded for all xa(n) ∈ Rda(n)

and n ∈ N . Property (A3) implies relatively complete recourse, a standard assumption
in stochastic programming.

We have the following standard properties for the value functions.

Lemma 2.2. For all n ∈ N , the value functions Qn(·) are proper, l.sc. (lower semi-
continuous) and piecewise polyhedral with finitely many pieces.

By applying the properness reasoning to the root node, we conclude that v∗ is finite.

3 A New Cut Generation Framework

In this section, we present a novel framework for the generation of Lagrangian cuts for
MS-MILPs, which serves as an alternative to the classical Lagrangian cut generation
framework from SDDiP [33], which we state in Appendix A for comparison. The new
framework is based on ideas from [17], and in one specific form has been applied to
two-stage stochastic programs in [11].
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3.1 An Epigraph Perspective on Cut Generation

Recall the definition of the epigraph of the value functions Qn(·), n ∈ N :

epi(Qn) =
{
(xa(n), θn) ∈ Rda(n) × R : θn ≥ Qn(xa(n)), xa(n) ∈ dom(Qn)

}
. (4)

We can use this definition to reformulate the subproblems (3) to

Qn(xa(n)) = min
xn,yn,zn,(θm)

ß
fn(xn, yn) +

∑
m∈C(n)

pnmθm : (zn, xn, yn) ∈ Fn,

zn = xa(n), zn ∈ Za(n),

(xn, θm) ∈ epi(Qm), m ∈ C(n)
™
.

(5)

Here, and in the following, we use (θm) as a shortened notation for (θm)m∈C(n).

Remark 3.1. The condition xn ∈ dom(Qm) from the definition in (4) is always satisfied
implicitly in problem (5), since dom(Qm) = Zn by Assumption 1 and xn ∈ Xn ⊆ Zn by
construction.

In classical Benders-like decomposition methods, iteratively optimality cuts are con-
structed to approximate Qn(·) and, if required, feasibility cuts are constructed to ap-
proximate dom(Qn). This is done by solving distinct cut generation problems. However,
from (4) it is evident that both types of cuts actually approximate epi(Qn). Therefore,
we may as well consider a unified cut generation problem to obtain polyhedral approxi-
mations Ψm of the sets epi(Qm) [17]. Whereas we solely focus on optimality cuts in this
paper, as the need of feasibility cuts is ruled out by Assumption 1 (A3), the resulting
cut generation framework still proves itself valuable, as we shall see.

Remark 3.2. In multistage stochastic programming the cuts are often aggregated to
obtain cuts for the expected value functions

∑
m∈C(n) pnmQm(xn) ( single-cut approach),

as this reduces the total number of cuts in the subproblems. In this paper, instead,
we consider a separate set of cuts, i.e., separate approximations Ψm, for each epi(Qm)
(multi-cut approach). This approach is required in the new cut generation framework.

As the value functions Qn(·) are not known explicitly, for the cut generation process
we replace each occurrence of epi(Qm) in (5) with its current approximation Ψi+1

m (with
iteration index i). We refer to the associated value functions Qi+1

m
(·) as approximate

value functions. This way, we actually generate cuts approximating epi(Qi+1
m

). However,
by construction these cuts do also yield outer approximations of epi(Qm). To avoid
unboundedness, each set is initialized with a valid outer approximation Ψ0

m,m ∈ C(n).
For notational simplicity, for the remainder of this paper we define the set

W i+1
n :=

{(
xn, yn, zn, (θm)

)
: (xn, yn, zn) ∈ Fn, zn ∈ Za(n), (xn, θm) ∈ Ψi+1

m ,m ∈ C(n)
}
,

and further define λn :=
(
xn, yn, (θm)

)
and c⊤nλn := fn(xn, yn) +

∑
m∈C(n) pnmθm (recall

that f(·) is linear). Then, the approximate value function associated with problem (5)
can be compactly written as

Qi+1
n

(xi
a(n)) = min

λn,zn

{
c⊤nλn : (λn, zn) ∈ W i+1

n , zn = xi
a(n)

}
. (6)
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We make another assumption for the remainder of this paper. As for Assumption 1,
we assume it to always be satisfied, even if not explicitly stated in our results.

Assumption 2. For all n ∈ N and all iterations i, all linear cuts defining the polyhedral
set Ψi+1

m are defined by rational coefficients.

Furthermore, in the next sections, we often require the convex hull conv(W i+1
n ) of a

set W i+1
n . It has the following important property.

Remark 3.3. The set conv(W i+1
n ) is a closed convex polyhedron. That means that there

exist matrices Ãn, B̃n and a vector d̃n such that

conv(W i+1
n ) =

¶
(λn, zn) : Ãnλn + B̃nzn ≥ d̃n

©
.

3.2 A Feasibility Problem for the Epigraph

We can now start to address the actual cut generation process in the proposed unified
framework. Given a point (xi

a(n), θ
i
n), we consider the feasibility problem

vf,i+1
n (xi

a(n), θ
i
n) := min

λn,zn

{
0 : (λn, zn) ∈ W i+1

n , zn = xi
a(n), θin ≥ c⊤nλn

}
, (7)

which can be shown to verify if (xi
a(n), θ

i
n) ∈ epi(Qi+1

n
), see Appendix B.1 for a proof.

Lemma 3.4. Given a point (xi
a(n), θ

i
n), problem (7) is a feasibility problem for epi(Qi+1

n
),

that is,

vf,i+1
n (xi

a(n), θ
i
n) =

{
0, if (xi

a(n), θ
i
n) ∈ epi(Qi+1

n
)

+∞, else.

3.3 Lagrangian Cuts in the New Framework

To generate Lagrangian cuts, we apply a Lagrangian relaxation to problem (7). A key
difference to the classical Lagrangian relaxation from SDDiP (see Appendix A) is that
not only xi

a(n), but (xi
a(n), θ

i
n) is regarded as a fixed incumbent for the cut generation

process. Therefore, we relax all constraints containing either xi
a(n) or θin. For given

multipliers (πn, πn0) ∈ Rda(n) × R+ the dual function is then given by

L i+1
n (πn, πn0) := min

λn,zn

{
π⊤
n zn + πn0c

⊤
nλn : (λn, zn) ∈ W i+1

n

}
. (8)

The corresponding Lagrangian dual problem is

max
πn,πn0

{
L i+1

n (πn, πn0)− π⊤
n x

i
a(n) − πn0θ

i
n : πn0 ≥ 0

}
. (9)

We state some important properties of this dual problem, with a proof provided in
Appendix B.2.

Theorem 3.5. For the Lagrangian dual (9) it holds:

(i) The dual function L i+1
n (·) is piecewise linear concave in (πn, πn0).
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(ii) Its optimal value v̂D,i+1
n (xi

a(n), θ
i
n) satisfies

v̂D,i+1
n (xi

a(n), θ
i
n) =

{
0, if (xi

a(n), θ
i
n) ∈ epi(co(Qi+1

n
))

+∞, else.

Theorem 3.5 implies that the Lagrangian dual is unbounded whenever (xi
a(n), θ

i
n) /∈

epi(co(Qi+1
n

)). Therefore, there exists an unbounded ray (πi
n, π

i
n0) such that

L i+1
n (πi

n, π
i
n0)− (πi

n)
⊤xi

a(n) − πi
n0θ

i
n > 0,

and (xi
a(n), θ

i
n) violates the following Lagrangian cut:

Definition 3.6. For all n ∈ N and some multipliers (πi
n, π

i
n0), a Lagrangian cut is

given by

πi
n0θn + (πi

n)
⊤xa(n) ≥ L i+1

n (πi
n, π

i
n0). (10)

This cut is valid for any feasible (πi
n, π

i
n0) in (9), as proven in Appendix B.3.

Lemma 3.7. For any (πi
n, π

i
n0) ∈ Rda(n) ×R+ the Lagrangian cut (10) is satisfied by all

(xa(n), θn) ∈ epi(co(Qi+1
n

)), and thus by all (xa(n), θn) ∈ epi(Qn).

We analyze the relation between the Lagrangian cuts (10) and the classical ones (19).
We restrict to πn0 > 0 because πn0 = 0 leads to feasibility cuts that by assumption are
not required in our case.

Remark 3.8. Let πi
n0 > 0 in cut (10). As shown in Proposition 1 in [11], with division

by πi
n0, it follows

θn ≥ 1

πi
n0

L i+1
n (πi

n, π
i
n0)−

Å
πi
n

πi
n0

ã⊤
xa(n)

= L i+1
n (π̂n, 1)− π̂⊤

n xa(n)

= Li+1
n (π̂n)− π̂⊤

n xa(n)

with π̂n := πi
n

πi
n0
. This is an equivalent representation of (10) in the form of a classical

Lagrangian optimality cut (19), see Appendix A.

We should emphasize that despite the scaling relation shown in Remark 3.8, the
new cut generation framework may yield different cuts than the classical one because
the choice of dual multipliers is based on a different dual problem.

3.4 Cut Selection Criteria

It is not immediately clear how to select cut coefficients (πi
n, π

i
n0) from the unbounded

Lagrangian dual (9) in the most reasonable way. On the one hand, we aspire to deter-
mine coefficients (πi

n, π
i
n0) by solving a bounded and feasible optimization problem. On

the other hand, we want to make sure that the obtained cuts are not only separating
the incumbent (xi

a(n), θ
i
n) from epi(Qn), but also of good approximation quality.

The first aim can be achieved by bounding problem (9) artificially, e.g., by introduc-
ing bounds on the dual multipliers or introducing a normalizing constraint. Another
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Table 1: Examination of cut quality criteria in the literature on BD and disjunctive
programming.

Paper MIS Max. depth Facet-def. Pareto-opt.

Magnanti and Wong [23] ✓
Cornuéjols and Lemaréchal [13] ✓ ✓
Papadakos [24] ✓
Cadoux [10] ✓ ✓
Fischetti et al. [17] ✓
Sherali and Lunday [29] ✓
Conforti and Wolsey [12] ✓
Brandenberg and Stursberg [9] ✓ ✓ ✓
Hosseini and Turner [22] ✓
Seo et al. [27] ✓
This paper ✓ ✓ ✓

MIS: Cuts that correspond to minimal infeasible subsytems of the feasibility subproblem.

common approach is to fix its unbounded objective to 1. Combined with Remark 3.3
this allows to identify unbounded rays by analyzing a compact polyhedron [17].

