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Abstract

We investigate exact semidefinite programming (SDP) relaxations for the problem of
minimizing a nonconvex quadratic objective function over a feasible region defined by
both finitely and infinitely many nonconvex quadratic inequality constraints (semi-
infinite QCQPs). Specifically, we present two sufficient conditions on the feasible
region under which the QCQP, with any quadratic objective function over the feasible
region, is equivalent to its SDP relaxation. The first condition is an extension of
a result recently proposed by the authors (arXiv:2308.05922, to appear in SIAM J.
Optim.) from finitely constrained quadratic programs to semi-infinite QCQPs. The
newly introduced second condition offers a clear geometric characterization of the
feasible region for a broad class of QCQPs that are equivalent to their SDP relaxations.
Several illustrative examples, including quadratic programs with ball-, parabola-, and
hyperbola-based constraints, are also provided.
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and hyperbola-based constraints.
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1 Introduction

We introduce a conic optimization problem (COP) for quadratic programs with both finitely
and infinitely many nonconvex quadratic inequality constraints. Let Sn be the linear space
of n×n symmetric matrices with an inner product ⟨A, B⟩ = traceAB for every A,B ∈ Sn,
and Sn

+ the cone of n × n positive semidefinite matrices. For every cone K ⊂ Sn
+, Q ∈ Sn

and H ∈ Sn, COP(K,Q,H) denotes the problem of minimizing ⟨Q, X⟩ subject to X ∈ K
and ⟨H , X⟩ = 1, i.e.,

η(K,Q,H) = inf {⟨Q, X⟩ : X ∈ K, ⟨H , X⟩ = 1} ,
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where K ⊂ Sn
+ is a cone if λX ∈ K holds for every X ∈ K and λ ≥ 0. We note that a cone

K is not necessarily convex. When Q,H ∈ Sn are unspecified and arbitrary, we denote as
COP(K) and η(K). If COP(K) is infeasible, we assume that η(K) = +∞.

Let

Rn = the n-dimensional Euclidean space of column vectors x = (x1, . . . , xn),

Γn = {xxT ∈ Sn : x ∈ Rn} = {X ∈ Sn
+ : rankX = 1},

where xT denotes the row vector obtained by transposing x ∈ Rn. We mention that Sn
+ is

described as coΓn (the convex hull of Γn). For every closed convex cone J ⊆ Sn
+, Q ∈ Sn

and H ∈ Sn, we consider the problems COP(Γn ∩ J,Q,H) and COP(J,Q,H), which
corresponds to a geometric form of quadratically constrained quadratic program (QCQP)
of the form:

η(J ∩ Γn,Q,H) = {⟨Q, X⟩ : X ∈ J ∩ Γn, ⟨H , X⟩ = 1}
=

{
⟨Q, xxT ⟩ : x ∈ Rn, xxT ∈ J, ⟨H , xxT ⟩ = 1

}
,

and to its SDP relaxation, respectively:

η(J,Q,H) = {⟨Q, X⟩ : X ∈ J, ⟨H , X⟩ = 1} .

A standard inequality-form QCQP (2) (see also (3)) will be presented below as a special
case of the geometric form-QCQP introduced above. If η(J ∩ Γn,Q,H) = η(J,Q,H), we
say that QCQP COP(Γn ∩ J,Q,H) and its SDP relaxation COP(J,Q,H) are equivalent,
or that COP(J,Q,H) is an exact SDP relaxation of QCQP COP(Γn ∩ J,Q,H).

The equivalence of QCQPs and their SDP relaxation has been extensively studied in the
literature [1, 2, 5, 10, 11, 12, 20, 21]. The QCQPs studied in the literature can be classified
into two categories. The first category involves QCQPs where specific sign patterns of the
data matrices are required [3, 12, 18, 22]. The second category focuses on characterizing the
equality and inequality constraints of QCQPs that are equivalent to its SDP relaxation for
any objective function [1, 2, 10, 17, 19, 20, 21]. This paper falls into the second category,
with the main focus on the theoretical characterization of J such that COP(Γn ∩ J,Q,H)
and COP(J,Q,H) are equivalent for every Q and H . We also mention that the recent
paper [13] summarizes various sufficient conditions for global optimality in general QCQPs,
which include a characterization through their equivalent SDP relaxation.

Regarding the equivalence of QCQP and SDP mentioned above, the following result is
known. Let

F̂(Γn) = the family of closed convex cones J ⊂ Sn
+ such that co(J ∩ Γn) = J.

Theorem 1.1. Let Q, H ∈ Sn and J ⊆ Sn
+ is a closed convex cone.

(i) Assume that J ∈ F̂(Γn). Then

−∞ < η(J,Q,H) if and only if −∞ < η(J,Q,H) = η(J ∩ Γn,Q,H). (1)

(ii) If J is a face of Sn
+, then J ∈ F̂(Γn).

(iii) J′ ∈ F̂(Γn) for every face J′ of J ∈ F̂(Γn).
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(iv) Assume that H ∈ Sn is positive definite. Then J ∈ F̂(Γn) if and only if η(J ∩
Γn,Q,H) = η(J,Q,H) for every Q ∈ Sn.

All assertions in Theorem 1.1 are special cases of more general results presented in [2, 14].
For assertion (i), we refer to [14, Theorem 3.1] and [2, Corollary 2.2]; for (ii) and (iii), to
[14, Lemma 2.1]; and for (iv), to [2, Theorem 1.2]. Throughout the paper, we will focus on

J ∈ F̂(Γn) as the key property to ensure the equivalence relation (1) between COP(Γn ∩ J)
and COP(J).

Among the assertions of Theorem 1.1, (ii) and (iii) are useful for incorporating equal-
ity constraints into COP(Γn ∩ J+(B)) and its exact SDP relaxation. For linear equality
constraints, see Example 4.9 of [2], and for general quadratic equality constraints, refer
to Section 4.4 of [2]. Assertion (iv) played an essential role in proving a special case of
Theorem 1.2 below in [2].

1.1 Main results

We commonly represent J using inequalities. For every B ∈ Sn, let

J+(B), J0(B) or J−(B) =
{
X ∈ Sn

+ : ⟨B, X⟩ ≥, = or ≤ 0, respectively
}

and J+(B) =
{
X ∈ Sn

+ : ⟨B, X⟩ ≥ 0 (B ∈ B)
}
for every B ⊆ Sn. Since J ⊆ Sn

+ is a closed
convex cone, J can be represented as the intersection of (possibly infinitely many) half spaces
and Sn

+ such that J = J+(B) for some B ⊆ Sn. Then QCQP COP(Γn ∩ J+(B),Q,H) and
its SDP relaxation COP(J+(B),Q,H) are written as

η(Γn ∩ J+(B),Q,H) = inf

{
xTQx :

x ∈ Rn, xTBx ≥ 0 (B ∈ B),
xTHx = 1

}
, (2)

η(J+(B),Q,H) = inf

{
⟨Q, X⟩ : X ∈ Sn

+, ⟨B, X⟩ ≥ 0 (B ∈ B),
⟨H , X⟩ = 1

}
.

We should mention that there are many choices for such a B. For example, we can take
B = J∗, where J∗ = {Y ∈ Sn : ⟨X, Y ⟩ ≥ 0 for every X ∈ J} (the dual of J). This trivial
choice of B, however, involves many redundant matrices to represent J. Without loss of
generality, we may assume that

(A-1) B is bounded.

(A-2) B is closed.

In fact, given B′ ⊆ Sn
+ such that J = J+(B′), we can always replace B′ with B = cl{B′/ ∥

B′ ∥: B′ ∈ B,B′ ̸= O}, where ∥ B′ ∥ denotes the Frobenius norm of B′ ∈ Sn. Throughout
the paper, condition (A-1) is assumed, while condition (A-2) is not, as it contradicts another
crucial condition, condition (A-5) described below, which strengthens our main theorem,
Theorem 1.2, as shown in Example 6.3.

As a sufficient condition for the equivalence of COP(Γn ∩ J+(B),Q,H) and its SDP
relaxation COP(J+(B),Q,H), Arima et al. [2] introduced the following condition:

(B) For every distinct pair A,B ∈ B, J0(B) ⊆ J+(A) holds.

The following theorem extends their result to cases involving infinite B.
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Theorem 1.2. Let B ⊆ Sn. Assume that condition (B) holds. Then J+(B) ∈ F̂(Γn).

A proof of Theorem 1.2 is given in Section 2. Obviously, whether J ∈ F̂(Γn) or J ̸∈ F̂(Γn)
is independent of how J is represented by B ⊆ Sn. Whether condition (B) is satisfied or not,
however, depends on B. Thus, when applying Theorem 1.2 to determine the equivalence
between COP(Γn∩J) and its SDP relaxation COP(J) for a given closed convex cone J ⊆ Sn

+,
the choice of representation of J by B is critically important.

Given COP(J′,Q′,H ′) with a closed convex cone J′ ⊆ Sn′
+ , Q

′ ∈ Sn′
and H ′ ∈ Sn′

, we
propose a two-step approach:

• first, reduce COP(Γn′ ∩ J′,Q′,H ′) to an equivalent COP(Γn ∩ J,Q,H) that satisfies
Slater’s constraint qualification for some n ≤ n′, closed convex cone J ⊆ Sn

+, Q ∈ Sn

and H ∈ Sn using the facial reduction technique [4],

• second, represent J by a less redundant B ⊆ Sn.

As a result, we obtain COP(Γn ∩ J+(B),Q,H) (equivalent to COP(Γn′ ∩ J′,Q′,H ′)) to
which Theorem 1.2 can be applied. The resulting B satisfies

(A-3) J+(B) ∩ Sn
++ ̸= ∅, where Sn

++ denotes the set of n × n positive definite matrices.
(Slater’s constraint qualification).

(A-4) Either B ∩ Sn
+ = ∅ or B = {O}; the latter is a trivial case where J+({O}) = Sn

+.

(A-5) J+(B) ̸⊆ J+(A) for every distinct A,B ∈ B.
(as shown in Theorem 5.2).

It should be noted that B may not satisfy condition (A-2) in general as illustrated in
Example 6.3. More details will be discussed in Section 5. In the subsequent discussion,
given a B′ ⊆ Sn′

for some n′, we simply say that B′ satisfies conditions (A-1), (A-2), (A-3),
(A-4), (A-5) and/or (B) if B = B′ satisfies these conditions. This convention also applies to
conditions (B)’ and (C)’ introduced below.

