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Abstract

This work deals with convergence to points satisfying the weak second-order necessary optimal-
ity conditions of a second-order safeguarded augmented Lagrangian method from the literature.
To this end, we propose a new second-order sequential optimality condition that is, in a certain
way, based on the iterates generated by the algorithm itself. This also allows us to establish the
best possible global convergence result for the method studied, from which a companion constraint
qualification is derived. Unlike similar results from previous works, the new constraint qualification
assures second-order stationarity without the need for constant rank hypotheses. To guarantee
this result, we established the convergence of the method under a property slightly stronger than
the error bound constraint qualification, which, until now, has not been known to be associated
with nonlinear optimization methods.

Keywords: Sequential optimality conditions; Second-order optimization methods; Constraint quali-
fications; Error bound; Constant rank

1 Introduction

We consider the general nonlinear programming problem (NLP)

min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0, (1)

where f : Rn → R, g : Rn → Rp and h : Rn → Rq are all twice continuously differentiable. The feasible
set of problem (1) is denoted by

Ω
def
= {x ∈ Rn | g(x) ≤ 0, h(x) = 0}.

Due to advances in computing hardware and algorithmic efficiency, there has been an increase
in interest in optimization methods that utilize second-order information [26, 29, 34, 1]. It allows
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achieving high accuracy solutions [20], as it provides additional information about the curvature of
the objective and constraints, see, for example, [15] and references therein. This work focuses on
the second-order safeguarded augmented Lagrangian method (SALM) proposed in [4], whose first-
order counterpart method Algencan [3] is a celebrated algorithm with excellent convergence results
[14, 6, 11] and robust numerical performance [22, 21].

Ideally, one would like methods to find a local minimizer. However, practical methods can only
guarantee stationary points. In the first-order case, the strength of an algorithm can be measured by
the strength of constraint qualifications that ensure the Karush-Kuhn-Tucker (KKT) conditions at its
accumulation points. Likewise, the validity of second-order stationary conditions can be considered.

Preferably, as a second-order condition, one wants not only the KKT conditions to hold but also
that, for some Lagrange multiplier vector, no direction within the linearized cone is simultaneously a
non-ascending direction for the objective function (∇f(x)Td ≤ 0) and of negative curvature for the
Hessian of the Lagrangian function (with respect to x); that is, one wants that the Hessian of the
Lagrangian function is positive semidefinite in the strong critical cone

C S(x) =

d ∈ Rn

∣∣∣∣∣∣
⟨∇f(x),d⟩ ≤ 0,
⟨∇hj(x),d⟩ = 0 for all j ∈ {1, . . . , q},
⟨∇gi(x),d⟩ ≤ 0 for all i ∈ A(x∗)

 ,

where A(x) = {j | gj(x) = 0} is the set of indexes of active inequality constraints at x. Together with
the KKT conditions, the resultant condition is called strong second-order optimality condition (SSOC).
Nevertheless, even testing such a condition in a given and fixed point is hard [33]. For that reason, all
commonly applied methods with second-order optimality guarantees deal with the weak critical cone

CW (x) =

{
d ∈ Rn

∣∣∣∣ ⟨∇hj(x),d⟩ = 0 for all j ∈ {1, . . . , q},
⟨∇gi(x),d⟩ = 0 for all i ∈ A(x)

}
; (2)

for instance, the methods in [15]. As easily seen, this cone is properly included in the strong critical
cone when KKT conditions hold. The practical condition associated with the weak critical cone is
called weak second-order conditions (WSOC); see Definition 2.3.

The convergence of any algorithm to points fulfilling WSOC cannot be ensured even when the
Mangasarian-Fromovitz constraint qualification (MFCQ) holds; see the counterexample in [17, Section
2.4]. For this reason, until recently, second-order methods had the linear independence constraint quali-
fication (LICQ) and strict complementarity as requirements for convergence, conditions that guarantee
that CW (x∗) = C S(x∗) and uniqueness of the multipliers. To guarantee convergence of implementable
second-order methods, one may require MFCQ together with some other constant rank-type condition.
In [10], this was done assuming MFCQ and that the gradients of all active constraints in a neighbor-
hood of x∗ have constant rank – a condition known as weak constant rank (WCR), see Definition 2.4.
In [5], it was proved that a constraint qualification (CQ) of constant rank-type also fulfills this purpose.
Finally, these results were extended in [15] using a second-order sequential optimality condition called
second-order approximate KKT (AKKT2).

Motivated by [15] and the recent results obtained for the first-order optimality in [14], we identify
precisely the strongest global convergence result associated with SALM. This is done by showing that
all possible accumulation points reached by the method are fully characterized by a new proposed
second-order sequential optimality condition that we call second-order augmented Lagrangian AKKT
(AL-AKKT2), following the terminology adopted in [14]. As a consequence, we prove that WSOC
holds at these points, which include minimizers of (1), under new weak constraint qualifications. In
particular, AL-AKKT2 is stronger than AKKT2 and allows us to obtain convergence of SALM in
situations where WCR does not hold. It is worth noting that this was not possible before, as AKKT2
requires the validity of WCR to attest WSOC [25, Proposition 5]. This is done with a slightly more
stringent condition than the error bound (EB) property, which we call strong-EB. Strong-EB is proven
weaker than a recently proposed CQ for WSOC in conic programming context, called strong-CRSC
[12]. To the best of our knowledge, this is the first time that a second-order method has its global
convergence established under an error bound-type condition.
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It has been recently discovered that a relaxed version of the quasi-normality (QN) CQ is sufficient
for the boundedness of the multipliers sequence associated with the first-order SALM [16]. This relaxed
QN (RQN) condition is a weak CQ, less stringent than QN itself and one of the weakest known
CQ of constant rank-type, the constant rank of the subspace component (CRSC) [8]. However, the
boundedness of dual sequences of SALM ensured by RQN is insufficient to assert WSOC. To address
this concern, we show that WSOC holds under RQN as long as WCR or even strong-EB holds. This
generalizes all the previous results from the literature regarding second-order algorithms.

The paper is organized as follows. In section 2, we present SALM and the fundamental theory
involving WSOC. In section 3, we establish the new sequential optimality condition AL-AKKT2. In
section 4, we prove that strong-EB guarantees WSOC under AL-AKKT2 and the boundedness of the
AL-AKKT2 multipliers. Furthermore, we prove that WCR is independent of strong-EB and that WCR
can also guarantee WSOC under boundedness of the AL-AKKT2 dual sequences. In section 5, we prove
that the AL-AKKT2 conditions fully characterize the accumulation points of sequences generated by
SALM. Additionally, we define the weakest CQ for WSOC under the AL-AKKT2 condition. Finally,
section 6 brings our conclusions and future works.

Notation

• We typically use boldface letters (i.e., v) for vectors and vector-valued functions;

• vi is the i−th component of the vector v. If v is a vector-valued function, vi is the function given
by its i−th component;

• For v ∈ Rn, v+ = (max{0, v1}, . . . ,max{0, vn});

• ∥ · ∥ denotes the Euclidean norm;

• B(x, ϵ) is the open ball with center x, radius ϵ, and the Euclidean distance;

• R+ stands for the set of non-negative real numbers;

• R++ denotes the set of strictly positive real numbers;

• Given a natural ℓ, Iℓ = {k ∈ N | 1 ≤ k ≤ ℓ};

• I denotes the identity matrix of appropriate size;

• Given an infinite subset K ⊂ N, limk∈K wk denotes the limit of the subsequence of {wk}k∈N with
indexes k ∈ K;

• Sym(n) is the set of the symmetric matrices of order n;

• Given two symmetric matrices A and B of the same order, A ⪰ B indicates that A−B is positive
semi-definite;

2 Technical background and the augmented Lagrangian method

The algorithm of interest for solving nonlinear programming problems is the (Powell-Hestenes-Rockafellar
– PHR) safeguarded augmented Lagrangian method (SALM). This method successively minimizes the
PHR-augmented Lagrangian function described below.

