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Abstract We consider a two-stage stochastic decision problem where the decision-
maker has the opportunity to obtain information about the distribution of the
random variables ξ that appear in the problem through a set of discrete actions
that we refer to as probing. Probing components of a random vector η that is
jointly-distributed with ξ allows the decision-maker to learn about the conditional
distribution of ξ given the observed components of η. We propose a three-stage
optimization model for this problem, where in the first stage some components of
η are chosen to be observed, and decisions in subsequent stages must be consis-
tent with the obtained information. In the case that η and ξ have finite support,
Goel and Grossmann gave a mixed-integer programming (MIP) formulation of this
problem whose size is proportional to the square of cardinality of the sample space
of the random variables. We propose to solve the model using bounds obtained
from an information-based relaxation, combined with a branching scheme that
enforces the consistency of decisions with observed information. The branch-and-
bound approach can naturally be combined with sampling in order to estimate
both lower and upper bounds on the optimal solution value and does not require
η or ξ to have finite support. We conduct a computational study of our method
on instances of a stochastic facility location and sizing problem with the option
to probe customers to learn about their demands before building facilities. We
find that on instances with finite support, our approach scales significantly better
than the MIP formulation and also demonstrate that our method can compute
statistical bounds on instances with continuous distributions that improve upon
the perfect information bounds.
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1 Introduction

We study optimization models designed to understand the value of obtaining in-
formation about the outcome of random variables ξ. The models are stochastic
optimization problems with a specific but important form of decision-dependent
uncertainty. In stochastic programming, the literature on decision-dependent un-
certainty typically divides models into two primary categories (Tarhan et al., 2009;
Hellemo et al., 2018). In the first category, the probability distribution of ξ is a
function of the decision variables, and models in this class are said to have decision-
dependent probabilities. In the second category, the timing of the revelation of the
outcome of ξ is decision-dependent, and models in this class are said to have
decision-dependent information structure.

Models with decision-dependent information structure are most applicable
in a multi-stage setting, where a sequence of decisions are made in stages with
the opportunity to observe random outcomes between stages. As pointed out by
Dupačová (2006), it is precisely in these contexts where their solution is most chal-
lenging. First-stage decisions may influence the marginal and conditional probabil-
ity distributions in subsequent stages, or if the decisions influence the time when
uncertainty is resolved, then the nonanticipativity of future decisions must depend
on decisions made at the current stage.

Most of the research on computational approaches for stochastic programs
under decision-dependent uncertainty work with a nonanticipative formulation
in a setting where the uncertainty is modeled by a finite set of scenarios. The
key to this approach is that the collection of nonanticipativity conditions to be
enforced depends on the decisions. Goel and Grossmann (2004, 2006) present a
MIP (disjunctive) model for this problem, using binary variables to model the time
at which each endogenous uncertain parameter is observed. However, the number
of (conditional) non-anticipativity constraints form a very large class, roughly on
the order of the number of scenarios squared.

Significant subsequent work has been based on improving computational per-
formance of the nonanticapative model by techniques such as Lagrangian relax-
ation (Goel and Grossmann, 2006; Tarhan et al., 2009), branch-and-cut (Colvin
and Maravelias, 2009, 2010), and redundant constraint identification (Boland et al.,
2016). A different approach to addressing decision-dependent uncertainty, using
linear and piecewise-linear decision rules was given by Vayanos et al. (2011).
Mercier and Van Hentenryck (2008) propose a method that is applicable for multi-
stage problems with decision-dependent information structure that first applies a
sample average approximation (SAA) and then converts that problem to a stan-
dard Markov decision process and solves it. Solak et al. (2010) use an SAA method
to solve an R&D portfolio management problem, and solve the SAA problem with
a Lagrangian relaxation approach.

In our work, we consider a two-stage stochastic programming model as our
starting point, where some decisions y are made before the outcome of a random
variable ξ is revealed and recourse decisions z(y, ξ) are made after observing ξ. We
extend the two-stage model to allow the decision maker to perform a set of discrete
actions, which we refer to as probing, to reveal information about the distribution
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of ξ, before making their decisions y. We call this model a Probing-Enhanced
Stochastic Program. Different from most existing work on stochastic programming
with decision-dependent information structure, we do not necessarily assume that
taking a probing action gives us complete information about some of the elements
of ξ. Rather, each candidate probing action gives us the opportunity to observe the
value of a component of a different random vector η, which we assume is correlated
with ξ, thus giving information about the distribution of ξ that may help the
decision-maker make a better decision. Our work is related to the discussion of
using σ-fields to model the evolution of information described in Artstein (1999)
and Artstein and Wets (1993).

Contributions: A primary contribution of our work is to model the problem using
a nested stochastic programming formulation of the uncertainty, rather than a
nonanticiapative one. This allows us to forgo the modeling of conditional non-
anticipativity constraints and allows observation (or sampling) of random variables
conditional on the outcomes observed by probing. The flexibility afforded by a
nested formulation allows for our model to handle random variables η arising
from a continuous probability distribution.

A second contribution of our work is a branch-and-bound algorithm to solve
the nested model that relies on information-based relaxations to generate bounds
at nodes of the branch-and-bound tree. The method is exact when the support
of the random variables is small enough to allow exact calculation of conditional
expectations, and we show how statistical estimates of bounds on the optimal
solution value of the nested formulation can be obtained via both internal and
external sampling procedures. The external sampling procedure is related to the
sample average approximation approach used by Solak et al. (2010), but we use a
different method to solve the SAA problem. The internal sampling method can be
interpreted as an extension of the stochastic branch-and-bound method of Norkin
et al. (1998) to our probing-enhanced model.

We also propose a greedy heuristic for generating quality solutions that effi-
ciently re-uses computations in order to approximate solution quality when com-
paring potential candidate solutions within the heuristic.

We give computational results that demonstrate that our model can be orders
of magnitude faster for the exact solution of small instances with finite support of
the random outcomes, when compared to the nonanticaptive formulation, and can
improve significantly over the perfect information bound for large instances and
instances with continuous distribution. To our knowledge, this is the first compu-
tational procedure that is able to significantly improve over perfect-information-
based bounds for large-scale problem instances in this class.

Contents: The remainder of the paper is organized as follows. In Section 2, we
describe our modeling framework for probing-enhanced stochastic programming,
giving both nested and non-anticipative formulations. The nested formulation is
posed as a combinatorial optimization problem that selects the set of probing
decisions that maximize the expected value, and in Section 3, we describe a branch-
and-bound method for its solution that uses information-relaxation based bounds,
as well as two different branching methods. We describe in Section 4 two sampling
methodologies that may be combined with our branch-and-bound method in both
an external and internal manner to obtain statistical upper bounds for the case
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when the expected value calculations of the stochastic program cannot be carried
out exactly. We also describe how sampling can be used with a candidate probing
decision to estimate a statistical lower bound. We describe our greedy heuristic in
Section 5 and present results of computational experiments in Section 6.

Notation: We use bold-face math symbols, such as ξ, to denote random variables,
and light-typeface symbols, such as ξ(ω) = ξ to denote realizations of random
variables. For a random variable ξ, the notation Eξ[·] denotes expectation of the
argument with respect to the probability measure associated with the random
variable ξ. The set of integers {1, 2, . . . , n} is denoted as [n].

2 Background and Models

Our starting point is a classic two-stage stochastic programming problem

max
y∈Y

βTy + Eξ[Q(y, ξ)], (1)

where ξ : Ω → Rs is a s-dimensional random vector defined on a probability space
(Ω,F ,P) having support Ξ, and

Y := {y ∈ Rp̂ × Zp−p̂
+ : Ay = b}

is a mixed-integer set in Rp. Given a decision vector y ∈ Y and outcome ξ(ω) =
ξ ∈ Ξ, the function

Q(y, ξ) = max{γ(ξ)Tz : z ∈ Z(y, ξ)} (2)

optimizes the recourse decision z, where

Z(y, ξ) :=
{
z ∈ Rq̂

+ × Zq−q̂
+ : T (ξ)y +W (ξ)z = h(ξ)

}
is a mixed-integer set in Rq for all y ∈ Y and ξ ∈ Ξ. We assume that Q(y, ξ)
is finite for all y ∈ Y and ξ ∈ Ξ, which is the standard assumption of relatively
complete recourse in stochastic programming.

We wish to model a situation in which information about the distribution of
ξ can be obtained by taking some discrete actions, which we refer to as probing.
Abstractly, we model this by considering an n-dimensional random vector η : Ω →
Rn with support H such that (η, ξ) is a jointly-distributed random vector defined
on the same probability space (Ω,F ,P).

As a special case of our modeling framework, we may set η ≡ ξ, in which case
the probing decisions correspond to observing individual elements of the random
vector ξ in (1). We will use this special case in our numerical experiments, but the
methodology described in the paper applies to the general model, with the main
computational requirement that samples of ξ conditional on having observed a
subset of the entries of η can be generated.

We also introduce a cost-to-probe function α : 2[n] → R+, where α(S) for
S ⊆ [n] is the cost of probing the S components of the random vector η, which we
denote as ηS . For the most part, we assume only that α(·) is a monotone-increasing
function; that is, if S ⊆ T , then α(S) ≤ α(T ). One of our branching methods
requires the further assumption that α(·) is modular, i.e., α(S) =

∑
i∈S α({i}) for

all subsets S.
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2.1 Probing-Enhanced Stochastic Program

In our model, the decision-maker observes the realizations ηS before choosing y, so
these decisions y can depend on the observed values ηS . This can be advantageous
when ξ and η are correlated, as the first-stage decisions y may be optimized with
respect to the conditional distribution of ξ given the observations ηS .

Define the conditional-recourse function analog of (2) given the observations
ηS = ηS for S ⊆ [n] as follows:

R(ηS) = max
y∈Y

βTy + Eξ

[
Q(y, ξ)|ηS = ηS

]
, (3)

and for each subset S ⊆ [n] of probing decision, define the expected conditional-
recourse function

F (S) := EηS [R(ηS)].

Thus, when we introduce the option of probing, the two-stage stochastic program-
ming problem (1) is extended to the probing-enhanced stochastic program

zpesp = max
S⊆[n]

F (S)− α(S). (PESP)

Problem (PESP) seeks to find the optimal set of probing decisions that trades-off
the probing cost incurred against the potential gains obtained from knowing more
about the distribution of the random variables ξ when making first-stage decisions
y.

Calculating the conditional recourse function R(ηS) and the expected condi-
tional recourse function F (S) both involve the evaluation of an expectation. In
the case that that the random variables have finite support, i.e., both H and Ξ
are both finite sets, we can more explicitly detail the computations required to
compute F (S).

