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Abstract It is known that second-order (Studniarski) contingent derivatives can be
used to compute tangents to the solution set of a generalized equation when standard
(first-order) regularity conditions are absent, but relaxed (second-order) regularity
conditions are fulfilled. This fact, roughly speaking, is only relevant in practice as
long as the computation of second-order contingent derivatives itself does not incur
any additional cost, but by now the computation of these derivatives proved chal-
lenging. In this paper we explain how the second-order contingent derivative of the
sum of a smooth single-valued and a generic set-valued mapping can be computed
in terms of well-established first- and second-order objects from variational analy-
sis. The key to these computations is a new verifiable condition that links first- and
second-order information about the considered mappings. In addition, we study some
tractable conditions guaranteeing relaxed regularity, and applications to generalized
equations with polyhedral (set-valued) ingredients, including complementarity sys-
tems. Overall, our findings unify and improve a number of existing results on both
the computation of second-order contingent derivatives and the computation of tan-
gents to the solution set of a generalized equation under relaxed regularity conditions.
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1 Introduction

Lipschitzian regularity conditions are central to modern variational analysis [12,25].
Among their various applications, they enable the computation of tangents (and es-
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timation of normals) to the solution set of a generalized equation by means of well-
established first-order generalized derivatives [36,44] of the underlying mapping. The
computation of such tangents (and normals) is of interest in its own right, but it is of
particular importance in constrained optimization for the formulation of tractable nec-
essary optimality conditions in both primal and dual form [10,11]. The case where
Lipschitzian regularity conditions are violated appears more involved, since this case
opens the gates to a variety of relaxed (e.g., Hölderian or mixed-order) regularity con-
ditions, all of which have already been successfully used in the context of constrained
optimization to formulate tractable primal and dual necessary optimality conditions.
Some works to be mentioned in this context are [9,20,21], dealing, among other
things, with optimality conditions in the dual form, while [4,13,49] concern primal
optimality conditions (and other things). This list of references is by no means com-
plete – further works will be cited when credit is due.

In this paper, we content ourselves essentially to a first- and second-order anal-
ysis of the primal kind in a Euclidean setting. To be more specific, we introduce
new calculus rules for the second-order (Studniarski) contingent derivative [13,39]
(see also Section 2 for the definition) of a mapping defined as the sum of a smooth
single-valued and a generic set-valued mapping. Such mappings are used to describe
various problems considered in variational analysis and constrained optimization [10,
12,15,24,36,44], and for this reason alone, the study of their generalized derivatives
is of interest. However, the usefulness of this study is further enhanced by the fact
that the zeros of the second-order contingent derivative of a mapping coincide with
the tangents to its (the mapping’s) level-set under a square-root metric subregularity
condition (see, e.g., [39] and also Section 4). Although there are several works that al-
ready address sum-rules mentioned above, we emphasize that the conclusions drawn
so far in this context rely on assumptions that are too restrictive for broad classes of
applications. For instance, the sum-rule [49, Theorem 3.2] (and its predecessors in
[13,48]) relies on a smoothness condition that requires lower-order full-degeneracy
of the smooth single-valued part (see discussions in Section 3.2), and along a similar
line are the sum-rules in [30], which were developed without knowledge of [13,48,
49]. In contrast are the results in [39], which are tailored to special mappings only, but
without degeneracy assumptions, and so too are constructions in [3,4], which, unlike
the latter, cannot be made fully explicit in general. Thus, one goal of this paper is to
formulate new sum-rules for second-order contingent derivatives without degeneracy
assumptions that can be used for large classes of mappings and that can be made fully
explicit. The key to achieving this goal is a new verifiable condition that links first-
and second-order information about the considered mappings. It turns out that the
new condition is always fulfilled when the set-valued part is polyhedral in the sense
of [43] (but also beyond). With the new sum-rules at hand, tangents to the solution
set of a generalized equation can be computed under a square-root metric subregular-
ity condition. Sufficient conditions for square-root subregularity are also of interest,
helping, in particular, to shed light on relations between existing (and new) results,
which have not been seen before.

The organization of the paper is like this: In Section 2 we recall definitions, and
formulate auxiliary results that will be needed in the further course of the paper.
Section 3 contains our main results on the computation of second-order contingent



Second-Order Contingent Derivatives: Computation and Application 3

derivatives. The obtained results are applied in Section 4 to compute tangents to the
solution set of a generalized equation under relaxed regularity conditions. Relation-
ships to existing results are elaborated in each of these sections as appropriate.

Finally, some words about our notation and terminology: All norms are Euclidean,
dist stands for the Euclidean point-to-set distance (taking the value +∞ when the set
is empty), and Br(a) is the closed Euclidean ball with radius r > 0 centered at a point
a. Convex polyhedral sets are finite intersections of (closed) halfspaces, while poly-
hedral sets are finite unions of convex polyhedral sets. gphS, rgeS,domS stand for the
graph, range, domain of a set-valued mapping S, while imL,kerL are the range and
the null-space of a linear operator L.

2 Preliminaries

This section contains the definitions and auxiliary results needed to prepare for the
sections to come. As a first, we recall and briefly discuss some geometric objects
known e.g. from [10,36,44,45]. After that, we will be concerned with concepts for
the generalized differentiation of a generic set-valued mapping. We emphasize that
the outcome of Lemma 1 will be important in Section 3.

Definition 1 Given a nonempty set Ω ⊂ Rp, and a point ξ ∈ Ω .

(a) The tangent (contingent) cone to Ω at ξ is

TΩ (ξ ) =
{

ω ∈ Rp
∣∣∣∃tk ↘ 0,∃ω

k → ω : ξ + tkω
k ∈ Ω ∀k

}
.

(b) The second-order tangent set to Ω at ξ for a direction ω ∈ TΩ (ξ ) is

T 2
Ω (ξ |ω) =

{
ν ∈ Rp

∣∣∣∣∃tk ↘ 0,∃ν
k → ν : ξ + tkω +

1
2

t2
k ν

k ∈ Ω ∀k
}
.

(c) The (limiting) normal cone to Ω at ξ , when Ω is closed near ξ , is

NΩ (ξ ) =

{
ν ∈ Rp

∣∣∣∣∃tk ↘ 0,∃ξ
k → ξ ,∃{ξ̄

k} ⊂ Ω :
dist[ξ k,Ω ] = ‖ξ k − ξ̄ k‖∀k,

t−1
k (ξ k − ξ̄ k)→ ν

}
.

The next lemma is a key result for considerations yet to come. One of its state-
ments uses the notion of T–conicity of a set Ω at a point ξ ∈ Ω , a property that was
coined in [17], which requires that the set Ω coincides with ξ +TΩ (ξ ) near ξ .

Lemma 1 For a matrix L ∈ Rq×p, a nonempty set Ω ⊂ Rp, and a point ξ ∈ Ω , the
following statements are true for the set Z := L(Ω −ξ ):

(a) It always holds that T 2
Z (0|0) = TZ(0), and when Ω is closed convex, then

TZ(0) = cl(LTΩ (ξ )) = cl{Lν |ν ∈ TΩ (ξ )} .

(b) Suppose ω ∈ kerL∩TΩ (ξ ), and let any of the following conditions be in force:
(i) Ω is a convex polyhedral set.