While conditions (A-3), (A-4) and (A-5) are not necessary for applying Theorem 1.2,
the above reduction process not only improves the effectiveness of condition (B) but also
simplifies and enriches its application. By definition, B′ satisfies conditions (A-3), (A-4),
(A-5) and/or (B) if and only if every nonempty subset B of B′ does. However, it is possible

for J+(B′) ∈ F̂(Γn) to hold even if J+(B′\{A}) ̸∈ F̂(Γn) for some A ∈ B′. Specifically, this
often occurs when J+(B′) is contained in a proper face of Sn

+. To see this, suppose that B
is an arbitrary nonempty subset of Sn such that J+(B) ̸∈ F̂(Γn) and F is a nonempty face
of Sn

+ contained in J+(B); at least one such face always exists since {O} is a face of J+(B).
Represent the face F such that F = {X ∈ Sn

+ : ⟨A, X⟩ ≥ 0} for some negative semidefinite
matrix A ∈ Sn. Let B′ = B ∪ {A}. Then J+(B′) = J+(B) ∩ F = F. By Theorem 1.1

(ii), we know that J+(B′) ∈ F̂(Γn). In this case, however, the application of Theorem 1.2

to B′ would fail to determine whether J+(B′) ∈ F̂(Γn) because B = B′\{F } does not
satisfy condition (B). A more non-trivial case justifying the reduction mentioned above
from COP(Γn′ ∩ J′,Q′,H ′)) to COP(Γn ∩ J+(B),Q,H) will be presented in Example 6.1.
Condition (A-4) is natural because if A ∈ B ∩ Sn

+ existed, then A would be redundant as
J+(B) = J+(B\{A}). Also if J+(B) ⊆ J+(A) for some distinct A,B ∈ B, then A would
be redundant. Hence condition (A-5) is also reasonable. Some fundamental properties on
B satisfying conditions (A-3), (A-4), (A-5) and/or (B) will be discussed in Section 3. In
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particular, Theorem 3.4 provides algebraic criteria equivalent to J0(B) ⊆ J+(A) in condition
(B) under conditions (A-3), (A-4) and (A-5).

Condition (B) is defined in Sn, the space of the variable matrix X of COP(J+(B)).
For practical applications, It is more convenient to provide a direct characterization of
COP(Γn ∩ J+(B),Q,H) which involves B satisfying condition (B). We examine the special
case where H ∈ Sn is an n × n matrix with 1 in the (n, n)th element and 0 elsewhere.
To adapt condition (B) to this special case, we introduce some notation and additional
conditions. Define

q(u, z,Q) =

(
u
z

)T

Q

(
u
z

)
for every (u, z,Q) ∈ Rn−1 × R× Sn.

If Q =
(
C cT

c γ

)
is denoted with C ∈ Sn−1, c ∈ Rn−1 and γ ∈ R, then q(u, 1,Q) is a

quadratic function of the form uTCu+2cTu+γ in u ∈ Rn−1. Thus, COP(Γn∩J+(B),Q,H)
corresponds to the standard inequality form of (semi-infinite) QCQP:

η(Γn ∩ J+(B),Q,H) = inf
{
q(u, 1,Q) : u ∈ Rn−1, q(u, 1,B) ≥ 0 (B ∈ B)

}
. (3)

For every z ∈ [0, 1], B ∈ Sn and B ⊆ Sn, define

ff+(z,B), ff 0(z,B), ff−(z,B) or ff−−(z,B)

=
{
u ∈ Rn−1 : q(u, z,B) ≥ 0, = 0, ≤ 0 or < 0, respectively

}
,

ff+(z,B) =
⋂
B∈B

ff+(z,B) =
{
u ∈ Rn−1 : q(u, z,B) ≥ 0 (B ∈ B)

}
.

We consider the following conditions on the feasible region of QCQP (3), which can be
written as ff+(1,B).
(B)’ ff−(1,B) ⊆ ff+(1,A) (or equivalently ff−(1,B)∩ff−−(1,A) = ∅) for every distinct A,

B ∈ B.
(C)’ For every B ∈ B, ff−−(1,B) ̸= ∅.

Theorem 1.3. Assume conditions (B)’ and (C)’. Then J+(B) ∈ F̂(Γn).

A proof of Theorem 1.3 is given in Section 4. We note that condition (C)’ is fairly reasonable
because if it is not satisfied for some B ∈ B, then ff+(1,B) = {u ∈ Rn−1 : q(u, 1,B) ≥
0} = Rn−1; hence q(u, 1,B) ≥ 0 is a redundant constraint. The geometry of conditions (B)’
and (C)’ is particularly clear when n − 1 = 2. Figure 1 illustrates 6 cases where B ∈ S3

satisfies ff−−(1,B) ̸= ∅. We can combine some of them for B satisfying conditions (B)’
and (C)’. In particular, we see that {B1,B2,B3}, {B1,B6}, {B1,B3,B5} and {B2,B4}
satisfy both conditions. We also note that ff+(1, {B1,B6}) forms a unit disk with a hole if
0 < r < 1 and a unit circle if r = 1. Figure 2 illustrates another example of B that satisfies
conditions (B)’ and (C)’.
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Figure 1: Illustration of ff+(1,B) and ff−(1,B). (a) q(u, z,B1) = u2
1 + u2

2 − rz2, where
0 < r ≤ 1. (b) q(u, z,B2) = −u2

1 + u2
2 + z2. (c) q(u, z,B3) = u2

1 − u2z + z2. (d)
q(u, z,B4) = u2

1 − u2
2. (e) q(u, z,B5) = u1z + z2. (f) q(u, z,B6) = −u2

1 − u2
2 + z2.

ff+(1,Bk) = {u ∈ R2 : q(u, 1,Bk) ≥ 0} (k = 1, 2, 3, 4, 5, 6).

u1

u2

(0)

(1)
(2)

(3)

(4)

(5)
(6)

(7)

(9)

(8)0 2-2

2

-2

Figure 2: An example B = {Bk : k = 0, 1, . . . , 9} that satisfies conditions (B)’ and
(C)’. ff−(1,Bk) represents the disk (k) with center 1.5(cos(kπ/4), sin(kπ/4)) and radius 0.5
(k = 0, 1, . . . , 7). ff−(1,B8) is depicted as the disk (8) with center (0, 0) and radius 1.
ff−(1,B9) represents the exterior (9) (including the boundary) of the disk with center (0, 0)
and radius 2. The gray region denotes the feasible region ff+(1,B). We see that conditions
(B)’ and (C)’ are satisfied.
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1.2 Main contribution and comparison to some existing results

By presenting Theorem 1.2, which extends the results from the finite B case to the infinite B
case, we demonstrate for the first time that a broad class of semi-infinite QCQPs is equivalent
to their SDP relaxation. This result is achieved by extending the authors’ previous work [14,
2]. Specifically, we show that quadratic programs with ball-, parabola-, and hyperbola-based
constraints can be solved exactly using their SDP relaxation, with illustrative examples.

Each J ∈ F̂(Γn) is called rank-one generated (ROG) in the literature [1, 6]. Specifically,
Proposition 1 in [1] is related to Theorem 1.2. The detailed comparison between these
two results are provided in Section 3, where we show that Theorem 1.2 together with the
proposed reduction is more general than [1, Proposition 1]. Example 6.1 illustrates a case
addressed by Theorem 1.2 with the reduction but not covered by [1, Proposition 1].

Another key contribution is Theorem 1.3, which provides a direct and geometric char-
acterization of the feasible region for a wide class of semi-infinite QCQPs that can be
reformulated as their SDP relaxations. This characterization is straightforward and clear,
and enhances the reader’s understanding of this class of QCQPs.

1.3 Outline of the paper

In Section 2, we present a proof of Theorem 1.2. Section 3 is devoted to fundamental
properties and implications of conditions (A-3), (A-4), (A-5) and (B). Proposition 1 in [1]
referred above is restated as Theorem 3.5, and then its detailed comparison with Theorem 1.2
is described. Section 4 presents the proof of Theorem 1.3. The reduction of a general
COP(Γn′ ∩ J′) to a COP(Γn∩ J+(B)) with B satisfying conditions (A-3), (A-4) and (A-5) is
described in Section 5. In Section 6, we present five illustrative examples. Finally, Section 7
contains our concluding remarks.

2 Proof of Theorem 1.2

We present three lemmas for the proof of Theorem 1.2. The first lemma is also used in
Section 4 to prove Theorem 1.3.

Lemma 2.1. Let {Bk ⊆ Sn : k = 1, 2, . . .} be a sequence such that
⋂∞

k=1 J+(Bk) = J for
some closed convex cone J ⊆ Sn

+. Then
⋂∞

m=1 co
(
Γn ∩

(⋂m
k=1 J+(Bk)

))
= co

(
Γn ∩ J

)
.

Proof. Since
⋂m

k=1 J+(Bk) ⊇ J (m = 1, 2, . . .),
⋂∞

m=1 co
(
Γn ∩

(⋂m
k=1 J+(Bk)

))
⊇ co

(
Γn ∩ J

)
follows. To prove the converse inclusion, let X ∈ co

(
Γn⋂(⋂m

k=1 J+(Bk)
))

(m = 1, 2, . . . ).
Then, for each m = 1, 2, . . . , there exist Xp

m ∈ Γn⋂(⋂m
k=1 J+(Bk)

)
(p = 1, 2, . . . , ℓ) for

some ℓ ≤ dimSn = n(n − 1)/2 such that X =
∑ℓ

p=1X
p
m. Let q ∈ {1, 2, . . . , ℓ} be fixed

arbitrarily. Consider the sequence {Xq
m : m = 1, 2, . . . , }. The sequence is bounded

since X ∈ Sn
+, X

p
m ∈ Sn

+ (p = 1, . . . , ℓ) and ⟨I, X⟩ = ⟨I,
∑ℓ

p=1X
p
m⟩ ≥ ⟨I, Xq

m⟩. Hence

we may assume without loss of generality that the sequence converges to some X
q
as

m → ∞. Then X
q ∈ cl

(⋂∞
k=1 J+(Bk)) = J. Since Γn is closed, we also see X

q ∈ Γn.