Definition 2.1. Fixed a scalar ρ > 0, the Powell-Hestenes-Rockafellar (PHR) augmented Lagrangian
function Lρ : Rn × Rp × Rq

+ is given by

Lρ(x,µ,λ)
def
= f(x) +

ρ

2

∥∥∥∥∥
(
g(x) +

µ

ρ

)
+

∥∥∥∥∥
2

+

∥∥∥∥(h(x) + λ

ρ

)∥∥∥∥2

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for all x ∈ Rn, µ ∈ Rp
+ and λ ∈ Rq.

Specifically, the idea behind SALM is to solve (1) through a sequence of problems

min
x
Lρk

(x, µ̄k, λ̄
k
) (3)

where {ρk}k∈N is a non-decreasing and positive sequence of real numbers and {λ̄k}k∈N ⊂ Rq and
{µ̄k}k∈N ⊂ Rp

+ are bounded sequences, which are safeguarded estimates of the Lagrange multipliers
for (1). The scalar ρk is called the penalty parameter. Under reasonable conditions, local minimizers
of (3) are also local minimizers of (1), c.f. [19, Prop. 4.2.3] or [21, Lemma 7.2]. Essentially, SALM
is a method that controls the increasing behavior of the sequence of penalty parameters to avoid
ill-conditioned subproblems.

Unless (3) is a convex problem, globally minimizing it in practice is tough. Despite the global
problem (3) being hard, finding an approximate second-order stationary point is not. Consequently, a
natural idea would be to apply to (3) globally convergent algorithms for unconstrained optimization
that generate sequences whose accumulation points satisfy a second-order optimality condition. How-
ever, the PHR augmented Lagrangian function is not twice differentiable everywhere. To overcome
this, we work with an approximation of its Hessian, as stated in the next definition.

Definition 2.2. Considering the functions that appear in problem (1), x ∈ Rn, µ̄ ∈ Rp
+, λ̄ ∈ Rq,

η ∈ R+ and ρ ∈ R+, define the matrix

∇2
xLη

ρ(x, µ̄, λ̄)
def
= ∇2

xf(x) +

p∑
i=1

(µ̄i + ρgi(x))+∇
2gi(x) + ρ

∑
µ̄i+ρgi(x)≥−η

∇gi(x)∇gi(x)T

+

q∑
j=1

(
λ̄j + ρhj(x)

)
∇2hi(x) + ρ

q∑
j=1

∇hj(x)∇hj(x)
T .

By [4, Proposition 1], it is possible to show that ∇2
xLη

ρ(·, µ̄, λ̄) is positive semidefinite at uncon-

strained local minima of Lρ(·, µ̄, λ̄), independently of η. Thus, it is a suitable notion of the second-order
derivative of Lρ(·,λ,µ) w.r.t. x, and it can be employed in methods for unconstrained optimization
with second-order convergence guarantees. We expect that such methods applied to (3) are able to
find xk fulfilling (4) below. With this, we enunciate the safeguarded augmented Lagrangian method
in Algorithm 1.

Remark 1. A small extension of [38, Corollary 1.4.3] can be used to guarantee the existence of points
fulfilling (4) under the assumption that the PHR augmented Lagrangian function is bounded below.
This can be ensured by assuming that the objective function of (1) has a lower bound. Under such
an assumption, any method generating sequences with second-order properties for unconstrained op-
timization applied to (3) can be used to obtain (4). Andreani et al. proposed an implementation
of a SALM meeting the requirements of this section, which they called Algencan-Second, see [4,
Algorithm 3.1].

From now on, we will refer to the second-order augmented Lagrangian method stated above as
SALM. When we want to refer to the first-order method, that is, the one with only the first condition
in (4), we explicitly write “first-order SALM”. Additionally, any sequence satisfying the steps of SALM
for a proper choice of parameters is said to be generated by SALM. Similarly, we might also say that
a sequence is generated by the first-order SALM.

When a new method is proposed, it is desirable that the KKT conditions, i.e., for some µ ∈ Rp
+,

λ ∈ Rq and x ∈ Ω,

∇xL(x,µ,λ) = 0 and µTg(x) = 0,

where L is the usual Lagrangian function associated with (1), hold at its accumulation points under at
least one constraint qualification (CQ). The less stringent the CQ is, the more points the method will
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Algorithm 1 Second-order safeguarded augmented Lagrangian method (SALM)

Step 1 Choose λmin ≤ λmax, 0 ≤ µmax, γ > 1, 0 < r < 1, {θk}k∈N and {ηk}k∈N with θk ↓ 0 and

ηk ↓ 0. Let λ̄
1 ∈ [λmin, λmax]

q, µ̄1 ∈ [0, µmax]
p and ρ1 > 0. Initialize k ← 1.

Step 2 Solve approximately (3) obtaining xk satisfying

∥∇Lρk
(xk, µ̄k, λ̄

k
)∥ ≤ θk and ∇2

xLηk
ρk
(xk, µ̄k, λ̄

k
) ⪰ −θkI. (4)

Step 3 Calculate µk def
=
(
µ̄k + ρkg(x

k)
)
+
and λk def

=
(
λ̄
k
+ ρkh(x

k)
)
.

Step 4 For each i ∈ Ip, define

V k
i

def
= min

{
gi(x

k),− µ̄k
i

ρk

}
.

Step 5 If k = 1 or

max
{
∥V k∥∞, ∥h(xk)∥∞

}
≤ rmax

{
∥V k−1∥∞, ∥h(xk−1)∥∞

}
,

do ρk+1 = ρk. Otherwise, choose ρk+1 ≥ γρk. Also, take µ̄k+1 ∈ [0, µmax]
p and λ̄

k+1 ∈
[λmin, λmax]

q. Do k ← k + 1 and return to Step 2.

be able to find that satisfy the KKT conditions. In [14], it was established the weakest CQ for which it
is possible to ensure the KKT conditions at the accumulation points of the first-order SALM, namely,
AL-regularity. In particular, AL-regularity is implied by the quasi-normality CQ [19, pp. 337] and
CRSC [8], two weak CQs used to guarantee convergence in first-order optimization methods [7, 8, 23].

The most accepted second-order optimality notion linked to the convergence of algorithms is the
following:

Definition 2.3. We say that a feasible point x∗ satisfies the weak second-order condition (WSOC)
whenever there are vectors µ ∈ Rp

+ and λ ∈ Rq so that

∇xL(x,µ,λ) = 0, µTg(x∗) = 0 and dT∇2
xL(x∗,µ,λ)d ≥ 0 ∀d ∈ CW (x∗),

where CW (x∗) is the weak critical cone (2). In this case, x∗ is called a WSOC point.
In other words, WSOC holds whenever the KKT conditions hold with (µ,λ) and the Hessian of

the Lagrangian L(·,µ,λ) is positive semidefinite in the subspace orthogonal to the gradients of active
constraints at x∗.

Since WSOC are stronger than KKT conditions, they are not necessarily valid in all local min-
imizers. For this, a suitable CQ can be imposed. The convergence analysis of algorithms involving
WSOC usually revolves around rigorous CQs, such as MFCQ. However, using second-order sequential
optimality conditions (SOC2), it has recently been shown that this can be relaxed, allowing, for in-
stance, the sequences of multipliers generated by the algorithm to be unbounded. Two such conditions
were considered: the second-order approximate-KKT (AKKT2) [15] condition and the second-order
complementarity-approximate-KKT (CAKKT2) condition [24]. Optimization methods that employ
second-order techniques, like SALM, can ensure both conditions; see [15, 24] for more methods.

When an appropriate property on the constraints holds at a point that satisfies a SOC2, such a
point also satisfies WSOC. These properties were usually composed of a CQ together with a constant
rank-type property, which we recall below.
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Definition 2.4. A feasible point x∗ is said to satisfy the weak constant rank (WCR) property if
there exists a neighborhood V of x∗ such that the rank of the space generated by {∇gi(x)}i∈A(x∗) ∪
{∇hj(x)}j=1,...,q is constant for all x ∈ V .