First, for each ηS ∈ ProjS(H), the value of the following finite-support two-
stage stochastic program must be calculated:

R(ηS) = max
y∈Y

βTy +
∑
ξ∈Ξ

P(ξ = ξ|ηS = ηS)Q(y, ξ), (4)

where Q(y, ξ) is defined in (2). If we define

Ξ(ηS) := {ξ(ω) : ω ∈ Ω,ηS(ω) = ηS} ⊆ Ξ (5)

as the outcomes of ξ that are possible after observing ηS , i.e., the scenarios in the
conditional distribution, then the evaluation of R(ηS) in (4) requires the solution
of a two-stage stochastic program with |Ξ(ηS)| scenarios. Note that there are
|ProjS(H)| such two-stage stochastic programs to be solved. Given these values,
the value of F (S) is then simply calculated as

F (S) := EηS [R(ηS)] =
∑

ηS∈ProjS(H)

P(ηS = ηS)R(ηS).

In our computations, all two-stage stochastic programs are solved by directly
formulating the extensive form stochastic program (Birge and Louveaux, 1997).
The evaluation of F ([n]) requires solving |Ξ| one-scenario problems. The evaluation
of F (∅) requires solving one |Ξ|-scenario two-stage stochastic program. In general,
the smaller the set S, the more computationally challenging the evaluation of F (S)
becomes.
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2.2 A Non-Anticipativity Based Formulation

In this section, we describe an explicit deterministic equivalent mixed integer pro-
gramming (MIP) formulation for (PESP), in the case that the support of η and ξ
is finite, that is due to Goel and Grossmann (2006). A key concept for this formu-
lation is whether two possible scenarios η, η′ ∈ H can be distinguished from each
other for a given a selection of probing decisions S ⊆ [n].

Definition 1 Given a set S ⊆ [n], scenarios η ∈ H and η′ ∈ H are indistinguish-
able with respect to S if ∑

j∈S

|ηj − η′j | = 0.

We denote the set of all (unordered) pairs of outcomes of η as

H2 := {{η, η′} ∈ H×H : η ̸= η′},

and the set of all pairs of random vectors indistinguishable with respect to S as
I(S) ⊆ H2.

The MIP model starts by writing a non-anticipative formulation of (PESP).
If the S ⊆ [n] components of η are probed, the decision y can depend (only) on
the observed outcome ηS . Let y(η) : H 7→ Rp be a mapping corresponding to the
first stage decisions y in (1). In order for our decisions y(η) to be appropriately
nonanticipative (and the mapping y(·) to be measurable), we require that

y(η) = y(η′) P− a.e. {η, η′} ∈ I(S). (6)

That is, if the S components of η are probed, and two outcomes η, η′ ∈ H are
indistinguishable with respect to S, then the same first stage decisions must be
made. Note that I(∅) = H2, so in this case (6) reduces to ensuring that y(η) = y
is a constant-valued mapping, and the problem reduces to a standard two-stage
stochastic program.

We introduce binary variables xj ∈ {0, 1}, j ∈ [n] to indicate whether or not
to probe the jth component of η, and define S(x) := {j ∈ [n] : xj = 1} as the set
of selected probing decisions. We define z(ξ) : Ξ 7→ Rq as a measurable mapping
corresponding to the second-stage decisions z in (1).

The problem (PESP) can then be formulated as

max
x,y,z

αTx+ Eη,ξ

[
βTy(η) + γ(ξ)Tz(ξ)

]
(7a)

s.t. Ay(η) = b P-a.e. η ∈ H, (7b)

T (ξ)y(η) +W (ξ)z(ξ) = h(ξ) P-a.e. (η, ξ) ∈ H× Ξ, (7c)

y(η) = y(η′) P-a.e. (η, η′) ∈ I(S(x)), (7d)

x ∈ {0, 1}n (7e)

y(η) ∈ Rp̂
+ × Zp−p̂

+ P-a.e. η ∈ H, (7f)

z(ξ) ∈ Rq̂
+ × Zq−q̂

+ P-a.e. ξ ∈ Ξ. (7g)

In (7), the nonanticapativity constraints (7d) to be enforced depend on the
probing decision vector x. We next discuss how this can be formulated using linear



Probing-Enhanced Stochastic Programming 7

constraints under the assumption that Y is bounded. Specifically, for every pair
of outcomes (η, η′) ∈ H2, if the logical implications∑

j∈[n]

|ηj − η′j |xj ≤ 0 ⇒ yi(η)− yi(η
′) ≤ 0 ∀i ∈ [p]

∑
j∈[n]

|ηj − η′j |xj ≤ 0 ⇒ −yi(η) + yi(η
′) ≤ 0 ∀i ∈ [p]

are modeled, then when η and η′ are the same on the observed variables, the
first stage decision y is forced to take the same values. For each pair of outcomes
{η, η′} ∈ H2, define

ε(η, η′) := min
j∈[n]:|ηj−η′

j |>0
{|ηj − η′j |} > 0

as the smallest amount by which the two realizations differ. For i ∈ [p], define

Ri := max
y∈Y

{yi} −min
y∈Y

{yi}

as the range of the decision variable yi. We finally define the big-M valueMi(η, η
′) :=

[ε(η, η′)]−1Ri. With these definitions, we can write a MIP formulation of (PESP)
as

max
x,y,z

αTx+ Eη,ξ

[
βTy(η) + γ(ξ)Tz(ξ)

]
(8a)

s.t. Ay(η) = b P-a.e. η ∈ H, (8b)

T (ξ)y(η) +W (ξ)z(ξ) = h(ξ) P-a.e. (η, ξ) ∈ H× Ξ,
(8c)

yi(η)− yi(η
′)−Mi(η, η

′)
∑
j∈[n]

|ηj − η′j |xj ≤ 0 P-a.e. {η, η′} ∈ H2,

(8d)

− yi(η) + yi(η
′)−Mi(η, η

′)
∑
j∈[n]

|ηj − η′j |xj ≤ 0 P-a.e. {η, η′} ∈ H2,

(8e)

x ∈ {0, 1}n (8f)

y(η) ∈ Rp̂
+ × Zp−p̂

+ P-a.e. η ∈ H, (8g)

z(ξ) ∈ Rq̂
+ × Zq−q̂

+ P-a.e. ξ ∈ Ξ. (8h)

If the support of the random variables η and ξ is finite, then (8) is a MIP
problem with a finite number of constraints and variables. Note, however, that
from (8d) and (8e), there are two constraints for every pair of distinct outcomes
of η, so this formulation is only tractable if |H| is quite small. As mentioned in
the introduction, some authors such as Boland et al. (2016) have done work to
identify a minimal set of nonanticipative constraints (8d) and (8e) that still results
in a valid formulation of (PESP), but the number of such constraints may still be
extremely large.
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3 Branch-and-Bound Algorithms

In this section, we propose two branch-and-bound algorithms to solve (PESP).
We describe the algorithms under the assumption that the quantity F (S) can be
computed exactly for any S ⊆ [n], for example, when the joint support of (η, ξ)
is finite and not too large. We discuss in Section 4 how sampling can be used to
yield statistical approximations when F (S) cannot be computed exactly.

Upper bounds in our branch-and-bound method are based on an information-
relaxation concept generalizing the notion of perfect information. Specifically, the
relaxations follow from the following observation.

Lemma 1 If S ⊆ T ⊆ [n], then F (S) ≤ F (T ).

Proof Using the definition of F (T ) we have

F (T ) = EηT

[
max
y∈Y

Eξ

[
βTy +Q(y, ξ)|ηT

]]

= EηSEηT\S

[
max
y∈Y

Eξ

[
βTy +Q(y, ξ)|ηS ,ηT\S

]]

≥ EηS max
y∈Y

EηT\S

[
Eξ

[
βTy +Q(y, ξ)|ηS ,ηT\S

]]

= EηS

[
max
y∈Y

Eξ

[
βTy +Q(y, ξ)|ηS

]]
= F (S).

⊓⊔

The set [n] includes the index of all entries in η, so F ([n]) ≥ max{F (S) : S ⊆
[n]}. Recalling that α : 2[n] → R+, is a non-negative set function, if we simply
drop the term −α(S) in (PESP) we obtain an upper bound on the optimal solution
value that is known as the perfect information bound F ([n]):

F ([n]) ≥ zpesp.

On the other hand, probing all components of η is one feasible solution to (PESP),
which yields the following lower bound on the optimal value:

F ([n])− α([n]) ≤ zpesp.

3.1 Single-Element Branching

In our first branch-and-bound algorithm, after evaluating the upper and lower
bounds at a node, a single component of j ∈ [n] of η is selected, and two new
nodes are created, one where ηj is probed, and one where ηj is not probed. Thus,
a node P in the branch-and-bound tree is defined by a subset of SP

1 ⊆ [n] of
components that are probed and a disjoint subset SP

0 of components that are not
probed. The following lemma provides lower and upper bounds on the optimal
value of the node problem given these restrictions.
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S0 = ∅, S1 = ∅

ub = α(∅) + F ({1, 2, 3})
lb = α({1, 2, 3}) + F ({1, 2, 3})

S0 = {2}, S1 = ∅

ub = α(∅) + F ({1, 3})
lb = α({1, 3}) + F ({1, 3})

S0 = ∅, S1 = {2}

ub = α({2}) + F ({1, 2, 3})
lb = α({1, 2, 3}) + F ({1, 2, 3})

S0 = {1, 2}, S1 = ∅

ub = α(∅) + F ({3})
lb = α({3}) + F ({3})

S0 = {2}, S1 = {1}

ub = α({1}) + F ({1, 3})
lb = α({1, 3}) + F ({1, 3})

S0 ← S0 ∪ {2} S1 ← S1 ∪ {2}

S0 ← S0 ∪ {1} S1 ← S1 ∪ {1}

Fig. 1: Partial Bound Calculations for n = 3

Lemma 2 Let SP
0 , S

P
1 ⊆ [n] with SP

0 ∩ SP
1 = ∅. Then,

F ([n] \ SP
0 )− α([n] \ SP

0 ) ≤ max{F (S)− α(S) : S ⊇ SP
1 , S ∩ SP

0 = ∅}

≤ F ([n] \ SP
0 )− α(SP

1 ).

Proof The lower bound is obtained by observing that the set S = [n]\SP
0 satisfies

S ⊇ SP
1 and S ∩ SP

0 = ∅. The upper bound follows from the monotonicity of
α, α(SP

1 ) ≤ α(S) for any S ⊇ SP
1 , and by applying Lemma 1 to conclude that

F ([n] \ SP
0 ) ≥ F (S) for any S with S ∩ SP

0 = ∅. ⊓⊔

After evaluating node P of the branch-and-bound tree, if its upper bound is
not smaller than the value of a known feasible solution, then we must branch, by
selecting an unfixed component j ∈ [n] \ SP

1 \ SP
0 , and creating two child nodes

P+ and P−, with

SP+

1 := SP
1 ∪ {j} SP+

0 := SP
0 ,

SP−

1 := SP
1 SP−

0 := SP
0 ∪ {j}.

The single-element branch-and-bound algorithm is initialized with a root node
A defined by SA

0 = SA
1 = ∅ and then proceeds to create more nodes via the

single-element branching procedure. Figure 1 presents an example of a partial
branch-and-bound tree with the bound calculations for an instance with n = 3.
Note that if SP

0 ∪SP
1 = [n] then the lower and upper bounds in Lemma 2 coincide.