With regard to the second aim, various quality criteria for cutting-planes have been
put forward in the literature [14]. Many of these criteria have been applied in the
context of BD or disjunctive programming before, as shown in Table 1, but our paper
is the first one applying them to Lagrangian cuts, and incorporating most of them at
once. We focus on three important criteria:

� Facet-defining cuts. These cuts reproduce facets of a convex polyhedral set, in our
case epi(co(Qi+1

n
)), and thus may be helpful in ensuring finite convergence.

� Pareto-optimal cuts [23]. For πn0 > 0, these cuts (10) are non-dominated in the
sense that there exists no other cut π̃n0θn +(π̃n)

⊤xa(n) ≥ L i+1
n (π̃n, π̃n0) such that

1

π̃n0

(
L i+1

n (π̃n, π̃n0)− (π̃n)
⊤xa(n)

)
≥ 1

π̃n0

(
L i+1

n (πi
n, π

i
n0)− (πi

n)
⊤xa(n)

)
for all (xa(n), θn) ∈ epi(co(Qi+1

n
)). Importantly, Pareto-optimality with respect

to epi(co(Qi+1
n

)) does not necessarily imply Pareto-optimality with respect to

epi(Qi+1
n

), but is easier to achieve.

� Deep cuts [8]. These cuts are deep in the sense that a maximum distance between
the incumbent (xi

a(n), θ
i
n) and the separating hyperplane is realized, i.e., they cut

as deep as possible into the suboptimal region.

As shown in the literature, especially in [9], many of these criteria can be satisfied by
optimizing over the so-called reverse polar set of epi(co(Qi+1

n
)) shifted by the incumbent

(xi
a(n), θ

i
n). The reverse polar set is an important tool in the theory on cut generation,

as it is directly linked to the support function of epi(co(Qi+1
n

)), and thus provides a

characterization of normal vectors of (xi
a(n), θ

i
n)-separating hyperplanes [9, 13].

The reverse polar set was first introduced by [3] and can be defined as follows.
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Definition 3.9. The reverse polar set of a set S ⊂ Rn is defined as

S− :=
{
d ∈ Rn : d⊤x ≤ −1 ∀x ∈ S

}
.

To simplify notation, we set Ri+1
n (xi

a(n), θ
i
n) :=

(
epi(co(Qi+1

n
))− (xi

a(n), θ
i
n)
)−

for the

reverse polar set of epi(co(Qi+1
n

)) shifted by (xi
a(n), θ

i
n). Using Remark 3.3, it can be

reformulated.

Lemma 3.10. The reverse polar set Ri+1
n (xi

a(n), θ
i
n) can be expressed as

Ri+1
n (xi

a(n), θ
i
n) =

(γn, γn0) ∈ Rda(n) × R : ∃µn ≥ 0 :

γn0 ≤ 0

− Ã⊤
nµn − γn0cn = 0

− B̃⊤
n µn − γn = 0

d̃⊤nµn + γ⊤
n x

i
a(n) + γn0θ

i
n ≥ 1

 .

We provide a proof in Appendix B.4.

Remark 3.11. Even with the above reformulation of Ri+1
n (xi

a(n), θ
i
n), an explicit for-

mulation is usually not readily available due to the existence quantor and due to Ãn, B̃n

and d̃n not being known.

Based on the existing work for BD, in the next sections, we present and investigate
different strategies to generate Lagrangian cuts satisfying the above quality criteria. In
the light of Remark 3.11, Ri+1

n (xi
a(n), θ

i
n) may not be used without further ado to gener-

ate such cuts computationally. Still, it proves useful in the derivation of Lagrangian cuts
with favorable properties. In particular, as we shall see, optimizing over Ri+1

n (xi
a(n), θ

i
n)

is closely linked to solving normalized Lagrangian dual problems. So in fact, our two
perspectives to approach cut selection are intertwined and boil down to considering
specific (bounded) normalizations of problem (9).

We first define the normalized Lagrangian dual in a general form and state some
important properties.

Definition 3.12. For some homogeneous normalization function gn : Rdn × R+ → R,
the normalized Lagrangian dual is defined as

v̂ND,i+1
n (xi

a(n), θ
i
n) := max

πn,πn0

{
L i+1

n (πn, πn0)− π⊤
n x

i
a(n) − πn0θ

i
n :

gn(πn, πn0) ≤ 1, πn0 ≥ 0
}
.

(11)

Remark 3.13. As long as the normalization constraint gn(πn, πn0) ≤ 1 is satisfied by
some neighborhood N of the origin, we do not exclude any potential cuts due to the
scaling property of πn0, see Remark 3.8 and [11].

Lemma 3.14. If (xi
a(n), θ

i
n) ∈ epi(co(Qi+1

n
)), then v̂ND,i+1

n (xi
a(n), θ

i
n) = 0, and vice versa.

We provide a proof in Appendix B.5. Lemma 3.14 allows us to solely focus on the
case where (xi

a(n), θ
i
n) /∈ epi(co(Qi+1

n
)) for the remainder of this section.

In the next two subsections, we consider two different types of normalization: by
norm constraints and by linear constraints. As we show, both types of normalization
can be viewed from three different perspectives (a primal perspective, a projection

10



Table 2: Examination of normalized cut generation problems and different perspectives
on it in the literature.

Norm normalization Linear normalization
Paper Prim Proj RP Prim Proj RP

Cornuéjols and Lemaréchal [13] ✓ ✓ ✓ ✓ ✓
Cadoux [10] ✓ ✓ ✓
Fischetti et al. [17] (✓)
Brandenberg and Stursberg [9] ✓ ✓
Hosseini and Turner [22] ✓ ✓ ✓
Chen and Luedtke [11] (✓∗)
Seo et al. [27] ✓
This paper ✓∗ ✓∗ ✓∗ ✓∗ ✓∗ ✓∗

Prim: Primal perspective. Proj: Projection perspective. RP: Reverse polar perspective.

(✓): Perspective is applied, but not further explored. ✓∗: Examination for Lagrangian cuts.

perspective and a reverse polar perspective). These perspectives have been analyzed in
the literature before, as shown in Table 2, but have not been linked all together in a
generalized framework and have not been applied to Lagrangian cuts.

3.5 Normalization by Norm and Deep Cuts

We consider the normalized Lagrangian dual (11) and the associated Lagrangian cuts
if some norm is used as the normalization function.

Definition 3.15. Let ∥·∥ be some arbitrary norm. The Lagrangian cut (10) defined
by the solution (πn, πn0) to the normalized Lagrangian dual (11) with gn(πn, πn0) =
∥πn, πn0∥ is called ∥·∥-deep Lagrangian cut. For ℓp-norms we may also use the term
ℓp-deep Lagrangian cuts.

If appropriate norms are used, e.g., ℓ1 or ℓ∞, then the normalization can be ex-
pressed by linear constraints. For the special choice of the ℓ1-norm, it is used by [11] to
generate Lagrangian cuts in two-stage stochastic programs, however without discussing
the conceptual idea behind it in detail.

Deep cuts allow for three theoretical and geometrical interpretations (cf. Table 2),
which also explain why they are called deep. As the existing results from the literature
can be applied to the multistage and Lagrangian setting in a straightforward way, for
reasons of space we do not provide proofs here.

(1) Maximizing cut depth. Deep cuts maximize the depth or scaled violation
among all potential cuts, i.e., the distance between the incumbent (xi

a(n), θ
i
n) and

the hyperplane associated with a potential cut in the dual norm ∥·∥∗ of ∥·∥. This
means that they cut as deep as possible into the suboptimal region.

Lemma 3.16 (based on [22]). Let ∥·∥ be some norm and ∥·∥∗ its dual norm. Fur-
ther, let dn

(
(xi

a(n), θ
i
n); (πn, πn0)

)
denote the distance between the hyperplane de-

fined by (πn, πn0) and the point (xi
a(n), θ

i
n) /∈ epi(co(Qi+1

n
)) measured in ∥·∥∗. Then,

the optimal value v̂ND,i+1
n (xi

a(n), θ
i
n) of problem (11) with gn(πn, πn0) = ∥πn, πn0∥

11



equals

max
πn,πn0

{
dn

(
(xi

a(n), θ
i
n); (πn, πn0)

)
: πn0 ≥ 0

}
.

(2) Projection onto the epigraph. From a primal perspective, generating ∥·∥-deep
cuts is in some sense equivalent to minimizing the distance in ∥·∥∗ between the
incumbent (xi

a(n), θ
i
n) and the epigraph epi(co(Qi+1

n
)), i.e., related to projecting

(xi
a(n), θ

i
n) onto the epigraph.

Lemma 3.17 (based on Lemma 2.5 in [10]). Let ∥·∥ be some norm and ∥·∥∗
its dual norm. Then, the optimal value v̂ND,i+1

n (xi
a(n), θ

i
n) of problem (11) with

gn(πn, πn0) = ∥πn, πn0∥ equals that of the projection problem

min
xa(n),θn

{
∥xa(n) − xi

a(n), θn − θin∥∗ : (xa(n), θn) ∈ epi(co(Qi+1
n

))
}
. (12)

Lemma 3.17 implies that v̂ND,i+1
n (xi

a(n), θ
i
n) > 0 if (xi

a(n), θ
i
n) /∈ epi(co(Qi+1

n
)),

whereas v̂ND,i+1
n (xi

a(n), θ
i
n) = 0 if not, so it confirms Lemma 3.14. Therefore, as

for the non-normalized case, we have a unique flag for cases where no separating
cut has to be constructed. However, in contrast to the non-normalized case, the
dual problem is bounded.

We can also conclude from Lemma 3.17 that a deep cut supports epi(co(Qi+1
n

)).

Corollary 3.18 (based on Proposition 3 in [22]). Suppose (xi
a(n), θ

i
n) /∈ epi(co(Qi+1

n
))

and let (x̂a(n), θ̂a(n)) ∈ epi(co(Qi+1
n

)) be a solution to (12). Then, any ∥·∥-deep cut

separating (xi
a(n), θ

i
n) from epi(co(Qi+1

n
)) supports epi(co(Qi+1

n
)) at (x̂a(n), θ̂a(n)).