Therefore, taking the limit of the identity X =
∑ℓ

p=1 X
p
m as m → ∞, we obtain that X =∑ℓ

p=1X
p
and X

p ∈ Γn ∩ J (p = 1, . . . , ℓ). Therefore, we have shown that X ∈ co
(
Γn ∩ J

)
and

⋂∞
m=1 co

(
Γn ∩

(⋂m
k=1 J+(Bk)

))
⊆ co

(
Γn ∩ J

)
.
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We may assume without loss of generality that B is bounded (condition (A-1)). For each
ϵ > 0, define an open neighborhood U(B, ϵ) = {A ∈ Sn :∥ A −B ∥< ϵ} of each B ∈ clB.
Let {ϵk} be a sequence of positive numbers which converges to 0. Let k be fixed. Since B
satisfies (A-1), clB is a compact subset of Sn. Hence we can choose a finite subset Ak of clB
such that

⋃
A∈Ak

U(A, ϵk/2) ⊇ clB and U(A, ϵk/2) contains a B ∈ B (A ∈ Ak). Let Bk

be the set of such B’s. Then the sequence {Bk (k = 1, 2, . . .)} satisfies that

Bk ⊆ B, J+(Bk) ⊇ J+(B) (k = 1, 2, . . .),
∞⋂
k=1

J+(Bk) ⊇ J+(B), (4)

∀B ∈ B, ∃B′ ∈ Bk; ∥ B′ −B ∥< ϵk (k = 1, 2, . . .), . (5)

Lemma 2.2.
⋂∞

k=1 J+(Bk) = J+(B).
Proof. By (4), it suffices to show that

⋂∞
k=1 J+(Bk) ⊆ J+(B). Let X ∈

⋂∞
k=1 J+(Bk). To

prove X ∈ J+(B), we show that ⟨B, X⟩ ≥ 0 for an arbitrary chosen B ∈ B. By (5), there
exists a sequence {Bk ∈ Bk} which converges B ∈ B as k → ∞. Since X ∈ J+(Bk), we
see that ⟨Bk, X⟩ ≥ 0 (k = 1, 2, . . . ). Hence we obtain ⟨B, X⟩ ≥ 0 by taking the limit as
k → ∞.

Lemma 2.3. co
(
Γn ∩

(⋂m
k=1 J+(Bk)

)
) =

⋂m
k=1 J+(Bk) (m = 1, 2, . . .).

Proof. Let m ∈ {1, 2, . . .} be fixed. We note that
⋂m

k=1 J+(Bk) = J+(
⋃m

k=1 Bk). Each⋃m
k=1 Bk satisfies condition (B) since it is a subset of B. Since

⋃m
k=1 Bk is finite, J+(

⋃m
k=1 Bk) ∈

F̂(Γn) by [2, Theorem 4.1]. Therefore co
(
Γn ∩

(⋂m
k=1 J+(Bk)

)
) =

⋂m
k=1 J+(Bk)

Now we show co
(
Γn ∩ J+(B)

)
= J+(B), which is equivalent to J+(B) ∈ F̂(Γn) by

definition. By Lemmas 2.2 and 2.3, we see that

co
(
Γn ∩

( m⋂
k=1

J+(Bk)
)
) =

m⋂
k=1

J+(Bk) ⊇
∞⋂
k=1

J+(Bk) = J+(B) (m = 1, 2, . . .),

which implies that
⋂∞

m=1 co
(
Γn ∩

(⋂m
k=1 J+(Bk)

)
) ⊇ J+(B). By Lemma 2.1,

⋂∞
m=1 co

(
Γn ∩(⋂m

k=1 J+(Bk)
))

= co
(
Γn∩J+(B)

)
. Therefore, we have shown that co

(
Γn∩J+(B)

)
⊇ J+(B).

The converse inclusion co
(
Γn∩J+(B)

)
⊆ J+(B) is straightforward since J+(B) is convex.

3 Some characterizations of conditions (A-3), (A-4),

(A-5) and (B)

We begin by presenting three lemmas on the fundamental properties on J+(B), J−(B)
and J0(B), each interesting in its own right. Some of these lemmas are used in the sub-
sequent discussion. Following the lemmas, we present five theorems, Theorems 3.4, 3.5,
3.6, 3.7, and 3.8. Theorems 3.4 provides algebraic characterizations of condition (B) under
conditions (A-3), (A-4) and (A-5). The characterizations there relates condition (B) to [1,
Proposition 1] stated as Theorem 3.5. We discuss some details about their relation. The-
orem 3.6 provides an interesting property of B ⊆ Sn satisfying conditions (A-5) and (B).
Theorem 3.7 shows that condition (B) is preserved under a linear transformation of the
variable vector x of COP(Γn ∩ J+(B)). Theorem 3.8 deals with the case where the linear
transformation is one-to-one.
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Lemma 3.1. Let B ∈ Sn. Then J+(B), J−(B), J0(B) ∈ F̂(Γn).

Proof. J+({B}) and J−({B}) = J+({−B}) satisfy condition (B). Hence J+(B), J−(B) ∈
F̂(Γn) by Theorem 1.2. J0(B) is a face of J+(B) ∈ F̂(Γn). Hence J0(B) ∈ F̂(Γn) by
Theorem 1.1 (iii).

Lemma 3.2. Let A,B ∈ Sn and A ̸= B. Then

(i) {x ∈ Rn : xTBx ≥ 0} ⊆ {x ∈ Rn : xTAx ≥ 0} ⇔ Γn ∩ J+(B) ⊆ Γn ∩ J+(A)
⇔ J+(B) ⊆ J+(A).

(ii) {x ∈ Rn : xTBx = 0} ⊆ {x ∈ Rn : xTAx ≥ 0} ⇔ Γn ∩ J0(B) ⊆ Γn ∩ J+(A)
⇔ J0(B) ⊆ J+(A).

(iii) {x ∈ Rn : xTBx ≤ 0} ⊆ {x ∈ Rn : xTAx ≥ 0} ⇔ Γn ∩ J−(B) ⊆ Γn ∩ J+(A)
⇔ J−(B) ⊆ J+(A).

Proof. (i) By definition, we know that

Γn ∩ J+(B) = {xxT : xTBx ≥ 0}, Γn ∩ J+(A) = {xxT : xTAx ≥ 0}.

Hence the first ⇔ follows. For the second ⇔, ⇐ is straightforward. By Lemma 3.1,
co(Γn ∩ J+(B)) = J+(B) and co(Γn ∩ J+(A)) = J+(A). Hence

Γn ∩ J+(B) ⊆ Γn ∩ J+(A) ⇒ co(Γn ∩ J+(B)) ⊆ co(Γn ∩ J+(A)) ⇒ J+(B) ⊆ J+(A).

Assertions (ii) and (iii) can be proved similarly, and their proofs are omitted.

Lemma 3.3. Let A,B ∈ B and A ̸= B. Then J−(B) ⊆ J+(A) ⇒ J0(B) ⊆ J+(A) If, in
addition, condition (A-5) is satisfied, then J−(B) ⊆ J+(A) ⇔ J0(B) ⊆ J+(A).

Proof. The first ⇒ follows from J0(B) ⊆ J−(B). To prove ⇐ in the second assertion,
assume on the contrary that J0(B) ⊆ J+(A) but J−(B) ̸⊆ J+(A) or equivalently that
⟨B, X⟩ < 0 and ⟨A, X⟩ < 0 for some X ∈ Sn

+. By condition (A-5), J+(B) ̸⊆ J+(A),

which implies that ⟨B, X̃⟩ ≥ 0 and ⟨A, X̃⟩ < 0 for some X̃ ∈ Sn
+. If ⟨B, X̃⟩ = 0, then

⟨A, X̃⟩ ≥ 0 by J0(B) ⊆ J+(A). Hence ⟨B, X̃⟩ > 0, and there exists λ ∈ (0, 1) such that

⟨B, λX + (1− λ)X̃⟩ = 0, ⟨A, λX + (1− λ)X̃⟩ < 0, λX + (1− λ)X̃ ∈ Sn
+.

This contradicts J0(B) ⊆ J+(A).

Theorem 3.4. Assume that conditions (A-3), (A-4) and (A-5) are satisfied. Let A,B ∈ B
and A ̸= B. Then

J0(B) ⊆ J+(A) ⇔ J−(B) ⊆ J+(A) ⇔ (7) ⇔ (8), (6)

where

αA+ βB ∈ Sn
+ for some α > 0 and β > 0 (7)

αA+ βB ∈ Sn
+ for some (α, β) ̸= 0. (8)

9



Proof. The first ‘⇔’ in (6) is already shown in Lemma 3.3. To prove the second ‘⇔’, consider
the primal-dual pair of SDPs

ζp = inf{⟨A, X⟩ : X ∈ Sn
+, ⟨B, X⟩ ≤ 0} = inf{⟨A, X⟩ : X ∈ J−(B)}, (9)

ζd = sup{0 : A+ τB ∈ Sn
+, τ ≥ 0}.

Obviously, ζp = 0 if and only if J−(B) ⊆ J+(A). On the one hand, by (A-3), there exists

a feasible solution X̃ of the primal SDP such that X̃ ∈ Sn
++. By the duality theorem,

ζp = ζd = 0 if and only if the dual SDP is feasible, i.e., A + τB ∈ Sn
+ for some τ ≥ 0. If

τ = 0, then A ∈ Sn
+, which contradicts (A-4). Therefore J−(B) ⊆ J+(A) ⇔ (7) follows.

In (6), (7) ⇒ (8) is obvious. To prove the converse ‘⇐’, by assuming (8), we show that
α > 0 and β > 0. We may assume without loss of generality that α ̸= 0. Then, one of the
following cases occurs.

(a) α > 0, β > 0. In this case (7) holds.

(b) αβ < 0. Say α > 0 and β < 0. Then A = (−β/α)B + Y for some Y ∈ Sn
+, which

contradicts condition (A-5). Hence this case cannot occur.

(c) α > 0, β = 0. In this case, A ∈ Sn
+, which contradicts condition (A-4). Hence this

case cannot occur.

(d) α < 0, β < 0. In this case, we observe that

J+(B) ⊆
{
X ∈ Sn

+ : ⟨A, X⟩ ≥ 0, ⟨B, X⟩ ≥ 0
}

=
{
X ∈ Sn

+ : ⟨A, X⟩ ≥ 0, ⟨B, X⟩ ≥ 0, −⟨αA+ βB, X⟩ ≥ 0
}

(since α < 0 and β < 0)

⊆
{
X ∈ Sn

+ : −⟨αA+ βB, X⟩ = 0
}

(since αA+ βB ∈ Sn
+).

Hence J+(B) is included in a face {X ∈ Sn
+ : ⟨αA+βB, X⟩ = 0} of Sn

+. If αA+βB ̸=
O, then the face including J+(B) is a proper face of Sn

+, which contradicts condition
(A-3). Therefore −αA− βB = O ∈ Sn

+. Since −α > 0 and −β > 0, (7) holds.