Thus, there will be at most 2n leaf nodes in the tree, so the branch-and-bound
algorithm is finite. An important aspect of the proposed bounding scheme is that
evaluating the bounds for the child node where the probing candidate must be

probed (it is added to the set SP+

1 ) requires only an evaluation of α(), since all
other components of the bounds were computed at the parent node.
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Branching variable selection

The choice of branching variable index among the unfixed components C := [n] \
SP
1 \ SP

0 can significantly impact the size of the search tree, and we would like
to select a candidate for which the upper bounds of the two child nodes decrease
significantly. For each j ∈ C, we seek to estimate the bound that will be obtained
if we create child nodes P+ and P− using j as the branching variable. For the
node P+, the computed upper bound changes by

∆+
j := α(SP

1 )− α(SP
1 ∪ {j}) ≤ 0.

By evaluating α(SP
1 ∪ {j}) for each unfixed variable j ∈ C, we can decide which

unfixed variable will have the most impact for the node P+. For the node P−, the
computed upper bound changes by

∆−
j := F ([n] \ SP

0 )− F ([n] \ (SP
0 ∪ {j})).

Thus, we could like to estimate the impact that not knowing the outcome of the
random variable ηj will have on the upper bound, relative to the current upper
bound. Letting S = [n] \ SP

0 , the first term in the definition of ∆−
j is F (S) =

EηS [R(ηS)] and has been calculated (or estimated by sampling) at the current
node, but computing F ([n] \ (SP

0 ∪{j})) for each j ∈ C would be computationally
demanding. Thus, we instead seek to use information obtained when evaluating
F (S) to estimate the relative importance of knowing each random component ηj

in terms of its impact on the upper bound. Thus, rather than use ∆−
j exactly, we

use an estimate ∆̂−
j and consider two options for this estimate.

The first option is applicable only in the case where each ηj is a Bernoulli
random variable. In this option, we define ∆̂−

j to be an approximation of the value

EηS [R(ηS)|ηj = 1]− EηS [R(ηS)|ηj = 0].

In the second option, which applies generally, we define ∆̂−
j to be an approximation

of the covariance between ηj and R(ηS). In the case that F (S) is estimated via
sampling as described in Section 4, these estimates can be computed using the same
information used to evaluate F (S). The details are described in the Appendix.

To combine the ∆+
j and ∆̂−

j values into a score for each candidate j ∈ C we
first normalize them as follows

ζ+j =
∆+

j −minj′∈C ∆
+
j′

maxj′∈C ∆
+
j′ −minj′∈C ∆

+
j′
, ζ−j =

∆̂−
j −minj′∈C ∆̂

−
j′

maxj′∈C ∆̂
−
j′ −minj′∈C ∆̂

−
j′

,

then define

ψj := ζ+j + ζ−j , (9)

and finally choose the branching variable j∗ according to j∗ = argmaxj∈Cψj .
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3.2 Multi-element branching

In our second branch-and-bound algorithm, we characterize a node P by a subset
SP
0 ⊆ [n] of components of η that will not be probed, and a collection of disjoint

subsets SP = {SP
k : k ∈ [nP ]}, where for each k ∈ [nP ] at least one of the

components of ηSP
k
will be probed. This method requires the additional assumption

that α(·) is modular: α(S) =
∑

i∈S α({i}) for all S ⊆ [n].
The following lemma provides lower and upper bounds on the optimal value

of the node problem given these restrictions.

Lemma 3 Assume that α(·) is modular. Let SP
0 ⊆ [n], and SP = {SP

k : k ∈ [nP ]}
be such that SP

i ∩ SP
j = ∅ ∀i ̸= j ∈ [nP ]× [nP ] and S

P
0 ∩ SP

i = ∅ ∀i ∈ [nP ]. Then,

F ([n] \ SP
0 )− α([n] \ SP

0 )

≤ max{F (S)− α(S) : S ∩ SP
0 = ∅, S ∩ SP

k ̸= ∅, k ∈ [nP ]}

≤ F ([n] \ SP
0 )−

∑
k∈[nP ]

min{αj : j ∈ SP
k }.

Proof The lower bound is obtained by observing that the set S = [n]\SP
0 satisfies

S ∩ SP
k ̸= ∅ for k ∈ [nP ] and S ∩ SP

0 = ∅. By the monotonicity and modularity of
α, ∑

k∈[nP ]

min{αj : j ∈ SP
k } ≤ α(S)

for any S with S ∩ SP
k ̸= ∅ for all k ∈ [nP ]. Using Lemma 1 to conclude that

F ([n]\SP
0 ) ≥ F (S) for any S with S∩SP

0 = ∅ yields the desired upper bound. ⊓⊔

To begin the multi-element branching tree, the root node A is created and
evaluated with SA

0 = ∅,SA = ∅, which yields the perfect information bound. The
first branch creates two nodes L and R enforcing the dichotomy that either no
elements of η are probed (SL

0 = [n],SL = ∅), or at least one component of η is
probed, (SR

0 = ∅,SR = {[n]}). At all subsequent nodes of the branch-and-bound
tree, branching on an active node P is done by selecting a subset element T ∈ SP

and a subset K ⊂ T . Since at least one element of T must be selected for probing,
we know the following trichotomy:

1. If no elements of K are probed, then at least one element of T \ K must be
probed;

2. If no elements of T \ K are probed, then at least one element of K must be
probed;

3. Otherwise at least one element from both T and T \K must be probed.

This translates into three new child nodes P1, P2, P3 of P defined by

1. SP1
0 = SP

0 ∪K. SP1 = SP \ {T} ∪ {T \K}.
2. SP2

0 = SP
0 ∪ (T \K). SP2 = SP \ {T} ∪ {K}.

3. SP3
0 = SP

0 . SP3 = SP \ {T} ∪ {K} ∪ {T \K}.
Figure 2 presents an example of a partial branch-and-bound tree obtained using

multi-element branching for an example with n = 5. Compared to single-element
branching, this approach tends to lead to subproblems with more elements in the
set SP

0 higher in the tree, which may improve the bounds more quickly as the
quantity F ([n] \ SP

0 ) is a key component of the node bounds.
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S0 = ∅,
S = ∅

S0 = {1, 2, 3, 4, 5},
S = ∅

S0 = ∅,
S = {{1, 2, 3, 4, 5}}

S0 = {1, 3, 5},
S = {{2, 4}}

S0 = {2, 4},
S = {{1, 3, 5}}

S0 = ∅,
S = {{1, 3, 5}, {2, 4}}

S0 = {1, 2, 4, 5},
S = {{3}}

S0 = {2, 3, 4},
S = {{1, 5}}

S0 = {2, 4},
S = {{1, 5}, {3}}

T = {1, 2, 3, 4, 5}, K = {1, 3, 5}

T = {1, 3, 5}, K = {1, 5}

Fig. 2: Example partial branch-and-bound tree with n = 5 multi-element branch-
ing.

Branching decisions

Branching in the multi-element branching method requires two decisions. A branch-
ing set T ∈ SP must be selected, and the elements of T must be partitioned. In our
implementation, we select the branching set T from SP as the set with the largest
cardinality. To partition the elements of the branching set T , we use the impor-
tance estimates ψj introduced in equation (9). The set is partitioned by choosing
K to heuristically minimize the difference |

∑
j∈K ψj −

∑
j∈T\K ψj |, which tries

to ensure that both child nodes are of “equal” importance. Specifically, we sort
the elements of T in decreasing order of their scores ψj . Let j1, j2, . . . , j|T | be the
elements of T sorted such that ψj1 ≥ ψj2 ≥ · · · ≥ ψj|T | . Then we partition T into
K and T \K by setting K = {jk : k is odd}.

4 Sampling

In many applications, the joint support of the random variables (η, ξ) will be too
large allow for the exact evaluation of F (S). We present two methods for estimat-
ing an upper bound on zpesp using sampling, which vary according to whether
the branch-and-bound algorithm is run on an approximation built using a single
sample (external sampling – Section 4.1) or whether sampling is done repeatedly
throughout the branch-and-bound algorithm (internal sampling – Section 4.2). We
also describe in Section 4.3 how sampling can be used to estimate a lower bound
on zpesp.

4.1 External Sampling—Sample Average Approximation

A classical way to obtain bounds on the optimal solution value of a stochastic pro-
gram is via sample-average approximation (SAA). In SAA, (ηk, ξk), for k ∈ [N ] are



Probing-Enhanced Stochastic Programming 13

jointly randomly sampled according to the distribution P, and an approximation
to the problem assuming each of these scenarios is equally likely is created.

Consider a fixed sample and let S ⊆ [n]. Let ĤS =
⋃N

k=1 η
k
S be the set of unique

subvectors of ηk in the sample. For each ηS ∈ ĤS , define ΩN (ηS) = {k ∈ [N ] :
ηkS = ηS}. Then, on this random sample, the sample estimate FN (S) of F (S) is
computed by solving the following two-stage stochastic program for each ηS ∈ ĤS :

RN (ηS) = max
y∈Y

βTy + |ΩN (ηS)|−1
∑

k∈ΩN (ηS)

Q(y, ξk) (10)

where Q(y, ξk) is defined in (2). The value FN (S) is then computed as

FN (S) = N−1
∑

ηS∈ĤS

|ΩN (ηS)|RN (ηS).

Finally, the SAA optimal value for a given sample is defined as

vN = max{FN (S)− α(S) : S ⊆ [n]}. (11)

Since FN (S) can be computed for any S ⊆ [n] by solving a collection of
two-stage stochastic programs with finite support, the sampled approximation
problem (11) can be solved using the branch-and-bound method of Section 3. Any
method can be used to solve each of the two-stage stochastic programs (10). In our
implementation, we use a commercial MIP solver to solve the extensive form Birge
and Louveaux (1997), but decomposition methods such as the L-shaped algorithm
Van Slyke and Wets (1969); Laporte and Louveaux (1993) or dual decomposition
Carøe and Schultz (1999) may also be applied when applicable.

The optimal solution value of the sampled instance vN is an outcome of a
random variable, as it depends on the randomly drawn sample of size N . It is
well-known that the expected value of the random variable vN provides a biased
estimate of the true objective value: E[vN ] ≥ zpesp. In order to estimate E[vN ],
and hence estimate an upper bound of zpesp, we can replicate the computations,
as suggested by Mak et al. (1999). Specifically, we draw L independent batches of
joint samples (ηk,ℓ, ξk,ℓ), for k ∈ [N ], ℓ ∈ [L] from the distribution P. Note that
since the sampled elements within a batch are not required to be independent,
variance reduction techniques such as Latin hypercube sampling (LHS) (McKay
et al., 1979; Freimer et al., 2012) could be employed to generate the sample for
each fixed batch ℓ ∈ [L]. We define vℓ

N to be the optimal solution value of (11)
coming from the ℓth batch of samples and define the average of the vℓ

N values as

ΥN,L := L−1
∑
ℓ∈[L]

vℓ
N (12)

The estimator ΥN,L is an unbiased estimate of E[vN ] and by the Central Limit
Theorem, we know that

√
L(ΥN,L − E[vN ]) ⇒ N(0,Var(vN )) as L→ ∞.