(ii) It holds that L = 0 and T 2
Ω
(ξ |ω) 6=∅.
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(iii) Ω is T –conical at ξ , and ω ∈ int(TΩ (ξ )).
Then, the following equality is fulfilled:

TZ(0) = LT 2
Ω (ξ |ω). (1)

Proof (a) : The equality T 2
Z (0|0) = TZ(0) is immediate from definitions. The repre-

sentation of TZ(0), when Ω is closed convex, stems from [44, Theorem 6.43].
(b),(i) : Owing to [44, Proposition 13.12], and ω ∈ kerL∩TΩ (ξ ), we have

LT 2
Ω (ξ |ω) = L(TΩ (ξ )+Rω) = L{ν + γω | ν ∈ TΩ (ξ ),γ ∈ R}= LTΩ (ξ ). (2)

The cone TΩ (ξ ) is convex polyhedral, so [44, Proposition 3.55 (a)] particularly im-
plies that LTΩ (ξ ) is closed. Thus, (1) follows from part (a) of the lemma, and (2).

(ii) : Here, we get (1) immediately, because TZ(0) = {0}, and LT 2
Ω
(ξ |ω) = {0}.

(iii) : For any ν ∈ Rn, we can find tk ↘ 0, so that ω + tk 1
2 ν ∈ TΩ (ξ ) holds for

all k. Hence, thanks to T –conicity, we can assume that ξ + tkω + t2
k

1
2 ν ∈ Ω is sat-

isfied for all k, which gives T 2
Ω
(ξ |ω) = Rn, because ν was chosen arbitrarily. Thus,

LT 2
Ω
(ξ |ω) = imL follows, and so we observe:

Z = L(Ω −ξ )⊂ LRp = LT 2
Ω (ξ |ω).

From here, we get the inclusion TZ(0)⊂ LT 2
Ω
(ξ |ω). The converse inclusion, in turn,

is always true, as follows by direct computations that rely on ω ∈ kerL and the very
first equality in part (a) of the lemma. ut

The equality (1) will be relevant later. In the remainder of this section, we are
concerned with first- and second-order contingent derivatives [39,45], and coderiva-
tives [36].

Definition 2 Given a set-valued mapping S : Rp ⇒ Rq, and a point (ξ ,η) ∈ gphS.

(a) The contingent derivative of S at (ξ ,η) for ω ∈ Rp is

CS(ξ |η)(ω) :=
{

χ ∈ Rq ∣∣(ω,χ) ∈ TgphS(ξ ,η)
}
.

(b) The second-order contingent derivative of S at (ξ ,η) for ω ∈ Rp is

C2S(ξ |η)(ω) :=
{

χ ∈ Rq∣∣ ∃tk ↘ 0,∃(ωk,χk)→ (ω,χ) :

η + t2
k χ

k ∈ S(ξ + tkω
k)∀k

}
.

(c) The coderivative of S at (ξ ,η) for ν ∈ Rq, when gphS is closed near (ξ ,η), is

D∗S(ξ |η)(ν) :=
{

ζ ∈ Rp ∣∣(ζ ,−ν) ∈ NgphS(ξ ,η)
}
.

If S is single-valud at ξ , then we omit mentioning η .
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The naming "second-order contingent derivative" was coined in [39], although
these derivatives appeared earlier under the name second-order Studniarski(-like)
derivative, giving credits to the author of [46], see [13] and references therein.

From the definitions, it is easily seen that the inclusion below always holds:

dom
(
C2S(ξ |η)

)
⊂CS(ξ |η)−1(0) = {ω ∈ Rp |0 ∈CS(ξ |η)(ω)} . (3)

We will need coderivatives (and limiting normals) only in Section 4, but we would
like to compute generalized derivatives of two important set-valued mappings here,
one of which is the set-valued indicator, known e.g. from [36]. This mapping (the
indicator) will be important in Section 3.

Lemma 2 For a set Ω ⊂ Rp, the set-valued indicator ∆Ω : Rp ⇒ Rq is

∆Ω (ξ ) :=
{
{0} if ξ ∈ Ω ,
∅ if ξ /∈ Ω .

(4)

For a point ξ ∈ Ω , around which Ω is closed, the following statements are in force:

(a) It holds that

C2
∆Ω (ξ ) =C∆Ω (ξ ) = ∆TΩ (ξ ), D∗

∆Ω (ξ )≡ NΩ (ξ ).

(b) For the mapping Σ : Rs ⇒ Rp with Σ ≡ Ω , it holds for any x ∈ Rs that

C2
Σ(x|ξ ) =CΣ(x|ξ )≡ TΩ (ξ ), D∗

Σ(x|ξ )(ν) = ∆NΩ (ξ )(−ν) ∀ν ∈ Rp.

Proof This follows directly from the definitions. ut

Closedness of Ω in the lemma is needed only for the computation of coderiva-
tives. To compute second-order contingent derivatives in the next sections, we want
to use a smoothness property for single-valued mappings introduced in [30]:

Definition 3 A mapping Φ :Rp →Rq has a semi-quadratic expansion at ξ for ω 6= 0,
if Φ is differentiable at ξ , and the limit below exists in Rq:

EΦ(ξ ;ω) := lim
t↘0

ω ′→ω

Φ(ξ + tω ′)−Φ(ξ )− tΦ ′(ξ )ω ′

1
2 t2

.

The definition is inspired by concepts in [44, Definition 13.6], and we want to
sensitize the reader to the fact that the limit in our definition appears to differ slightly
from the limits in [49, Remark 3.1 (i)].

The case ω = 0 is not of interest in Section 4, so we intend to exclude this case
throughout. Next, we recall a criterion, and a sufficient condition for the existence of
a semi-quadratic expansion.

Lemma 3 Let a mapping Φ : Rp →Rq, and a point ξ ∗ ∈Rp be given, at which Φ is
differentiable. The following are equivalent for ω 6= 0:

(a) Φ has a semi-quadratic expansion at ξ ∗ for ω .
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(b) There is a continuous, 2-homogeneous mapping E : Rp → Rq (the latter means
E (γν) = γ2E (ν)∀(γ,ν) ∈ R+×Rp), satisfying∥∥∥∥Φ(ξ ∗+ tω ′)−Φ(ξ ∗)− tΦ(x∗)ω ′− 1

2
t2E (ω ′)

∥∥∥∥= o(t2) as t ↘ 0,ω ′ → ω.

In particular, the mapping E in (b), if it exists, satisfies E (ω) = EΦ(ξ ∗;ω). If Φ is
differentiable near ξ ∗, and Φ ′ is semidifferentiable at ξ ∗ for ω , i.e., the limit

Φ
′′(ξ ∗;ω) := lim

t↘0
ω ′→ω

Φ ′(ξ ∗+ tω ′)−Φ ′(ξ ∗)

t

exists in Rq×p, then Φ has a semi-quadratic expansion at ξ ∗ for ω , given by

EΦ(ξ ∗;ω) = Φ
′′(ξ ∗;ω)ω.

Proof Apply [30, Lemma 6.12] with the unit direction ν = ω/‖ω‖. ut

The semidifferentiability of the derivative of Φ is necessary for the twice differ-
entiability of Φ , but, in general, it is not sufficient. Examples confirming the latter
can be found in [30, Section 6.3].

3 Computation of Second-Order Contingent Derivatives

It is known, e.g. from [13,30], that the computation of second-order contingent deriva-
tives of mappings defined as a sum is subject to some complications. We introduce
new calculus rules in this section: The main results are Theorems 1–2 on the com-
putation of second-order contingent derivatives for mappings defined as the sum of a
smooth single-valued and a set-valued mapping, the latter possibly consisting of a fi-
nite number of closed components (polyhedral mappings in the sense of [43] are well
suited to that class). We will also explain that our findings complement and improve
related results in [4,30,39,49].