(3) Minimizing a norm over the reverse polar set. Interestingly, deep cuts
allow for another geometric interpretation that is related to the reverse polar set
Ri+1

n (xi
a(n), θ

i
n). It is based on the observation thatRi+1

n (xi
a(n), θ

i
n) is directly linked

to the normals of separating hyperplanes.

Lemma 3.19 (Lemma 2.9 in [10]). Let (πi
n, π

i
n0) be the coefficients of a ∥·∥-deep

cut constructed at (xi
a(n), θ

i
n) /∈ epi(co(Qi+1

n
)). Then there exists some α > 0 such

that −α(πi
n, π

i
n0) minimizes ∥·∥ over the reverse polar set Ri+1

n (xi
a(n), θ

i
n).

The main idea to prove this result is that due to positive homogeneity, the norm
∥·∥ in the normalization constraint and the dual objective can be swapped.

To illustrate these three perspectives for different norms we provide an illustrative
example in Appendix C.1. It highlights that, whereas deep cuts can be unique, also
degenerate solutions are possible if the optimization over Ri+1

n (xi
a(n), θ

i
n) in Lemma 3.19

does not have a unique solution. This degeneracy of the dual (11) may lead to selection
of non-dominant cuts, compare Sect. 1.1, and is only excluded for the ℓ2-norm. Further,
even if unique, deep cuts are not guaranteed to be facet-defining. In fact, analyses in
Cadoux [10] and Hosseini and Turner [22] show that they tend to be flat, at least
when the optimality gap is still large. Finally, also the projection problem (12) is not
guaranteed to have a unique solution for all but the ℓ2-norm (see Fig. 10). However, if
the solution is non-unique, the associated cut is unique and facet-defining.
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3.6 Linear Normalization

We consider the normalized Lagrangian dual (11) with a linear normalization function
gn(πn, πn0) = u⊤

n πn + un0πn0 defined by some coefficients (un, un0) ∈ Rdn× ∈ R. Recall
that the initial Lagrangian dual problem (9) is unbounded and that we introduce the
normalization constraint in (11) in order to transform the problem to a bounded one to
identify unbounded rays. In contrast to the norm-based normalization from Sect. 3.5,
a linear normalization does not guarantee boundedness, though. Hence, the choice of
(un, un0) is crucial to ensure that an optimal solution exists. We further analyze this
later in this section, but for now take the following assumption.

Assumption 3. Given some (un, un0) ∈ Rdn ×R, the normalized Lagrangian dual (11)
with gn(πn, πn0) = u⊤

n πn + un0πn0 has a finite optimal value v̂ND,i+1
n (xi

a(n), θ
i
n) > 0.

3.6.1 Linear Normalization Cuts

We can then define the associated type of Lagrangian cuts.

Definition 3.20. Let (un, un0) ∈ Rdn ×R and let the normalized Lagrangian dual (11)
satisfy Assumption 3. Then, we refer to the Lagrangian cut (10) defined by its solution
(πn, πn0) as a linear normalization (LN) Lagrangian cut.

Again, we can take three different perspectives on LN cuts.

(1) Pseudonorm perspective. Hosseini and Turner [22] restrict to choices of (un, un0)
such that gn(πn, πn0) = u⊤

n πn + un0πn0 ≥ 0 for all (πn, πn0) ∈ Rdn × R+. In such
a case, gn(·) is a linear pseudonorm. This means that LN cuts can be interpreted
as maximizing the distance between the associated hyperplane and (x̂i

a(n), θ̂
i
n) in

a linear pseudonorm.

(2) Projection on a line segment. This perspective has been brought up several
times in the literature in different variants, most recently by [27]. Even though
the geometric idea is the same in the Lagrangian context, the formal description
changes a bit.

First, we exploit that for linear gn(·), the normalized Lagrangian dual (11) can be
reformulated as an LP and then be dualized with strong duality.

Lemma 3.21. Let (un, un0) ∈ Rdn × R. The normalized Lagrangian dual (11)
with gn(πn, πn0) = u⊤

n πn + un0πn0 can be formulated as an LP, and its dual is

min
λn,zn,ηn

{
ηn : (λn, zn) ∈ conv(W i+1

n ), ηn ≥ 0, un0ηn ≥ c⊤nλn − θin,

unηn = zn − xi
a(n)

}
.

(13)

We provide a proof in Appendix B.6. Problem (13) can be interpreted as finding
the smallest scaling factor ηn ≥ 0 such that starting from (xi

a(n), θ
i
n) along direction

(un, un0) a point in epi(co(Qi+1
n

)) is reached. Again, for the optimal value it follows

v̂ND,i+1
n (xi

a(n), θ
i
n) = η∗n > 0 if and only if (xi

a(n), θ
i
n) /∈ epi(co(Qi+1

n
)). Given

the optimal value, the projection of (xi
a(n), θ

i
n) onto epi(co(Qi+1

n
)) along direction

(un, un0) can be determined as

(x̂a(n), θ̂a(n)) = (xi
a(n), θ

i
n) + η∗n(un, un0). (14)
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We then obtain the following result:

Corollary 3.22. Let (un, un0) ∈ Rdn × R and let the normalized Lagrangian
dual (11) satisfy Assumption 3. Furthermore, let (x̂a(n), θ̂a(n)) ∈ epi(co(Qi+1

n
))

satisfy (14). Then, the associated LN cut supports epi(co(Qi+1
n

)) at (x̂a(n), θ̂a(n)).

(3) Maximizing a linear function over the reverse polar set. Again, an in-
terpretation with respect to Ri+1

n (xi
a(n), θ

i
n) is possible. More precisely, LN cuts

can be obtained by maximizing the linear objective function u⊤
n γn + un0γn0 over

Ri+1
n (xi

a(n), θ
i
n):

max
γn,γn0

{
u⊤
n γn + un0γn0 : (γn, γn0) ∈ Ri+1

n (xi
a(n), θ

i
n)
}
. (15)

This perspective is discussed in detail in [9] for BD and in [13] for general convex
sets. For the relation to the normalized Lagrangian dual (11), the following result
holds. For a sketch of the proof, see Appendix B.7.

Theorem 3.23 (based on [9]). Let (un, un0) ∈ Rdn×R and (xi
a(n), θ

i
n) /∈ epi(co(Qi+1

n
)).

Then the following results hold:

(i) If problem (11) satisfies Assumption 3, then problem (15) has a finite optimal
value, and vice versa.

(ii) The induced cuts for epi(co(Qi+1
n

)) are equivalent for both problems.

Geometrically, a favorable property of generating cuts based on Ri+1
n (xi

a(n), θ
i
n) is

that (given that epi(co(Qi+1
n

)) is a full-dimensional polyhedron) each vertex (γn, γn0) of

Ri+1
n (xi

a(n), θ
i
n) corresponds to the normal vector of a facet of epi(co(Qi+1

n
)), and vice

versa [9]. In order to identify such points, we can use the LP (15), given a choice of
(un, un0) ∈ Rdn × R such that a finite optimum is attained.

In fact, perspectives (2) and (3) make a sufficient condition for such a finite optimum
readily available, and by that also allow us to conclude when Assumption 3 is satisfied.
Whereas this result is known from convex analysis [9, 13], in Appendix B.8, we provide
an alternative proof based on perspective (2) and the Lagrangian setting.

Lemma 3.24. Assumption 3 is satisfied if

(un, un0) ∈ cone
(
epi(co(Qi+1

n
))− (xi

a(n), θ
i
n)
)
\ {0} , (16)

where cone(S) denotes the conical hull of a set S.

Lemma 3.24 implies that also choosing (un, un0) from epi(Qi+1
n

)− (xi
a(n), θ

i
n) or even

from epi(Qn)− (xi
a(n), θ

i
n) is sufficient. In other words, choosing reasonable coefficients

(un, un0) ∈ Rdn × R boils down to finding a core point within one of these epigraphs.
We discuss this in more detail in Sect. 3.6.2.

We now state some beneficial properties of LN cuts with respect to the aforemen-
tioned cut quality criteria.

Theorem 3.25. Let (un, un0) ∈ Rdn × R. Consider the normalized Lagrangian dual
problem (11) with gn(πn, πn0) = u⊤

n πn + un0πn0. Then,
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(i) for all (un, un0) ∈ cone
(
epi(co(Qi+1

n
))−(xi

a(n), θ
i
n)
)
\{0}, the optimal point (π∗

n, π
∗
n0)

defines a supporting cut for epi(co(Qi+1
n

)),

(ii) for all (un, un0) ∈ cone
(
epi(co(Qi+1

n
))− (xi

a(n), θ
i
n)
)
\ {0}, there exists an optimal

extreme point (π∗
n, π

∗
n0), such that the obtained cut is facet-defining for epi(co(Qi+1

n
)),

(iii) for all (un, un0) ∈ relint
(
epi(co(Qi+1

n
)) − (xi

a(n), θ
i
n)
)
, any optimal point (π∗

n, π
∗
n0)

with π∗
n0 > 0 defines a Pareto-optimal cut for epi(co(Qi+1

n
)) on conv(Za(n)).

Part (i) directly follows from Lemma 3.24 and Corollary 3.22. Part (ii) follows from
Theorem 3.3 in [9], and part (iii) follows from Theorem 3.43 in [30]. Note that the results
from the literature require to choose (un, un0) from the relative interior of the epigraph
restricted to conv(Xa(n)). However, under Assumption 1, if we choose Zn = Xa(n) or
Zn = conv(Xa(n)), in our case the considered epigraphs are always restricted to this set.

Considering part (ii), the only case in which no facet-defining cut is obtained occurs
if the optimal solution to the normalized Lagrangian dual (11) is not unique. However,
this is only the case for a small subset of choices (un, un0). Especially if the choice is
adapted in each iteration, the occurrences of such cases should be negligible [9]. With
respect to (iii), we should emphasize again that Pareto-optimality for epi(co(Qi+1

n
)) does

not necessarily imply Pareto-optimality for epi(Qi+1
n

).
We finish our theoretical results in this subsection with two remarks.

Remark 3.26. Based on the perspective taken, LN cuts are also called pseudo-deep
cuts [22] or closest cuts [27] in the literature on BD.