The sample estimator of the variance Var(vN ) is

s2N,L := (L− 1)−1
∑
ℓ∈[L]

(vℓ
N − ΥN,L)

2, (13)
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which can be used to compute an approximate (1−α) confidence upper bound of
E[vN ] as

ΥN,L + L−1/2tL−1,αsN,L, (14)

where tL−1,α is the α critical value of the Student’s t distribution with L−1 degrees
of freedom. It is also shown in Mak et al. (1999) that EvN ≥ EvN+1 ≥ zpesp, so
increasing the sample size N reduces the bias of the estimate of zpesp.

Re-using information.

When running the branch-and-bound algorithm with a fixed sample (ηk, ξk)Nk=1

it frequently occurs that the subset ΩN (ηS) used in the calculation of RN (ηS)
is identical to the subset ΩN (η′S′) for some previously observed η′S′ ̸= ηS . For
example, at nodes in which the upper bound is computed based on a set S that
consists of many elements of [n] (as often happens in early nodes in the branch-
and-bound tree) the sets ΩN (ηS) have small cardinality, or may even be singletons,
and hence repeat often. Thus, we suggest storing the computed values of RN (ηS)
in a hash table with the key defined by a binary encoding of the set ΩN (ηS).
Thus, any time we need to evaluate RN (ηS) we first determine the set ΩN (ηS)
and check this hash table to see if the the required two-stage stochastic program
has already been solved. In Section 6.5, we report on the significant computational
savings that occur from this simple observation.

4.2 Internal Sampling

A limitation of the external sampling approach is that within a single replication,
the same sample is used to estimate F (S) for all S that are encountered within
the branch-and-bound algorithm, which prevents taking advantage of the specific
subset of observed elements of ηS when estimating F (S). In particular, if the sup-
port of ηS is infinite then the set ĤS of unique vectors ηkS in any randomly-drawn
finite sample will include the full sample so that the set ΩN (ηS) is a singleton
for each ηS ∈ ĤS . This implies that the estimate FN (S) will revert to the perfect
information bound for any finite sample N , making it impossible for the external
sampling approach to improve upon the perfect information bound. Even if the
support of ηS is finite but very large, the same reasoning suggests that the bias of
the lower bound vN used in the external sampling approach may be very large.

To overcome this drawback, sampling can be done separately to estimate an
upper bound on each node within the branch-and-bound search. This approach
is referred to as internal sampling because the sampling is done internal to the
branch-and-bound search, and can be considered an adaptation of the stochas-
tic branch-and-bound algorithm of Norkin et al. (1998) to our probing enhanced
stochastic programming model. The advantage of internal sampling in this set-
ting is that we can then do conditional sampling in a nested fashion. To estimate
bounds at a node P within the branch-and-bound algorithm we require an esti-
mate of an upper bound of F ([n] \ SP

0 ). A lower bound on the optimal value is
obtained by estimating a lower bound of F (S) for a candidate solution S. We dis-
cuss these cases separately, and also discuss how to obtain an estimate of a global
upper bound from a branch-and-bound tree.
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Fig. 3: Internal Sampling

η1S

ξ1|ηS = η1S

...

ξN2
|ηS = η1S

...

...

ηN1

S

ξ1|ηS = ηN1

S

...

ξN2
|ηS = ηN1

S

4.2.1 Statistical Upper Bounds on F (S)

Consider a node in a branch-and-bound tree with associated non-probed set SP
0

and define S = [n] \ SP
0 . The main computational task is to estimate a statistical

upper bound on F (S).

Let ηkS , k ∈ [N1] be a sample of ηS , and for each observation ηkS , let ξ
ki, i ∈ [N2]

be a conditional sample of ξ taken from the conditional distribution of ξ given
ηS = ηkS . Figure 3 illustrates this nested sampling procedure.

An estimate of F (S) is then obtained as

F̄N1,N2
(S) = N−1

1

∑
k∈[N1]

R̄N2
(ηkS) (15)

where

R̄N2
(ηkS) = max

y∈Y
β⊤y +N−1

2

∑
i∈[N2]

Q(y, ξki).

Note that computing this estimate F̄N1,N2
(S) requires solvingN1 two-stage stochas-

tic programs, each with a sample of size N2

The following result demonstrates that this point estimate of F (S) can provide
the basis of a statistical upper bound estimate.

Lemma 4 Assume that η1, . . . , ηN1 are identically distributed and for each k ∈
[N2] the sample ξk1, . . . , ξkN2 are identically distributed conditional on ηS = ηkS.
Then,

EηN1 ,ξN2 [F̄N1,N2
(S)] ≥ F (S),

where EηN1 ,ξN2 indicates the expectation is taken with respect to the samples.

Proof Based on the bias result in sample average approximation (Mak et al., 1999),
for each k ∈ [N1] it holds that

EξN2

[
R̄N2

(ηkS)
]
≥ R(ηkS)
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where the expectation is taken with respect to the sample ξk1, . . . , ξkN2 that is
conditional on ηS = ηkS . Thus,

EηN1 ,ξN2

[
F̄N1,N2

(S)
]
= EηN1

[
N−1

1

∑
k∈[N1]

EξN2 [R̄N2
(ηkS)]

]
≥ EηN1

[
N−1

1

∑
k∈[N1]

R(ηkS)
]

= EηS [R(ηS)] = F (S).

⊓⊔

If the sample η1, . . . ηN1 is independent and identically distributed, then the
values R̄N2

(ηks ) for k ∈ [N1] are iid and hence can be used to compute an ap-
proximate statistical upper bound for F (S). By the Central Limit Theorem, we
have √

N1

(
F̄N1,N2

(S)− E
[
R̄N2

(ηS)
])

→ N
(
0,Var(R̄N2

(ηS)
)
,

as N1 → ∞. The sample variance of R̄N2
(ηS) is computed as

s2RN2
(N1) = (N1 − 1)−1

∑
k∈[N1]

(
R̄N2

(ηkS)− F̄N1,N2

)2
.

Thus, for N1 sufficiently large, we can approximate the probability that F (S)
exceeds a constant u with the probability that a normal random variable with
mean F̄N1,N2

(S) and standard deviation s2RN2
(N1) exceeds u.

Variance reduction techniques such as LHS can be used to improve these es-
timates similarly as was described for external sampling in Section 4.1. This can
be accomplished by creating the sample η1, . . . ηN1 as a set of batches where the
samples in each batch are generated via LHS, but the batches are generated inde-
pendently. Then, if the number of batches is sufficiently large, the sample variance
of the batch averages is used in place of s2RN2

(N1) for the upper bound estimate.
For purposes of incorporating these upper bounds with the branch-and-bound

algorithm of Section 3, it is crucial to note that these bounds are statistical in
nature. Specifically, if the bounds are used to fathom nodes, there is a chance the
optimal solution to the problem would be excluded in the search. Thus, in our
branch-and-bound implementation of internal sampling, we never fathom a node
by bound and simply enumerate nodes until a specified time limit is reached. In our
implementation, we always select to evaluate the node with the largest (statistical)
upper bound, emulating the well-known best-bound node selection rule from MIP
(Linderoth and Savelsbergh, 1999).

Exploiting small support of η or ξ

If the random variable ξ has finite support (e.g., if each element is a Bernoulli
random variable) there may be situations where the conditional support of ξ given
a sample of ηkS of ηS is small enough that R(ηkS) can be computed exactly as
described in (4). In this case, one can replace the sample estimate R̄N2

(ηkS) with
its true evaluation R(ηkS) in (15) to obtain a lower variance estimator, and the
remainder of the upper bound derivation is unchanged.
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On the other hand, when the support of ηS is small (e.g., in case elements
of η are independent Bernoulli trials and |S| is small), we can use this structure
to obtain a potentially lower variance estimate of F (S) by summing over these
observations. In this situation, let η1S , . . . , η

NS

S be the set of all possible observations
of ηS , and let p(ηkS) be the probability of observing outcome ηkS . For each k ∈ [NS ],
we take M independent batches, each of size N2, of conditional samples of ξ given
ηS = ηkS , say ξ

kij for i ∈ [M ], j ∈ [N2]. For each k ∈ [N1] and each batch i ∈ [M ],
let

R̂k,i,N2
(ηkS) = max

y∈Y
β⊤y +N−1

2

∑
j∈[N2]

Q(y, ξkij)

and let µk,N2
(ηkS) = E[R̂k,i,N2

] be the expected value of each batch. Then, for
each k ∈ [N1] define the average of the batch values as

R̄k,M,N2
(ηkS) =M−1

∑
i∈[M ]

R̂k,i,N2
(ηkS).

The estimate R̄k,M,N2
(ηkS) is an unbiased estimator of µkN2

(ηkS). When the M
batch samples are i.i.d., by the Central Limit Theorem, we have that as M → ∞

√
M [R̄k,M,N2

(ηkS)− µk,N2
(ηkS)]] → N

(
0,Var

(
R̂k,i,N2

(ηkS)
))
. (16)

The sample variance of R̂k,i,N2
(ηkS) is computed as

s2Rk
(M) = (M − 1)−1

∑
i∈[M ]

(
R̂k,i,N2

(ηkS)− R̄k,M,N2
(ηkS)

)2
.

Define

F̄ (S) :=
∑

k∈[NS ]

p(ηkS)E[R̄N2
(ηkS)] and

FM,N2
(S) :=

∑
k∈[NS ]

p(ηkS)R̄k,M,N2
(ηkS). (17)

Observe that

F̄ (S) ≥
∑

k∈[NS ]

p(ηkS)R(η
k
S) = F (S).

Therefore, F̄ (S) is an upper bound of F (S), and FM,N2
(S) is an unbiased estimator

of F̄ (S) and we can use it as a statistical upper bound of F (S). Aggregating (16)
for k ∈ [NS ] yields

√
M [FM,N2

(S)− F̄ (S)] → N
(
0,

∑
k∈[NS ]

p(ηkS)
2 Var

(
R̂k,i,N2

(ηkS)
))

as M → ∞. Thus, for M sufficiently large, we can approximate the probability
that F (S) exceeds a constant u with the probability that a normal random variable
with mean FM,N2

(S) and standard deviation sM (S) exceeds u, where

sM (S) =
( ∑
k∈[NS ]

p(ηkS)
2s2Rk

(M)
)1/2

.
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4.2.2 Estimating a Global Upper Bound

Now consider a branch-and-bound tree with set of leaf nodes P, where for each
node P ∈ P the information-based upper bound is calculated as cP +F ([n] \SP

0 ),
where the constant cP is determined via either Lemma 2 or Lemma 3, depending
on the branching mechanism used. Thus, the best upper bound on zpesp that can
be obtained from this tree is the value:

max{cP + F ([n] \ SP
0 ) : P ∈ P}.

Using the upper bound procedure described in Section 4.2.1, we obtain an
upper bound estimate UP of F ([n] \ SP

0 ) for each P ∈ P which is approximately
normally distributed with an estimated mean, say µP , and estimated standard
deviation, say sP . Then, a value u is a global upper bound if and only if UP ≤ u
for all P ∈ P, and hence, using independence of the estimates for each node P ∈ P,
we can compute a 1− α confident upper bound on zpesp as

u(P) = inf
u∈R

{
u :

∏
P∈P

P(UP ≤ u) ≥ 1− α
}
.