3.1 The Case with the Indicator Mapping

In this subsection we deal with second-order contingent derivatives for mappings
defined as the sum of a single-valued mapping and the indicator ((4) in Lemma 2) for
a given set. The key to our main findings is as follows:

Lemma 4 Let a mapping Φ : Rp → Rq, and a nonempty set Ω ⊂ Rp be given. If Φ

has a semi-quadratic expansion at ξ ∗ ∈ Ω for ω 6= 0, then

C2 (Φ +∆Ω )(ξ ∗)(ω)⊂
{ 1

2 EΦ(ξ ∗;ω)+TZ(0) if ω ∈ kerΦ ′(ξ ∗)∩TΩ (ξ ∗),
∅ if ω /∈ kerΦ ′(ξ ∗)∩TΩ (ξ ∗),

(5)

where Z := Φ ′(ξ ∗)(Ω − ξ ∗). Furthermore, for ω ∈ kerΦ ′(ξ ∗)∩TΩ (ξ ∗), the inclu-
sion in (5) holds with equality, if

TZ(0) =
{

Φ ′(ξ ∗)T 2
Ω
(ξ ∗|ω) if T 2

Ω
(ξ ∗|ω) 6=∅,

{0} if T 2
Ω
(ξ ∗|ω) =∅.

(6)
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Proof ” ⊂ ” : Pick χ ∈C2(Φ +∆Ω )(ξ ∗)(ω), and find tk ↘ 0, ωk → ω , χk → χ with

Φ(ξ ∗)+ t2
k χ

k = Φ(ξ ∗+ tkω
k), ξ

∗+ tkω
k ∈ Ω ∀k. (7)

The second of the two conditions already implies

ω ∈ TΩ (ξ ∗). (8)

Using Lemma 3, then the first condition in (7) can be written as

t2
k χ

k = tkΦ
′(ξ ∗)ωk +

1
2

t2
k E (ωk)+Rk ∀k (9)

for a continuous, 2-homogeneous mapping E : Rp → Rq with E (ω) = EΦ(ξ ∗;ω),
and where ‖Rk‖= o(t2

k ). Multiplying both sides of (9) by t−2
k yields

t−1
k Φ

′(ξ ∗)ωk → χ − 1
2

EΦ(ξ ∗;ω). (10)

Multiplying the latter again with tk entails ω ∈ kerΦ ′(ξ ∗). So, together with (8), the
inclusion ω ∈ kerΦ ′(ξ ∗)∩TΩ (ξ ∗) follows, and it remains to show:

χ − 1
2

EΦ(ξ ∗;ω) ∈ TZ(0). (11)

To this end, recall from (7) that tkωk ∈ Ω −ξ ∗ holds for all k. From the latter, we get

t−1
k Φ

′(ξ ∗)ωk ∈ t−2
k Φ

′(ξ ∗)(Ω −ξ
∗) ∀k.

Combining this with (10) leads to χ− 1
2 EΦ(ξ ∗;ω)∈T 2

Z (0|0). Therefore, Lemma 1 (a)
implies (11) and with this, the inclusion in (5) follows.

”⊃ ” : Suppose ω ∈ kerΦ ′(ξ ∗)∩TΩ (ξ ∗), and assume that (6) is in force. Pick χ ∈
1
2 EΦ(ξ ∗;ω)+ TZ(0) arbitrarily. First, we assume T 2

Ω
(ξ ∗|ω) = ∅. Then, (6) yields

TZ(0) = {0}, i.e., 0 is isolated in Z, and

χ =
1
2

EΦ(ξ ∗;ω). (12)

Since ω ∈ TΩ (ξ ∗), we can find tk ↘ 0, ωk → ω , so that

ξ
∗+ tkω

k ∈ Ω ∀k. (13)

Combing this fact with Lemma 3, and isolatedness of 0 in Z, then we get:

(Φ +∆Ω )(ξ ∗+ tkω
k) = Φ

(
ξ
∗+ tkω

k
)

= Φ(ξ ∗)+Φ
′(ξ ∗)

(
ξ
∗+ tkω

k −ξ
∗
)
+ t2

k
1
2
E (ωk)+Rk

= Φ(ξ ∗)+ t2
k

1
2
E (ωk)+Rk,

where E : Rp → Rq is continuous, 2-homogeneous, with E (ω) = EΦ(ξ ∗;ω), and
‖Rk‖= o(t2

k ) holds true. Hence, the equality in (12) entails χ ∈C2(Φ +∆Ω )(ξ ∗)(ω).
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From now on, we assume T 2
Ω
(ξ ∗|ω) 6=∅. Then, (6) gives ζ ∈ T 2

Ω
(ξ ∗|ω) with

χ − 1
2

EΦ(ξ ∗;ω) =
1
2

Φ
′(ξ ∗)ζ . (14)

There are sequences tk ↘ 0, ζ k → ζ , so that (13) holds with {ωk} being defined by

ω
k := ω +

1
2

tkζ
k.

Yet again, Lemma 3, ω ∈ kerΦ ′(ξ ∗), and (13), yield

(Φ +∆Ω )(ξ ∗+ tkω
k) = Φ

(
ξ
∗+ tkω +

1
2

t2
k ζ

k
)

= Φ(ξ ∗)+ t2
k

1
2

(
Φ

′(ξ ∗)ζ k +E (ωk)+
Rk

t2
k

)
,

where E : Rp →Rq and {Rk} have the usual properties. Therefore, ζ k → ζ , and (14),
imply χ ∈C2(Φ +∆Ω )(ξ ∗)(ω). ut

The lemma says that directions ω /∈ kerΦ ′(ξ ∗)∩ TΩ (ξ ∗) are not worth further
consideration when dealing with second-order contingent derivatives of Φ +∆Ω .

The condition (6) is used here for the first time to compute second-order contin-
gent derivatives, and Lemma 1 equips us with sufficient conditions. Observe that (6)
implies that the set Φ ′(ξ ∗)T 2

Ω
(ξ ∗|ω) is closed (which is of course not for free). Let

us demonstrate that the inclusion (5) can be strict in the absence of (6):

Example 1 Let Ω := {(ξ1,ξ2)∈R2 | ξ1 = ξ 2
2 }, and Φ(ξ ) := ξ1 for ξ =(ξ1,ξ2)∈R2.