As a result of Theorem 3.4, J0(B) ⊆ J+(A) in condition (B) can be replaced with any
of J−(B) ⊆ J+(A), (7) and (8) under conditions (A-3), (A-4) and (A-5). We also note
that (7) implies J0(B) ⊆ J−B) ⊆ J+(A) even when none of the conditions (A-3), (A-4) and
(A-5) hold, and that whether (7) holds is checked numerically by solving the simple primal
SDP (9) or its dual; if ζp = 0 or the dual SDP is feasible, then (7) holds.

The following result due to [1] also provides a sufficient condition for J+(B′) ∈ F̂(Γn′
).

Theorem 3.5. ([1, Proposition 1]) Let B′ be a nonempty finite subset of Sn′
. Assume that

(8) holds for every distinct A,B ∈ B′. Then J+(B′) ∈ F̂(Γn′
).

We compare our main theorem, Theorem 1.2 with Theorem 3.5. Let the assumption of
Theorem 3.5 is satisfied. As in the proof of Theorem 3.4, we may assume without loss of
generality that α ̸= 0, and that one of cases (a), (b), (c), and (d) occurs with replacing n by
n′ and B by B′. If (a) occurs, then J−(B) ⊆ J+(A), which implies J0(B) ⊆ J+(A), follows
from the weak duality of the primal-dual pair of SDPs stated in the proof of Theorem 3.4.
If (b) occurs, then either of A or B is redundant; J+(B′) = J+(B′\A) or J+(B′\B) holds.
If (c) occurs, then A ∈ Sn′

+ ; hence J+(B′) = J+(B′\A) holds. If (d) occurs, we have either
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O = αA + βB ∈ Sn′
or O ̸= αA + βB ∈ Sn′

. In the former case, −αA − βB = O ∈ Sn
+

with −α > 0 and −β > 0; hence J−(B) ⊆ J+(A) follows as in case (a). In the latter case,
J+(B′) lies in a proper face of Sn

+ and B′ does not satisfy condition (A-3). Therefore, the
essential difference between Theorem 1.2 and Theorem 3.5 lies in the last case where J+(B′)
is contained in a proper face of Sn

+ or condition (A-3) is violated. Theorem 3.5 deals with

such a B′ directly or the equivalence of COP(J+(Γn′ ∩B′) and its SDP relaxation COP(B′).
As stated in Section 1, in our approach, we reduce COP(J+(Γn′ ∩ B′)) to an equivalent
COP(J+(Γn∩B)) with B ⊆ Sn′

satisfying condition (A-3), (A-4) and (A-5), and then apply
Theorem 1.2 to the resulting B. More details will be discussed in Section 5. We will see in
Example 6.1 that our approach is often more effective than directly applying Theorem 3.5
to the original B′.

An important property of B satisfying conditions (A-5) and (B)

Theorem 3.6. Define B0 = {B ∈ B : ⟨B, X⟩ = 0 for every X ∈ J+(B)}. Assume
conditions (A-5) and (B). Then, one of the following two cases occurs.

(a) B ∈ B0 ̸= ∅ for some B ∈ B. In this case, J+(B) = J0(B).

(b) B0 = ∅. In this case, J−(B) is a proper subset of J+(A) for every distinct A,B ∈ B.

Proof. Obviously, case (a) B ∈ B0 ̸= ∅ for some B ∈ B or case (b) B0 = ∅ occurs
exclusively. In case (a), we see that J+(B) ⊆ J0(B) ⊆ J+(B), where the latter inclusion is
from condition (B). Hence J+(B) = J0(B). In case (b), by Lemma 3.3, J−(B) ⊆ J+(A)
holds for every distinct A,B ∈ B. Assume on the contrary that J−(B) = J+(A) for some
distinct A,B ∈ B. Then

J+(B) ⊆ J+(A) ∩ J+(B) = J−(B) ∩ J+(B) = J0(B).

Hence B ∈ B0, which contradicts B0 = ∅.
Case (a) is a trivial case where J+(B) is described as J+(B) = {X ∈ Sn

+ : ⟨B, X⟩ = 0}
for some B ∈ B. Except this trivial case, we always have

J−(B) ⊂ J+(A); hence {X ∈ Sn
+ : ⟨B, X⟩ ≤ 0} ∩ {X ∈ Sn

+ : ⟨A, X⟩ < 0} = ∅
for every distinct A,B ∈ B

under conditions (A-5) and (B).

Linear transformation of COP(Γn ∩ J+(B),Q,H)

Now we consider a linear transformation x = Ly of the variable vector x in COP(Γn ∩
J+(B),Q,H) (see (2)), where L denotes a nonzero n× n′ matrix with n′ ≥ 1 and y ∈ Rn′

a variable vector. Then, COP(Γn∩J+(B),Q,H) and its SDP relaxation COP(J+(B),Q,H)
are transformed into COP(Γn′∩J+(B′),Q′,H ′) and its SDP relaxation COP(J+(B′),Q′,H ′),
respectively, where B′ = {LTBL : B ∈ B}, Q′ = LTQL and H ′ = LTHL.

Theorem 3.7. B′ satisfies condition (B) if B satisfies condition (B).
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Proof. Let A, B ∈ B and A ̸= B. Assuming J0(B) ⊆ J+(A), we will show J0(LTBL) ⊆
J+(LTAL). Let Y ∈ J0(LTBL). Then Y ∈ Sn′

+ and 0 = ⟨LTBL, Y ⟩, which imply
that LY LT ∈ Sn

+ and 0 = ⟨B, LY LT ⟩. Hence LY LT ∈ J0(B) ⊆ J+(A). It follows that
Y ∈ Sn′

+ and 0 ≤ ⟨A, LY LT ⟩ = ⟨LTAL, Y ⟩. Therefore Y ∈ J+(LTAL).

Theorem 3.8. Assume that n′ = n and L is nonsingular.

(i) COP(Γn ∩ J+(B′),Q′,H ′) and its SDP relaxation COP(J+(B′),Q′,H ′) are equivalent
to COP(Γn ∩ J+(B),Q,H) and its SDP relaxation COP(J+(B),Q,H), respectively.

(ii) B′ satisfies condition (B) if and only if B does.

(iii) J+(B′) ∈ F̂(Γn′
) if and only if J+(B) ∈ F̂(Γn).

Proof. Assertion (i) is straightforward, and (ii) follows from B = {L−TB′L−1 : B′ ∈ B′}
and Theorem 3.7. To prove assertion (iii), we observe that

L−1J+(B)L−T = {Y ∈ Sn : Y = L−1XL−T , X ∈ Sn
+, ⟨B, X⟩ ≥ 0 (B ∈ B)}

= {Y ∈ Sn : X = LY LT , X ∈ Sn
+, ⟨B, X⟩ ≥ 0 (B ∈ B)}

= {Y ∈ Sn
+ : ⟨B, LY LT ⟩ ≥ 0 (B ∈ B)}

= {Y ∈ Sn
+ : ⟨LTBL, Y ⟩ ≥ 0 (B ∈ B)}

= {Y ∈ Sn
+ : ⟨B′, Y ⟩ ≥ 0 (B′ ∈ B′)}

= J+(B′),

and

co(Γn ∩ J+(B)) = J+(B) ⇔ L−1
(
co(Γn ∩ J+(B)

)
L−T = L−1J+(B)L−T

⇔ co
(
(L−1ΓnL−T ) ∩ (L−1J+(B)−T )

)
= L−1J+(B)L−T

⇔ co
(
Γn′ ∩ J+(B′)

)
= J+(B′).

Therefore, assertion (iii) follows.

Let S = {x ∈ Rn : x = Ly for some y ∈ Rn′}. Obviously, COP(Γn′ ∩ J+(B′),Q′,H ′) is
equivalent to the problem

ζ = inf
{
xTQx : x ∈ S, xxT ∈ J+(B), xTHx = 1

}
(10)

in the sense that ζ = η(Γn′ ∩ J+(B′),Q′,H ′) and that an optimal solution y ∈ Rn′
of

COP(Γn′ ∩ J+(B′),Q′,H ′) corresponds to an optimal solution of (10). In particular, if
rankL = n, then both problems are equivalent to COP(Γn ∩ J+(B),Q,H). But each
optimal solution of COP(Γn∩J+(B),Q,H) corresponds to multiple optimal solutions when
n′ > n. We also mention that Theorem 3.7 is not relevant to Q′ ∈ Sn and H ′ ∈ Sn. Hence
we can take any Q′ ∈ Sn′

and H ′ ∈ Sn′
independently from Q ∈ Sn and H ∈ Sn.

Now assume that 1 ≤ ℓ = rankL ≤ n− 1. Then, we can rewrite S as

S = {x ∈ Rn : Mx = 0} = {x ∈ Rn : x(−MTM )x ≥ 0}

for some row full rank (n − ℓ) × n matrix M . Therefore COP(Γn′ ∩ J+(B′),Q′,H ′) and
its SDP relaxation COP(J+(B′),Q′,H ′) are equivalent to COP(Γn ∩ J+(B′′),Q,H) and
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COP(J+(B′′),Q,H), respectively, where B′′ = B∪{−MTM}. It follows from MTM ∈ Sn
+

that J+(−MTM ), which contains J+(B′′), forms a proper face of Sn
+. We see by Theorem 1.1

that if J+(B) ∈ F̂(Γn), then J+(B′′) ∈ F̂(Γn) as well. But B′′ does not satisfy condition
(A-3). In Section 5, we will discuss how the size of COP(Γn ∩ J+(B′′),Q,H) with such a
B′′ can be reduced to COP(J+(B′′′),Q′′′,H ′′′) with B′′′ satisfying conditions (A-1), (A-3),
(A-4), and (A-5).

4 Proof of Theorem 1.3

We present four lemmas which lead to the proof of Theorem 1.3.

Lemma 4.1. Let A,B ∈ Sn and A ̸= B. Assume that ff−(·,B) : [0, 1] → 2R
n−1

is lower
semi-continuous at z̄ = 0. Then

ff−(1,B) ⊆ ff+(1,A) ⇔ Γn ∩ J−(B) ⊆ Γn ∩ J+(A) ⇔ J−(B) ⊆ J+(A). (11)

Here a point-to-set-map φφ : [0, 1] → 2R
n−1

is lower semicontinuous at z̄ = 0 if for every
open subset W of Rn−1 with φφ(0)∩W ̸= ∅, there exists an ϵ ∈ (0, 1] such that φφ(z)∩W ̸= ∅
for every z ∈ [0, ϵ). See [7, 15] for the semicontinuity of a general point-to-set map.