Using the normal approximations, u(P) can be found via

u(P) = inf
u∈R

{
u :

∏
P∈P

Φ
(
(u− µP )/sP

)
≥ 1− α

}
, (18)

which can be estimated by binary search.
In our description of the branch-and-bound algorithm using internal sampling

we assume that for each node we use a fixed sample to estimate the upper bound,
so that the estimated upper bound at a node is only improved by branching on that
node. While we do not explore this here since our focus in this paper is on deriving
upper bound and branching techniques for the probing structure, we mention that
one can also consider variations where the upper bound at leaf nodes is improved
by doing more sampling, and the sampling effort is strategically allocated to leaf
nodes – see, e.g., Norkin et al. (1998); Xu and Nelson (2013).

4.3 Statistical Lower Bounds on F (S) and zPESP

Any candidate set of probing actions S ⊆ [n] defines a feasible solution of (PESP),
and hence

zpesp ≥ F (S)− α(S).

Thus, a statistical lower bound on zpesp can be obtained by estimating a statistical
lower bound on F (S) for any S.

Let ηkS , k ∈ [N1] be a sample of ηS , and for each observation ηkS , choose a
solution ŷk ∈ Y . For each k ∈ [N2], let ξ̂

ki, i ∈ [N2] be a sample of ξ taken from
the conditional distribution of ξ given ηS = ηkS . Then, an estimate of F (S) is
obtained as

FN1,N2
(S) = N−1

1

∑
k∈[N1]

RN2
(ηkS) (19)
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where
RN2

(ηkS) = β⊤ŷk +N−1
2

∑
i∈[N2]

Q(ŷk, ξ̂ki).

Computing this estimate requires solving N1 · N2 recourse problems to evaluate
Q(ŷk, ξ̂ki) for each k ∈ [N1] and i ∈ [N2].

As shown in Lemma 5, FN1,N2
(S) provides a statistical lower bound regardless

of the choice of ŷk ∈ Y for k ∈ [N1]. However, the quality of this lower bound will
be influenced by how good the solution ŷk is to the problem defined by R(ηkS).
Thus, we suggest to choose ŷk by taking a separate conditional sample of ξ given
ηS = ηkS , ξ

ik, i ∈ [N3] for each k ∈ [N1] and choosing

ŷk ∈ argmax
y∈Y

β⊤y +N−1
3

∑
i∈[N3]

Q(y, ξki). (20)

Computing ŷk for k ∈ N1 in this way requires solving N1 two-stage stochastic
programs, each having N3 scenarios.

Lemma 5 Let ŷk ∈ Y for k ∈ [N1]. Assume that η1, . . . , ηN1 are identically
distributed and for each k ∈ [N2] the sample ξk1, . . . , ξkN2 is identically distributed
conditional on ηS = ηkS. Then,

EηN1 ,ξN2 [FN1,N2
(S)] ≤ F (S).

Proof For each k ∈ [N1], ŷ
k ∈ Y implies that

R(ηkS) ≥ β⊤ŷk + Eξ

[
Q(ŷk, ξ̂)

∣∣ηS = ηkS
]
.

Thus,

EηN1 ,ξN2

[
FN1,N2

(S)
]
= EηN1

[
N−1

1

∑
k∈[N1]

EξN2 [RN2
(ηkS)]

]
= EηN1

[
N−1

1

∑
k∈[N1]

EξN2

[
β⊤ŷk +N−1

2

∑
i∈[N2]

Q(ŷk, ξ̂ki)
]]

= EηN1

[
N−1

1

∑
k∈[N1]

(
β⊤ŷk + Eξ

[
Q(ŷk, ξ)|ηS = ηkS

])]
≤ EηN1

[
N−1

1

∑
k∈[N1]

R(ηkS)
]
= EηS [R(ηS)] = F (S).

⊓⊔
If the sample η1, . . . ηN1 is independent and identically distributed, then the

values RN2
(ηkS) for k ∈ [N2] are iid and hence can be used to compute an ap-

proximate statistical lower bound for F (S). By the Central Limit Theorem, we
have √

N1

(
FN1,N2

(S)− E
[
RN2

(ηS)
])

→ N
(
0,Var

(
RN2

(ηS)
))

as N1 → ∞. The sample variance of RN2
(ηS) is computed as

s2RN2
= (N1 − 1)−1

∑
k∈[N1]

(RN2
(ηkS)− FN1,N2

(S))2.

Let tN1−1,α be the critical value of Student’s t distribution. Then, we obtain the
1− α confidence lower bound estimate of F (S) as

FN1,N2
(S)− tN1−1,αsRN2

N
−1/2
1 .
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5 Greedy Heuristic

At every node in the branch-and-bound method of Section 3 there is a natural
candidate solution that can be used to obtain a valid (statistical) lower bound on
the optimal solution value via the method described in Section 4.3. Moreover, in
this case, there is no need to solve the auxiliary two-stage stochastic programs
described in (20), since the evaluation of F (S) naturally provides high-quality
candidate solutions yk. However, the solution is obtained by paying for probing
for all components of η that are not fixed at the node. Hence, especially at the
top of the branch-and-bound tree, the feasible solutions probe many components
of η, and the solutions may be far from optimal. In this section, we describe a
greedy heuristic to obtain a feasible solution to (PESP). While the greedy method
is very natural, our contribution is to identify techniques for relatively efficiently
evaluating candidate probing actions to greedily add to the current solution at
each iteration.

We first state in Algorithm 1 the greedy heuristic in its natural form, which is
not practical to implement due to the need to evaluate (or even estimate) F (S)
for a large number of sets S. We use the notation Sc = [n]\S. The method begins
with S = ∅ as the initial solution. In each iteration we have a solution S, and for
each element j ∈ Sc, we evaluate the solution obtained by adding that element to
S, and choose one that gives the largest value. As it is possible that the solutions
obtained may improve or decline at each iteration, the method continues until
all elements are probed and stores all selected solutions in the set L, at the end
returning the best solution obtained.

Algorithm 1: Naive greedy heuristic.

1 S ← ∅. L ← {S}
2 repeat
3 Evaluate F (S).
4 for j ∈ Sc do
5 zj ← α(S ∪ {j}) + F (S ∪ {j})
6 end
7 Choose j∗ ∈ argmax{zj : j ∈ Sc}
8 S ← S ∪ {j∗}, L ← L ∪ S.

9 until S = [n];
10 return argmax{F (S)− α(S) : S ∈ L}.

The naive greedy algorithm requires O(n2) evaluations of F (S), which is im-
practical unless the joint support of (η, ξ) is small. We thus employ the conditional
sampling method of Section 4.2 to estimate F (S). However, even doing this esti-
mation O(n2) times is computationally prohibitive for a heuristic.

In our proposed heuristic, each time we obtain a new solution S, the evaluation
of F (S) (line 3 of the naive greedy heuristic) is conducted using a slight adaptation
of the sampling procedure for estimating a lower bound described in Section 4.3.
Just as in Section 4.3, we first take a sample η1S , . . . , η

N1

S of ηS , and for each
k ∈ [N1] we obtain a solution ŷk ∈ Y by solving (20) using a conditional sample
ξk1, . . . , ξkN3 of ξ conditional on ηS = ηkS . At this point, the evaluation diverges
slightly in that we next take a joint sample (ηk1Sc , ξk1), . . . , (ηkN2

Sc , ξkN2) of (ηSc , ξ)
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conditional on ηS = ηkS for each k ∈ [N1]. This joint sample will be used to
facilitate a faster estimation of F (S∪{j}) for each j ∈ Sc when evaluating the next
element to add to the set in the greedy method. Next, we let Ŷ = {ŷ1, . . . , ŷN1}
be the observed solutions and compute the values Q(ŷk, ξki) for all k ∈ [N1], and
i ∈ [N2], which requires solving N1 × N2 recourse problems. Then, the heuristic
estimates F (S) by

N−1
1

∑
k∈[N1]

max
y∈Ŷ

{
β⊤y +N−1

2

∑
i∈[N2]

Q(y, ξ̂ki)
}
. (21)

Note that the set Y is replaced by the limited set of solutions Ŷ , so that this
quantity can be computed without solving any additional optimization problems.

An important aspect of our heuristic is the ability to reuse computations to
quickly estimate F (S ∪ {j} for j ∈ Sc. We next fix j ∈ Sc and discuss how we
estimate F (S ∪ {j}). For each k ∈ [N1], we use K-means clustering to partition
the (scalar) values {ηkij : i ∈ [N2]} into K sets of similar values, and let the

scenarios in these sets be Ωkℓ
N2

for ℓ ∈ [K], so that these sets are disjoint and⋃
ℓ∈[K]Ω

kℓ
N2

= [N2]. Our approximation is based on the assumption that taking
probing action j will allow us to distinguish between scenarios in different sets
Ωkℓ

N2
, but not scenarios within each of these sets. We also continue to use the set

Ŷ in place of Y , and thus estimate the value of F (S ∪ {j}) as

N−1
1

∑
k∈[N1]

K−1
∑

ℓ∈[K]

max
y∈Ŷ

{
β⊤y + |Ωkℓ

N2
|−1

∑
i∈Ωkℓ

N2

Q(y, ξ̂ki)
}
. (22)

The key observation is that Q(y, ξki) has already been computed for all y ∈ Ŷ ,
k ∈ [N1], and i ∈ [N2], and hence computing (22) does not require solving any
additional optimization problems.

Thus, our proposed greedy heuristic follows the structure of Algorithm 1, with
the differences being that the evaluation of F (S) in line 3 is replaced by the
approximation (21) and the evaluation of F (S ∪ {j}) in line 5 is replaced by (22).

The computational effort of the greedy heuristic is impacted heavily by the
choice of the sample sizes N1 and N2. To generate solutions relatively quickly,
one may use relatively small sample sizes – e.g., we use N1 = 20, N2 = 20,
and N3 = 50 in our experiments. While smaller sample sizes may be sufficient for
guiding the greedy search, it is important to evaluate the most promising solutions
using larger samples to estimate a lower bound as described in Section 4.3. In our
implementation, we use the estimated solution values obtained by (21) within the
heuristic to select the ten most promising solutions from the set of solutions L,
and then evaluate these selected solutions with larger sample sizes.