Given an arbitrary SOC2, the weakest associated CQ can be built by the techniques used in [15],
which, in the case of AKKT2, is the second-order cone continuity property (CCP2) [15]. This CQ,
together with WCR, guarantees WSOC. A similar discussion is valid for the weakest CQ associated
with CAKKT2, namely CAKKT2-regularity [24].

The CQs required for convergence of methods like SALM are commonly related to the problem’s
stability. An instability happens when small changes in the constraints cause significant differences in
the optimum values. A well-known property linked to the stability of a problem is the error bound [37,
§3]. Additionally, methods usually request CQs that are stronger than the error bound. This work
uses the validity of a variation of the error bound condition in order to guarantee WSOC. As said in
the introduction, this is the first time a condition slightly stronger than the error bound has been used
to reach such a strong result.

Definition 2.5. Let Ω be the feasible set of (1). We say that x∗ ∈ Ω meets the error bound (EB) CQ
when there are constants L > 0 and δ > 0 such that

dist(x,Ω) ≤ L (∥g(x)+∥+ ∥h(x)∥) for all x ∈ B(x∗, δ).

We call L a local error bound constant for Ω at x∗.

SALM constructs a sequence of approximations of the primal and dual solutions. Even though
the primal sequence has an accumulation point, the dual sequence may be unbounded if no extra
assumptions about the problem hold. In [16], it has been proposed a weak extension of the quasi-
normality CQ called relaxed quasinormality that assures boundedness of the dual sequences of the
method. We will use this condition in the following sections to obtain WSOC.

Definition 2.6 ([16]). It is said that the relaxed quasinormality (RQN) CQ holds at the point x∗

whenever there is no sequence {xk}k∈N and vector (µ,λ) ∈ Rp
+ × Rq satisfying the following require-

ments:

1.
∑p

i=1 µi∇gi(xk) +
∑q

j=1 λj∇hj(x
k) = 0;

2. (µ,λ) ̸= (0,0);

3. for all i ∈ Ip and j ∈ Iq,

if µi ̸= 0, then gi(x
k) > 0; if λj ̸= 0, then λjhj(x

k) > 0;

if µi = 0, then gi(x
k)+ = o(tk); if λj = 0, then hj(x

k) = o(tk),

where tk = min{minµi>0 gi(x
k)+,minλj ̸=0 |hj(x

k)|}.
Some CQs, necessarily not weaker than MFCQ, guarantee WSOC at local minimizes. An example

is the relaxed constant rank constraint qualification (RCRCQ) [15, Proposition 4.12]. This CQ needs
the local constant dimension of the subspace generated by many subsets of the gradients of active
constraints. This was relaxed in the context of nonlinear conic programming with the strong-constant
rank of the subspace component (strong-CRSC) [12, Definition 4.1], by reducing the number of subsets
needed to obtain WSOC. In the next sections, we will prove, in addition, the global convergence of
SALM under strong-CRSC.

Definition 2.7. Considering a feasible point x∗ of (1), we define the set

J−(x∗) =

{
i ∈ A(x∗)

∣∣∣∣ ∃µ ∈ Rp
+, ∃λ ∈ Rq,

−∇gi(x∗) =
∑

i∈A(x∗) µi∇gi(x∗) +
∑

j∈Iq
λj∇hj(x

∗)

}
.

Definition 2.8. The strong-CRSC condition is valid at a feasible point x∗ of (1) when for every
J−(x∗) ⊂ A ⊂ A(x∗), the rank of the subspace generated by the set {∇gi(x)}i∈A ∪ {∇hj(x)}j∈Iq

remains constant in a neighborhood of x∗.
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3 A new second-order sequential optimality condition

In the last years, the global convergence of the first-order SALM has been improved by associating it
with increasingly strengthened sequential optimality conditions [6, 7, 11, 15, 24, 35]. A recent proposal
has provided a definitive answer to such an issue. In [14] (see also [13]), a sequential optimality
condition inspired by the augmented Lagrangian method itself was proposed, namely Augmented
Lagrangian AKKT (AL-AKKT). This condition provides the best possible global convergence result
for the first-order SALM in a suitable sense. Motivated by these ideas, we define the second-order
counterpart of AL-AKKT for SALM.

Definition 3.1. We say that a feasible point x∗ for problem (1) fulfills the second-order augmented
Lagrangian AKKT (AL-AKKT2) condition if there are sequences {xk}k∈N ⊂ Rn, {µ̄k}k∈N ⊂ Rp

+,

{λ̄k} ⊂ Rq, {ρk}k∈N ⊂ R++, {θk}k∈N ⊂ R+ and {ηk}k∈N ⊂ R+ such that limk→∞ xk = x∗,

limk→∞ θk = limk→∞ ηk = 0, the sequences {µ̄k}k∈N and {λ̄k}k∈N are bounded,

∥∇xLρk
(xk, µ̄k, λ̄

k
)∥ ≤ θk, (5)

∇2
xLηk

ρk
(xk, µ̄k, λ̄

k
) ⪰ −θk I, for all k ∈ N, (6)

and

lim
k→∞

∥∥∥∥min

{
−gi(xk),

µ̄k
i

ρk

}∥∥∥∥ = 0, for all i ∈ Ip. (7)

As it is natural, we call {ρk}k∈N the penalty parameter sequence and both {
(
ρkg(x

k) + µ̄k
)
+
}k∈N and

{ρkh(xk) + λ̄
k}k∈N the AL-AKKT2 dual sequences or AL-AKKT2 multipliers.

Remark 2. The AL-AKKT condition is defined exactly like the AL-AKKT2 condition but without
requiring (6).

Theorem 3.2. The AL-AKKT2 condition is valid in every local minimizer of (1).

Proof. Follow the proof of [15, Proposition 1] noting that the constructed sequence satisfies the AL-
AKKT2 properties.

Combining the previous result with the following one has an interesting practical interpretation.
Both ensure that the AL-AKKT2 conditions are valid at local minimizers and WSOC points. Concep-
tually, they mean that the new conditions can be seen as a generalization of WSOC in contexts where
CQs cannot be guaranteed.

Proposition 3.3. If the feasible point x∗ is a WSOC point, then x∗ is an AL-AKKT2 point. Addi-
tionally, a sequence {xk}k∈N fulfills the SALM steps with x∗ being a limit of this sequence.

Proof. If WSOC holds, there are Lagrange multipliers µ ∈ Rp
+ and λ ∈ Rq such that

∇2
xL(x∗,µ,λ)Td ≥ 0 for all d ∈ CW (x∗).

Thus, by [18, Lemma 1.25], there exists ρ0 > 0 such that

∇2
xL(x∗,µ,λ) + ρ0

 ∑
i∈A(x∗)

∇gi(x∗)∇gi(x∗)T +

q∑
j=1

∇hj(x
∗)∇hj(x

∗)T

 ⪰ 0.

Regarding the second part of the statement, if we choose µmax, λmax and λmin to be big enough

in modulus so that µ̄1 = µ ∈ [0, µmax]
p and λ̄

1
= λ ∈ [λmin, λmax]

p, we can start the method with x1

being x∗. Thus, the primal sequence produced by the method will be constant, as Step 2 (with the
criterion (4)) is always satisfied with such feasible x1.
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4 Convergence of SALM under an error bound condition

The work [25] suggests that second-order algorithms generally try to compute a negative-curvature
direction from the second-order derivative of the Lagrangian function of Definition 2.2. However,
this procedure can fail to identify correctly WSOC points if the sequences associated with the terms

∇gi(xk)∇gi(xk)T and ∇hi(x
k)∇hi(x

k)T in ∇2
xLη

ρk
(xk, µ̄k, λ̄

k
) grows in an uncontrolled manner. This

problem is present in AKKT2 sequences, making WCR necessary; see [25, Definition 1 and Proposition
1]. On the other hand, in the AL-AKKT2 condition, such terms are closely linked with the penalty
parameter sequence {ρk}k∈N, see Definition 5. Since ρk appears in the dual sequences of the AL-
AKKT2 condition, its growth is somehow limited by the growth of the dual sequences. This leads us
to ask whether it is possible to guarantee convergence to WSOC points without requiring the WCR
condition. This section shows it is possible.