Remark 3.27. Choosing (un, un0) = (0, 1) in Definition 3.20 yields the classical La-
grangian cuts presented in Appendix A.

We illustrate the different perspectives on LN cuts again using an example in Ap-
pendix C.2.

3.6.2 Identifying Core Points

As described before, a key challenge of generating LN cuts with favorable properties is
to choose (un, un0) appropriately, i.e., according to Lemma 3.24 or Theorem 3.25. In
the literature, it is often proposed to evaluate feasible points in the objective function
to obtain core points (x̂i

a(n), θ̂
i
n), and by that reasonable coefficients (un, un0). Whereas

this approach is straightforward for BD or the two-stage stochastic case [9, 30], in
the multistage case, evaluating Qn(·) exactly is computationally prohibitive in general.
Therefore, we propose different heuristics based on using function Qi+1

n
(·).

We consider the following approaches:

� Mid. We set x̂i
a(n) = mid(conv(Xa(n))) where mid denotes the midpoint (that is,

we assume box constraints for xa(n)). The idea is that incentivizing the LN cuts
to support epi(co(Qi+1

n
) in the interior of the state space may be useful to avoid

the degeneracy issues discussed in Sect. 1.1. We then set θ̂in = Qi+1
n

(x̂i
a(n)), even

if this does not satisfy the relative interior requirement in Theorem 3.25.

� Eps. For some ε > 0, we use an ε-perturbation of xi
a(n) into the interior of

conv(Xa(n)), and set θ̂in = Qi+1
n

(x̂i
a(n)). This idea is inspired by the perturbation
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strategy described in [29] and a similar strategy used in [27]. It is particularly
suited to SDDiP, as it avoids the possible degeneracy issues related to generating
cuts at extreme points of the state space, see Sect. 1.1. For sufficiently small ε,
the LN cut should still be supporting epi(co(Qi+1

n
)) at (xi

a(n), co(Q
i+1
n

)(xi
a(n))).

� Relint. We solve an auxiliary feasibility problem with slack variables to find a
potential core point in relint

(
epi(Qi+1

n
)
)
. This feasibility problem is defined in a

similar way to the one described in Sect. 5.1 of [12].

Despite their straightforwardness, these heuristics come with some notable chal-
lenges. Crucially, the first two ones yield candidates satisfying x̂i

a(n) ∈ conv(Xa(n)).

However, this choice is not necessarily feasible if integrality constraints are present (es-
pecially if Za(n) = Xa(n)), leading to Qi+1

n
(x̂i

a(n)) = +∞. We thus do not obtain a

core point or a reasonable choice of (un, un0). This is clearly unintended and should
be detected in practice. Whenever unboundedness is detected, we may take some spe-
cial counter-measures, such as artificially bounding the normalized Lagrangian dual
problem (11) or resorting to strengthened Benders cuts instead of generating LN cuts.

Problem (13) provides a natural way to check for unboundedness, or the validity of
direction (un, un0), respectively. However, it cannot be solved immediately, as we do
not know conv(W i+1

n ) explicitly. We may instead solve the approximation

min
λn,zn,ηn

{
ηn : (λn, zn) ∈ W i+1

n , ηn ≥ 0, un0ηn ≥ c⊤nλn − θin, unηn = zn − xi
a(n)

}
(17)

using the known setW i+1
n instead of conv(W i+1

n ). If the dual problem (11) is unbounded,
then this problem is infeasible. Therefore, we can use infeasibility of (17) as a proxy for
unboundedness. Unfortunately, in the presence of integrality constraints, infeasibility
of (17) may occur very often, even given an appropriate direction (un, un0), thus leading
to taking counter-measures more often than required. On the other hand, using the LP
relaxation of (17) is not sufficient to rule out all cases of unboundedness. For an effective
implementation of LN cuts this is a significant challenge.

Finally, let us present an alternative approach to come up with core points.

� Conv. We note that any convex combination of two (or more) feasible points(
x1, Q

i+1
n

(x1)
)
and

(
x2, Q

i+1
n

(x2)
)
is always contained in epi(co(Qi+1

n
). One such

point is readily available with
(
xi
a(n), Q

i+1
n

(xi
a(n))

)
. For the case Xa(n) = {0, 1}da(n) ,

an intuitive strategy to obtain a second one is to consider the diagonal counterpart
of xi

a(n) (swapping 0 and 1 for all components) and its function value for Qi+1
n

(·).
If this counterpart is feasible, we obtain a whole family of core points without the
requirement of evaluating the approximate value function in non-integer states.

4 Computational Experiments

We report results for a computational study of SDDiP using the proposed cut generation
framework. For a detailed description of the SDDiP algorithm, we refer to [33]. For
comparison, we also run tests using established cut generation techniques in SDDiP.
More precisely, we consider the following approaches to generate cuts:

� B: Classical Benders cuts using a single-cut or a multi-cut approach.

� SB: Strengthened Benders cuts [33] using a single-cut or a multi-cut approach.
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� L: Classical Lagrangian cuts [33] (see Appendix A) using a single-cut or a multi-
cut approach.

� ℓ1, ℓ∞, ℓ1∞: Deep Lagrangian cuts from Definition 3.15 for the ℓ1-norm, the ℓ∞-
norm and a linear combination of 0.5∥·∥1 + 0.5∥·∥∞.

� LN: LN Lagrangian cuts from Definition 3.20 using the Mid, Eps, Relint and Conv

heuristics from Sect. 3.6.2 to identify core points and to determine the normaliza-
tion coefficients. For Eps we use a perturbation of the incumbent by 10−2. For
Conv we consider convex combination parameters of 0.5, 0.75, 0.9 and 0.99 (with
higher values encoding a higher proximity to

(
xi
a(n), Q

i+1
n

(xi
a(n))

)
).

By construction, all deep and LN cuts require using a multi-cut approach.
We test the proposed methods for two classes of MS-MILPs from the literature:

� CLSP: a capacitated lot-sizing problem described in [31], with stagewise indepen-
dent uncertain demand for each product. This problem is also considered in [1]
and identified to be challenging for exact decomposition methods like SDDiP.
We consider instances with 3 or 10 state variables, 4, 6, 10 or 16 stages and 20
realizations of the uncertain demand at each stage.

� CFLP: a capacitated facility location problem with stagewise independent uncer-
tain facility disruptions [28]. We consider an instance with 16 state variables, 100
stages and 20 realization of the uncertainty at each stage.

With respect to the state space, it is important to mention that CLSP contains
continuous state variables. For instances with 3 state variables, in order to ensure
exactness of SDDiP, we thus apply a binary approximation of the state space using a
discretization precision of 1.0, see [33]. This means that the modified MS-MILP which
is tackled by SDDiP contains 30 state variables. We refer to this problem as CLSP-Bin.
For instances with 10 state variables, using a binary approximation would produce state
dimensions which are computationally intractable for SDDiP, as its complexity grows
exponentially in the dimension of the state space [32]. Therefore, in these cases, we
apply SDDiP to CLSP without a binary approximation, and thus without theoretical
guarantees to close the optimality gap. In contrast, CFLP only contains binary state
variables from the outset, so no binary approximation is required.

With respect to the uncertainty, for CLSP instances with 3 state variables, we use
the exact same scenarios as in [1]. For larger instances that are not covered in [1]
we generate new scenarios using the same methodology. For CFLP, we use scenarios
provided to us by Seranilla and Löhndorf [28].

4.1 Implementation Details

SDDiP and all cut generation approaches are implemented in Julia-1.5.3 [5] based
on the existing packages SDDP.jl [15] and JuMP.jl [16]. The code is available on
GitHub as part of a larger project called DynamicSDDiP.jl (see https://github.com/
ChrisFuelOR/DynamicSDDiP.jl).

SDDiP is terminated after a predefined time limit or if the obtained lower bounds
start to stall. In each forward pass, one scenario path is randomly sampled. After
termination of SDDiP, an in-sample Monte Carlo simulation with 1000 replications
is conducted on the finite scenario tree to compute a statistical upper bound for the
obtained policy.
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The Lagrangian dual problems in SDDiP are solved using a level bundle method
with a maximum of 1000 (for CLSP) or 100 (for CFLP) iterations and an optimality
tolerance of 10−4 (for CLSP) or 10−2 (for CFLP). The multipliers πn are initialized with
a vector of zeros and πn0 is initialized with 1. Sometimes the level bundle method
reports infeasibilities in the quadratic auxiliary problem. In that case, we proceed with
a standard Kelley step instead. Moreover, in the case of other numerical issues in solving
the Lagrangian dual, the solution process is stopped and a valid cut is constructed with
the current values of the multipliers.

For the LN cuts, as pointed out before, the choice of normalization coefficients
(un, un0) is crucial for the cut quality, but also to achieve a bounded subproblem. If the
chosen heuristic yields only coefficients (close to or) equal to zero, in our implementation
no cut is generated at all. Moreover, non-zero coefficients may not yield a bounded dual
problem if they correspond to a direction (un, un0) /∈ cone

(
epi(co(Qi+1

n
))− (xi

a(n), θ
i
n)
)
\

{0}, see Sect. 3.6.2. We use infeasibility of problem (17) as a flag for possible un-
boundedness. In such a case, we only generate an SB cut. Additionally, note that if
problem (17) is feasible, we obtain an upper bound for the optimal value of the dual
problem (11). We can use this bound to ensure boundedness for the approximating
models in the level bundle method.

For CLSP-Bin, some preliminary tests indicated a proneness to degeneracy of the
dual problem, and thus cuts of bad quality, for approach ℓ∞. Therefore, for this case
we perform an additional step minimizing the norm among all optimal dual solutions,
as was previously proposed in SDDP.jl [15]. This is not the case for CLSP and CFLP,
though.

All occuring LP, MILP and QP subproblems are solved using Gurobi 9.0.3 with an
optimality tolerance of 10−4 and a time limit of 300 seconds. All tests are run on a
Windows machine with 64 GB RAM and an Intel Core i7-7700K processor (4.2 GHz).

4.2 CLSP-Bin: Comparison of Individual Types of Cuts

For our first experiments we apply SDDiP to CLSP-Bin, and only use one type of cut
for the whole solution process. The results are illustrated in several figures throughout
this section. The full results are provided in Appendix D.