For the point ξ ∗ := (0,0), we have Φ ′(ξ ∗) = (1,0) and TΩ (ξ ∗) = {0}×R. So, the
direction ω := (0,1) belongs to kerΦ ′(ξ ∗)∩TΩ (ξ ∗). Short computations show

Z = Φ
′(ξ ∗)(Ω −ξ

∗) = R+, T 2
Ω (ξ ∗|ω) = {2}×R,

hence, we get TZ(0) = R+ and Φ ′(ξ ∗)T 2
Ω
(ξ ∗|ω) = {2}, which implies that (6) can

not hold. We have EΦ(ξ ∗;ω) = 0, so the set on the right-hand-side of (5) is R+. Let
us compute elements of C2(Φ +∆Ω )(ξ ∗)(ω) from the definitions. Suppose χ is an
arbitrary element of the second-order contingent derivative. Then, there are sequences
tk ↘ 0, ωk = (ωk

1 ,ω
k
2) → ω = (0,1), and χk → χ , such that ξ ∗ + tkωk ∈ Ω and

t2
k χk = Φ(ξ ∗+ tkωk) hold for all k. Using the definition of Ω and Φ , we can write

the latter as:

tkω
k
1 = (tkω

k
2)

2, t2
k χ

k = tkω
k
1 ∀k,

implying that χk = (ωk
2)

2 holds for all k. Since χ was arbitrarily chosen, we get
C2(Φ +∆Ω )(ξ ∗)(ω) = {1}, which means that the inclusion in (5) now is strict. ut

We want to compute second-order contingent derivatives of Φ +∆Ω , when Ω is
the union of closed sets, and for this we need another auxiliary result.
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Lemma 5 Let mappings S,S1, . . . ,Sr : Rp ⇒ Rq with the property

gphS =
r⋃

i=1

gphSi (15)

be given. Let (ξ ,η)∈ gphS be such that gphS,gphSi are closed near (ξ ,η) for all i =
1, . . . ,r, i.e., for some ε > 0, the sets gphS∩Bε(ξ ,η),gphS1∩Bε(ξ ,η), . . . ,gphSr ∩
Bε(ξ ,η) are closed. Then, for any ω ∈ Rp, it holds that

C2S(ξ |η)(ω) =
⋃
i∈I

C2Si(ξ |η)(ω),

where I := {i | (ξ ,η) ∈ gphSi}.

Proof ”⊂ ” : Pick ω ∈Rp arbitrarily. Nothing needs to be proved when C2S(ξ |η)(ω)
is empty. So take χ ∈C2S(ξ |η)(ω) arbitrarily, and find sequences tk ↘ 0, ωk → ω ,
and χk → χ , such that (ξ + tkωk,η + t2

k χk) ∈ gphS holds for all k. According to (15),
we can find an index j ∈ {1, . . . ,r}, so that (ξ + tkωk,η + t2

k χk) ∈ gphS j is satisfied,
without loss of generality, for all k. Because gphS j is closed near (ξ ,η), we get j ∈ I
and therefore, χ ∈C2S j(ξ |η)(ω) follows.

” ⊃ ” : This inclusion is a direct consequence of (15), and the definitions. ut

Let us introduce the first main result of the section. There and below, we call
mappings S1, . . . ,Sr components of a mapping S, whenever (15) is satisfied. Likewise,
sets Ω1, . . . ,Ωr are components of a set Ω , if the latter is union of the former.

Theorem 1 In the setting of Lemma 4, suppose Φ is continuous, Ω is a union of
closed (component-)sets Ω1, . . . ,Ωr, and ω ∈ kerΦ ′(ξ ∗)∩ TΩ (ξ ∗). Define the sets
I0 := {i | ξ ∗ ∈ Ωi, ω ∈ kerΦ ′(ξ ∗)∩TΩi(ξ

∗)} and Zi := Φ ′(ξ ∗)(Ωi − ξ ∗) for i ∈ I0,
and assume

TZi(0) =
{

Φ ′(ξ ∗)T 2
Ωi
(ξ ∗|ω) if T 2

Ωi
(ξ ∗|ω) 6=∅,

{0} if T 2
Ωi
(ξ ∗|ω) =∅ ∀i ∈ I0. (16)

Then, it holds that

C2 (Φ +∆Ω )(ξ ∗)(ω) =
⋃
i∈I0

(
1
2

EΦ(ξ ∗;ω)+TZi(0)
)
.

Proof Because Ω is the union of the components Ω1, . . . ,Ωr, we get gph(∆Ω ) =⋃r
i=1 gph(∆Ωi). Since Φ is continuous, and each Ωi is closed, we can apply Lemma 5

with S = Φ +∆Ω and Si = Φ +∆Ωi for i = 1, . . .r, giving

C2 (Φ +∆Ω )(ξ ∗) =
⋃
i∈I

C2 (
Φ +∆Ωi

)
(ξ ∗),

where I = {i | (ξ ∗,0) ∈ gph(∆Ωi)}= {i | ξ ∗ ∈ Ωi}. From here, the claim becomes a
direct consequence of Lemma 4. ut
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The outcome of the theorem is new, and we will soon discuss relations to existing
results in Remarks 1–2 (and 4, 6) below. Before doing so, we introduce a specializa-
tion of the theorem useful for applications in Section 4:

Corollary 1 In the setting of Theorem 1, suppose Ω is polyhedral, i.e., it is the union
of convex polyhedral (component-)sets Ω1, . . . ,Ωr. Then, it holds that

C2 (Φ +∆Ω )(ξ ∗)(ω) =
⋃
i∈I0

(
1
2

EΦ(ξ ∗;ω)+Φ
′(ξ ∗)TΩi(ξ

∗)

)
=

⋃
i∈I0

(
1
2

EΦ(ξ ∗;ω)+Φ
′(ξ ∗)T 2

Ωi
(ξ ∗|ω)

)
,

where I0 = {i | ξ ∗ ∈ Ωi,ω ∈ kerΦ ′(ξ ∗)∩TΩi(ξ
∗)}.

Proof Thanks to polyhedrality of Ω , and Lemma 1 (b), we know that (16) holds with
T 2

Ωi
(ξ ∗|ω) being nonempty for all i ∈ I0. The equalities in (2) also yield TZi(0) =

Φ ′(ξ ∗)TΩi(ξ
∗) for i ∈ I0. Therefore, the claim follows by Theorem 1. ut

Remark 1 The observations made so far generalize a number of existing results on
the computation of second-order contingent derivatives. For example, a combination
of Lemmas 1,3 and Theorem 1 allows the recovery, e.g., of [30, Example 6.15] and
[39, Proposition 35].

Remark 2 Several papers appeared in recent years, dealing, among other things, with
calculus rules for generalized higher-order derivatives. We pay attention to the sum-
rule [49, Theorem 3.2]: According to Lemma 2, [47, Remark 2.1 (iii)–(iv)], and [49,
Remark 3.1 (i)], it asserts under a novel smoothness assumption on a mapping Φ at a
point ξ ∗ ∈ Ω (with Ω closed) that for ω ∈ kerΦ ′(ξ ∗)∩TΩ (ξ ∗), the equality

C2(Φ +∆Ω )(ξ ∗)(ω) = dh
1Φ(ξ ∗)(ω) (17)

holds, where dh
1Φ(u∗)(ω) is a novel derivative, which, when Φ is twice differen-

tiable, is claimed to satisfy dh
1Φ(u∗)(ω)⊂ { 1

2 Φ ′′(u∗;ω)ω}. Note that the equality in
(17) fails to hold in Example 1 for the (arbitrarily smooth) mapping Φ therein. An
explanation for this is outlined in Remark 3.

3.2 The General Case

In this subsection we deal with second-order contingent derivatives for mappings de-
fined as the sum of a single-valued and a set-valued mapping. Our key to proceeding
is as follows:

Lemma 6 For a mapping F : Rn → Rm, and a mapping Γ : Rn ⇒ Rm, define

Φ(u,y) := F(u)+ y ∀(u,y) ∈ Rn ×Rm, Ω := gphΓ . (18)
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Suppose u∗ ∈ Rn is a solution to the generalized equation

0 ∈ F(u)+Γ (u), (19)

and put y∗ :=−F(u∗). If F is differentiable at u∗, then, for any (w,λ ) ∈ Rn ×Rm,

x ∈C2(Φ +∆Ω )(u∗,y∗)(w,λ ) ⇐⇒
{

λ =−F ′(u∗)w ∈CΓ (u∗|y∗)(w),
x ∈C2(F +Γ )(u∗|0)(w). (20)

.