Next, we will define the first two concepts required to derive the basic results of this section.

Definition 4.1. For each x∗ ∈ Rn, x ∈ Rn and A ⊂ A(x∗), define the vector space

CW
A (x,x∗) =

{
d ∈ Rn

∣∣∣∣ ⟨∇hj(x),d⟩ = 0 for all j ∈ Iq
⟨∇gi(x),d⟩ = 0 for all i ∈ A

}
and the set

ΩA = {x ∈ Rn | gA(x) = 0, h(x) = 0},

where gA(x) = (gi(x))i∈A. Note that CW
A(x∗)(x

∗,x∗) = CW (x∗) (see (2)). Additionally, define the set

A=0 = {i ∈ Ip | ∃δ > 0,∀y ∈ B(x∗, δ) ∩ Ω, gi(y) = 0}.

Next, we define a slightly stronger condition than EB, which we use to guarantee WSOC at points
fulfilling the AL-AKKT2 conditions.

Definition 4.2. We say that the strong error bound (strong-EB) condition holds for Ω at the point
x∗ whenever Ω and ΩA fulfill EB at x∗ for each A with A=0 ⊂ A ⊂ A(x∗), that is, there are L > 0
and δ > 0 such that

dist(x,ΩA) ≤ L (∥gA(x)∥+ ∥h(x)∥) and dist(x,Ω) ≤ L (∥g(x)+∥+ ∥h(x)∥)

for all x ∈ B(x∗, δ) and A with A=0 ⊂ A ⊂ A(x∗).

Abadie’s CQ holds at x∗ when the linearized cone of Ω at x∗ and the tangent cone to Ω at x∗,

TΩ(x
∗)

def
= lim sup

t↓0

Ω− x∗

t
= {v ∈ Rn | ∃{vk}k∈N ⊂ Rn,∃{tk}k∈N ⊂ R∗

+ such that

lim
k→∞

vk = v, lim
k→∞

tk = 0 and tkv
k + x∗ ∈ Ω,∀k ∈ N}

[36, Definition 6.1], coincide. It is known that WSOC can be ensured at local minimizers if Abadie’s
CQ is valid regarding the set ΩA(x∗) [2, Theorem 3.1], which has CW (x∗) as the linearized cone at x∗.
The next technical lemma involves the validity of Abadie’s CQ in an intermediate set ΩA, see Remark
3.

Lemma 4.3. For a set A ⊂ A(x∗), suppose that

lim inf
x−→

ΩA
x∗

TΩA(x) = CW
A (x∗,x∗). (8)

Then
CW
A(x∗)(x

∗,x∗) ⊂ lim inf
x−→

ΩA
x∗

CW
A (x,x∗).

8



Proof. For a set A ⊂ A(x∗), v ∈ CW
A(x∗)(x

∗,x∗) and a sequence {xk} ⊂ ΩA, as CW
A(x∗)(x

∗,x∗) ⊂
CW
A (x∗,x∗), by (8), there exists vk → v with vk ∈ TΩA(x

k) and, by the definition of TΩA(x
k), we

have TΩA(x
k) ⊂ CW

A (xk,x∗), from which vk ∈ CW
A (xk,x∗), and the statement follows.

Remark 3. Clarke’s regularity is a well-known type of regularity in variational analysis and optimization
[27, 28, 36]. Considering a closed subset X ⊂ Rn, Clarke’s regularity is defined in [36, Definition 6.4]
by asking for the equality

NX (x∗) = lim sup
x−→

X
x∗

N̂X (x∗) = N̂X (x∗),

where N̂X (x∗) is the regular normal cone and NX (x∗) is the limiting (Mordukhovich) normal cone.
In view of [36, Corollary 6.29], Clarke’s regularity can be stated as

TX (x∗) = lim sup
t↓0

X − x∗

t
= lim inf

x−→
X

x∗, t↓0

X − x

t

def
= T̂X (x∗),

where T̂X (x∗) is the regular tangent cone (see [36, Definition 6.25] or [32, Definition 1.8]). We have
T̂X (x∗) ⊂ TX (x∗), and, by [36, Theorem 6.26],

lim inf
x−→

X
x∗

TX (x) = T̂ (x∗).

Therefore, condition (8) is equivalent to asking for Abadie’s CQ and Clarke’s regularity at x∗ with
respect to the set ΩA.

Like EB, the boundedness of the dual sequences generated by the method is another important
point for the stability of algorithms. RQN condition [16] (Definition 2.6) guarantees the boundedness
of multipliers generated by first-order SALM; it is weaker than CRSC [8] and QN, indicating that the
boundedness of AL-AKKT multipliers can be obtained under weak and typical CQs. The compelling
thing about this is that WSOC can be brought under the boundedness of the approximate Lagrange
multipliers and strong-EB, as shown in the next result.

Proposition 4.4. Suppose that x∗ conforms to strong-EB and that there is an AL-AKKT2 sequence
converging to x∗ with bounded AL-AKKT2 multipliers. Then WSOC holds at x∗.

Proof. Let us consider the AL-AKKT2 sequence {xk}k∈N associated with the bounded AL-AKKT2
multipliers {(ρkg(x) + µ̄)+}k∈N and {ρkh(x) + λ̄}k∈N. Then there are vectors µ ∈ Rp

+, λ ∈ Rq and
an infinite set of indicesM⊂ N such that

lim
k∈M

(
µ̄k + ρkg(x

k)
)
+
= µ and lim

k∈M
λ̄
k
+ ρkh(x

k) = λ.

Also, the sequences {ρkg(xk)+}k∈N and {ρkh(xk)}k∈N are bounded, so there is K > 0 such that

ρk
(
∥g(xk)+∥+ ∥h(xk)∥

)
≤ K, for all k ∈ N. (9)

Now, by a recursive construction, it is possible to obtain an infinite subset K ofM so that, for all
i ∈ Ip,

lim
k∈K

ρkgi(x
k) ∈ {−∞} ∪ R.

Consider the set of indices

Ā =

{
i ∈ Ip

∣∣∣∣ limk∈K
ρkgi(x

k) ∈ R
}
. (10)

We can, for each k ∈ K, project xk onto the feasible set Ω. Let us choose yk ∈ Ω to be one of such
projections. We have that yk ∈ Ω and, since the projection function is non-expansive, yk → x∗. Also,
if i ̸∈ Ā, necessarily,

lim
k∈K

ρkgi(x
k) = −∞.

9



Observe that, for each k ∈ N big enough, ρk|gi(yk)− gi(x
k)| ≤ Lgiρk∥yk − xk∥ = Lgiρk dist(x

k,Ω) ≤
LgiLΩρk

(
∥g(xk)+∥+ ∥h(xk)∥

)
≤ LgiLΩK, where Lgi is the local Lipschitz constant of the function

gi and LΩ is a local error bound constant for Ω at x∗ – strong-EB assumes EB, see Definition 4.2.
Hence, for each k ∈ N big enough,

ρkgi(y
k) = ρk

(
gi(y

k)− gi(x
k)
)
+ ρkgi(x

k) ≤ LgiLΩK + ρkgi(x
k).

Thus, as limk∈K ρkgi(x
k) = −∞, also limk∈K ρkgi(y

k) = −∞. Consequently, since limk∈K yk = x∗

and yk ∈ Ω, it cannot be i ∈ A=0. This all means that A=0 ⊂ Ā.
Since A=0 ⊂ Ā ⊂ A(x∗), it is possible to take A = Ā and see that, by the definition of the

strong-EB condition, see Definition 4.2, EB is valid for the set ΩĀ at x∗. Consequently, there exists
L > 0 such that, for all k ∈ K big enough,

ρk dist(x
k,ΩĀ) ≤ Lρk

∑
i∈Ā

|gi(xk)|+
q∑

j=1

|hj(x
k)|

 .