Proof. Since the second ⇔ has been already shown in Lemma 3.2 (iii), we only show the
first ⇔. We can rewrite the left inclusion relation of (11) as

ff−(1,B) =

{
u ∈ Rn−1 :

(
u
1

)T

B

(
u
1

)
≤ 0

}

⊆ ff+(1,A) =

{
u ∈ Rn−1 :

(
u
1

)T

A

(
u
1

)
≥ 0

}
. (12)

By Lemma 3.2 (iii), the inclusion relation of (11) in the middle is equivalent to{(
u
z

)
∈ Rn :

(
u
z

)T

B

(
u
z

)
≤ 0

}
⊆

{(
u
z

)
∈ Rn :

(
u
z

)T

A

(
u
z

)
≥ 0

}
(13)

Hence it suffices to show (12) ⇔ (13). (12) ⇐ (13) is straightfoward. To show (12)

⇒ (13), assume (12) and let

(
ū
z̄

)
∈

{(
u
z

)
∈ Rn :

(
u
z

)T

B

(
u
z

)
≤ 0

}
. If z̄ ̸= 0, then

ū/z̄ ∈ ff−(1,B) ⊆ ff+(1,A), which implies

(
ū
z̄

)
∈

{(
u
z

)
∈ Rn :

(
u
z

)T

A

(
u
z

)
≥ 0

}
.

Now assume that z̄ = 0. By the lower semi-continuity of ff−(·,B) at z̄ = 0, for every open
neighborhood W of ū ∈ ff−(0,B), there is an ϵ > 0 such that W ∩ ff−(z,B) ̸= ∅ for every

z ∈ [0, ϵ). Hence, there exists a sequence

{(
uk

zk

)
∈ (0, 1]× Rn−1

}
such that 0 < zk → 0

and ff−(zk,B) ∋ uk → ū as k → ∞. By the discussion above for the case z̄ ̸= 0, each(
uk

zk

)
lies in the set

{(
u
z

)
∈ Rn :

(
u
z

)T

A

(
u
z

)
≥ 0

}
. Since the set is closed,

(
ū
z̄

)
lies

in the set. Thus we have shown (12) ⇒ (13).
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Lemma 4.2. Let ∅ ≠ B ⊆ Sn. Assume condition (B)’, and that for every B ∈ B,

ff−(·,B) : [0, 1] → 2R
n−1

is lower semi-continuous at z = 0. (14)

Then B satisfies condition (B); hence J+(B) ∈ F̂(Γn) by Theorem 1.2.

Proof. Let A, B ∈ B and A ̸= B. Then

ff−(1,B) ⊆ ff+(1,A) ⇔ J−(B) ⊆ J+(A) (by Lemma 4.1)

⇒ J0(B) ⊆ J+(A) (by Lemma 3.3).

Therefore condition (B) is satisfied.

For every B ∈ Sn, let [B]ν denote the (n − 1) × (n − 1) submatrix of B obtained by

deleting the nth row and nth column of B; if B =
(

C c
cT γ

)
∈ Sn then [B]ν = C.

Lemma 4.3. Let ∅ ≠ B ⊆ Sn. Assume condition (B)’, and that for every B ∈ B,

ff−(1,B) ̸= ∅ and [B]ν is nonsingular. (15)

Then B satisfies condition (B); hence J+(B) ∈ F̂(Γn) by Theoem 1.2.

Proof. By Lemma 4.2, it is sufficient to show (15) ⇒ (14) for every B ∈ Sn. Let B =(
[B]ν c
cT γ

)
∈ Sn, and P an (n− 1)× (n− 1) orthogonal matrix which diagonalizes [B]ν such

that P T [B]νP = diag(λ1, . . . , λn−1), where λ1, . . . , λn−1 denote the eigenvalues of [B]ν .
Let

B′ =

(
P 0
0T 1

)T

B

(
P 0
0T 1

)
=

(
P T [B]νP P Tc

cTP γ

)
=

(
diag(λ1, . . . , λn−1) P Tc

cTP γ

)
.

Then

ff−(z,B
′) =

{
u ∈ Rn−1 :

n−1∑
i=1

λiu
2
i + 2cTPuz + γz2 ≤ 0

}

=

{
u ∈ Rn−1 :

(
u
z

)T

B′
(
u
z

)
≤ 0

}

=

{
u ∈ Rn−1 :

(
u
z

)T (
P 0
0T 1

)T

B

(
P 0
0T 1

)(
u
z

)
≤ 0

}

=

{
u ∈ Rn−1 :

(
Pu
z

)T

B

(
Pu
z

)
≤ 0

}

=

{
u ∈ Rn−1 : u = P Tv,

(
v
z

)T

B

(
v
z

)
≤ 0

}
= P Tff−(z,B).
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Hence we see from the assumption of Theorem 1.3 that

ũ ∈ ff−(1,B
′) ̸= ∅ for some ũ and λi ̸= 0 (1 ≤ i ≤ n− 1).

Therefore, ff−(·,B) : [0, 1] → 2R
n−1

is lower semi-continuous at z = 0 if and only if

ff−(·,B′) : [0, 1] → 2R
n−1

is. The following two cases (a) and (b) occur.

(a) λi > 0 (1 ≤ i ≤ n − 1). In this case, ff−(0,B
′) = {0}. Let W be an arbitrary

open subset of Rn−1 that intersects with ff−(0,B
′). Then 0 ∈ W . We see from

ũ ∈ ff−(1,B
′) that ũz ∈ ff−(z,B

′) for every z ∈ [0, 1]. Hence there exists an ϵ > 0
such that ff−(z,B

′)∩W ̸= ∅ for every z ∈ [0, ϵ), and ff−(·,B′) is lower semi-continuous
at z = 0.

(b) λi < 0 for some i, say λ1 < 0. LetW be an arbitrary open subset of Rn−1 that intersects
with ff−(0,B

′). Let ū ∈ W ∩ ff−(0,B
′). Then

∑n−1
i=1 λiū

2
i ≤ 0. Since W is an open

subset of Rn−1 and λ1 < 0, we may perturb ū1 so that the resulting û remains in W
and satisfies

∑n−1
i=1 λiû

2
i < 0. By the continuity,

∑n−1
i=1 λiû

2
i + 2cTP ûz + γz2 ≤ 0 i.e.,

û ∈ ff−(z,B
′) for every sufficiently small z > 0, which implies ff−(z,B

′)∩W ̸= ∅ for
every z ∈ [0, ϵ) and some ϵ > 0, and ff−(·,B′) is lower semi-continuous at z = 0.

Lemma 4.4. Assume that B ⊆ Sn satisfies conditions (B)’ and (C)’. Then, for every B ∈ B
and ϵ > 0, there exists an ϵB ∈ (0, ϵ] such that

ff−(1,B + ϵBI) ̸= ∅ and [B + ϵBI]ν is nonsingular. (16)

Proof. Let ϵ > 0 and B ∈ B. By condition (C)’, ff−(1,B + ϵBI) ̸= ∅ for every sufficiently
small ϵB > 0. Let µ1, . . . , µn−1 be the eigenvalues of [B]ν . Then [B + ϵBI]ν becomes
singular if and only if ϵB = −µi for some i. Therefore, we can choose ϵB ∈ (0, ϵ] satisfy-
ing (16).

Now we are ready to prove Theorem 1.3. Let {ϵk : k = 1, 2, . . .} be a sequence of positive
numbers which converges 0 as k → ∞. By Lemma 4.4, we can consistently define

Bk =

{
B + ϵkBI :

B ∈ B, some ϵkB ∈ (0, ϵk] such that [B + ϵkBI]ν
is nonsingular and ff−(1,B + ϵkBI) ̸= ∅

}
(k = 1, 2, . . .). In addition, we may impose that ϵkB ≥ ϵ(k+1)B (k = 1, 2, . . .) for each B ∈ B.
Hence

J+(B + ϵkBI) ⊇ J+(B + ϵ(k+1)BI) ⊇ J+(B) for every B ∈ B,
J−(A+ ϵkAI) ⊆ J−(A+ ϵ(k+1)AI) ⊆ J−(A) for every A ∈ B

(k = 1, 2, . . .). It follows that

J+(Bk) ⊇ J+(Bk+1) ⊇ J+(B) (k = 1, 2, . . .),

J+(Bm) =
m⋂
k=1

J+(Bk) ⊇
∞⋂
k=1

J+(Bk) ⊇ J+(B) (m = 1, 2, . . .)).

To show
∞⋂
k=1

J+(Bk) ⊆ J+(B), assume on the contrary that
∞⋂
k=1

J+(Bk) ̸⊆ J+(B). Then

there exists an X ∈
⋂∞

k=1 J+(Bk) such that X ̸∈ J+(B). It follows from X ̸∈ J+(B) that
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⟨B, X⟩ < 0 for some B ∈ B. Since ϵmB ∈ (0, ϵm] converges 0 as m → ∞, if m is sufficiently
large, then ⟨B + ϵmBI, X⟩ < 0; hence X ̸∈ J+(Bm). This contradicts X ∈

⋂∞
k=1 J+(Bk).

Thus, we have shown that
⋂∞

k=1 J+(Bk) = J+(B). Since each Bm (m = 1, 2, . . .) satisfies

condition (B) by Lemma 4.3, we obtain J+(Bm) ∈ F̂(Γn), i.e., co
(
Γn ∩ J+(Bm)

)
= J+(Bm)

by Theorem 1.2. Hence,

co
(
Γn ∩

( m⋂
k=1

J+(Bk)
))

= co
(
Γn ∩ J+(Bm)

)
= J+(Bm)

=
m⋂
k=1

J+(Bk) ⊇
∞⋂
k=1

J+(Bk) = J+(B) (m = 1, 2, . . .).

Thus,
⋂∞

m=1 co
(
Γn∩

(⋂m
k=1 J+(Bk)

))
⊇ J+(B). By Lemma 2.1,

⋂∞
m=1 co

(
Γn∩

(⋂m
k=1 J+(Bk)

))
= co

(
Γn ∩ J+(B)

)
. Consequently, co

(
Γn ∩ J+(B)

)
⊇ J+(B). The converse inclusion relation

co
(
Γn ∩ J+(B)

)
⊆ J+(B) follows from the convexity of J+(B). Therefore, we have shown

that co
(
Γn ∩ J+(B)

)
= J+(B).