Proof ” =⇒ ” : Pick (w,λ ) ∈Rn×Rm, and x ∈C2(Φ +∆Ω )(u∗,y∗)(w,λ ) arbitrarily.
Then, there are sequences tk ↘ 0, wk → w, λ k → λ , and xk → x, so that

t2
k xk = Φ(u∗+ tkwk,y∗+ tkλ

k) = F(u∗+ tkwk)+(y∗+ tkλ
k) ∀k, (21)

and also

(u∗+ tkwk,y∗+ tkλ
k) ∈ Ω = gphΓ ∀k. (22)

The two conditions readily imply

t2
k xk ∈ F(u∗+ tkwk)+Γ (u∗+ tkwk) ∀k,

which precisely means x ∈C2(F +Γ )(u∗|0)(w). Combining (21)–(22), then we get:

t2
k xk −F(u∗+ tkwk) = y∗+ tkλ

k ∈ Γ (u∗+ tkwk) ∀k. (23)

Differentiability of F at u∗, and y∗ =−F(u∗), allows to write the equality in (23) as

−F(u∗)+ tk
(
−F ′(u∗)wk + t−1

k Rk + tkxk
)
=−F(u∗)+ tkλ

k ∀k, (24)

where ‖Rk‖= o(tk). So, together with (23), and λ k → λ , we come to the conclusion
that λ =−F ′(u∗)w ∈CΓ (u∗|y∗)(w).

”⇐= ” : Pick x∈C2(F+Γ )(u∗|0)(w) arbitrarily, and find tk ↘ 0, wk →w, xk → x,
{ηk}, with

η
k =−F(u∗+ tkwk)+ t2

k xk, η
k ∈ Γ (u∗+ tkwk) ∀k. (25)

Thanks to differentiability of F , and y∗ =−F(u∗), we can write

η
k = y∗+ tkλ

k ∀k, (26)

where the sequence {λ k} is determined by

λ
k :=−F ′(u∗)wk + t−1

k Rk + tkxk,

with some {Rk} satisfying ‖Rk‖= o(tk). By assumption, and constructions, we get

λ
k →−F ′(u∗)w = λ . (27)

At the same time, (25)–(26) entail

t2
k xk = F(u∗+ tkwk)+

(
y∗+ tkλ

k
)

= Φ

(
u∗+ tkwk,y∗+ tkλ

k
)
+∆Ω

(
u∗+ tkwk,y∗+ tkλ

k
)

∀k.

Therefore, with (27) in mind, we conclude x ∈C2(Φ +∆Ω )(u∗,y∗)(w,λ ). ut



12 Mario Jelitte

The lemma builds a bridge to the results from Section 3.1. Furthermore, with the
comment below Lemma 4 in mind, Lemma 6 says that directions w with −F ′(u∗)w /∈
CΓ (u∗|y∗)(w) are not worth further consideration for our purposes.

Theorem 2 In the setting of Lemma 6, suppose F is continuous, and Γ has closed
components Γ1, . . . ,Γr : Rn ⇒ Rm, i.e., gphΓi is closed for each i ∈ {1, . . . ,r}, and

gphΓ =
r⋃

i=1

gphΓi. (28)

Suppose F has a semi-quadratic expansion for a direction w 6= 0 with −F ′(u∗)w ∈
CΓ (u∗|y∗)(w). Define the sets I0 := {i | y∗ ∈ Γi(u∗),−F ′(u∗)w ∈CΓi(u∗|y∗)(w)} and
Zi := {F ′(u∗)(u−u∗)+(y− y∗) | (u,y) ∈ gphΓi} for i ∈ I0. If the condition

TZi(0) =
{{

F ′(u∗)v+ z
∣∣ (v,z) ∈ T 2

i
}

if T 2
i 6=∅,

{0} if T 2
i =∅ ∀i ∈ I0

is satisfied with T 2
i := T 2

gphΓi
((u∗,y∗) |(w,−F ′(u∗)w) ) (i ∈ I0), then

C2(F +Γ )(u∗|0)(w) =
⋃
i∈I0

(
1
2

EF(u∗;w)+TZi(0)
)
.

Proof Let the mapping Φ and the set Ω be defined according to (18), and put Ωi =
gphΓi for i = 1, . . . ,r. For this particular choice, we observe that

EΦ((u∗,y∗);(w,ν)) = EF(u∗;w) ∀ν ∈ Rm,

Φ
′(u∗,y∗) = (F ′(u∗),I ),

TΩi(u
∗,y∗) = {(v,z) | z ∈CΓi(u∗|y∗)(v)} (i ∈ I0),

where I denotes the m×m unit matrix. The claim is now a direct consequence of
Theorem 1 and Lemma 6. ut

Lemma 2 and Theorem 2 combined lead to the conclusion of Theorem 1. At the
same time, we used the latter theorem to prove the former, so the two theorems are
equivalent. Let us discuss relations to some existing results:

Remark 3 With Lemma 1 (b) in mind, Theorem 2 can be used to reestablish [30,
Theorem 6.13 (b)]. However, it cannot be used to recover [30, Theorem 6.13 (a)] –
a result developed specifically for the fully degenerate case where F ′(u∗) = 0. Note
that (a specialization, suitable for our purposes, of) [49, Theorem 3.2], mentioned in
Remark 2, must be of a similar nature, as follows by [49, Remark 3.1 (i)]. Thus, we
will refrain from further comparisons with results in [49] (and [31,47,48]).

Remark 4 In the setting of Lemma 6, suppose F is continuous, and Γ ≡ −Γ0 holds
for a closed set Γ0 ⊂Rm. For a direction w 6= 0, consider the following set, introduced
in [4, formula (55)]:

T 2(w) =
{

z ∈ Rm
∣∣∣∣∃tk ↘ 0,∃wk → w : dist[F(u∗)+ tkF ′(u∗)wk +

1
2

t2
k z,Γ0] = o(t2

k )

}
.
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Direct computations, relying on an application of Lemma 3, when F has a semi-
quadratic expansion at u∗ for w, imply

C2(F +Γ )(u∗|0)(w) = 1
2
(
EF(u∗;w)−T 2(w)

)
. (29)

This observation appears new, and apart of [4, formula (54)] (the case where Γ0 is
convex polyhedral), no other formula on the explicit computation of T 2(w) is known
to the author by now. Thanks to (29), the outcome of Theorem 2 can be used to make
some statements in [4] more explicit. Finally, note that [4] addresses the case where
Γ0 is closed convex only.

New conclusions can be drawn for the case where Γ is polyhedral in the sense
of [43]:

Corollary 2 In the setting of Theorem 2, suppose Γ is polyhedral, i.e., there are
(component-)mappings Γ1, . . . ,Γr : Rn ⇒ Rm, so that each gphΓi (i ∈ {1, . . . ,r}) is a
convex polyhedral set, and (28) is fulfilled. Then, it holds that

C2(F +Γ )(u∗|0)(w) =
⋃
i∈I0

1
2

EF(u∗;w)+
⋃

v∈Rn

⋃
z∈CΓi(u∗|y∗)(v)

(
F ′(u∗)v+ z

)
=

⋃
i∈I0

1
2

EF(u∗;w)+
⋃

(v,z)∈T 2
i

(
F ′(u∗)v+ z

) ,

where T 2
i := T 2

gphΓi
((u∗,y∗) |(w,−F ′(u∗)w) ) for i ∈ I0.