6 Computational Results

In this section, we first introduce a prototype application. Then we present the
results of a series of computational experiments that demonstrate the impact of
various algorithmic choices and the effectiveness of our branch-and-bound algo-
rithm.
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6.1 Probing-Enhanced Facility Location

Our sample application is an extension of a two-stage stochastic facility location
problem. There is a set of potential facilities I, and each of the facilities i ∈ I
may be built in one of a given set of (capacity) configurations Ci. There are also a
given set of customers J , and each customer j ∈ J has a (random) demand of dj .
Customers may only have their demand served from a single facility. The objective
of the problem is to select a set of facilities to open, to configure the facilities, and
to assign customers to facilities in order to maximize the expected profit. There is
a (fixed) cost βcic of opening facility i ∈ I in configuration c ∈ Ci and a fixed cost
βaij of assigning customer j ∈ J to facility i ∈ I. These assignments must be done
before observing the customer demands. There are binary variables yic that take
the value 1 if and only if facility i is opened in configuration c ∈ Ci and binary
variables uij that take value 1 if and only if customer j ∈ J is assigned to facility
i ∈ I. The stochastic facility location problem can then be written as

max
y,u

−
∑
i∈I

∑
c∈Ci

βcicyic −
∑
i∈I

∑
j∈J

βaijuij + Ed[Q(y, u,d)] (23a)

s.t.
∑
c∈Ci

yic ≤ 1 ∀i ∈ I, (23b)

uij −
∑
c∈Ci

yic ≤ 0 ∀i ∈ I, ∀j ∈ J, (23c)

∑
i∈I

uij ≤ 1 ∀j ∈ J, (23d)

yic ∈ {0, 1} ∀i ∈ I, ∀c ∈ Ci, (23e)

uij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (23f)

Constraints (23b) and (23c) ensure that at most one configuration is selected
for each facility and that customers are assigned only to open facilities. Constraint
(23d) ensures that customers are only assigned to one facility. In (23a), the term
EdQ(y, u,d) is the expected revenue obtained when opening and sizing facilities
according to y and assigning customers to facilities according to u. For a given
realization of demands d(ω) = d and first-stage solution y and u, the maximum
revenue can be obtained by solving the following linear program:

Q(y, u, d) := max
f

∑
i∈I

∑
j∈J

rfij (24a)

s.t.
∑
j∈J

fij −
∑
c∈Ci

θicyic ≤ 0 ∀i ∈ I, (24b)

fij − djuij ≤ 0 ∀i ∈ I, ∀j ∈ J, (24c)

fij ≥ 0 ∀i ∈ J, ∀j ∈ J. (24d)

The decision variable fij is the number of units of product that customer j ∈ J
received from facility i, and each unit of customer demand that is met results
in a revenue of r. The parameters θic are the production capacity of facility i if
operated in configuration c ∈ Ci.
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6.1.1 Definition of Uncertainty

In our computational experiments, we have families of instances with two differ-
ent distributions of customer demands. In the first instances, the customer de-
mands are independent random variables following a discrete distribution with
two outcomes—either the customer demand is 0 with probability ρj , or it is a
known nominal value ηj with probability (1 − ρj). Thus, instances in this family
have a total of 2|J| scenarios.

In the second family, customer demands are continuous random variables. Each
customer j can either have a low demand or a high demand. The probability of a
low demand for customer j is ρj , and the probability of a high demand is (1−ρj).
For a low demand, the demand follows a triangular distribution with a minimum
value of 0, a maximum value of η1, and a mode of 0. For a high demand, the
demand follows a triangular distribution with a minimum value of η2, mode η3,
and maximum value of η4. The demand for each customer is independent. Instances
are available from the authors in JSON format upon request.

6.1.2 Information Model

The probing-enhanced stochastic programming model introduction in Section 2
allows for an arbitrary correlation structure between η and ξ. In this proof-of-
concept implementation, we assume that η = ξ. In the context of our facility
location model, this implies that by probing customer j ∈ J , we can exactly
know that customer’s true demand realization. However, because our stochastic
model assumes the customer demands are independent, this gives no information
about the distribution of demand of other customers. This information structure is
equivalent to earlier work on decision-dependent information structure that models
the ability to control the timing of when the outcome of random variables is known.
Here, if we probe customer j ∈ J , then we know its demand before deciding
facility locations, sizes, and customer assignment to open facilities. Future work
will consider different models of correlation between η and ξ.

6.2 Computing Environment and Test Instances

All two-stage stochastic programs are solved via the extensive form (Birge and
Louveaux, 1997) and these and any other optimization problems are solved with
Gurobi v9.5.1. A computational advantage of the branch-and-bound methods pro-
posed in Section 3 when combined with sampling is that independent estimations
of problem bounds can be computed in parallel. Most of the computations in
this section were carried out on a shared cluster of machines of varying archi-
tectures scheduled with the HTCondor software (Thain et al., 2005). Thus, in
order to report computational effort and compare different approaches we rely
primarily on Gurobi’s work unit (GWU), which in our experience is a more reli-
able statistic to use for comparison between runs on different machines. According
to Gurobi’s documentation, a GWU is very roughly equivalent to a second of
CPU runtime, but this may vary significantly depending on the hardware. Unless
otherwise specified, we enforce a total computational budget of 30000 GWU for
obtaining an upper bound using our branch-and-bound methods. We also report
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other machine-independent statistics of computational effort, such as the total
nodes of all branch-and-bound trees, the total number of MIP problems solved,
etc. For computations done in parallel, we report statistics aggregated over all
distributed computations.

Most of the computational effort in the information-relaxation-based branch-
and-bound method is on the computation or estimation of F (S) for different sub-
sets S ⊆ [n] throughout the branch-and-bound tree. Recall from the description of
the single-element branching method of Section 3.1 that the value of F (S) needs
to be re-computed for only one of the two child nodes. Similarly, the value of F (S)
needs to be recomputed for only two of the three child nodes in the multi-element
branching method of Section 3.2. So in some computational tables, we report both
the number of nodes in the tree and the number function evaluations of F (S)
required.

We do a majority of our testing on twelve instances, six with discrete demand
distribution and six with continuous distribution as described in Section 6.1.1 All
instances have |I| = 5 facilities, and each facility has |Ci| = 4 possible config-
urations. The name of each instance encodes the number of customers, with an
instance whose name starts with “Jn” having n = |J | customers, and instances
whose names end in “ C” have customers whose demands follow a continuous
distribution.

Table 1: Comparison of Nonanticipative Formulation and Information-Relaxation
Based Branch-and-Bound Algorithm

NA-Formulation Info-Relax B&B
Instance # Nodes GWU Gap (%) # Nodes # Eval GWU

J4 1 1.5 0.0 11 8 0.1
J5 235 173.0 0.0 18 14 0.2
J6 170 5411.6 0.0 47 39 1.8
J7 1 30000.0 39.7 44 37 4.9
J8 1 30000.0 191.2 89 74 31.1
J9 - - - 101 81 84.4
J10 - - - 276 234 363.7
J20 1 1 30000.0 30.7 85920 75050 1801.7
J20 2 1 30000.0 35.2 40399 35234 652.3
J20 3 1 30000.0 7.4 72893 63304 586.5

6.3 Comparison of Nonanticipative and Nested Formulations

We first report results of experiments designed to compare the performance of
a standard branch-and-cut-based MIP solver on the nonanticipativity-based for-
mulation (8) with the information-relaxation-based branch-and-bound algorithm
for solving the probing-enhanced facility location problem. We perform two types
of comparisons. First, we exactly solve small instances having between 4 and 10
customers and a discrete demand distribution by both methods. Second, we solve
sampled instances (with sample size N = 100) that have 20 customers by both
methods. The multi-way branching method describe in Section 3.2 is used for the
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information-relaxation-based scheme. Table 1 shows the results of these exper-
iments, where # Nodes is the number of nodes explored either within the work
unit limit or until terminated, GWU is the Gurobi work units, Gap (%) is the end-
ing optimality gap reported by the MIP solver when the work limit was reached,
and # Eval is the number of nodes in the information-based branch-and-bound
algorithm on which the F (S) needed to be evaluated.

For instances J9 and J10, the nonanticapative formulation could not be cre-
ated due to a lack of memory. The information-relaxation-based branch-and-bound
method was able to solve all instances to optimality within the work-unit limit. The
table indicates that the information-relaxation-based branch-and-bound method
can outperform the direction solution of the nonanticipativity-based formulation
by several orders of magnitude.

6.4 Impact of Variance Reduction in Sampling Methods

The quality of the statistical estimates of the solution bounds described in Section 4
depend heavily on the variance of observations. In Table 2, we demonstrate the
significant reduction in variance in the estimates that can be obtained by using
Latin hypercube sampling (LHS). The table shows for the instance J20 3 the
estimate of E[vN ] for two different values of N and the standard deviation of the
estimate. There were L = 30 replications used to to compute the estimates. The
estimate ΥN,L was computed by equation (12), and the standard deviation of the
estimate of the mean sN,L, was computed by equation (13). The table clearly
shows a significant variance reduction when sampling via LHS for these instances,
so all remaining computational results presented use LHS for obtaining estimates.

Table 2: Sampling Method Test on Instance J20 3

Sampling N ΥN,L sN,L

MC 50 12431.8 964.9
LHS 50 12527.8 110.9
MC 100 12464.6 540.2
LHS 100 12368.0 78.7

6.5 Impact of Storing RN (ηS) Evaluations

Recall from the description of using the branch-and-bound method to solve an
externally-sampled instance in Section 4.1 that the value of the same two-stage
stochastic program computed as RN (ηS) in (10) may be required at many different
nodes in the branch-and-bound tree. In Table 3, we show how often the values are
reused for our discrete instances with |J | = 20 customers, externally sampled with
a sample size of N = 50, and replicated L = 30 times. Our implementation uses
a hash table which (for memory purposes) stores only the most recently used
10, 000 values of RN (ηS). For these instances, we show the average GWU, the
average number of nodes in the branch-and-bound trees (# Nodes), the average
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number of function evaluations of F (S) that are required (# Eval.), the average
number of two-stage stochastic programs (values RN (ηS)) that are required for
the computation (#SP), and the percentage of time the value of RN (ηS) can
be recovered from a stored value (% Lookup). We show this data for both the
single-variable branching method of Section 3.1 and multi-variable branching of
Section 3.2.

Table 3: Impact of Hashing

Instance Method GWU # Nodes # Eval. # SP % Lookup
J20 1 single 110.8 116332.6 83017.7 3531655.8 99.79
J20 1 multi 112.4 32770.9 29181.9 1174542.4 99.35
J20 2 single 111.9 78279.1 56509.7 2493461.7 99.81
J20 2 multi 117.3 23871.6 21187.1 895986.7 99.44
J20 3 single 52.2 82441.4 58852.5 2585136.0 99.83
J20 3 multi 65.4 29537.0 26030.0 1098195.1 99.50

Table 3 shows that a remarkably high percentage of the values RN (ηS) can
be reused during the course of the branch-and-bound search. The percentage is
uniformly larger for the single-variable branching method, which is consistent with
the intuition that the child node subproblems change less under single-variable
branching, and if a subproblem changes less, then it is more likely to be able to
reuse computations when re-evaluating its bound.

Figure 4 displays this phenomenon graphically, depicting the evolution of the
upper bound of the branch-and-bound tree as a function of the GWU for an
externally-sampled (N = 100) instance of J20 1 for both single-variable and multi-
variable branching rules. The figure demonstrates that the bound evolution is
very similar when hashing is used, but significantly better for the multi-variable
branching rule if the values of R(ηS) are not stored and re-used. However, using
hashing leads to significantly faster reduction of the upper bound in both cases.