5 Reduction of COP(Γn′ ∩ J′) to COP(Γn ∩ J+(B)) sat-

isfying conditions (A-3), (A-4) and (A-5)

Let J′ ⊆ Sn′
+ be a nonempty closed convex cone and Q′,H ′ ∈ Sn′

. For a QCQP COP(Γn′ ∩
J′,Q′,H ′) and its SDP relaxation COP(J′,Q′,H ′), we will show that they are equivalent to
COP(Γn ∩ J+(B),Q,H) and its SDP relaxation COP(J+(B),Q,H), respectively, for some
n ≤ n′, Q,H ∈ Sn and B ⊂ Sn

+ satisfying conditions (A-1), (A-3), (A-4) and (A-5).

We first apply the facial reduction [4] to COP(Γn′ ∩ J′,Q′,H ′) and its SDP relaxation
COP(J′,Q′,H ′). Let F be the minimal face of Sn′

+ that contains J′. Then COP(Γn′ ∩
J′,Q′,H ′) and COP(J′,Q′,H ′) are equivalent to COP(Γn′ ∩ F ∩ J′,Q′,H ′) and COP(F ∩
J′,Q′,H ′), respectively. It is well-known that every face of Sn′

+ is isomorphic to Sn
+ for

some n ≤ n′ [16]. Therefore, we can further transform them into COP(Γn ∩ J,Q,H) and
COP(J,Q,H), respectively, for some cone J ⊂ Sn

+ such that Sn
+ itself is the minimal face of

Sn
+ containing J (i.e., J ∩ Sn

++ ̸= ∅, condition (A-3)), and some Q,H ∈ Sn.
If F = Sn′

+ then take n = n′, J = J′, Q = Q′ and H = H ′. Assume that F is a proper
face of Sn′

+ . As every proper face of Sn
+ is exposed, there exists a nonzero F ∈ Sn

+ such that
F = {U ∈ Sn′

+ : ⟨F , U⟩ = 0}. Let n = n′ − rankF ≤ n′ − 1, and P = (p1, . . . ,pn′) be an
orthogonal matrix which diagonalizes F such that P TFP = diag(λ1, . . . , λn′), where each
λi denotes the eigenvalue of F associated with eigenvector pi (i = 1, . . . , n′). With n =
n′−rankF ≤ n′−1, we may assume that λi = 0 (i = 1, . . . , n) and λi > 0 (i = n+1, . . . , n′).
Then

P TFP = {Y ∈ Sn′

+ : Y = P TUP , ⟨F , U⟩ = 0}
= {Y ∈ Sn′

+ : ⟨P TFP , Y ⟩ = 0}
= {Y ∈ Sn′

+ : ⟨diag(λ1, . . . , λn′), Y ⟩ = 0}

=

{(
X O
O O

)
∈ Sn′

+ : X ∈ Sn
+

}
.
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Thus F is transformed onto Sn
+ by the automorphism X → Y = P TXP . Since J′ = J′ ∩ F

by the definition of F, both COP(Γn ∩ J′,Q′,H ′) and COP(J′,Q′,H ′) can be transformed
into problems in Sn

+ as we see below.

Let

P̃ =
(
p1 . . . pn

)
∈ Rn′×n, Q = P̃

T
Q′P̃ ∈ Sn, H = P̃

T
H ′P̃ ∈ Sn,

J = P̃
T
J′P̃ =

{
P̃

T
Y P̃ : Y ∈ J′

}
.

Q, H and J can be regarded as ‘projections’ of Q′, H ′ and J′ onto the face F of Sn′
,

respectively. Then

P T (Γn′ ∩ J′)P = P T (Γn′ ∩ J′ ∩ F)P
= (P TΓn′

P ) ∩ (P TJ′P ) ∩ (P TFP )

= (P TΓn′
P ) ∩ (P TJ′P ) ∩

{(
X O
O O

)
∈ Sn′

+ : X ∈ Sn
+

}
=

{(
X O
O O

)
∈ Sn′

+ : X ∈ Γn ∩ J
}
. (17)

Hence

η(Γn′ ∩ J′,Q′,H ′) = inf
{
⟨Q′, U⟩ : Y = P TUP , U ∈ Γn′ ∩ J′, ⟨H ′, U⟩ = 1

}
= inf

{
⟨P TQ′P , Y ⟩ : Y ∈ P T (Γn′ ∩ J′)P , ⟨P TH ′P , Y ⟩ = 1

}
= inf

{
⟨P TQ′P ,

(
X O
O O

)
⟩ : X ∈ Γn ∩ J, ⟨P TH ′P ,

(
X O
O O

)
⟩ = 1

}
= inf {⟨Q, X⟩ : X ∈ Γn ∩ J, ⟨H , X⟩ = 1} = η(Γn ∩ J,Q,H).

Similarly, we see that

P T (J′)P =

{(
X O
O O

)
: X ∈ J

}
, (18)

η(J′,Q′,H) = η(J,Q,H).

Thus we have shown that COP(Γn′ ∩ J′,Q′,H) and COP(J′,Q′,H) are equivalent to
COP(Γn ∩ J,Q,H) and COP(J,Q,H), respectively. It follows from the definition of F
that J ∩ Sn

++ ̸= ∅; hence condition (A-3) holds.

We can show that J′ ∈ F̂(Γn′
) if and only if J ∈ F̂(Γn). In fact, we observe that

co(Γn′ ∩ J′) = J′

⇔ P T
(
co(Γn′ ∩ J′)P = P TJ′P

⇔ co
(
P T (Γn′ ∩ J′)P

)
= P TJ′P

⇔ co
({(X O

O O

)
∈ Sn′

+ : X ∈ Γn ∩ J
})

=

{(
X O
O O

)
: X ∈ J

}
(by (17) and (18)).

Therefore, J′ ∈ F̂(Γn′
) ⇔ J ∈ F̂(Γn) follows.
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If J = Sn
+, then we simply take B = {O} for J = J+(B). Thus, in the following discussion

on constructing B satisfying conditions (A-1), (A-3), (A-4), and (A-5) for J = J+(B), we
assume that J ̸= Sn

+. If J′ ⊂ Sn′
+ is described as J′ = J+(B′) for some closed bounded set

B′ ⊂ Sn′
, we let B0 = {P̃

T
B′P̃ : B′ ∈ B′}. Otherwise, let B0 = {Y : Y ∈ J∗, ∥ Y ∥= 1}.

In both cases, J = J+(B0) holds and B0 satisfies conditions (A-1), (A-2) and (A-3) (recall
J has been constructed such that J ∩ Sn

++ ̸= ∅). We may assume that ∥ B ∥= 1 for every
B ∈ B0. We will focus on how to remove redundant matrices from B0 to satisfy conditions
(A-4) and (A-5) under conditions (A-1), (A-2) and (A-3). It should be noted that condition
(A-2) may be lost. See Example 6.3.

For every A, B ∈ Sn, define

A ⪰∗ B if J+(A) ⊇ J+(B) and A =∗ B if J+(A) = J+(B).

Then A ⪰∗ defines a partial order on Sn and =∗ establishes an equivalence relation on Sn,
satisfying the properties that

A ⪰∗ A, A =∗ A for every A ∈ Sn (reflexisive),

A =∗ B if A ⪰∗ B and B ⪰∗ A (antisymmetric),

B =∗ A if A =∗ B (symmetric),

A ⪰∗ C if A ⪰∗ B and B ⪰∗ C (transitive ),

A =∗ C if A =∗ B and B =∗ C (transitive ).

It is important to note that A − B ∈ Sn
+ is only a sufficient condition for A ⪰∗ B.

For example, if B ∈ Sn is negative definite, then A ⪰∗ B holds for any A ∈ Sn. A
is identified with A′ if A =∗ A′. Let [A] denote a representative matrix of the class of
matrices equivalent to A ∈ Sn; if A =∗ B then [A] = [B]. Let C ⊆ Sn. We call [B] ∈ C a
minimal element of C if there is no [A] ∈ C such that [B] ⪰∗ [A] and [B] ̸= [A], and [C]
a lower bound of C if [A] ⪰∗ [C] holds for every [A] ∈ C, where [C] ∈ C is not required.
If [A] ⪰∗ [B] or [B] ⪰∗ [A] holds for every [A], [B] ∈ C, then we call C totally ordered.
Define B0 = {[B] : B ∈ B}.

Lemma 5.1. For each A ∈ B0, B0(A) ≡ {B ∈ B0 : A ⪰∗ B} has a minimal element
C ∈ B0(A).

Proof. By Zorn’s Lemma (see, for example, [8, 9]), it suffices to show that every totally
ordered subset C of the set B0(A) has a lower bound B in the set. If C itself has a minimal
element B, then it is a lower bound of C. Now we assume that C has no minimal element.
Then we can take an infinite sequence {Bk ∈ C : k = 1, 2, . . .} satisfying

A ⪰∗ Bk ⪰∗ Bk+1, Bk ̸= Bk+1 (k = 1, 2, . . .) and ∀C ∈ C, ∃k;C ⪰∗ Bk.

Subsequently,

J+(Bk) ⊇ J+(Bk+1) (k = 1, 2, . . .), (19)

J+(Bm) =
m⋂
k=1

J+(Bk) ⊃
∞⋂
k=1

J+(Bk).
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Since B satisfies conditions (A-1) and (A-2), we may assume thatBk converges some B̃ ∈ B.
We will show that

⋂∞
k=1 J+(Bk) ⊇ J+(B̃). Assume on the contrary that X̃ ̸∈

⋂∞
k=1 J+(Bk)

for some X̃ ∈ J+(B̃). Then

⟨Bm, X̃⟩ < 0 for some m and X̃ ∈ Sn
+, ⟨B̃, X̃⟩ ≥ 0.

If B̃ ∈ B with ∥ B̃ ∥= 1 was negative semidefinite, then J+(B̃) would form a proper face

of Sn
+. Since J ⊆

⋂∞
k=1 J+(Bk) ⊆ J+(B̃), J would be contained in the proper face of Sn

+,

which would contradict condition (A-3). Hence ⟨B̃, X̂⟩ > 0 for some X̂ ∈ Sn
++. We can

take sufficiently small ϵ > 0 such that

X(ϵ) ∈ S++, ⟨Bm, X(ϵ)⟩ < 0 and ⟨B̃, X(ϵ)⟩ > 0, (20)

where X(ϵ) = X̃ + ϵX̂. We then see from (19) that ⟨Bk, X(ϵ)⟩ < 0 (k ≥ m). Taking

the limit as k → ∞, we then obtain ⟨B̃, X(ϵ)⟩ ≤ 0, which contradicts the last inequality

of (20). Thus we have shown
⋂∞

k=1 J+(Bk) ⊇ J+(B̃). This inclusion relation together

with (19) implies J+(Bk) ⊇ J+(B̃) or Bk ⪰∗ B̃ (k = 1, 2, . . .). Therefore B = [B̃] ∈ B0(A)
is a lower bound of C.