Proof Use ideas from the proof of Corollary 1, and apply Theorem 2. ut

We close this section with further remarks, the first concerning the computation
of second-order contingent derivatives of generic polyhedral mappings, the second is
about relations to a result in [39].

Remark 5 Corollary 2 particularly implies for a polyhedral mapping Γ with compo-
nents Γ1, . . . ,Γr that, for any (u∗,y∗) ∈ gphΓ , and any w 6= 0,

C2
Γ (u∗|y∗)(w) =

⋃
i∈I0(w)

rgeCΓi(u∗|y∗)

=
⋃

i∈I0(w)

{
z
∣∣∃v ∈ Rn : (v,z) ∈ T 2

gphΓi
((u∗,y∗) |(w,0) )

}
holds true, where I0(w) := {i | y∗ ∈ Γi(u∗), 0 ∈CΓi(u∗|y∗)(w)}. This fact is new and
allows, for the first time, a direct computation of second-order contingent derivatives
of a generic polyhedral mapping.
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Remark 6 Another result on the computation of C2(F +Γ ) is [39, Lemma 38] on the
case where F = (G,H) is twice differentiable, and Γ ≡ Rl

+×{0}. For this special
choice, one gets (from the cited lemma or our observations):

C2(F +Γ )(u∗|0)(w) =
{ 1

2 F ′′(u∗;w)w+ imF ′(u∗)+T0 if −F ′(u∗)w ∈ T0,
∅ if −F ′(u∗)w /∈ T0,

(30)

where T0 = TRl
+
(−G(u∗))×{0}. At the same time, Corollary 2, and calculus rules for

second-order tangents on [10, p. 168] lead to a new insight, namely that the equality
in (30) also holds with T 2

Rl
+
(−G(u∗)|−G′(u∗)w)× {0} in place of T0.

4 Application: Computation of Tangents under Relaxed Regularity Conditions

The goal of the section is to illustrate how second-order contingent derivatives can be
used to compute tangents to the solution set of a generalized equation

0 ∈ S(ξ ), (31)

for some specific set-valued mapping S : Rp ⇒ Rq, under relaxed regularity condi-
tions. This topic is of interest in its own right, but it is of particular importance in
constrained optimization, where constraints are determined by (31). Under standard
Lipschitzian regularity conditions (e.g., metric subregularity of the mapping S [12]),
it is known [14] that tangents (and second-order tangents) to the solution set of (31)
can be computed by means of contingent derivatives of S, while the corresponding
normals necessarily belong to the range of the coderivative of S, cf. [25]. These con-
clusions lead not only to tractable optimality conditions for mathematical programs
with equilibrium constraints [11,15,35,36,41], they also set the stage for the design
of Newton-type methods for solving (19), see [12,15,16,29] among others. At the
same time, if the above conclusions are violated, then standard Lipschitzian regular-
ity conditions inevitably cannot apply, and so relaxed regularity conditions come into
play. Among them is the following condition, which we want to use in the rest of the
paper.

Definition 4 A set-valued mapping S : Rp ⇒ Rq is √–metrically subregular at a
solution ξ ∗ ∈ Rp of the generalized equation (31), if there are ε,c > 0, such that

dist
[
ξ ,S−1(0)

]
≤ c ·

√
dist [0,S(ξ )] ∀ξ ∈ Bε(ξ

∗). (32)

Checking whether a mapping is √–metrically subregular can be difficult from the
definition. Hence, sufficient conditions for that property are subject of interest, too.

Theorem 3 For a mapping S : Rp ⇒ Rq, with gphS closed, and a point (ξ ∗,0) ∈
gphS, the following implies √–metric subregularity of S at ξ ∗:

0 6= ω,
0 ∈CS2(ξ ∗|0)(ω),
0 = `S(ξ

∗,0)

 =⇒ 0 < liminf
t↘0

ω ′→ω

ν ′→0

(
`S(ξ

∗+ tω ′, tν ′)

t

)
, (33)



Second-Order Contingent Derivatives: Computation and Application 15

where

`S(ξ ,η) :=

{
inf

‖ν‖=1
dist [0,D∗S(ξ |η)(ν)] if (ξ ,η) ∈ gphS,

+∞ if (ξ ,η) /∈ gphS
((ξ ,η) ∈ Rp ×Rq).

Proof For ω ∈C2(ξ ∗|0)−1(0)\{0}, we get 0 ∈CS(ξ ∗|0)(ω) from (3). So, a combi-
nation of [30, Theorem 6.2 and Theorem 6.7] implies for such ω that the estimate in
(32) holds for some c = c(ω)> 0, and all ξ in a directional neighborhood of ξ ∗ rel-
ative to ω . For ω /∈ C2(ξ ∗|0)−1(0), in turn, such a conclusion is guaranteed by [39,
Proposition 17] without further assumptions. Hence, we get directional √–metric
subregularity for any ω 6= 0, giving √–metric subregularity of S at ξ ∗. ut

The function `S in the theorem was introduced and studied in [30], where it was
called least-singular-value function for the coderivative of S. Although the condi-
tion in (33) is technical, its validity can be easily guaranteed in several cases, some
of which are addressed in subsections below. For completeness, we would like to
mention [9,20,21,32,33,34,37,38,40,50], containing further (possibly sharper) suf-
ficient conditions for √–metric subregularity.

Now, we recall how second-order contingent derivatives can be used to compute
tangents to the solution set of the generalized equation (31).

Theorem 4 In the setting of Theorem 3, if S is √–metrically subregular at ξ ∗, then

TS−1(0)(ξ
∗) =C2S(ξ ∗|0)−1(0) =

{
ω ∈ Rp ∣∣0 ∈C2S(ξ ∗|0)(ω)

}
.

Proof This is a consequence, e.g., of [39, Proposition 34]. ut

Apart from its use in computing tangents, √–metric subregularity and other (pos-
sibly stronger) relaxed regularity conditions have been successfully applied, e.g., in
[8,18,19,27,34], in the design and convergence analysis of Newton-type and other
numerical methods for solving some instances of (31).

Theorems 3–4 will be specialized in the following subsections.

4.1 Equations with Polyhedral Constraints

Let us consider the constrained equation

Φ(ξ ) = 0, ξ ∈ Ω , (34)

where Φ : Rp → Rq is continuous, and Ω ⊂ Rp is polyhedral with components
Ω1, . . . ,Ωr. We denote the solution set of (34) by SOL, i.e., SOL = Φ−1(0)∩Ω .

A specialization of Theorems 3–4 combined reads as follows:

Theorem 5 In the setting of this subsection, suppose Φ has a semi-quadratic expan-
sion at ξ ∗ ∈ SOL for all ν 6= 0. Then, under the error bound condition

∃ε,c > 0 : dist [ξ ,SOL]≤ c ·
√
‖Φ(ξ )‖ ∀ξ ∈ Bε(ξ

∗)∩Ω , (35)
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it holds that

TSOL(ξ
∗) = {0}∪T , (36)

in which

T =
{

ω 6= 0
∣∣∃i ∈ I : ω ∈ kerΦ

′(ξ ∗)∩TΩi(ξ
∗),−EΦ(ξ ∗;ω) ∈ Φ

′(ξ ∗)TΩi(ξ
∗)
}

=
{

ω 6= 0
∣∣∃i ∈ I : ω ∈ kerΦ

′(ξ ∗)∩TΩi(ξ
∗),−EΦ(ξ ∗;ω) ∈ Φ

′(ξ ∗)T 2
Ωi
(ξ ∗|ω)