Now, considering that all the limits appearing in the definition (10) exist and, consequently, the associ-
ated sequences are bounded, the right-hand side of the last equation must be bounded. Consequently,
there exists M > 0 such that, for all k ∈ K,

ρk dist(x
k,ΩĀ) ≤M.

Now, for each k ∈ K, we can define the set Ik
def
= {i ∈ Ip | ρkgi(xk) + µ̄k

i ≥ −ηk}. In this setting,
for each i ∈ Ik and k ∈ K, ρkgi(xk) ≥ −ηk − µ̄k

i . Hence, due to (9), ρk|gi(xk)| ≤ max{ηk + µ̄k
i ,K}.

Consequently, Ik ⊂ Ā.
As ΩĀ fulfills error bound, by [31, Proposition 1], it holds

T̂ΩĀ(x
∗) = LΩĀ(x

∗).

Consequently, considering Remark 3, not only ΩĀ satisfies Clarke regularity but also Abadie’s con-
straint qualification.

Now, we have all the necessary ingredients to prove the validity of WSOC at x∗. Thus, take
d ∈ CW (x∗) = CW

A(x∗)(x
∗,x∗). Hence, considering the sequence AL-AKKT2 {xk}k∈N, we can, for

each k ∈ K, project xk onto set ΩĀ. Let ȳk be a projection. Observe that ȳk ∈ ΩĀ and, since the
projection function is non-expansive, we have also that ȳk → x∗. Thus, by Lemma 4.3, we find a
sequence {dk}k∈N converging to d such that dk ∈ CW

Ā (ȳk,x∗) for all k ∈ N. Consequently,

∇gi(ȳk)Tdk = 0 and ∇hj(ȳ
k)Tdk = 0, for all i ∈ Ā and j ∈ Iq.

Furthermore, as Ik ⊂ Ā, it holds

ρk
∑

ρkgi(xk)+µ̄k
i ≥−ηk

(
∇gi(xk)Tdk

)2
= ρk

∑
i∈Ik

((
∇gi(xk)−∇gi(ȳk)

)T
dk
)2

≤ ρk
∑
i∈Ā

((
∇gi(xk)−∇gi(ȳk)

)T
dk
)2

≤ ρk
∑
i∈Ā

L2
gi

∥∥xk − ȳk
∥∥2 ∥∥∥dk

∥∥∥2
= ρk dist(x

k,ΩĀ)
∑
i∈Ā

L2
gi∥d

k∥2 dist(xk,ΩĀ)

≤M
∑
i∈Ā

L2
gi∥d

k∥2 dist(xk,ΩĀ)→ 0

10



and, similarly,

ρk

q∑
j=1

(
∇hj(x

k)Tdk
)2
≤M

q∑
j=1

L2
hj
∥dk∥2 dist(xk,ΩĀ)→ 0.

Finally, multiplying (6) by dk on the right and (dk)T on the left, we obtain

(dk)T
(
∇2

xL(xk,
(
µk + ρkg(x

k)
)
+
,λk + ρkh(x

k))
)
dk

+ρk
∑

ρkgi(xk)+µ̄k
i ≥−ηk

(
∇gi(xk)Tdk

)2
+ ρk

q∑
j=1

(
∇hj(x

k)Tdk
)2
≥ −θk∥dk∥2

for each k ∈ K. Taking the limit in K2, we get

∇f(x∗) +

p∑
i=1

µi∇gi(x∗) +

q∑
j=1

λj∇hj(x
∗) = 0,

µTg(x∗) = 0, µ ≥ 0,

dT

(
∇2f(x∗) +

p∑
i=1

µi∇2gi(x
∗) +

q∑
j=1

λj∇2hj(x
∗)

)
d ≥ 0,

which implies WSOC, since d is a vector that does not depend on µ and λ.

The following result gives a situation where WSOC is guaranteed at points satisfying AL-AKKT2
and strong-EB.

Corollary 4.5. WSOC hold at AL-AKKT2 points under strong-EB and RQN.

Proof. The expression of the AL-AKKT2 multipliers is the same as the multipliers generated by the
first-order SALM. Consequently, only assuming RQN, we can follow the proof of [16, Theorems 3] and
prove that the dual sequences of the AL-AKKT2 are bounded. Thus, strong-EB and RQN are enough
to guarantee WSOC at AL-AKKT2 points.

The following result directly applies the previous one and shows that strong-CRSC is enough to
guarantee WSOC at points satisfying the AL-AKKT2 conditions.

Proposition 4.6. Strong-CRSC guarantees strong-EB and RQN.

Proof. First, note that, by hypothesis, CRSC is valid. Thus, Ω not only satisfies EB at x∗ but also
RQN by [8, Theorem 5.5] and [30, Theorem 2.1]. Additionally, J−(x∗) ⊂ A=0 by [8, Lemma 5.3].
Hence, let us fix A with A=0 ⊂ A ⊂ A(x∗) and consider the set ΩA. It is only necessary to prove
the validity of CRSC at x∗ applied to ΩA, since CRSC implies error bound [8, Theorem 5.5]. As ΩA
has only equality constraints, it is only necessary to prove the constant rank of the gradients of the
active constraints in a neighborhood of x∗, i.e., the constant rank of {∇gj(x)}i∈A∪{∇hj(x)}j∈Iq in a
neighborhood of x∗. Notice that J−(x∗) ⊂ A ⊂ A(x∗). Consequently, by Definition 2.8, strong-CRSC
says that the dimension of the subspace generated by {∇gj(x)}i∈A ∪ {∇hj(x)}j∈Iq is constant for x
in a neighborhood of x∗, as we wanted to prove.

The next result shows that the quasi-normality CQ for ΩA(x∗) is enough to guarantee WSOC at
points satisfying the AL-AKKT2 conditions.

Proposition 4.7. If ΩA(x∗) satisfies QN, then Ω satisfies strong-EB and RQN.
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Proof. Quasi-normality applied to the set ΩA(x∗) implies the quasi-normality CQ applied to the set ΩA
in which A satisfies A ⊂ A(x∗). Additionally, quasi-normality with respect to the feasible set Ω can be
derived from the one at ΩA(x∗). Consequently, not only quasi-normality and relaxed quasinormality
hold, but also EB for ΩA and Ω by [30, Theorem 2.1]. Thus, strong-EB and RQN hold.

The following example shows that the hypothesis of Proposition 4.7 does not depend on the WCR
condition. Thus, although the results previously known in the literature are not broad enough to
guarantee WSOC without asking for WCR, the following result shows that this is no longer true.

Example 4.8. Consider the set Ω ⊂ R2 formed by the constraints from [24, Example 1]: h(x1, x2) =
x1 = 0, g1(x1, x2) = x3

1 ≤ 0 and g2(x1, x2) = x1e
x2 ≤ 0. Additionally, take the point x∗ = (0, 0)T .

The set Ω does not meet the WCR condition at the origin, but the set ΩA(x∗) fulfills quasi-normality.

Next we show that WCR and strong-EB are in fact independent conditions. In the following
example, WCR holds while strong-EB fails.

Example 4.9. Considering the functions c1, c2, c3 : R2 → R such that c1(x1, x2) = −x1, c2(x1, x2) =
x2 − x2

1 and c3(x1, x2) = −x2 − x2
1 for each (x1, x2)

T ∈ R2, the set Ω = {(x1, x2)
T ∈ R2 | c1(x1, x2) ≤

0, c2(x1, x2) ≤ 0, c3(x1, x2) ≤ 0} meets the WCR conditions. However, considering the subset ΩA
with A = {2, 3}, we have that ΩA = {0}, also, taking the sequence xk = (1/k, 0)T , for all k ∈ N,
dist(xk,ΩA) = ∥xk∥ = 1/k, but c1(x

k)+ = 0, |c2(xk)| = (1/k)2 and |c3(xk)| = (1/k)2. Hence,

lim
k→∞

dist(xk,ΩA)

c1(xk)+ + |c2(xk)|+ |c3(xk)|
=∞.