(a) Use Hash Table to Look Up Values (b) Recompute All Values

Fig. 4: Evolution of upper bound for externally-sampled instance of J20 1 instance
with N = 100



Probing-Enhanced Stochastic Programming 27

6.6 Comparison of Branching Methods

This subsection is aimed at providing an empirical comparison between the single-
element branching method of Section 3.1 and the multi-element branching method
of Section 3.2.

External Sampling

As explained at the beginning of Section 4.2, employing the external sampling
method for instances with a continuous probability distribution will yield only
the perfect-information bound. Thus, to evaluate branching methods for external
sampling, we consider only our test instances that come from a discrete probability
distribution.

In the experiment, we run the information-relaxation-based branch-and-bound
method of Section 3 on sampled instances of sizes N ∈ {50, 100, 200} with different
branching rules and compare the performance. We employ L = 30 different joint
samples of (η, ξ) for each value of N to estimate E[vN ] via equation (12). Each
replication is run with a GWU limit of 1000.

We test three branching methods in this experiment. Method random follows
the single variable branching method presented in Section 3.1 with the choice of
probing element to branch on chosen randomly among the candidates. Method
single also does single variable branching, but uses the first option described in
the branching variable selection portion of Section 3.1 for selecting the probing
element to branch on. Specifically, we use the observed difference between values
of R(ηS) for the two outcomes for probing customer j, (EηS [R(ηS)|ηj = 1] −
EηS [R(ηS)|ηj = 0]), for the measure of importance of excluding j ∈ [n] from
probing consideration, ∆̂−

j . Method multi follows the multi-element branching
scheme described in Section 3.2, with branching decisions made using the same
scoring as in method single.

Table 4 shows the results of this experiment. This table displays, for each
combination of instance, sample size (N), and branching method employed: the
number of the 30 replications that are successfully solved within the work unit
limit (Solved), the average number of nodes solved over the L = 30 replications
(#Nodes), the average number of evaluations of the function F (S) that are re-
quired (#Eval), the average number of work units (GWU), and the estimate of
the upper bound ΥN,L (UB). We do not test method rand on the instances with
N = 200 because the instances with N ∈ {50, 100} were sufficient to demonstrate
the superior performance of single over rand.

Since for each of the three branching methods, all L = 30 of the sampled
instances having N = 50 solved successfully, the estimated value of E[v50] (in UB)
is the same in all cases. In case that one or more of the 30 replications did not
solve, we use upper bound of the branch-and-bound tree at the work limit as the
value vℓ

N in equation (12) to obtain a valid statistical upper bound on zpesp.
From Table 4 we conclude from comparing the random and single branching

methods that our strategy for selecting the branching entity described significantly
outperforms branching randomly. We next observe that there is little difference
in performance between single and multi-variable branching in terms of the total
number of work units required to solve an instance or the bound obtained in a fixed
number (1000) of work units. Note, however, that the number of nodes and function
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Table 4: Branching Method Performance for Externally Sampled Instances

Instance N Method Solved # Nodes # Eval. GWU 95% UB
J20 1 50 random 30 124479.0 89333.8 256.8 9012.6
J20 1 50 single 30 116332.6 83017.7 110.8 9012.6
J20 1 50 multi 30 32770.9 29181.9 112.4 9012.6
J20 2 50 random 30 86553.5 62983.4 212.0 10785.5
J20 2 50 single 30 78279.1 56509.7 111.9 10785.5
J20 2 50 multi 30 23871.6 21187.1 117.3 10785.5
J20 3 50 random 30 99418.4 71926.8 121.1 12563.9
J20 3 50 single 30 82441.4 58852.5 52.2 12563.9
J20 3 50 multi 30 29537.0 26030.0 65.4 12563.9
J20 1 100 random 0 78585.1 55584.7 1000.1 8999.1
J20 1 100 single 0 162637.2 112977.8 1000.1 8890.3
J20 1 100 multi 0 63584.7 55793.2 1000.0 8865.7
J20 2 100 random 0 74902.0 53348.6 1000.0 10726.5
J20 2 100 single 8 147508.7 102501.2 937.6 10632.6
J20 2 100 multi 10 54807.4 47906.7 943.9 10627.2
J20 3 100 random 0 119891.7 84635.9 1000.0 12425.7
J20 3 100 single 25 161778.2 111920.8 645.5 12358.5
J20 3 100 multi 28 68844.8 59858.6 668.8 12356.2
J20 1 200 single 0 59605.0 41213.0 1000.0 8934.9
J20 1 200 multi 0 16636.9 14489.3 1000.0 8891.9
J20 2 200 single 0 52628.9 36447.0 1000.0 10689.6
J20 2 200 multi 0 14464.6 12522.2 1000.0 10671.5
J20 3 200 single 0 80465.0 55133.2 1000.0 12364.1
J20 3 200 multi 0 25446.3 21803.1 1000.0 12373.0

evaluations required are significantly larger for single-variable compared to multi-
variable branching. To explain this apparent contradiction, the reader is reminded
of the results of Section 6.5, where it is demonstrated that single variable branching
allows for significantly more reuse of portions of the F (S) computations. A second,
more subtle reason for faster evaluation of nodes in single-variable branching is that
the number of excluded candidate probing actions at nodes by multiple-variable
branching is larger than for single-node branching. As mentioned in Section 2.1,
the difficulty of evaluating F (S) depends inversely on the cardinality of S, so
as more candidates probing actions are excluded from consideration, the upper
bound calculation of F ([n] \ SP

0 ) tends to require more computational effort for
branch-and-bound nodes in a multiple-variable branching tree.

Internal Sampling

Table 5 shows the results of an experiment comparing the single and multiple
variable branch-and-bound methods on instances solved via our internal-sampling
approach.

Our internal sampling implementation uses LHS to generate the external sam-
ple of size N1 = 300 as 30 independent batches of size 10. The conditional sample
has size N2 = 100, and the statistical upper bound is estimated via equation (15).
If, however, the cardinality of the support of ηS is less than or equal to 8, we
forgo the sample and enumerate all possible outcomes, as explained at the end of
subsection 4.2.1. In this case, for each possible ηkS , we take M = 30 independent
batches of conditional samples ξ given ηS = ηkS of size N2 = 100 and we estimate a
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Table 5: Branching Method Performance for Internally Sampled Instances

Instance Method # Nodes # Eval. 95% UB
J20 1 single 844 547 8940.1
J20 1 multi 275 218 8834.1
J20 2 single 529 343 10607.7
J20 2 multi 124 94 10611.5
J20 3 single 1260 838 12076.8
J20 3 multi 358 283 12283.4
J25 1 single 847 539 9446.4
J25 1 multi 214 165 9502.2
J25 2 single 602 393 11091.0
J25 2 multi 158 121 11172.5
J25 3 single 342 225 10553.9
J25 3 multi 178 135 10372.6

J20 1 C single 223 149 10496.5
J20 1 C multi 167 127 10401.4
J20 2 C single 183 122 10709.1
J20 2 C multi 127 98 10584.9
J20 3 C single 193 127 11423.6
J20 3 C multi 137 104 11279.8
J25 1 C single 141 93 11688.8
J25 1 C multi 86 64 11560.1
J25 2 C single 153 101 10147.7
J25 2 C multi 104 78 10064.7
J25 3 C single 119 81 9231.3
J25 3 C multi 68 51 9093.6

statistical upper bound on F (S) using equation (17). When selecting a branching
candidate, we use the observed sample covariance between ηj and R(ηS) (from
equation (25)) for the importance score ∆̂j .

All instances in the table were run with a maximum GWU limit of 30000.
The table shows the number of nodes of the branch-and-bound tree (#Nodes),
the number of evaluations of F (S) (# Eval), and the 95% confident estimate of
an upper bound on zpesp (95% UB) computed by (18) obtained by the method
within the work limit by both branching methods.

For instances whose random variables are discrete, again the performance dif-
ference between single and multiple variable branching seems negligible in the
internal sampling method. Note that single-variable branching is able to evalu-
ate significantly many more nodes within the work limit than multiple-variable
branching. However, as the sampling is conditional in the internal-sampling ap-
proach, there is no ability to reuse portions of the F (S) computations. Thus, the
reason for the similarity in performance between the methods is different for inter-
nal sampling than it is for external sampling. In the case of internal sampling, the
difference is explained by the fact that in single-variable branching, nodes P tend
to have fewer candidate probing actions excluded, so the estimation of F ([n]\SP

0 )
is somewhat easier. Also, there are more nodes whose bounds can be estimated us-
ing the ability to exploit the small support of the random variable ηS , as explained
at the end of Section 4.2.1.

For continuous distribution instances, the performance of the multiple-variable
branching seems slightly better than the single-variable branching.
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6.7 Comparison of External and Internal Sampling

We next compare the performance of external and internal sampling methods in
terms of the quality of upper bounds they are able to obtain within the same
work limit. The runs (and all parameters values) used to make this comparison
are the same as used for the experiments described in Section 6.6, and we use
the multi-variable branching method. For the internal sampling method we use
a single branch-and-bound search with total work limit of 30000 GWU, and for
the external sampling method we use L = 30 replications, each with a work limit
of 1000 GWU. For external sampling, the 95% confidence interval was computed
by (14), and for internal sampling, the confidence 95% confidence estimate for the
upper bound for internal sampling is found by equation (18).

In Table 6, for the discrete distribution test instances we present the 95% con-
fidence upper bound on zpesp obtained by the internal sampling method and the
external sampling method with three different sample sizes N ∈ {50, 100, 200}.
We also present the 95% confidence upper bound on zpesp obtained by the inter-
nal sampling on the continuous distribution instances, and for context, the table
includes the point estimates of the perfect information bound and the best lower
bound for each instance. Most of the best solutions were found by the greedy
heuristic of Section 5, and we provide more details of lower bound computations
in Section 6.8. Note that the values of the PI Bound and the Best LB are point
estimates of the values, while we present a 95% confidence limit for the upper
bounds obtained from branch-and-bound. The standard error associated with the
perfect information and lower bound estimates is in the range of 50 − 100 and is
given in Table 9 in the appendix.

Table 6: 95% Confidence-Level Upper Bound Obtained by External and Internal
Sampling Methods

External Internal PI Best
Instance N = 50 N = 100 N = 200 Bound LB
J20 1 9048.6 8881.5 8903.9 8834.1 9739.2 7919.0
J20 2 10807.6 10645.6 10683.3 10611.5 11465.6 9551.0
J20 3 12597.6 12378.1 12386.8 12283.4 13565.2 11454.0
J25 1 9702.3 9697.1 9744.2 9502.2 10404.7 8278.5
J25 2 11370.6 11330.7 11401.7 11172.5 12576.6 9756.4
J25 3 10668.6 10605.8 10671.2 10372.6 11389.8 8882.9

J20 1 C 10401.5 11287.9 9278.4
J20 2 C 10584.9 11631.4 9302.1
J20 3 C 11279.8 12411.7 10015.2
J25 1 C 11560.1 12330.1 9971.6
J25 2 C 10064.7 10801.0 8787.1
J25 3 C 9093.6 9796.7 7552.6

From Table 6 we observe that the internal sampling method gives moderately
better upper bounds than the external sampling method within this fixed work
limit on the discrete instances. Second, comparing the change in upper bound
obtained by the external sampling method as the sample size N increases can
provide an indication of the reduction in bias of the estimate of zpesp as N
increases. If all externally-sampled instances were able to be solved to optimality
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within the 1000 GWU limit, we would expect the bounds to be monotonically-
decreasing. (Refer to Table 4 to see how many of the 30 instances were solved
to optimality). Thus, we find that the upper bounds from N = 100 are generally
lower than those obtained with N = 50, but this trend reverses when increasing N
to 200, due to the time limit being reached more often on the N = 200 instances.
Finally, we find that the information-relaxation-based branch-and-bound method
significantly improves over the upper bound obtained from the perfect-information
relaxation. We are unaware of other algorithms for this problem class that can yield
similar improvement.