}
,

where I := {i | ξ ∗ ∈ Ωi}. If Φ is differentiable near ξ ∗ with Φ ′ being semidifferen-
tiable at ξ ∗ for all ν ∈ T , then the following implies the error bound (35):

ω ∈ T ,
Φ ′(ξ ∗)>ζ ∈ NΩ (ξ ∗),

Φ ′′(ξ ∗;ω)>ζ ∈ imΦ ′(ξ ∗)>+NΩ (ξ ∗)

 =⇒ ζ = 0. (37)

Proof Put S := Φ +∆Ω , and observe that √–metric subregularity of this S at ξ ∗ is
nothing else than the error bound condition (35). Theorem 4 is applicable, and it
yields TSOL(ξ

∗) =C2(Φ +∆)(ξ ∗)−1(0). Hence, (36) (with the two formulas for T )
follows by Corollary 1, and the evident fact 0 ∈ TSOL(ξ

∗). Considerations on [30,
p. 74] combined with [30, Theorem 4.18] imply sufficiency of (37) for (33). Thus,
the final claim of this theorem is due to Theorem 3. ut

The theorem can be used to develop formulas for computing normals to SOL:

Remark 7 Under the assumptions of Theorem 5, if Ω is convex polyhedral, we get

TSOL(ξ
∗) = kerΦ

′(ξ ∗)∩TΩ (ξ ∗)∩Q−1 (
Φ

′(ξ ∗)TΩ (ξ ∗)
)
,

with Q : Rp →Rq being defined by Q(0) := 0, and Q(ν) :=−EΦ(ξ ∗;ν) for ν 6= 0.
Assuming that the cone Q−1 (Φ ′(ξ ∗)TΩ (ξ ∗)) is a finite union of closed convex cones
Q1, . . . ,Qr, then

(TSOL(ξ
∗))◦ =

r⋂
i=1

cl
(

imΦ
′(ξ ∗)>+NΩ (ξ ∗)+Q◦

i

)
, (38)

where K◦ denotes the polar of a cone K. Since the error bound (35) is preserved
for all points ξ ∈ SOL sufficiently close to ξ ∗, a representation for NSOL(ξ

∗) can
be derived on the basis of (38) from an equivalent definition of (limiting) normals
[36]. These arguments can even be extended to the case where Ω itself is polyhedral.
As an example of the former, consider Φ(ξ ) := ξ1ξ2 for ξ = (ξ1,ξ2) ∈ R2, the set
Ω := R2, and the point ξ ∗ := (0,0). We have T = ((R×{0})∪ ({0}×R)) \ {0},
(37) is in force, and considerations above entail NSOL(ξ

∗) = TSOL(ξ
∗) = {0}∪T .

We want to compare the outcome of Theorem 5 with some existing results:
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Remark 8 Suppose Ω = Rp, and Φ is differentiable with Φ ′ Lipschitz continuous,
and semidifferentiable at ξ ∗ for all ν ∈ T (with T determined as in the theorem).
Then, [30, Example 6.4] says that the condition (37) corresponds to the 2-regularity
condition in [28, Definition 2]. Sufficiency of the latter for the error bound (35) is
mentioned in [28, Remark 7], and the formula in (36) corresponds to the one estab-
lished in [28, Theorem 5]. A similar result on the representation of tangents is given
in [5,7] under smoothness assumptions stronger than those imposed in this remark.

Remark 9 Suppose Ω is convex polyhedral, and Φ is twice differentiable. It is ex-
plained in [30, Remark 4.25] that the condition (37) is stronger than a 2-regularity
condition in [2] (which is also used in [6]). An application of [2, Theorem 3] confirms
that the latter 2-regularity condition can be used to ensure the error bound (35). The
formula in (36) (with the first representation of T , i.e., the one with Φ ′(ξ )TΩ (ξ ∗))
is established in [2, Theorem 6] under 2-regularity.

The remarks indicate that Theorem 5 is closely related to existing results. It com-
plements some of them and, at least in parts, goes beyond their scope.

4.2 Generalized Equations with Polyhedrality

Let us consider the generalized equation (19) with a continuous mapping F : Rn →
Rm, and a polyhedral mapping Γ : Rn ⇒ Rm with components Γ1, . . . ,Γr. We denote
its solution set again by SOL, i.e., SOL = {u | 0 ∈ F(u)+Γ (u)}.

A specialization of Theorems 3–4 combined is:

Theorem 6 In the setting of this subsection, suppose F has a semi-quadratic expan-
sion at u∗ ∈ SOL for all v 6= 0. If F +Γ is √–metrically subregular at u∗, then

TSOL(u∗) = {0}∪T (39)

holds true, where

T =

{
w 6= 0

∣∣∣∣∃i ∈ I,∃µ ∈ Rn :
0 ∈ EF(u∗;w)+F ′(u∗)µ +CΓi(u∗|y∗)(µ),
0 ∈ F ′(u∗)w+CΓi(u∗|y∗)(w)

}
=

⋃
i∈I

{
w 6= 0

∣∣∃(µ,z) ∈ T 2
i (w) : 0 ∈ EF(u∗;w)+F ′(u∗)µ + z

}
,

in which y∗ :=−F(u∗), I := {i | y∗ ∈ Γi(u∗)}, and, for v 6= 0 and i ∈ I,

T 2
i (v) :=

{
T 2

gphΓi
((u∗,y∗)|(v,−F ′(u∗)v)) if −F ′(u∗)v ∈CΓi(u∗|y∗)(v),

∅ if −F ′(u∗)v /∈CΓi(u∗|y∗)(v).

If F is differentiable near u∗ with F ′ being semidifferentiable at u∗ for all v ∈T , then
the following implies √–metric subregularity of F +Γ at u∗:

w ∈ T ,
0 ∈ F ′(u∗)>z+D∗Γ (u∗|y∗)(z),
0 ∈ F ′′(u∗;w)>z+

⋃
λ∈Rm

(
F ′(u∗)>λ +D∗Γ (u∗|y∗)(λ )

)
 =⇒ z = 0. (40)
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Proof The formula in (39) is due to Theorem 4 applied with S = F +Γ and ξ ∗ = u∗,
and Corollary 2. From [30, Example 4.23 and Theorem 4.18], we get sufficiency of
(40) for (33), so the remaining claim follows by Theorem 3. ut

Remark 10 It is well-known [12,43] that the mapping associated with the normal
cone to a convex polyhedral set Ω0 is polyhedral. From the two references, it is also
known that this (normal cone) mapping coincides with the subgradient [12] of the
indicator function for Ω0. Identifying Γ in Theorem 6 with that subgradient, then the
formulas in our theorem can be rewritten by means of results in [36, Section 3.3] and
[44, Section 13].

Remark 11 We know from [30, Theorem 6.2] that the condition in (33) characterizes
a property that originated in [20], called metric pseudo-regularity of order 2 of S at
(ξ ∗,0) for the directions in T ×{0}. With this observation at hand, the results in
[20] lead to the conclusion of Theorem 3. In the setting of Theorem 6, assuming
that F is twice differentiable, a sufficient condition for metric pseudo-regularity of
F +Γ is stated in [20, Theorem 2]. That condition is weaker than (40), but we find
it too technical to present here. Results on the computation of tangents (in terms
of second-order contingent derivatives) have not been developed in [20]. Instead,
the considerations in [20, Section 6] refer, among other things, to applications in
optimization on the existence of multipliers. Further works to be mentioned in this
context are [9,22,23,31,47], see also Remark 13 below.