Consequently, the set ΩA does not meet the error bound property, and strong-EB is violated.

The previous example shows that some problems are not naturally qualified concerning the local EB-
type condition. Hence, presenting convergence results for WSOC points involving the WCR condition
is still valid. Next, we use the boundedness of AL-AKKT2 multipliers and WCR conditions to obtain
WSOC, as done in [15, 24].

Proposition 4.10. WCR and boundedness of the AL-AKKT2 multipliers are sufficient for WSOC.

Proof. By the boundedness of the AL-AKKT2 multipliers there are vectors µ ∈ Rp
+ and λ ∈ Rq

such that limk∈K(µ̄
k + ρkg(x

k))+ = µ and limk∈K λ̄
k
+ ρkh(x

k) = λ for some K ⊂ N. Now, given
d ∈ CW (x∗) we have that the WCR condition guarantees, by [10, Lemma 3.1],

lim inf
x→x∗

CW
A(x∗)(x,x

∗) = CW (x∗),

and thus, considering the AL-AKKT2 sequence {xk}k∈N, there is a sequence {dk}k∈N such that dk → d,
∇gi(xk)Tdk = 0 and ∇hj(x

k)Tdk = 0, for all i ∈ A(x∗) and j ∈ Iq. Therefore, the result follows
similarly to the proof of Proposition 4.4.

The following two results give practical situations where WSOC can be guaranteed at points sat-
isfying AL-AKKT2.

Corollary 4.11. WSOC holds at AL-AKKT2 points under WCR and RQN.

Proof. The boundedness of the AL-AKKT2 multipliers can be guaranteed under RQN, as discussed
in the proof of the Corollary 4.5. Thus, we have, by Proposition 4.10, the validity of WSOC.

Corollary 4.12. Strong-CRSC implies WCR and RQN simultaneously.

Proof. By Definition 2.8, strong-CRSC ensures that the rank of the Jacobian matrix with only the
active constraints is constant. Consequently, WCR holds. Additionally, strong-CRSC implies CRSC,
which implies RQN [16, Theorem 2].
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5 The strongest possible sequential optimality condition for
SALM

In this section, we show that AL-AKKT2 is the strongest second-order sequential optimality condition
related to SALM. Then, using AL-AKKT2, we can provide the weakest possible CQ for which SALM
guarantees WSOC. Part of the theory presented here could be seen as the counterpart of the theory
for first-order SALM discussed in [14].

First, we prove that, as expected by the design of Definition 3.1, SALM’s feasible accumulation
points meet the AL-AKKT2 condition.

Theorem 5.1. The AL-AKKT2 condition is valid at every feasible accumulation point of SALM.

Proof. Let x∗ be a feasible accumulation point of SALM. In step k, an unconstrained optimization
algorithm is applied to (3) to obtain xk that fulfills (4). Hence, the first and second-order stationarity
conditions related to AL-AKKT2 are valid.

It remains to prove (7), that is, limk→∞ ∥V k∥∞ = 0. If the sequence {ρk}k∈N generated by the
method is bounded, Step 5 and r < 1 guarantee that limk→∞ ∥V k∥∞ = 0. If {ρk}k∈N is unbounded
then by the definition of V k

i we have |V k
i − gi(x

k)+| ≤ µ̄k
i /ρk for all k ∈ N. Consequently, the

boundedness of {µ̄k
i }k∈N and the feasibility of x∗ imply limk→∞ V k

i = 0 for all i ∈ Ip. This concludes
the proof.

When applying a second-order method, the algorithm should obtain accumulation points fulfilling
a second-order stationarity condition in at least one good context. In the case of methods that penalize
infeasible constraints, such a context is when the sequence of penalty parameters ({ρk}k∈N) is bounded.
The following result shows that it is possible to guarantee WSOC under the boundedness of this
sequence.

Proposition 5.2. WSOC is valid at points fulfilling the AL-AKKT2 conditions whenever its associated
sequence {ρk}k∈N is bounded.

Proof. Let us fix the point x∗ for which AL-AKKT2 holds, and consider an associated sequence

{(ρk,xk, λ̄
k
, µ̄k)} as in Definition 3.1. By the hypothesis, the AL-AKKT2 multipliers λk = λ̄

k
+

ρkh(x
k) and µk =

(
µ̄k + ρkg(x

k)
)
+

are bounded. Thus, there exists an infinite subset K0 ⊂ N such
that

lim
k∈K

(λk,µk) = (λ,µ) and lim
k∈K0

ρk = ρ∞,

with µ ≥ 0 and ρ∞ > 0. As limk→∞{−gi(xk), µ̄k
i /ρk} = 0 for all i, we have limk→∞ µ̄k

i /ρk = 0
whenever gi(x

∗) < 0. Thus, µi = limk→∞ ρk((µ̄
k
i /ρk) + gi(x

k))+ = 0 whenever gi(x
∗) < 0, and

therefore the KKT complementarity is satisfied. Taking the limit in (5) over K, we conclude that
(x∗,λ,µ) is a KKT triple.

Now, the second-order stationarity can be seen taking d ∈ CW (x∗), multiplying both sides of
equation (6) by d and taking the limit in the resulting expression. Since d does not depend on λ and
µ, this ends the proof.

Next, we show that when the AL-AKKT2 condition is ensured, it is possible to find a sequence
accepted by SALM for a particular choice of input parameters. This is consistent with previous results
for the first-order SALM discussed in [14]. In other words, AL-AKKT2 provides the strongest global
convergence result for SALM, from which we derive the least stringent CQ associated with the method,
discussed in the next section.

Theorem 5.3. Let x∗ be a feasible point of problem (1) satisfying the AL-AKKT2 conditions, then,
for a proper choice of input parameters, there is a convergent sequence to x∗ fulfilling the steps of
SALM.
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Proof. If WSOC holds at x∗, then the statement follows from Proposition 3.3.

Let us assume that WSOC does not hold at x∗ and take {(ρk,xk, λ̄
k
, µ̄k)} a sequence associated

with the AL-AKKT2 conditions. By Proposition 5.2, {ρk}k∈N is unbounded. Fixing any r < 1 and
γ > 1, there exists a strictly increasing sequence of natural numbers {σk}k∈N such that

ρσk+1
≥ γρσk

, for all k ∈ N,
max {∥V σk∥∞ , ∥h(xσk)∥∞} ≤ rmax {∥V σk−1∥∞ , ∥h(xσk−1)∥∞}, for all k ∈ N,

lim
k→∞

ρσk
gi(x

σk) ∈ {−∞} ∪ R ∪ {+∞}, for all i ∈ Ip,

and lim
k∈K1

ρσk
hj(x

σk) ∈ {−∞} ∪ R ∪ {+∞}, for all j ∈ Iq.

Define the new sequence {σ̄k}k∈N by putting

σ̄k
def
=

{
σk/2 , if k is even,

σ(k+1)/2, if k is odd,

for all k ∈ N. As can be seen, the terms repeat for two iterations before changing their value:

{σ̄1, σ̄2, σ̄3, σ̄4, σ̄5, σ̄6, · · · } = {σ1, σ1, σ2, σ2, σ3, σ3, · · · }. (11)

Let us take, for all k ∈ N,

ρ̄k
def
= ρσ̄k

, yk def
= xσ̄k , ¯̄µk def

= µ̄σ̄k , ¯̄λk def
= λ̄

σ̄k , (12)

V̄
k def
= V σ̄k = min

{
c(xσ̄k),− µ̄σ̄k

ρσ̄k

}
.