First, we consider experiments with T = 4 or T = 6 stages and a maximum run time
of 3 hours and 4 hours, respectively. The obtained lower bounds are depicted in Fig. 1.
We observe that B and SB do not manage to close the optimality gap and that the
obtained lower bounds stall very fast. L, whereas better in theory, leads to even worse
lower bounds. One reason is that solving the dual problems is computationally costly,
but additionally, compared to SB the tighter cuts seem to lead to worse incumbents
for the upcoming stages or iterations. Many variants of deep and LN Lagrangian cuts
outperform SB and L with respect to the lower bounds and gaps, even if the optimality
gap is not completely closed in the predefined time horizon. While the quality of the
lower bounds is better, the iteration times and the number of iterations in the bundle
method are not necessarily reduced despite solving a bounded problem, especially not
for LN cuts.

We then consider experiments with T = 10 and T = 16, with run times of 5 and 8
hours, respectively. The obtained lower bounds are depicted in Fig. 2. We observe that
deep cuts perform mediocre for 16 stages. LN cuts perform best with respect to the lower
bounds, but for 16 stages hardly outperform SB. This is mainly due to long iteration
times, even in comparison to deep cuts (see Appendix D.1). Moreover, as Fig. 3 shows,
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Figure 1: Lower bound development over time for experiments on CLSP-Bin.

Note. LEFT: T = 4. RIGHT: T = 6. For T = 4, the shaded gray area is where the optimal value
lies according to an approximate solution of the deterministic equivalent. For B and SB, SDDiP quickly
terminates due to stalling lower bounds, so the last lower bound is interpolated over the whole time
horizon. Marks at every second iteration, except for B and SB.

an improvement in lower bounds does not necessarily translate to an improvement of
the obtained policies. In fact, SB achieves the best simulated upper bounds. It seems
that using SB it is possible to quickly identify good feasible solutions, but that the lower
bounds are too loose to get a certificate for optimality, whereas for Lagrangian cuts it
is the opposite.

Finally, we observe no cases of potential unboundedness for LN cuts, so the core
point identification heuristics seem to work pretty well overall.

4.3 CLSP-Bin: Combination with SB Cuts

As shown in the previous section, using SDDiP with only Lagrangian cuts becomes
extremely slow for large problems. Therefore, in practice, it is reasonable to combine
different types of cuts. Already in the original SDDiP work [33] it is proposed to combine
Lagrangian cuts, which can provide convergence guarantees, and strengthened Benders
cuts, which can be computed efficiently.

To evaluate the performance of deep and LN cuts in this setting, we conduct ex-
periments where we start with only SB for the first 20 iterations to get a quick bound
improvement, and then generate both SB cuts and Lagrangian cuts in each iteration.
The lower bounds are depicted in Fig. 4, while the simulation results and optimality
gaps are presented in Fig. 3 – in comparison to those from the previous section.

The lower bound results heavily improve for L, but are not affected too much for
deep or LN cuts. They are still better for these approaches than the ones obtained using
only SB, though. As the simulated upper bounds are better than in the previous setting
for all types of cuts, we can conclude that a combination of SB cuts and Lagrangian
cuts combines the advantages of good lower bounds and reasonably good simulation
results for the policies.

Worth mentioning, another approach suited to accelerate SDDiP was recently put
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Figure 2: Lower bound development over time for experiments on CLSP-Bin.

Note. LEFT: T = 10. RIGHT: T = 16.
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Note. LEFT: Run with only one type of cuts. RIGHT: Runs with SB plus Lagrangian cuts starting from
iteration 21.
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Figure 4: Lower bound development over time for experiments on CLSP-Bin using a
combination with SB cuts.

Note. LEFT: T = 10. RIGHT: T = 16. 20 iterations with SB and then SB and Lagrangian cuts in each
iteration.

forward by Chen and Luedtke [11] for the two-stage stochastic case. The idea is to
artificially restrict the dual feasible space in (11) in a reasonable way. Whereas this
eliminates the convergence guarantees of SDDiP, it may significantly speed-up the so-
lution of the dual problems. We present this approach in more detail in Appendix D.2
and show that in our computational experiments additional lower bound improvements
can be achieved using it.

4.4 Results for CLSP

As discussed before, for experiments of CLSP with 10 state variables, we do not apply
a binary approximation. This means that we cannot expect the optimality gap to be
closed. However, in return iterations should take considerably less time. Note that this
is often the go-to approach to apply SDDP-like methods to mixed-integer programs in
practice.

The results show that deep and LN Lagrangian cuts manage to achieve better lower
bounds and gaps than conventional cuts, see Fig. 5 and 6. This is a considerable
improvement compared to Benders cuts, which are most frequently used in practice.
It shows that the proposed cut generation techniques may be helpful to improve the
convergence behavior of SDDiP even if no binary approximation is applied. However, as
for the previous experiments, we cannot conclude that the improvement in lower bounds
necessarily leads to an improvement of the in-sample performance of the obtained policy,
and thus to better optimality gaps.

We also observe that the average iteration time is reduced considerably (by 60-75%)
compared to CLSP-Bin. For this reason, and because the considered state space is lower-
dimensional, even without theoretical convergence guarantees, better optimality gaps
are obtained for CLSP in the same time.
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Figure 5: Lower bound development over time for experiments on CLSP with T = 16.

Note. UP LEFT: Run with only one type of cuts. UP RIGHT: Runs with SB plus additional cuts
starting from iteration 21.
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Figure 6: Optimality gaps for experiments on CLSP with T = 16.

Note. LEFT: Run with only one type of cuts. RIGHT: Runs with SB plus additional cuts starting from
iteration 21.
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4.5 Results for CFLP

For CFLP, again we run experiments with only one type of cut and experiments where
we use SB in combination with different Lagrangian cuts. The results are depicted in
Fig. 7.

We observe that deep cuts and some types of LN cuts do not yield better lower
bounds than B, SB or standard Lagrangian cuts L. The bounds also start to stall fast,
with a remaining optimality gap of about 20% (in difference to CLSP, SB also does
not lead to better simulated upper bounds here). In contrast, LN cuts that use core
points with first components relatively close to mid(conv(Xa(n))), i.e., Mid, Conv(50)
and Conv(75), yield extremely good lower bounds in very few iterations, and almost
manage to close the optimality gap. At least for Mid, this is a bit surprising, because for
Mid and Relint we detect unboundedness due to integer constraints (cf. Sect. 3.6.2, 4.1)
in 85% and 99% of all considered dual problems, respectively, leading to the generation
of SB cuts. This means that for Mid only in 15% of the cases LN cuts are constructed,
and still this is sufficient to almost close the optimality gap. A combination with SB

does not lead to substantial differences in the observed results.
The main drawback of LN cuts, and in particular Conv, where no cases of unbound-

edness occur, is that the average time spent for one iteration is extremely high. This
is mainly due to the large number of 2,000 dual problems to be solved per iteration.
Whereas this is also true for L or deep cuts, in these cases only very few bundle method
iterations are required to solve the dual problems on average. On the other hand, sim-
ilarly to B and SB, this leads to extremely flat cuts, and thus to only slowly improving
lower bounds.

4.6 Discussion and Potential Improvements

Overall, our results show significant improvements of the obtained lower bounds using
the new cut generation framework in almost all cases: CLSP-Bin, CLSP, CFLP, when
combining Lagrangian cuts with strengthened Benders cuts or applying them on their
own. For CLSP-Bin, especially LN cuts yield strong improvements, whereas for CLSP

also deep cuts perform reasonably well. For CFLP in particular those LN cut types seem
beneficial that use core points with the first components close to mid(conv(Xa(n))).

We see that better lower bounds do not in all cases (especially for CLSP and CLSP-Bin)
translate to better performances of the obtained policies, though. Additionally, we ob-
serve that even using the new framework, SDDiP suffers from well-known computational
drawbacks such as high computational cost to solve Lagrangian dual problems (espe-
cially for CLSP-Bin and CFLP) and slow convergence of lower bounds due to premature
stalling [2], so even after hours of run time the observed optimality gaps often are still
considerable. Finally, the proposed cut generation framework requires a multi-cut ap-
proach which considerably increases the computational burden of SDDiP, as much more
cuts have to be added per iteration than using the often-preferred single-cut approach.

In the future, the performance of SDDiP including our proposed cut generation
framework could be improved in several ways. First, the solution of independent La-
grangian duals for nodes m ∈ C(n) could be parallelized. Second, potential warm
starting or acceleration techniques for the Lagrangian dual (e.g. using sub-optimal so-
lutions) could be explored. Third, the dual space restriction suggested by [11] (see Ap-
pendix D.2) looks promising to reduce the computational effort for solving Lagrangian
dual problems, while not compromising cut quality by too much. We think that future
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Figure 7: Computational results for experiments on CFLP.

Note. UP LEFT: Lower bound development for using only one type of cut. UP RIGHT: Lower bound
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research could focus more on priorly restricting the dual space. Fourth, it might be of
interest to investigate potential extensions of the proposed cut generation framework to
a single-cut approach.

Our experiments also reveal that, especially for LN cuts, SDDiP may occasionally
suffer from numerical issues, and that the obtained results show a high sensitivity with
respect to the chosen parameters. It is a common issue of cutting-plane methods that
they may lead to ill-conditioned problems if the cut and problem coefficients are not
properly scaled. In this context, an appropriate choice of normalization coefficients
(un, un0) for LN cuts is crucial. In general, core point identification remains a challenging
task, especially when integer requirements are apparent. Addressing these challenges
in detail merits further research.

5 Conclusion

In this article, we propose a new framework to generate Lagrangian cuts for value
functions occurring in MS-MILPs, which generalizes earlier proposals for 2-stage prob-
lems. We prove that using different normalizations of the Lagrangian dual problems,
cuts with different favorable properties can be obtained, such as maximal depth, being
facet-defining or Pareto-optimal. Our framework allows for a lot of flexibility in cut
generation, and thus notably extends the toolbox of SDDiP.