6.8 Performance of Greedy Heuristic

Finally, we study the computational performance of the greedy heuristic method
of Section 5 by comparing the value of the best solution found by the heuristic
compared to other methods that more directly rely on solutions obtained by the
branch-and-bound search.

In our implementation of the greedy heuristic, at each iteration we solve N1 =
20 two-stage stochastic programs, each having N3 = 50 scenarios, to get our
restricted set of solutions Y . We use the same N1 = 20 samples as the outer
sample, and for each ηkS , k ∈ [N1] in the sample, we take a conditional sample
of size N2 = 20 to estimate the value of F (S) at step 3 of the heuristic given in
Algorithm 1. To estimate F (S ∪ {j}) at step 5 of the algorithm, we use K-means
clustering with K = 4, as described in Section 5.

The value of each feasible solution, regardless of how it was generated, was
estimated using the process described in Section 4.3. Given a candidate probing
set S, we take sample of size N1 = 25 of ηS , and for each ηkS in the sample we
obtain a solution ŷk, k ∈ [N1], by solving a two-stage stochastic program (20)
with N3 = 100 scenarios of ξ generated conditionally on ηS = ηkS . Then for each
k ∈ [N1], an independent conditional sample of ξ of size N2 = 2000 is taken and
the recourse problems Q(ŷk, ξ̂ki) are solved for k ∈ [N1] and i ∈ [N2] to obtain
the lower bound via equation (19).

Table 7 shows the estimated values of the best solution found by the greedy
heuristic method, the best solution obtained from running the internal sampling
branch-and-bound method, and the best solution found during any of the repli-
cations of the externally-sampled branch-and-bound trees. As the values were all
estimated using the sample sample sizes N1, N2 and N3, all estimates have ap-
proximately the same standard error, which tends to be around 50.

When evaluating the results of Table 7, it is important to take into consider-
ation that the value is the best observed from solutions in that category, and the
different methods had different numbers of candidate solutions. The greedy heuris-
tic method estimates solution value for the ten solutions whose initial estimates are
best. For the internal sampling approach, only the solution coming from the leaf
node P with the largest estimated lower bound value of F ([n] \ SP

0 )− α([n] \ SP
0 )

was evaluated. For the externally-sampled approach, the best solution from each
of the 30 replications for each of the branching methods and for each sample sizes
N ∈ {50, 100, 200} is re-evaluated. (Thus, there are 240 potential solutions for the
J20 instances and 180 potential solutions for the J25 instances).
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Table 7: Estimated Objective Values of Best Solutions Found

Instance Heuristic Internal External
J20 1 7859.8 7734.6 7808.4
J20 2 9511.8 9484.9 9551.0
J20 3 11353.6 11219.6 11280.1
J25 1 8199.0 8212.8 8076.3
J25 2 9654.7 9451.7 9638.4
J25 3 8804.7 8751.3 8836.7

J20 1 C 9278.3 9019.2 -
J20 2 C 9224.7 9136.7 -
J20 3 C 10015.2 9926.3 -
J25 1 C 9971.6 9807.7 -
J25 2 C 8732.4 8486.4 -
J25 3 C 7549.6 7455.0 -

A primary takeaway from the comparison between solution methods is that
the greedy heuristic performs quite well at finding high-quality solutions compared
to other methods, especially when taking into account the difference in number
of different solutions whose value was estimated. This takeaway is reinforced by
Figure 5 which shows histograms of the estimated objective values of the solutions
for the 10 solutions evaluated by the heuristic and all the solutions found by
external sampling, for two instances with discrete distribution and 25 customers.

Fig. 5: Distribution of Solution Values for J25 1 and J25 2

The total computational effort for the heuristic is summarized in Table 8.
The table shows the total number of GWU required to perform the entire greedy
heuristic (Heur), and the total GWU required to accurately estimate the value
of all 10 of the perceived best solutions from the greedy procedure (Eval). The
table demonstrates that the computational effort of the heuristic is quite modest
in comparison to the work limit imposed in the branch-and-bound methods. The
effort to perform a more accurate evaluation of the candidate solutions is more
significant, but this effort is required, however, for obtaining an unbiased estimate
of the objective value from a solution obtained by any method.
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Table 8: Work Units Required for the Heuristic

Instance Heur. Eval.
J20 1 170.1 1735.7
J20 2 279.1 5547.6
J20 3 139.9 1847.4
J25 1 373.7 4867.5
J25 2 339.7 4998.5
J25 3 521.4 9392.6

J20 1 C 357.0 5589.5
J20 2 C 466.0 6179.1
J20 3 C 426.5 6235.2
J25 1 C 856.8 12123.8
J25 2 C 795.8 11245.9
J25 3 C 1229.4 35910.2

7 Conclusions

We have introduced the probing-enhanced stochastic program, a new paradigm
for modeling the decision-dependence of the distribution of random variables in
stochastic programming. We develop an information-relaxation-based branch-and-
bound method for its solution that significantly outperforms the direct solution
of a nonanticipative formulation of the problem and, when combined with our
proposed sampling approximation, is the first method that can provide statisti-
cal bounds that improve upon perfect information bounds for decision-dependent
stochastic programs having continuous distribution. Preliminary computational
results indicate the promise of the approach. Interesting directions for future work
include studying the potential to speed up the method by using decomposition
methods to solve the two-stage stochastic programs that have to be solved to
obtain bounds and testing the method on different information structures.
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Dupačová J (2006) Optimization under exogenous and endogenous uncertainty.
In: Proceedings of MME06, pp 131–136

Freimer M, Linderoth J, Thomas D (2012) The impact of sampling methods on
bias and variance in stochastic linear programs. Computational Optimization
and Applications 51:51–75, DOI 10.1007/s10589-010-9322-x

Goel V, Grossmann IE (2004) A stochastic programming approach to planning of
offshore gas field developments under uncertainty in reserves. Computers and
Chemical Engineering 28(8):1409–1429

Goel V, Grossmann IE (2006) A class of stochastic programs with deci-
sion dependent uncertainty. Mathematical Programming 108:355–394, DOI
10.1007/s10107-006-0715-7

Hellemo L, Barton PE, Tomasgard A (2018) Decision-dependent probabilities in
stochastic programs with recourse. Computational Management Science 15:369–
395

Laporte G, Louveaux F (1993) The integer L-shaped method for stochastic integer
programs with complete recourse. Operations Research Letters 13(3):133–142

Linderoth JT, Savelsbergh MWP (1999) A computational study of search strate-
gies in mixed integer programming. INFORMS Journal on Computing 11:173–
187

Mak WK, Morton DP, Wood RK (1999) Monte Carlo bounding techniques for de-
termining solution quality in stochastic programs. Operations Research Letters
24:47–56

McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics 21(2):239–245, URL http://www.jstor.org/stable/1268522

Mercier L, Van Hentenryck P (2008) Amsaa: A multistep anticipatory algorithm
for online stochastic combinatorial optimization, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol 5015 LNCS. Springer, URL www.scopus.com, cited
By :18
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Appendix: Details of Branching Variable Selection

Here we present the formulas used for computing ∆̂−
j which is used in the compu-

tation of the score for probing decision j in Section 3.1. We describe this separately
for the cases when internal sampling and external sampling is used.

External Sampling

The first method for choosing ∆̂−
j requires estimating EηS [R(ηS)|ηj = 1] and

EηS [R(ηS)|ηj = 0]. Recall that when using external sampling, F (S) is estimated
via the formula

FN (S) = N−1
∑

ηS∈ĤS

|ΩN (ηS)|RN (ηS).

If we define Ĥjt
S = {ηS ∈ ĤS : ηj = t}, then we estimate

EηS [R(ηS)|ηj = t] ≈ (Bjt)−1
∑

ηS∈Ĥjt
S

|ΩN (ηS)|RN (ηS)

for t = 0, 1, where Bjt =
∑

ηS∈Ĥjt
S
|ΩN (ηS)|. Note that this estimate uses all the

same values RN (ηS) that are already computed when computing the estimate
FN (S).

The second method for choosing ∆̂−
j requires estimating the covariance of ηj

and R(ηS). This is computed via the estimate:

N−1
∑

ηS∈ĤS

|ΩN (ηS)|(ηj −mj)(RN (ηS)− FN (S)),

where mj = N−1 ∑
ηS∈ĤS

|ΩN (ηS)|ηj .

Internal Sampling

Recall that in this case F (S) is estimated from (15) as

F̄N1,N2
(S) = N−1

1

∑
k∈[N1]

R̄N2
(ηkS).

If we define Ωtj = {k ∈ [N1] : ηj = t}, then we estimate

EηS [R(ηS)|ηj = t] ≈ |Ωtj |−1
∑

k∈Ωtj

R̄N2
(ηkS)
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for t = 0, 1. Once again, this estimate uses all the same values R̄N2
(ηkS) that are

already computed when computing the estimate F̄N1,N2
(S).

The covariance of ηj and R(ηS) is estimated via the formula

∆̂−
j = N1

−1
∑

k∈[N1]

(ηkj −mj)(R̄N2
(ηkS)− F̄N1,N2

(S)), (25)

where mj = (N1)−1
∑

k∈N1
ηkj .

The estimates when the support of η or ξ are small are adapted similarly.
Table 9 shows an estimate of the perfect information bound (PI Bound) and

the standard error of our estimate, as well as an estimate of the value of the best
solution our methods found for the instance (Best LB), and the standard error of
the estimate.

Table 9: Bound Information for Instances in Computational Studies

Name PI Bound S.Err. Best LB S.Err.
J20 1 9739.2 66.4 7919.0 59.5
J20 2 11465.6 72.1 9551.0 54.8
J20 3 13565.2 62.2 11454.0 61.3
J25 1 10404.7 68.3 8278.5 56.1
J25 2 12576.6 96.6 9756.4 48.1
J25 3 11389.8 74.2 8882.9 49.5

J20 1 C 11287.9 62.4 9278.4 29.1
J20 2 C 11631.4 52.1 9302.1 56.4
J20 3 C 12411.7 65.0 10015.2 39.8
J25 1 C 12330.1 49.3 9971.6 20.6
J25 2 C 10801.0 59.9 8787.1 31.8
J25 3 C 9796.7 49.3 7552.6 6.8