We proceed by showing that these sequences respect the SALM steps. We analyse separately when k
is even or odd.

If k is even, we have k = 2ℓ for some ℓ and thus σ̄k = σ̄k−1 (see (11)). Furthermore,

σ̄k+1 = σ̄2ℓ+1 = σ((2ℓ+1)+1)/2 = σℓ+1 and σ̄k = σ̄2ℓ = σ2ℓ/2 = σℓ.

Therefore, ρ̄k+1 = ρσ̄k+1
= ρσℓ+1

≥ γρσℓ
= γρσ̄k

= γρ̄k and

max
{
∥V̄ k∥∞, ∥h(yk)∥∞

}
= max

{
∥V σ̄k∥∞, ∥h(xσ̄k)∥∞

}
= max

{
∥V σ̄k−1∥∞, ∥h(xσ̄k−1)∥∞

}
= max

{
∥V̄ k−1∥∞, ∥h(yk−1)∥∞

}
,

agreeing with Step 5 from SALM.
Now, suppose that k = 2ℓ+ 1 for some ℓ ∈ N. Similarly,

σ̄k−1 = σ̄(2ℓ+1)−1 = σ̄2ℓ = σ2ℓ/2 = σℓ and

σ̄k+1 = σ̄k = σ̄(2ℓ+1)+1 = σ((2ℓ+1)+1)/2 = σℓ+1

and so

max
{
∥V̄ k∥∞, ∥h(yk)∥∞

}
= max

{∥∥V σ̄k
∥∥
∞ ,
∥∥h(xσ̄k)

∥∥
∞

}
= max {∥V σℓ+1∥∞ , ∥h(xσℓ+1)∥∞}
≤ rmax {∥V σℓ∥∞ , ∥h(xσℓ)∥∞}
= rmax

{∥∥V σ̄k−1
∥∥
∞ ,
∥∥h(xσ̄k−1)

∥∥
∞

}
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= rmax
{
∥V̄ k−1∥∞, ∥h(yk−1)∥∞

}
,

which corroborates ρ̄k+1 = ρ̄k. Thus, Step 5 is being respected.
The validity of the first- and second-order stationarity stated in equations (5) and (6) can be

seen by noticing – considering expression (11) – that the sequences {yk}, {
(
¯̄µk + ρ̄kg(y

k)
)
+
}k∈N,

{¯̄λk + ρ̄kh(y
k)}k∈N may be regarded as subsequences with repeated terms of the original AL-AKKT2

sequences {xk}k∈N, {
(
µ̄k + ρkg(x

k)
)
+
}k∈N and {λ̄k

+ρkh(x
k)}k∈N. Hence, the defined “subsequences”

in (12) must also be AL-AKKT2 sequences.
The ideas regarding SALM’s input parameters are straightforward. Here, it is only needed to choose

µmax, λmax and λmin to be big enough in modulus so that the bounded sequences satisfy ¯̄µk ∈ [0, µmax]
p

and ¯̄λk ∈ [λmin, λmax]
q for all k ∈ N. Notice that the sequences {θσ̄k

}k∈N and {ησ̄k
}k∈N in SALM can

be taken as those associated with AL-AKKT2 (compare SALM’s requirements with Definition 3.1).
In such a way, {yk}k∈N respects all the steps of SALM, concluding the proof.

The next result is a direct consequence of Theorems 5.1 and 5.3.

Corollary 5.4. AL-AKKT2 is the strongest sequential optimality condition valid at SALM accumu-
lation points. In particular, it implies AKKT2.

Remark 4. An analogous result to the above corollary is valid for CAKKT2 instead of AKKT2,
provided that the quadratic-like penalty measure of infeasibility associated with problem (1) satisfies
the generalized Kurdyka-Lojasiewicz (GKL) inequality [11], a mild hypothesis valid, for example,
if the data functions of the problem are subanalytic. GKL is required for SALM to converge to
CAKKT/CAKKT2 points, see [11, 24].

5.1 The least stringent CQ associated with SALM

In this section, we present the least stringent CQ associated with AL-AKKT2. In other words, in view
of Corollary 5.4 we state the weakest possible CQ for which SALM accumulation points fulfill WSOC.
Evidently, the weaker the CQ used, the better the method’s theoretical reliability, so ultimately, we
are expanding the class of problems to which SALM converges.

As we already mentioned, whenever a SOC2 is proposed, it is possible to construct its weakest
companion CQ following the techniques in [9] or [15]. Next, we recall some concepts necessary to build
such a CQ for AL-AKKT2.

Consider a multivalued function F : Rn ⇒ Rm and C ⊂ Rn. The Painlevé–Kuratowski outer/upper
limit [36, p. 152] of F(x) as x→ x∗ is the set

lim sup
x−→

C
x∗
F(x) def

= {v ∈ Rn | ∃{xk}k∈N,∃{vk}k∈N such that

lim
k→∞

vk = v, lim
k→∞

xk = x∗,xk ∈ C, ∀k ∈ N, and vk ∈ F(xk),∀k ∈ N}.

When it holds lim supx−→
C

x∗ F(x) ⊂ F(x∗), the multifunction F is said to be outer semicontinuous in

x∗ relative to C.
Below, we define the condition we call the weakest CQ for obtaining WSOC points associated with

SALM’s accumulation points.

Definition 5.5. Define the multivalued function KW : Rn ×Rp
+ ×Rq ×R++ ×R++ ⇒ Rn such that

KW (x, ¯̄µ, ¯̄λ, ρ, δ)
def
=
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

 p∑
i=1

(µi)+∇gi(x) +
q∑

j=1

λj∇hj(x), H

 ∈ Rn × Sym(n) |

H ⪯
p∑

i=1

(µi)+∇2gi(x) +

q∑
j=1

λj∇2hj(x)

+ ρ
∑

µi≥−δ

∇gi(x)∇gi(x)T + ρ

q∑
j=1

∇hj(x)∇hj(x)
T , where

µ = ¯̄µ+ ρ g(x) and λ = ¯̄λ+ ρ h(x)



,

for all x ∈ Rn, ¯̄µ ∈ Rp
+,

¯̄λ ∈ Rq, ρ ∈ R++ and δ ∈ R++. We say that a feasible point x∗ fulfills the
AL2-regularity CQ when, for all µ̄ ∈ Rp

+ and λ̄ ∈ Rq, the multivalued function fulfills

lim sup
(x,¯̄µ,¯̄λ,ρ,δ)→(x∗,µ̄,λ̄,+∞,0+)

K
W

(x, ¯̄µ, ¯̄λ, ρ, δ) ⊂ K2(x∗),

where

K2(x∗)
def
=


(
∑p

i=1 µi∇gi(x∗) +
∑q

j=1 λj∇hj(x
∗), H) ∈ Rn × Sym(n)|

µ ∈ Rp
+, and λ ∈ Rq

H ⪯
∑p

i=1 µi∇2gi(x
∗) +

∑q
j=1 λj∇2hj(x

∗) in CW (x∗)

and g(x∗)Tµ = 0

 .

Remark 5. Considering the previous definition, note that the point x∗ satisfies WSOC if and only if
(−∇f(x∗),−∇2f(x∗)) ∈ K2(x∗).

Guaranteeing that AL2-regularity is sufficient to ensure WSOC under AL-AKKT2 shows that it
is, in fact, a CQ since AL-AKKT2 is valid in every minimizer. On the other hand, the reciprocal of
this result guarantees that any CQ that guarantees WSOC under the validity of AL-AKKT2 must be
stronger than (or equivalent to) AL2-regularity. These two results are fundamental to achieving our
objective.

Theorem 5.6. The point x∗ fulfills the AL2-regularity CQ if and only if, for every twice-differentiable
objective function f considered in (1), if x∗ satisfies AL-AKKT2 with respect to this objective function,
it also satisfies WSOC.