By Lemma 5.1, we can consistently define

B =

{
{O} if J = Sn

+,{
[B] ∈ B0 : [B] is a minimal element of B0

}
otherwise.

Theorem 5.2. J+(B) = J, and conditions (A-1), (A-3), (A-4), and (A-5) hold.

Proof. If J = Sn
+, then B = {O} and all the conditions are obviously satisfied. So we assume

that J ̸= Sn
+. Since B ⊆ B0, J+(B) ⊇ J+(B0) = J follows. To see the converse inclusion

J+(B) ⊆ J+(B0), assume that X ∈ J+(B). By Lemma 5.1, for every A ∈ B0, there exists
B ∈ B such that A ⪰∗ B. Hence 0 ≤ ⟨B, X⟩ ≤ ⟨A, X⟩ holds. Therefore, X ∈ J+(B0)
and J+(B) ⊆ J+(B0) = J have been shown. Since B ⊂ B0 and B0 is bounded, B is also
bounded. Hence (A-1) is satisfied. Since J ∩ Sn

++ ̸= ∅ and J+(B) = J, (A-3) is satisfied. By
the construction of B, B satisfies (A-5). It follows from J ̸= Sn

+ that B includes an A ̸∈ Sn
+.

Then B ⪰∗ A and A ̸⪰∗ B for any B ∈ Sn
+. Hence B cannot contain any B ∈ Sn

+, and
condition (A-4) is satisfied.

6 Examples

In [2, Section 4.1], several examples satisfying condition (B) with finite B were provided.
We present five examples that are not covered by those cases in this section. We recall that
if B satisfies condition (B), then so does {LTBL : B ∈ B} for every n× n′ matrix L with
1 ≤ n′ by Theorem 3.7. This is illustrated in Example 6.3.

Example 6.1. This example shows that the reduction of COP(Γn′∩J′) to COP(Γn∩J+(B))
with B satisfying conditions (A-3), (A-4) and (A-5), which has been described in Section 5,
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is effective. Let n′ = 4 and B′ = {A,B,C}. Then J′ = J+(B′), where

A′ =


2 1 0 0
1 1 0 0
0 0 −1 0
0 0 0 −1

 , B′ =


−1 −2 0 −1
−2 −1 0 0
0 0 1 −1
−1 0 −1 −1

 , C ′ =


1 2 0 1
2 1 0 0
0 0 −3 2
1 0 2 −1

 .

Let X̃ = diag(0, 0, 1, 1) (the 4× 4 diagonal matrix with elements 0, 0, 1, 1). Then X̃ ∈
J0(B′) but X̃ ̸∈ J+(A′). Hence B′ does not satisfy condition (B). Also, (8) in Theorem 3.4
dose not hold. In fact, assume on the contrary that (8) holds, which implies that the
diagonal of αA′ + βB′ ∈ S4

+ is nonnegative. Hence

2α− β ≥ 0, α− β ≥ 0, −α + β ≥ 0, −α− β ≥ 0. (21)

Obviously, only (α, β) = 0 satisfies the above inequalities as shown in Figure 3 which
illustrates the region of (α, β) determined by the first, third and fourth inequalities in (21).
Therefore, (8) in Theorem 3.4 dose not hold.

Now, we apply the reduction stated in Section 5 to COP(Γ4 ∩ J+(B′)). We first observe
that 

2 −1 0 0
−1 2 0 0
0 0 0 0
0 0 0 0

 ∈ J+(B′) ⊆
{
X ∈ S4

+ : ⟨B′ +C ′, X⟩ ≥ 0
}

=

{
X ∈ S4

+ : ⟨

(
0 0 0 0
0 0 0 0
0 0 −2 1
0 0 1 −2

)
, X⟩ ≥ 0

}

= F, where F =

{(
U O
O O

)
∈ S4

+ : U ∈ S2
+

}
.

Since the left 4 × 4 positive semidefinite matrix with rank 2 is contained in F ∩ J+(B′), F
forms the minimal face of S4

+ that contains J+(B′). Thus, identifying F with S2
+, we obtain

COP(Γ2 ∩ J) equivalent to COP(Γ4 ∩ J+(B′)), where J = F ∩ J+(B′). Let A, B and C be
projections of A′, B′ and C ′ onto F, respectively, such that

A =

(
2 1
1 1

)
, B =

(
−1 −2
−2 −1

)
, C =

(
1 2
2 1

)
.

Then S2
++ ∋ A ⪰∗ B. Hence A is redundant. Letting B = {B,C}, we obtain B satisfying

conditions (A-1) through (A-5), and COP(Γ4 ∩ J+(B′)) has been reduced to COP(Γ2 ∩
J+(B)). Obviously, B +C = O ∈ Sn

+. Hence ⟨B, X⟩ = 0 if and only if ⟨C, X⟩ = 0, which

implies that condition (B) holds. Therefore J+(B) ∈ F̂(Γ2) and J+(B′) ∈ F̂(Γ4). We also
see that J+(B) = J0(B) = J0(C) holds. Thus case (a) in Theorem 3.6 occurs.

Example 6.2. This example provides an infinite B ⊆ Sn satisfying conditions (B)’ and
(C)’. Let

B(t) =

(
I −t

−tT tT t− r2

)
∈ Sn (t ∈ T ), B = {B(t) : t ∈ T} ,
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Figure 3: The region of (α, β) determined by the first, third and fourth inequalities in (21).

where 0 < r ≤ 1/2, T ⊆ Zn (the set of integer vectors in Rn) and I denotes the (n− 1)×
(n− 1) identity matrix. Then,

q(u, z,B(t)) =

(
u
z

)T

B(t)

(
u
z

)
=∥ u− tz ∥2 −r2z2,

ff+(1,B(t)), ff 0(1,B(t)) or ff−(1,B(t))

=
{
u ∈ Rn−1 :∥ u− t ∥2 −r2 ≥ 0, = 0 or ≤ 0, respectively

}
for every t ∈ T and (u, z) ∈ Rn. See Figure 4. It is easily seen that conditions (B)’ and

(C)’ are satisfied. Therefore, by Theorem 1.3, we obtain J+(B) ∈ F̂(Γn).

As a generalization, it is straightforward to construct an ellipsoid-based constraint by
replacing each B(t) with LTB(t)L (t ∈ T ), where L denotes an n×n nonsingular matrix of

the form L =

(
M 0
0T 1

)
. We also note that the equivalence relation (1) between COP(J ∩

Γn,Q,H) and its SDP relaxation COP(J,Q,H) with J = J+(B) (or J = J+({LTBL :
B ∈ B})) holds for any choice of Q ∈ Sn and H ∈ Sn by Theorem 1.1. For example,
we can take H = δI for some δ > 0 where I is the n × n identity matrix. In this case,
COP(J ∩ Γn,Q,H) turns out to be

η(J ∩ Γn,Q,H) = inf


(
u
z

)T

Q

(
u
z

)
:

∥ u− tz ∥2 −r2z2 ≥ 0 (t ∈ T ),

(or ∥ Mu− tz ∥2 −r2z2 ≥ 0 (t ∈ T )),

u2
1 + · · ·+ u2

n−1 + z2 = 1/δ

 .
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Figure 4: Illustration of ff−(1,B(t)). Each gray disk region corresponds to ff−(1,B(t)) for
some t ∈ T . (a) T = Zn−1 and r = 1/2. (b) T = 2Zn−1 and r = 1/3.

u  = au-2 1

Figure 5: Example 6.3. We take a0 = 0, a1 = 1, a2 = 2, a3 = 4. The red, blue and green
curves represent the hyperbolas defined by (u2 − ak−1u1)(aku1 − u2)− 0.5 = 0 (k = 1, 2, 3),
respectively.
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Example 6.3. This example presents another infinite B satisfying conditions (B)’ and (C)’.
Let

Ck =

(
ak−1ak −ak−1+ak

2

−ak−1+ak
2

1

)
∈ S2,Bk =

(
Ck 0
0T r2

)
∈ S3 (1 ≤ k < ∞),

Bm = {Bk : k = 1, . . . ,m} (m = 1, 2, . . .), B = {Bk : k = 1, 2, . . .},

where 0 < r2 and {ak : k = 0, 1, . . .} denotes an infinite sequence of nonnegative real
numbers such that ak−1 < ak (k = 1, 2, . . .) and ak → ā as k → ∞ for some ā > 0. Then,

q(u, y,Bk) =

(
u
y

)T

Bk

(
u
y

)
= (u2 − ak−1u1)(u2 − aku1) + r2y2,

ff+(1,Bk), ff 0(1,Bk) or ff−(1,Bk) ={
u ∈ Rn−1 : (u2 − ak−1u1)(u2 − aku1) + r2 ≥ 0, = 0, or ≤ 0, respectively

}
for every (u, y) ∈ R3 (k = 1, 2, . . .). We note that ff 0(1,Bk) forms a hyperbola with the
asymptote {u ∈ R2 : u2 − ak−1u1 = 0} and {u ∈ R2 : aku1 − u2 = 0} (1 ≤ k < ∞). See
Figure 5. From the figure, we see that B satisfies conditions (B)’ and (C)’. Therefore, by

Theorem 1.3, we obtain J+(B) ∈ F̂(Γn).

Each Bm (1 ≤ m < ∞) is finite so that it is obviously closed, but B is not. In fact,

Bk ∈ B converges B =
(

C 0
0T 1

)
̸∈ B as k → ∞, where C =

(
ā2 −ā
−ā 1

)
. Hence

q(u, y,B) = (u2 − āu1)
2 + r2y2, ff+(y,B) = R2, ff−−(y,B) = ∅,

ff−(y,B) =

{
∅ if y ∈ (0, 1],
{u ∈ R2 : u2 − āu1 = 0}, if y = 0

for every (u, y) ∈ R2 × [0, 1]. We also see B ∈ S3
+. Hence J+(Bk) ⊆ S3

+ = J+(B)
(k = 1, 2, . . . , ). Therefore, clB does not satisfy condition (A-4), (A-5) and (C)’ although

J+(clB) ∈ F̂(Γ3) remains true.

As an application of Theorem 3.7, we can extend the above 3-dimensional QCQP to a
general n′-dimensional QCQP where n′ ≥ 3. Let

L =

bT 0
cT 0
0T 1

 ∈ R3×n′
,

where b, c ∈ Rn′−1 are linearly independent, and apply the linear transformation

(
u
y

)
=

L

(
v
z

)
to the feasible region of COP(Γ3 ∩ J+(B)) above. Let B′

k = LTBkL (k = 1, 2, . . .)

and B′ = {B′
k : k = 1, 2, . . .}. Then we know that B′ satisfies condition (B) by Theorem 3.7.