To discuss some other existing results, we specialize our theorem to inclusions:

Corollary 3 In the setting of Theorem 6, suppose Γ ≡Γ0 for a polyhedral set Γ0 with
components Γ1, . . . ,Γr. If F+Γ is √–metrically subregular at u∗, then (39) holds with

T =
{

w 6= 0
∣∣∃i ∈ I : 0 ∈ F ′(u∗)w+TΓi(y

∗), 0 ∈ EF(u∗;w)+ imF ′(u∗)+TΓi(y
∗)
}

=
{

w 6= 0
∣∣∃i ∈ I : 0 ∈ EF(u∗;w)+ imF ′(u∗)+T 2

i (w)
}
,

in which y∗ :=−F(u∗), I := {i | y∗ ∈ Γi}, and, for v 6= 0 and i ∈ I,

T 2
i (v) :=

{
T 2

Γi
(u∗|−F ′(u∗)v) if −F ′(u∗)v ∈ TΓi(y

∗),

∅ if −F ′(u∗)v /∈ TΓi(y
∗).

If F is differentiable near u∗ with F ′ being semidifferentiable at u∗ for all v ∈T , then
the following implies √–metric subregularity of F +Γ at u∗:

w ∈ T , z ∈ (−NΓ0(y
∗))∩kerF ′(u∗)>, F ′′(u∗;w)>z ∈ F ′(u∗)>NΓ0(y

∗) =⇒ z = 0.
(41)

Proof This follows by Theorem 6, Lemma 2, and calculus rules for second-order
tangents, cited in Remark 6. ut

Remark 12 Suppose Γ0 is convex polyhedral, and F is twice differentiable. Then, it
is explained in [30, Remark 4.22] (and more recently in [9, Section 3.2]) that (41) is
equivalent to a 2-regularity condition in [1,3,4]. Hence, with Remark 4 in mind, re-
sults on the computation of tangents in the latter papers established under 2-regularity
are recovered by our analysis (provided Γ0 is convex polyhedral).
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Remark 13 In the setting of Corollary 3, suppose F is twice differentiable. Then,
conditions weaker than (41), but stronger than √–metric subregularity of F +Γ , are
developed in [9, Section 3.1]. Results on the computation of tangents have not been
developed in that paper, but the considerations therein refer, among other things, to
the existence of multipliers in optimization under relaxed regularity conditions.

4.3 Complementarity Systems

In this last subsection, we consider the complementarity system

G(u)≥ 0, H(u)≥ 0, G(u)>H(u) = 0, (42)

where G,H : Rn →Rl are at least locally Lipschitz continuous. Again, we denote the
solution set of (42) by SOL, and aim to specialize Theorems 3–4. Before, we give an
auxiliary result that is useful to replace the √–metric subregularity by a simpler error
bound condition.

Lemma 7 Let a polyhedral mapping P : Rp → Rq, a point ξ ∗ ∈ P−1(0), a locally
Lipschitz continuous mapping L : Rs → Rp, and a point x∗ ∈ L −1(ξ ∗) be given.
Then, there are constants ε,c1,c2 > 0, such that for any x ∈ Bε(x∗),

c1dist
[
L (x),P−1(0)

]
≤ ‖P(L (x))‖ ≤ c2dist

[
L (x),P−1(0)

]
.

Proof The first estimate follows by Lipschitz continuity of L , and [12, Theorem 3D.1
and Theorem 3H.3], the second is simply due to Lipschitz continuity of L ,P . ut

Theorem 7 In the setting of this subsection, suppose G,H have a semi-quadratic
expansion at u∗ ∈ SOL for all v 6= 0. Then, under the error bound condition

∃ε,c > 0 : dist[u,SOL]≤ c ·
√
‖min{G(u),H(u)}‖ ∀u ∈ Bε(u∗) (43)

(with min being applied componentwise), the equality in (39) holds with

T =

{
w 6= 0

∣∣∣∣∃µ ∈ Rn :
(G′(u∗)w,H ′(u∗)w) ∈ T0,

(EG(u∗;w)+G′(u∗)µ,EH(u∗;w)+H ′(u∗)µ) ∈ T1(w)

}
,

where

T0 :=
{
(a,b) ∈ Rl ×Rl

∣∣∣ min{ai,bi}= 0∀i ∈ I0, ai = 0∀i ∈ I1, bi = 0∀i ∈ I2

}
,

T1(v) :=

(a,b) ∈ Rl ×Rl

∣∣∣∣∣∣
min{ai,bi} = 0∀i ∈ I00(v),

ai = 0∀i ∈ I01(v)∪ I1,
bi = 0∀i ∈ I02(v)∪ I2

 (v ∈ Rn),

in which I0 := {i | Gi(u∗) = Hi(u∗) = 0}, I1 := {i | Hi(u∗)> 0}, I2 := {i | Gi(u∗)> 0},

I00(v) := {i ∈ I0 | G′
i(u

∗)v = H ′
i (u

∗)v = 0},
I01(v) := {i ∈ I0 | H ′

i (u
∗)v > 0},

I02(v) := {i ∈ I0 | G′
i(u

∗)v > 0}.
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If G,H are differentiable near u∗ with G′,H ′ being semidifferentiable at u∗ for all
v ∈ T , then the following implies (43):

w ∈ T , (κ,λ ),(α,β ) ∈ N0,
0 = G′(u∗)>κ +H ′(u∗)>λ ,
0 = G′′(u∗;w)>κ +G′(u∗)>α +H ′′(u∗;w)>λ +H ′(u∗)>β

 =⇒ κ = λ = 0,

(44)

where

N0 :=

(a,b) ∈ Rl ×Rl

∣∣∣∣∣∣ (ai,bi) ∈

R2
−∪ (R×{0})∪ ({0}×R) if i ∈ I0,

R×{0} if i ∈ I1,
{0}×R if i ∈ I2

 .

Proof Define the polyhedral set Γ0 :=
⊗l

i=1(R+×{0})∪ ({0}×R+), and the map-
pings F := (−G,−H) and Γ ≡Γ0. We know from [42] that u ∈ SOL holds if and only
if 0∈ F(u)+Γ (u) = F(u)+Γ0. For P(x,y) :=min{x,y}, we have P−1(0) =Γ0. So,
applying Lemma 7 with this P , and L := −F , yields an equivalence between (43)
and √–metric subregularity of F +Γ at u∗. The assertions of this theorem follow by
Corollary 3 and direct computations. ut

Remark 14 The outcome of the theorem is close to observations in [30, Remark 6.26]
and [26]. Relations to [9, Section 4.4.2] are those mentioned in Remark 13.

Conclusion

We have established several new calculus rules for second-order contingent deriva-
tives. Our key to achieving them is the use of the property in (1), which says that
tangents to a linearly transformed set coincide with the transformation of the second-
order tangent set for directions from the null-space of the transformation. This prop-
erty could be guaranteed, e.g., when the set (to be transformed) is convex polyhedral,
and with this knowledge we were particularly able to compute second-order contin-
gent derivatives for mappings defined as the sum of a smooth single-valued and a
polyhedral set-valued mapping in Section 3. We explained relations to results in [4,
30,39,49] among others. Under a weak error bound condition, second-order contin-
gent derivatives can be used to compute tangents to the solution set of a generalized
equation in absence of standard Lipschitzian regularity conditions. We used this fact
in Section 4 to compute such tangents with respect to relevant classes of generalized
equations. A number of previously unknown relations could be established with ex-
isting results in this direction. Sufficient conditions for the needed error bound are
studied, too.
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