We provide computational results for experiments on a capacitated lot-sizing and
a capacitated facility location problem. The results show that the lower bounds in
SDDiP can be vastly improved by incorporating our proposed framework, although not
eliminating other well-known computational drawbacks, such as excessive computational
effort, slow convergence and inability to close the optimality gap. As described in the
previous section, therefore more theoretical and computational research is required to
efficiently apply our proposed framework, and SDDiP in general, on large-scale problems
in practice.

Finally, it should be possible and may be worth exploring to extend the proposed
framework to Lipschitz regularized subproblems and value functions for MS-MILPs.
This would allow to exploit different types of Lagrangian dual problems in larger frame-
works generating non-convex approximations for the value functions, such as the one
presented in [18] and [19].

Acknowledgements

Andy Sun’s research is partially funded by the National Science Foundation CAREER
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A Classical Lagrangian Cuts

For any n ∈ N , let Qi+1
n (·) denote the current cut approximation for value function

Qn(·). Then, a Lagrangian cut can be generated by considering a special Lagrangian
relaxation of the nodal subproblem (that is, subproblem (3) with Qm(·),m ∈ C(n),
replaced by Qi+1

m (·)). More precisely, the copy constraints zn = xi
a(n) are relaxed using

a given vector of dual multipliers πn ∈ Rda(n) . This yields

Li+1
n (πn) := min

xn,yn,zn,(θm)

ß
fn(xn, yn) +

∑
m∈C(n)

pnmθm − π⊤
n zn : (zn, xn, yn) ∈ Fn,

zn ∈ Za(n), θm ≥ Qi+1
m (·)(xn), m ∈ C(n)

™
.

For varying πn, this relaxation defines the dual function Li+1
n (·). The problem of

optimizing the dual function over the dual multipliers πn is the Lagrangian dual problem:

max
πn

{
Li+1
n (πn) + π⊤

n x
i
a(n)

}
. (18)

By solving problem (18), a Lagrangian cut for Qn(·) can be derived as

θn ≥ Li+1
n (πi

n) + (πi
n)

⊤xa(n), (19)

where πi
n denotes feasible dual multipliers in (18) for node n [33]. If required, feasibility

cuts can be derived in a similar fashion [see 11, 26].

B Proofs

In this section, we present the proofs that are not displayed in the main text.

B.1 Proof of Lemma 3.4

Proof. Let (xi
a(n), θ

i
n) ∈ epi(Qi+1

n
). Then according to (4) we have

θin ≥ min
λn,zn

{
c⊤nλn : (λn, zn) ∈ W i+1

n , zn = xi
a(n)

}
. (20)

This implies that there exists some (λn, zn) such that for (xi
a(n), θ

i
n) all constraints of (7)

are satisfied. Hence, vf,i+1
n (xi

a(n), θ
i
n) = 0.

Let vf,i+1
n (xi

a(n), θ
i
n) = 0. Then, there exist (λn, zn) such that for (xi

a(n), θ
i
n) all

constraints of (7) are satisfied. This implies (20), and thus (xi
a(n), θ

i
n) ∈ epi(Qi+1

n
).

B.2 Proof of Theorem 3.5

Proof. (i) is a standard result on Lagrangian relaxation [see 21]. Another well-known
property of the Lagrangian dual is that it is equivalent to a primal convexification of
the original subproblem [20]. In our case, this convexification is given by

min
λn,zn

{
0 : (λn, zn) ∈ conv(W i+1

n ), zn = xi
a(n), θin ≥ c⊤nλn

}
. (21)
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The closed convex envelope co(Qi+1
n

)(·) can be expressed through the convex problem

co(Qi+1
n

)(xi
a(n)) = min

λn,zn

{
c⊤nλn : (λn, zn) ∈ conv(W i+1

n ), zn = xi
a(n)

}
, (22)

see for instance [19, Theorems 3.8 and 3.9] for a formal proof. Therefore, by the same
reasoning as in Lemma 3.4, problem (21) is a feasibility problem for epi(co(Qi+1

n
).

B.3 Proof of Lemma 3.7

Proof. This is proven in [11] for epi(Qn), but we provide a customized proof here. Let
(xa(n), θn) ∈ epi(co(Qi+1

n
)). Then,

(πi
n)

⊤xa(n) + πi
n0θn ≥ min

xa(n),θn

{
(πi

n)
⊤xa(n) + πi

n0θn : (xa(n), θn) ∈ epi(co(Qi+1
n

))
}

= min
λn,zn

{
(πi

n)
⊤zn + πi

n0c
⊤
nλn : (λn, zn) ∈ conv(W i+1

n )
}

= min
λn,zn

{
(πi

n)
⊤zn + πi

n0c
⊤
nλn : (λn, zn) ∈ W i+1

n

}
= L i+1

n (πi
n, π

i
n0).

The inequality follows by feasibility. The first equality uses the same relation that is
also applied in (21). The second equality exploits that the objective function is linear,
and the last one follows from the definition of L i+1

n (·) in (8). The second part of the
assertion follows with epi(Qn) ⊆ epi(co(Qi+1

n
)).

B.4 Proof of Lemma 3.10

Proof. According to [9], Ri+1
n (xi

a(n), θ
i
n) can be rewritten as

Ri+1
n (xi

a(n), θ
i
n) =

{
(γn, γn0) ∈ Rda(n) × R :

γ⊤
n x

i
a(n) + γn0θ

i
n − suppepi(co(Qi+1

n
))(γn, γn0) ≥ 1

}
,

(23)

where suppepi(co(Qi+1
n

))(·) denotes the support function of epi(co(Qi+1
n

)). This function

can be expressed as follows:

suppepi(co(Qi+1
n

))(γn, γn0)

= max
xa(n),θn

{
γ⊤
n xa(n) + γn0θn : (xa(n), θn) ∈ epi(co(Qi+1

n
))
}

= max
xa(n),θn,λn,zn

{
γ⊤
n xa(n) + γn0θn : Ãnλn + B̃nzn ≥ d̃n, zn = xa(n), θn − c⊤nλn ≥ 0

}
= min

µn,πn,πn0

{
d̃⊤nµn : Ã⊤

nµn − cnπn0 = 0, B̃⊤
n µn − πn = 0,

πn = γn, πn0 = γn0, πn0 ≤ 0, µn ≤ 0
}

= min
µn

{
− d̃⊤nµn : −Ã⊤

nµn − cnγn0 = 0,−B̃⊤
n µn − γn = 0, γn0 ≤ 0, µn ≥ 0

}
.

(24)
The first equation applies the definition of support functions. The second one follows
from Remark 3.3 and the third one exploits strong duality for LPs. We insert (24)
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into (23), and observe that the set remains unchanged if we replace the minimum
operator using an existence quantor.

B.5 Proof of Lemma 3.14

Proof. According to Theorem 3.5, we have v̂D,i+1
n (xi

a(n), θ
i
n) = 0 for the non-normalized

Lagrangian dual (9). By definition of (9) and its normalization (11), we can thus
conclude v̂ND,i+1

n (xi
a(n), θ

i
n) ≤ v̂D,i+1

n (xi
a(n), θ

i
n) = 0.

Let (π̂n, π̂n0) be an optimal point for problem (9), i.e., L i+1
n (π̂n, π̂n0)− (π̂n)

⊤xi
a(n)−

π̂n0θ
i
n = 0. If ∥π̂n, π̂n0∥ ≤ 1, then it is also feasible for (11). As the objective of both

problems is the same, v̂ND,i+1
n (xi

a(n), θ
i
n) = 0.

Otherwise, there exists µ > 0 such that 1
µ(π̂n, π̂n0) is feasible for (11). By feasibility,

it follows

v̂ND,i+1
n (xi

a(n), θ
i
n) ≥ L i+1

n

Å
1

µ
π̂n,

1

µ
π̂n0

ã
− 1

µ
(π̂n)

⊤xi
a(n) −

1

µ
π̂n0θ

i
n

=
1

µ

(
L i+1

n (π̂n, π̂n0)− (π̂n)
⊤xi

a(n) − π̂n0θ
i
n

)
= 0,

(25)

where we exploited that L i+1
n (·) is positive homogeneous. The reverse direction can be

shown in a similar way.

B.6 Proof of Lemma 3.21

Proof. By definition, the normalized Lagrangian dual problem is equivalent to

max
(πn,πn0)∈Πn

ß
min

(λn,zn)∈Wi+1
n

{
π⊤
n (zn − xi

a(n)) + πn0(c
⊤
nλn − θin)

}™
= max

(πn,πn0)∈Πn

ß
min

(λn,zn)∈conv(Wi+1
n )

{
π⊤
n (zn − xi

a(n)) + πn0(c
⊤
nλn − θin)

}™
with Πn :=

{
(πn, πn0) ∈ Rda(n) × R : πn0 ≥ 0, u⊤

n πn + un0πn0 ≤ 1
}
. The equation

follows from linearity. Using Remark 3.3 and then LP duality for the inner minimization
problem, we obtain the equivalent problem

max
πn,πn0,µn

{
d̃⊤nµn − π⊤

n x
i
a(n) − πn0θ

i
n : µn ≥ 0, πn0 ≥ 0, u⊤

n πn + un0πn0 ≤ 1,

Ã⊤
nµn − πn0cn = 0, B̃⊤

n µn − πn = 0
}
.

This is an LP. Using LP duality and Remark 3.3 again, the assertion follows.

B.7 Proof of Theorem 3.23

Proof. After reformulating the normalized Lagrangian dual problem (11) using Re-
mark 3.3, and linking optimizing over the reverse polar set in (15) with optimizing
over the so-called relaxed alternative polyhedron (see Theorem 2.1 and Corollary 2.2 in
[9]), we can conclude from Theorem 3.20 in [30] that the following result holds:

A point (γ̂n, γ̂n0) is optimal for problem (15) if and only if there exists some certifi-
cate µ̂n ≥ 0 in Ri+1

n (xi
a(n), θ

i
n) such that (µ∗

n, π
∗
n, π

∗
n0) = α(−µ̂n, γ̂n, γ̂n0) is optimal for
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problem (11), where α < 0 is a negative scaling factor. Moreover, the optimal values of
both problems multiply to -1. This result directly implies part (i) of the assertion.