Proof. Suppose that x∗ meets with AL2-regularity and that it fulfills AL-AKKT2. Let {(xk, µ̄k, λ̄
k
, ρk, θk, ηk)}k∈N

be a sequence fulfilling Definition 3.1. We analyze the cases where {ρk}k∈N has a bounded subsequence
or not separately.

If {ρk}k∈N has a bounded subsequence, by taking a subsequence, we may assume that {ρk}k∈N
is convergent since subsequences of AL-AKKT2 sequences are also AL-AKKT2 sequences. Then, by
Proposition 5.2, WSOC is held, and the necessary result is proven. If no subsequence of {ρk}k∈N
is bounded, necessarily limk→∞ ρk = ∞. Taking δk = ηk for all k ∈ N, we have that (−∇f(xk) +

vk,−∇2f(xk) − θkI) ∈ K
W

(xk, µ̄k, λ̄
k
, ρk, δk). Thus, as {µ̄k}k∈N and {λ̄k}k∈N are bounded, we can

assume, without losing generality, that {µ̄k}k∈N and {λ̄k}k∈N converges to µ̄ and λ̄, respectively.
Consequently, taking the limit we arrive at

(−∇f(x∗),−∇2f(x∗)) ∈ lim sup
(x,¯̄µ,¯̄λ,ρ,δ)→(x∗,µ̄,λ̄,+∞,0+)

KW (x, ¯̄µ, ¯̄λ, ρ, δ).

Hence, by the AL2-regularity at x∗, (−∇f(x∗),−∇2f(x∗)) ∈ K2(x∗). That is, x∗ is a WSOC point.
Let us prove the reciprocal; that is, we now show that if the point x∗ satisfies WSOC whenever it

fulfills the AL-AKKT2 condition, then the function KW satisfies, for a given µ̄ ∈ Rp
+ and λ̄ ∈ Rq,

lim sup
(x,¯̄µ,¯̄λ,ρ,δ)→(x∗,µ̄,λ̄,+∞,0+)

KW (x, ¯̄µ, ¯̄λ, ρ, δ) ⊂ K2(x∗).
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Indeed, let
(d, H) ∈ lim sup

(x,¯̄µ,¯̄λ,ρ,δ)→(x∗,µ̄,λ̄,+∞,0+)
KW (x, ¯̄µ, ¯̄λ, ρ, δ).

Then, there are sequences {dk}k∈N ⊂ Rn, {Hk}k∈N ⊂ Sym(n), {ρk}k∈N → ∞ and {δk}k∈N ⊂ R++

such that (dk, Hk) ∈ KW (xk, µ̄k, λ̄
k
, ρk, δk), {δk}k∈N converges to zero, {xk}k∈N converges to x∗,

{(dk, Hk)}k∈N converges to (d, H) and {µ̄k}k∈N and {λ̄k}k∈N converge to µ̄ and λ̄, respectively.
Therefore, considering the problem

min
x∈Rn

dT (x− x∗) +
1

2
(x− x∗)TH(x− x∗) s.t. g(x) ≤ 0, h(x) = 0, (13)

x∗ is an AL-AKKT2 point with the primal sequence {xk}k∈N. Thus, by the hypothesis, x∗ conforms
with WSOC. And finally, (d, H) ∈ K2(x∗). This concludes the proof.

The least stringent CQ associated with the AKKT2 conditions is called CCP2, while the one asso-
ciated with CAKKT2 is called CAKKT2-regularity. Since AL-AKKT2 is stronger than AKKT2 and
CAKKT2, it is natural to wonder whether the AL2-regularity is weaker than CCP2 and CAKKT2-
regularity. Interestingly, it is, but not only that, AL2-regularity weakens all possible constraint qualifi-
cations that can be used to guarantee convergence to WSOC points for SALM’s accumulation points.
Understanding this matter is straightforward. A proof is given below.

Proposition 5.7. The least stringent CQ necessary for WSOC points at the SALM accumulation
points is AL2-regularity. In particular, CCP2 implies AL2-regularity.

Proof. Let x∗ be a feasible point and assume that a constraint qualification that guarantees WSOC
at SALM accumulation points is valid at x∗. Let

(d, H) ∈ lim sup
(x,¯̄µ,¯̄λ,ρ,δ)→(x∗,µ̄,λ̄,+∞,0+)

KW (x, ¯̄µ, ¯̄λ, ρ, δ).

Then, there are sequences {dk}k∈N ⊂ Rn, {Hk}k∈N ⊂ Sym(n), {xk}k∈N ⊂ Rn, {µ̄k}k∈N ⊂ Rp
+,

{λ̄k}k∈N ⊂ Rp
+, {ρk}k∈N ⊂ R++ and {δk}k∈N ⊂ R++ such that (dk, Hk) ∈ KW (xk, µ̄k, λ̄

k
, ρk, δk),

with ρk → ∞, {δk}k∈N converging to zero, {xk}k∈N converging to x∗, {(dk, Hk)}k∈N converging

to (d, H) and {µ̄k}k∈N and {λ̄k}k∈N converging to µ̄ ∈ Rp
+ and λ̄ ∈ Rq, respectively. Therefore,

considering the problem (13), x∗ is an AL-AKKT2 point with the primal sequence {xk}k∈N. Since AL-
AKKT2 guarantees a sequence convergent to x∗ generated by SALM applied to (13), and a constraint
qualification that guarantees WSOC at SALM accumulation points are valid at the same point, we
have the validity of WSOC. Consequently, (d, H) ∈ K2(x∗) and the inclusion in Definition 5.5 follows.

Since AL-AKKT2 implies AKKT2, the second statement can be proved using the same reasoning
applied to the first part of the proof.

Remark 6. It is possible to prove straightforwardly that CAKKT2-regularity implies AL2-regularity
under the GKL inequality, as discussed in Remark 4.

Considering the developments in this article, we provide the landscape of CQs associated with
WSOC in Figure 1.

6 Final remarks

Safeguarded augmented Lagrangian methods have been widely studied recently due to their broad
applicability and general global convergence results. When one can solve the subproblems of an algo-
rithm obtaining second-order stationarity, a second-order stationary accumulation point for the original
problem is expected to be found. The first-order variation of this idea and reasonable assumptions
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AL2− regularity

CCP2

WCR ∩ (RCRCQ ∪ MFCQ)

CRCQ

Strong − CRSC

RCRCQ

WCR ∩ RQN Strong − EB ∩ RQN

QNΩA(x∗)

Figure 1: Landscape of the new constraint qualifications for which accumulation points of the safe-
guarded augmented Lagrangian method are WSOC points. Here, QNΩA(x∗)

is the quasi-normality CQ
applied to the set ΩA(x∗).

that guarantee a similar first-order property are well known, however very few results are known for
the second-order case. Previous results suggested that a constant rank property of the gradients of
active constraints was needed in order to guarantee the inner continuity of the linearized subspace,
inherent to second-order stationarity.

In this paper, however, we propose a strong error bound property, which is enough to guarantee
second-order stationarity. The condition corresponds to the traditional error bound constraint qualifi-
cation for constraint sets formulated with selections of the constraint functions. Our result also requires
boundedness of the dual sequences, which can be achieved with the so-called relaxed quasinormality
condition. Connection with several other conditions known in the literature are studied; in particular,
we show that the recently introduced strong constant rank of the subspace component is sufficient for
guaranteeing second-order stationarity without any additional requirement.

To formulate our results, we present a new second-order sequential optimality condition, partic-
ularly tailored to the algorithm, which allows us to characterize the least restrictive condition that
guarantees second-order stationarity, called AL2-regularity. This condition is the least stringent CQ
associated with the algorithm in the sense that any CQ that guarantees second-order stationarity at fea-
sible accumulation points reached by the algorithm is necessarily more stringent than AL2-regularity.
This suggests a relevant research topic related to our results, which is the characterization of conditions
that ensure boundedness of the dual sequences generated by the algorithm. We conjecture that this
property can be characterized in terms of error bound type conditions. This will be the subject of
future research.
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