In this case, we see that

q(v, z,B′
k) =

(
v
z

)T

B′
k

(
v
z

)
= (bTv − ak−1c

Tv)(bTv − akc
Tv) + r2z2,

ff+(1,B
′
k), ff 0(1,B

′
k) or ff−(1,B

′
k) ={

v ∈ Rn′−1 : (bTv − ak−1c
Tv)(bTv − akc

Tv) + r2 ≥ 0, = 0 or ≤ 0, respectively
}
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for every (v, z) ∈ Rn′−1× [0, 1] (k = 1, 2, . . .). Since b and c are linearly independent, so are
b− ak−1c and b− akc (k = 1, 2, . . .). Hence, for every k = 1, 2, . . ., the linear equation

(b− ak−1c)
Tv = 2r, (b− akc)

Tv = −r

has a solution vk, which satisfies q(vk, 1,Bk) = −r2 < 0; hence vk ∈ ff−−(1,Bk) and B′

satisfies condition (C)’. We also see that

v ∈ ff−(1,B
′
k) ⇒ 0 < cTv and ak−1c

Tv ≤ bTv ≤ akc
Tv, or

cTv < 0 and akc
Tv ≤ bTv ≤ ak−1c

Tv

(k = 1, 2, . . .), which implies ff−(1,B
′
k)∩ff−−(1,B

′
ℓ) = ∅ if k ̸= ℓ. Thus B′ satisfies condition

(B)’ and J+(B′) ∈ F̂(Γn) by Theorem 1.3.

Example 6.4. We generalize the hyperbola-based constraint in R2 given in Example 6.3.
Let n ≥ 3 and 1 ≤ ℓ ≤ n − 2 be fixed. For every λ = (λ1, . . . , λn) > 0 and σ ∈ R, we
consider a homogeneous quadratic function (quadratic form) in (u, z) ∈ Rn:

q(u, z) = −
ℓ∑

i=1

λiu
2
i +

n−1∑
j=ℓ+1

ℓ∑
i=1

λj(uj − σui)
2 + λnz

2. (22)

We can take B(λ, σ) ∈ Sn such that q(u, z) =

(
u
z

)T

B(λ, σ)

(
u
z

)
for every (u, z) ∈ Rn,

but the precise description of B(λ, σ) is not relevant in the subsequent discussion. When
n = 3, ℓ = 1, λ1 = λ2 = λ3 = 1, and σ = 0, ff 0(1,B(λ, σ)) forms a simple 2-dimensional
hyperbola illustrated in Figure 1 (b). In general, we have

ff+(1,B(λ, σ)) or ff−(1,B(λ, σ))

=

{
u ∈ Rn−1 : −

ℓ∑
i=1

λiu
2
i +

n−1∑
j=ℓ+1

ℓ∑
i=1

λj(uj − σui)
2 + λn ≥ 0 or ≤ 0, respectively

}
.

Let λ > 0 and σ ∈ R be fixed. We will show that

ff−(1,B(λ, τ)) ∩ ff−(1,B(λ, σ)) = ∅ for every sufficiently large τ > σ. (23)

Assume on the contrary that for every τ > σ, there exists a u = u(τ) ∈ ff−(1,B(λ, σ)) ∩
ff−(1,B(λ, τ)). Let max{λiu

2
i : i = 1, . . . , ℓ} = λku

2
k. Then λn ≤

∑ℓ
i=1 λiu

2
i ≤ ℓλku

2
k.

Here, k may depend on u(τ) but we may assume without loss of generality that a common
k can be taken along a sequence {u(τ p) : p = 1, 2, . . .} with τ p → ∞ as p → ∞. Let
j′ ∈ {ℓ+ 1, . . . , n− 1} be fixed arbitrary. We observe that

u ∈ ff−(1,B(λ, σ)) ⇒
n−1∑

j=ℓ+1

ℓ∑
i=1

λj(uj − σui)
2 + λn ≤

ℓ∑
i=1

λiu
2
i

⇒ λj′(uj′ − σuk)
2 ≤

ℓ∑
i=1

λiu
2
i ≤ ℓλku

2
k (24)

⇒ |uj′ − σuk| ≤
√

ℓλk/λj′ |uk|, (25)
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Similarly,

u ∈ ff−(1,B(λ, τ)) ⇒ λj′(uj′ − τuk)
2 ≤

ℓ∑
i=1

λiu
2
i ≤ ℓλku

2
k. (26)

Hence,

λj′(uj′ − τuk)
2 = λj′

(
− (τ − σ)uk + uj′ − σuk

)2
≥ λj′

(
(τ − σ)2u2

k − 2(τ − σ)|uj′ − τuk||uk| − (uj′ − σuk)
2
)

≥ λj′
(
(τ − σ)2u2

k − 2(τ − σ)
√

ℓλk/λj′u
2
k − (ℓλk/λj′)u

2
k

)
(by (24) and (25))

= λj′
(
(τ − σ)2 − 2(τ − σ)

√
ℓλk/λj′ − (ℓλk/λj′)

)
u2
k

> ℓλku
2
k for every sufficiently large τ > 0.

(Choose a τ such that λj′
(
(τ − σ)2 − 2(τ − σ)

√
ℓλk/λj′ − (ℓλk/λj′)

)
> ℓλk.) The last

inequality contradicts (26). Thus we have shown (23). As a consequence, we can take a
finite or infinite monotone increasing sequence Σ = {τ p ≥ σ : p = 1, 2, . . .} such that

ff−(1,B(λ, σ)) ∩ ff−(1,B(λ, τ)) = ∅ for every distinct σ, τ ∈ Σ.

Thus B = {B(λ, τ) : τ ∈ Σ} satisfies condition (B)’. Since 0 ∈ ff−−(1,B(λ, τ)) for every
τ ∈ Σ, B also satisfies condition (C)’.

For simplicity of notation, we have taken a common σ ∈ R for all j = ℓ + 1, . . . , n − 1
in (22). Replacing σ with σ = (σℓ+1, . . . , σn−1) in (22), we have

q(u, z) = −
ℓ∑

i=1

λiu
2
i +

n−1∑
j=ℓ+1

ℓ∑
i=1

λj(uj − σjui)
2 + λnz

2.

In this case, we can prove in a similar manner that

ff−(1,B(λ,σ)) ∩ ff−(1,B(λ, τ )) = ∅
if |τj′ − σj′| is sufficiently large for some j′ ∈ {ℓ+ 1, . . . , n− 1}.

Example 6.5. We consider a parabola-based constraint. Let n ≥ 3 and

Bij =


λi > 0 if 2 ≤ i = j ≤ n,
−0.5 if (i, j) = (1, n) or (i, j) = (n, 1),
0 otherwise.

Then

q(u, z,B) = −u1z +
n−1∑
i=2

λiu
2
i + λnz for every (u, z) ∈ Rn−1 × [0, 1],

ff+(1,B), ff 0(1,B) or ff−(1,B)

=

{
u ∈ Rn−1 : −u1 +

n−1∑
i=2

λiu
2
i + λn ≥ 0, = 0 or ≤ 0, respectively

}
, (27)

ff−(1,B) ⊆ {u ∈ Rn : λiu
2
i + λn ≤ u1 (i = 2, . . . , n− 1)}

⊆ K−(B) ≡ {u ∈ Rn−1 : 0 ≤ u1, −u1 ≤ 2
√
λiλnui ≤ u1 (i = 2, . . . , n− 1)}.
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(a)

f (1,B)-

u  = 8u1 2
f  (1,B)+

u  = -8u1 2

f (1,B)0

f  (1,{B  , B  , B  })+ 1 2 3
(3)

(2)

(1)

(b)

(c)

f  (1,{B  ,B  }) 
f  (1,B  ) 

f  (1,B  ) -

-
+ 1

1

2

2

Figure 6: Parabola-based constraints with n−1 = 2. (a) Parabola ff−(1,B) defined by (27)
where λ2 = 16 and λ3 = 1. (b) (1): ff−−(1,B1), (2): ff−−(1,B2) and (3): ff−−(1,B3).
ff+(1, {B1,B2,B3}) = R2\

(
(1)∪ (2)∪ (3)

)
. (c) ff+(1, {B1,B2}) = ff+(1,B2)\ff−−(1,B1),

where ff−(1,B1) = {u ∈ R2 : −u1 + 16u2
2 + 3 ≤ 0} and ff+(1,B2) = {u ∈ R2 : −(−u1 +

16u2
2 + 1) ≥ 0}.

See Figure 6 (a). We note that K−(B) forms a polyhedral cone in Rn−1, which converges
to the half line {u ∈ Rn−1 : u1 ≥ 0, ui = 0 (i = 2, . . . , n − 1)} as all λi (i = 2, . . . , n − 1)
tend to ∞. We see that each ff 0(1,B) ∩ {u ∈ Rn−1 : uj = 0 (2 ≤ j ̸= i ≤ n − 1)}
forms a 2-dimensional parabola (i = 2, . . . , n − 1). By applying a linear transformation
B → LTBL ∈ Sn with a nonsingular L to ff 0(z,B) with different λi > 0 (i = 2, . . . , n), we
can create various parabolas. Furthermore, we can arrange some of those parabolas such
that the assoicated B satisfies conditions (B)’ and (C)’. See Figure 6 (b) and (c).
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7 Concluding remarks

We have presented two sufficient conditions for semi-infinite QCQPs to be equivalent to their
SDP relaxation. The first condition, condition (B), extends the result from [2] for QCQPs
with finitely many inequality constraints to those with infinitely many inequality constraints.
The effectiveness of this condition becomes particularly evident when it is combined with the
reduction of a given QCQP to a QCQP satisfying Slater’s constraint qualification and some
additional conditions (conditions (A-3), (A-4) and (A-5)) as illustrated in Example 6.1. As
a result, a wider class of QCQPs can be shown to be equivalent to their SDP relaxations.

The second condition, denoted as condition (B)’, is a special case of condition (B)
adapted for the standard inequality form (semi-infinite) of QCQP (3). As shown in the
examples in Sections 1 and 6, condition (B)’ geometrically characterizes the feasible region
of a QCQP that can be reformulated as its SDP relaxation. Specifically, some examples in
Sections 1 and 6 can be viewed as the feasible regions of ball-, parabola-, and hyperbola-
based constrained quadratic programs. It will be interesting to find practical applications
of condition (B)’.
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