We now prove (ii). Let (γ̂n, γ̂n0) be optimal for problem (15) with a valid certificate
µ̂n ≥ 0 in Ri+1

n (xi
a(n), θ

i
n). Then, the valid cut

d̃⊤n µ̂n + (γ̂n)
⊤xa(n) + γ̂n0θn ≤ 0

is induced, separating (xi
a(n), θ

i
n) from epi(co(Qi+1

n
)) [13]. According to the result used

in part (i), this is equivalent to

− 1

α
d̃⊤nµ

∗
n +

1

α
(π∗

n)
⊤xa(n) +

1

α
π∗
n0θn ≤ 0.

However, given α < 0, this is equivalent to

d̃⊤nµ
∗
n − (π∗

n)
⊤xa(n) − π∗

n0θn ≤ 0

and by definition also to

L i+1
n (π∗

n, π
∗
n0)− (π∗

n)
⊤xa(n) − π∗

n0θn ≤ 0,

which exactly corresponds to the Lagrangian cut (10). The reverse direction follows in
a similar way.

B.8 Proof of Lemma 3.24

Proof. Suppose that condition (16) is satisfied. Then there exist some (x̃a(n), θ̃n) ∈
epi(co(Qi+1

n
)) − (xi

a(n), θ
i
n) and µ > 0 such that (un, un0) = µ(x̃a(n), θ̃n). This implies

(x̃a(n) + xi
a(n), θ̃n + θin) ∈ epi(co(Qi+1

n
)). Therefore, the system{

(λn, zn) : θ̃n + θin ≥ c⊤nλn, (λn, zn) ∈ conv(W i+1
n ), zn = x̃a(n) + xi

a(n)

}
is non-empty. However, this set is equivalent to{

(λn, zn) :
1

µ
un0 ≥ c⊤nλn − θin, (λn, zn) ∈ conv(W i+1

n ), zn − xi
a(n) =

1

µ
un

}
.

With choosing ηn = 1
µ > 0 it immediately follows that problem (13) is feasible. By

ηn ≥ 0, its optimal value is also bounded from below, hence it is finite. By LP duality
this implies that Assumption 3 is satisfied.

C Illustrative Examples

C.1 Illustrative Example for Deep Cuts

This example is inspired by illustrations from the literature [9, 22].

Example C.1. We consider a given epigraph epi(co(Qn)), an incumbent (xi
a(n), θ

i
n),

the associated reverse polar set Ri+1
n (xi

a(n), θ
i
n) and the obtained deep Lagrangian cuts

for different norms (ℓ2, ℓ1, ℓ∞ and a weighted ℓ1-norm). The sets and cuts are illus-
trated in Fig. 8-11 for the different norms. In each case, the illustration consists of
two parts (a) and (b). In part (a), the incumbent (black dot) and the epigraph are
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depicted. Moreover, several norm balls are shown for the respective dual norms ( red
lines). We can see that the obtained deep Lagrangian cuts (blue lines) maximize the
distance between the incumbent and the hyperplane in the dual norm. This is illustrated
by depicting different valid cuts (dashed/dotted cyan lines) with smaller distances. On
the other hand, it is also shown that the deep cuts minimize the distances between the
incumbent and the epigraph in the dual norm and support the epigraphs at the corre-
sponding projection to the epigraph ( violet line or point). In part (b), the reverse polar
set is depicted. Moreover, the optimal solutions ( teal line or point) for optimizing the
given norm (illustrated by a norm ball, green line) over the reverse polar set are high-
lighted. These solutions (apart from sign changes) characterize the normal vectors of the
obtained cuts (see Lemma 3.19), as is additionally illustrated in part (a). Note that for
none of the considered cases, the deep cuts are tight at

(
xi
a(n), co(Qn)(x

i
a(n))

)
, contrary

to classical Lagrangian cuts.

epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xi

a(n), θ
i
n)

γn

γn0

(b) Reverse polar set.

Figure 8: Illustration of deep cuts for the ℓ2-norm.

epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xi

a(n), θ
i
n)

γn

γn0

(b) Reverse polar set.

Figure 9: Illustration of deep cuts for the ℓ1-norm.

C.2 Illustrative Example for LN Cuts

Example C.2. Consider epigraph epi(co(Qn)), incumbent (xi
a(n), θ

i
n) and reverse polar

set Ri+1
n (xi

a(n), θ
i
n) from Example C.2. These objects and an exemplary LN cut are
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epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xi

a(n), θ
i
n)

γn

γn0

(b) Reverse polar set.

Figure 10: Illustration of deep cuts for the ℓ∞-norm.

epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xi

a(n), θ
i
n)

γn

γn0

(b) Reverse polar set.

Figure 11: Illustration of deep cuts for a weighted ℓ1-norm.

illustrated in Fig. 12. In part (a) the geometric idea of projection along a line segment is
highlighted. The direction of this line segment is (un, un0) and obtained as the difference
between a known core point ( yellow dot) in epi(co(Qn)) and (xi

a(n), θ
i
n). In part (b) we

can see that (apart from sign changes) the cut normal to the LN cut can be determined by
maximizing the linear function u⊤

n γn+un0γn0 over Ri+1
n (xi

a(n), θ
i
n). As the solution is an

extreme point of Ri+1
n (xi

a(n), θ
i
n) ( green dot), the corresponding LN cut is facet-defining.

D Additional Computational Results

D.1 Additional Plots

Fig. 13 illustrates the iteration times for SDDiP, as well as the number of level Bundle
method iterations required to solve the dual problems for each iteration of SDDiP.

D.2 The Chen-Luedtke Approach: Restricting the Dual Space

To accelerate the solution process, Chen and Luedtke [11] propose to restrict the feasible
set of the normalized Lagrangian dual problem (11) to a small subset of valid multipliers
(πn, πn0). More precisely, the idea is to restrict the multipliers πn to the span of a set
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epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xi

a(n), θ
i
n)

γn

γn0

(b) Reverse polar set.

Figure 12: Illustration of LN cuts given some known core point.

of previously generated Benders cut coefficients π̂k
n, k = 1, . . . ,K, for some predefined

parameter K. That is, we introduce the constraint

πn =
K∑
k=1

γnkπ̂
k
n,

which also means that we add variables γnk, k = 1, . . . ,K, to the dual problem. While
we lose tightness and convergence guarantees using this dual space restriction, the search
space for the level Bundle method is significantly reduced, so that cuts can be generated
faster. We refer to this as the CL approach.

In principle, the CL approach can be combined with any of the normalization tech-
niques discussed in this paper. Additionally, it allows for an alternative normalization
[11]. Instead of using g(πn, πn0) = ∥πn, πn0∥1, we may as well use some normalization
function g(πn, πn0, γn) = ∥γn, πn0∥1. This choice should lead to solutions with sparse γ.
In the following, we denote this approach by CL-γ.

We perform some computational experiments, again considering 20 iterations of only
SB cuts, and afterwards generating SB and Lagrangian cuts in each iteration. However,
for the generation of Lagrangian cuts we apply a dual space restriction with parameter
K = 20. The results are depicted in Fig. 14.

The number of Lagrangian iterations and the time per iteration are reduced signif-
icantly. Moreover, compared to only using SB or Lagrangian cuts, much better lower
bounds are obtained in the same time. Interestingly, the lower bounds are even better
per iteration than without dual space restriction, similar to what we observed for the
combination with SB in Sect. 4.3. This illustrates that the quality of cuts does not only
depend on tightness or depth, but also on the incumbents which they induce in the
upcoming stages and iterations. The chosen normalization approach seems not to be
decisive in this setting.

D.3 Detailed Results for CLSP-Bin

The full computational results for our experiments of CLSP with state binarization are
depicted in Tables 3-5. The table columns contain the number of stages, the used cut
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Figure 13: Different analyses for experiments on CLSP-Bin and T = 16.

Note. LEFT: Time per iteration of SDDiP. RIGHT: Iterations required to solve Lagrangian dual over
iterations of SDDiP.
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Figure 14: Lower bound development over time for experiments on CLSP-Bin using the
CL approach.

Note. LEFT: T = 10. RIGHT: T = 16. 20 iterations with SB and then SB and Lagrangian cut in each
iteration with dual space restriction for K = 20.
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generation approach, the best lower bound obtained by SDDiP, a simulated statistical
upper bound computed after termination of SDDiP (we report the upper limit of the
computed confidence interval), the number of iterations, the time in seconds, the average
time per iteration and the average number of iterations required in the level bundle
method to solve the Lagrangian dual per iteration. We should note that in some cases,
the simulation did not yield an upper bound estimate due to numerical issues.

D.4 Detailed Results for CLSP

For our tests of CLSP without state binarization, the full results are stated in Table 6.

D.5 Detailed Results for CFLP

For our tests of CFLP, the full results are stated in Table 7.
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Table 3: SDDiP results for CLSP-Bin for T = 4, T = 6 and T = 10.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/It [s] Lag-It/It Unb [%]

T = 4 (3 hours)

Det. Equiv. 1503.0 1542.3 3

B (single) 803.2 1,595.5 50 85 6 0 - -
B (multi) 804.5 1,602.6 50 59 5 0 - -
SB (single) 1,155.8 1,572.9 27 32 16 1 - -
SB (multi) 1,187.1 1,608.7 26 73 49 1 - -
L (single) 681.8 1,766.4 61 109 10,800 99 49 -
L (multi) 702.6 1,736.6 60 27 10,908 404 51 -
ℓ1-deep 1,478.3 1,582.5 7 39 11,196 272 67 -
ℓ1∞-deep 1,462.9 1,649.4 11 38 10,944 288 63 -
ℓ∞-deep 1,247.4 1,644.7 24 15 11,808 787 96 -
LN-Mid 1,496.6 1,579.0 5 36 11,304 314 82 0
LN-Eps 1,497.0 1,615.0 7 27 11,124 412 117 0
LN-Relint 1,500.9 1,623.3 8 33 11,052 335 85 0

T = 6 (4 hours)

B (single) 1,354.5 2,854.2 53 479 69 0 - -
B (multi) 1,355.0 2,889.4 53 165 37 0 - -
SB (single) 2,077.9 2,825.1 26 46 41 1 - -
SB (multi) 2,093.4 2,838.7 26 251 517 2 - -
L (single) 669.7 3,095.0 78 90 14,580 162 50 -
L (multi) 682.5 3,111.7 78 24 14,688 612 130 -
ℓ1-deep 2,414.1 2,975.4 19 34 14,508 427 62 -
ℓ1∞-deep 2,375.8 2,984.5 20 35 15,012 429 59 -
ℓ∞-deep 1,456.9 3,342.2 56 17 14,940 879 72 -
LN-Mid 2,510.3 2,962.3 15 24 14,688 612 101 0
LN-Eps 2,466.0 2,880.0 14 20 14,976 731 138 0
LN-Relint 2,483.7 2,915.6 15 22 14,976 681 121 0

T = 10 (5 hours)

B (single) 2,165.3 5,120.8 58 136 26 0 - -
B (multi) 2,183.6 5,168.8 58 334 197 0 - -
SB (single) 3,377.1 4,949.8 32 89 122 1 - -
SB (multi) 3,472.9 4,942.9 30 206 1,066 5 - -
L (single) 616.4 5,466.6 89 69 18,144 263 51 -
L (multi) 682.4 5,443.1 88 20 18,720 936 54 -
ℓ1-deep 3,782.5 - - 38 19,260 507 47 -
ℓ1∞-deep 3,862.7 - - 37 18,504 500 47 -
ℓ∞-deep 1,584.7 5,894.1 73 18 19,872 1,104 69 -
LN-Mid 4,188.0 5,163.4 19 18 19,188 1,066 113 0
LN-Eps 3,910.9 5,329.2 27 16 18,396 1,150 140 0
LN-Relint 4,121.1 5,185.6 21 16 18,828 1,177 120 0

T = 16 (8 hours)

B (single) 3,917.5 9,012.6 57 224 74 0 - -
B (multi) 3,937.2 9,008.2 56 254 274 1 - -
SB (single) 5,913.7 8,673.6 32 194 493 3 - -
SB (multi) 6,030.2 8,676.8 31 585 9,252 16 - -
L (single) 607.4 9,524.5 94 63 28,836 458 51 -
L (multi) 651.6 9,444.7 93 19 31,176 1,641 55 -
ℓ1-deep 3,547.5 9,756.3 64 42 28,944 689 34 -
ℓ1∞-deep 3,353.0 9,997.3 67 37 31,248 845 16 -
ℓ∞-deep 2,424.5 10,077.4 76 23 29,412 1,279 55 -
LN-Mid 6,910.7 9,125.9 24 18 32,112 1,784 119 0
LN-Eps 6,067.6 9,164.6 34 15 29,376 1,958 143 0
LN-Relint 6,945.3 8,984.5 23 15 29,268 1,951 122 0
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Table 4: SDDiP results for CLSP-Bin using Lagrangian cuts combined with SB cuts.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter Unb [%]

T = 10 (5 hours)

SB + L (single) 3,475.5 5,003.9 31 132 18,072 136 50 -
SB + L (multi) 3,483.0 5,014.4 31 51 18,360 360 51 -
SB + ℓ1-deep 3,804.1 5,161.6 26 35 19,656 562 88 -
SB + ℓ1∞-deep 3,914.2 5,233.7 25 36 19,656 546 83 -
SB + ℓ∞-deep 3,856.5 5,290.3 27 25 22,644 906 150 -
SB + LN-Mid 4,121.9 5,121.8 20 31 19,296 623 115 0
SB + LN-Eps 4,091.1 5,092.3 20 31 20,448 660 140 0
SB + LN-Relint 4,041.7 5,157.5 22 31 19,800 639 119 0

T = 16 (8 hours)

SB + L (single) 5,907.1 8,728.4 32 136 28,944 213 47 -
SB + L (multi) 5,922.0 8,750.8 32 52 30,096 579 48 -
SB + ℓ1-deep 6,477.5 9,078.4 28 33 29,916 907 90 -
SB + ℓ1∞-deep 6,417.4 9,024.6 29 34 30,708 903 87 -
SB + ℓ∞-deep 6,220.9 8,968.8 31 24 29,628 1235 164 -
SB + LN-Mid 6,615.9 9,003.1 27 29 31,140 1,074 126 0
SB + LN-Eps 6,705.0 8,947.8 25 29 30,528 1,053 146 0
SB + LN-Relint 6,832.1 9,071.4 25 29 31,464 1,085 135 0

Table 5: SDDiP results for CLSP-Bin with T = 10 and T = 16 using the CL approach.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter Unb [%]

T = 10 (5 hours)

CL-γ 4,395.5 5,224.4 16 74 18,396 249 17 -
CL-ℓ1-deep 4,344.5 - - 53 18,108 341 41 -
CL-ℓ∞-deep 4,162.8 5,270.9 21 26 19,764 760 278 -
CL-LN-Mid 4,365.7 5.259.2 17 53 18,792 355 36 0
CL-LN-Eps 4,390.9 5,185.3 15 51 18,540 364 39 0
CL-LN-Relint 4,392.7 5,203.3 16 52 18,756 361 34 0

T = 16 (8 hours)

CL-γ 7,565.5 9,067.7 17 65 29,160 449 18 -
CL-ℓ1-deep 7,254.2 9,095.4 20 49 29,160 589 42 -
CL-ℓ∞-deep 7,031.0 9,117.4 23 25 34,452 1378 320 -
CL-LN-Mid 7,543.1 9,048.1 17 48 29,268 610 38 0
CL-LN-Eps 7,545.7 9,050.4 17 48 29,556 616 39 0
CL-LN-Relint 7,520.3 9,050.4 17 48 29,592 617 38 0

38



Table 6: SDDiP results for CLSP with 10 state variables and no binary approximation.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter Unb [%]

T = 16 (3 hours), One type of cut

B (single) 15,190 29,700 49 193 42 0 - -
B (multi) 15,199 29,747 49 207 140 1 - -
SB (single) 20,373 29,600 31 111 189 2 - -
SB (multi) 21,045 29,343 28 281 2,459 9 - -
L (single) 14,440 32,429 56 93 10,908 117 43 -
L (multi) 19,689 31,468 37 30 11,268 376 45 -
ℓ1-deep 23,678 30,064 21 36 10,836 301 32 -
ℓ1∞-deep 23,982 30,026 20 34 11,340 333 34 -
ℓ∞-deep 23,610 30,333 22 30 11,016 367 40 -
LN-Mid 22,336 30,041 26 21 11,412 543 157 0
LN-Eps 22,296 30,340 27 25 11,304 452 64 0
LN-Relint 22,753 30,393 25 19 11,304 595 99 3
LN-Conv(50) 22,994 30,148 24 19 11,808 622 101 0
LN-Conv(75) 23,285 30,183 23 20 11,556 578 90 0
LN-Conv(90) 23,416 30,127 22 21 11,088 528 79 0
LN-Conv(99) 22,967 30,054 24 25 11,664 467 63 0

T = 16 (3 hours), Combination with SB

SB + L (single) 21,184 30,022 29 100 10,980 110 42 -
SB + L (multi) 22,431 30,257 26 39 11,304 290 44 -
SB + ℓ1-deep 23,443 30,248 23 37 11,448 309 51 -
SB + ℓ1∞-deep 23,331 30,307 23 39 11,304 306 49 -
SB + ℓ∞-deep 23,424 30,062 22 36 11,700 300 45 -
SB + LN-Mid 23,036 30,161 24 31 11,304 365 110 0
SB + LN-Eps 23,195 30,086 23 34 11,160 328 67 0
SB + LN-Relint 23,038 30,371 24 31 11,340 366 113 0
SB + LN-Conv(50) 22,854 30,020 24 32 12,132 379 111 0
SB + LN-Conv(75) 22,867 30,131 24 32 10,836 339 96 0
SB + LN-Conv(90) 23,176 29,957 23 33 10,800 327 80 0
SB + LN-Conv(99) 23,237 30,399 24 35 11,952 342 68 0
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Table 7: SDDiP results for CFLP (4 hours). Objective values scaled by 10−3.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter Unb [%]

T = 16 (3 hours), One type of cut

B (single) 59,744.4 78,498.9 24 592 14,436 24 - -
B (multi) 64,853.1 - - 355 14,436 41 -
SB (single) 59,859.6 79,264.9 24 95 14,544 153 - -
SB (multi) 63,127.0 78,737.6 20 90 14,616 162 - -
L (single) 62,752.3 76,623.2 18 51 15,012 294 51 -
L (multi) 63,029.1 76,604.9 18 35 14,868 425 35 -
ℓ1-deep 62,221.1 76,370.7 19 37 14,976 405 37 -
ℓ1∞-deep 61,919.9 76,267.9 19 23 14,832 645 23 -
ℓ∞-deep 62,080.0 76,410.9 19 27 14,760 547 27 -
LN-Mid 74,228.0 75,914.5 2 25 14,832 593 25 85
LN-Eps 6,337.6 - - 17 14,760 868 17 2
LN-Relint 67,180.2 77,891.9 14 32 14,688 459 32 99
LN-Conv(50) 69,851.1 - - 7 17,136 2,448 7 0
LN-Conv(75) 75,199.1 75,451.3 0 7 16,740 2,391 7 0
LN-Conv(90) 72,604.5 76,269.8 5 9 15,552 1,728 9 0
LN-Conv(99) 5,579.4 - - 15 15,012 1,001 15 0

T = 16 (3 hours), Combination with SB

SB + L (single) 63,444.8 77,722.2 18 49 14,580 298 49 -
SB + L (multi) 64,977.7 - 47 14,904 317 47 -
SB + ℓ1-deep 64,664.6 - 36 15,048 418 36 -
SB + ℓ1∞-deep 64,557.9 - 35 14,904 426 35 -
SB + ℓ∞-deep 64,743.7 - 37 15,228 412 37 -
SB + LN-Mid 74,224.6 - 35 15,156 433 35 88
SB + LN-Eps 59,572.8 77,320.9 23 25 14,472 579 25 2
SB + LN-Relint 66,898.8 77,849.9 14 46 15,084 328 46 99
SB + LN-Conv(50) 75,172.8 75,443.6 0 24 17,856 744 24 0
SB + LN-Conv(75) 75,163.2 - 24 14,940 623 24 0
SB + LN-Conv(90) 73,684.8 - 25 15,336 613 25 0
SB + LN-Conv(99) 59,536.0 77,384.8 23 25 17,208 688 25 0
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