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Abstract

In the realm of robust optimization the k-adaptability approach is one promising method to
derive approximate solutions for two-stage robust optimization problems. Instead of allowing all
possible second-stage decisions, the k-adaptability approach aims at calculating a limited set of
k such decisions already in the first-stage before the uncertainty reveals. The parameter k can
be adjusted to control the quality of the approximation. However, not much is known on how
many solutions k are needed to achieve an optimal solution for the two-stage robust problem. In
this work we derive bounds on k which guarantee optimality for general non-linear problems with
integer decisions where the uncertainty appears in the objective function or in the constraints.
We show that for objective uncertainty the bound is the same as for the linear case and depends
linearly on the dimension of the uncertainty, while for constraint uncertainty the dependence can
be exponential, still providing the first generic bound for a wide class of problems. The results give
new insights on how many solutions are needed for problems as the decision dependent information
discovery problem or the capital budgeting problem with constraint uncertainty.

1 Introduction

Two-stage robust optimization problems appear in a variety of applications where decisions are influ-
enced by uncertain parameters, e.g., the demands of a customer, the travel time or the population
density of a certain district; see [GYDH15, YGdH19]. As common in robust optimization, it is assumed
that the uncertain parameters lie in an uncertainty set which is pre-constructed by the user. In the
two-stage robust setting some of the decisions have to be taken here-and-now while some decisions can
be taken after the uncertain parameters of the problem are known (wait-and-see decisions). The goal
is to find a here-and-now decision which optimizes the worst possible objective value over all scenarios
in the uncertainty set.

While a large amount of works concentrate on the case where the decision variables are continuous,
many real-world applications and combinatorial problem structures require integer decisions; [BK18b].
Unfortunately, two-stage robust optimization problems with integer wait-and-see decisions are compu-
tationally extremely challenging while at the same time the variety of solution methods is still limited.
For the case where the uncertain parameters only appear in the objective function promising algorithms
based on column-generation or branch & bound methods were developed ([KK20, AD22, DLMM24]).
At the same time the constraint uncertainty case is still insufficiently investigated. Here, classical
column-and-constraint generation (CCG) approaches were adapted for the general mixed-integer case
[ZZ12] or for interdiction-type problems [LST23]. Recently, a neural network supported CCG was
developed which can calculate heuristic solutions of high quality much faster than state-of-the-art
approaches [DJKK24].

One promising method to approximate two-stage robust optimization problems is the k-adaptability
approach, where, instead of considering all wait-and-see solutions, a limited set of k such solutions is
calculated in the first-stage such that the best of it can be chosen after the uncertain parameters are
known. This approach was first studied in [BC10] and gained more attention later in [HKW15, SGW20,
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Kur24, RP21]. A related special case of the problem, where no first-stage solutions are considered,
sometimes called min-max-min robust optimization, was studied first in [BK17] and later in several
other works [CGKP19, BK18a, GKP20, CG21, APS22].

One important research question is: How many second-stage solutions k do we need such that the k-
adaptability approach returns an optimal solution for the two-stage robust optimization problem? If we
know such a number k we can use the k-adaptability approach to solve the two-stage robust problem
exactly. Furthermore, it provides insights on the complexity of the uncertainty set in connection
with the second-stage problem, since larger values for k indicate a more diverse set of scenarios and
required second-stage reactions. However, insights on the number of wait-and-see solutions needed for
optimality are sparse. In [HKW15, BK17] it was shown that k = n+ 1 solutions are enough for linear
problems with objective uncertainty (where n is the minimum of the dimension of the problem and the
dimension of the uncertainty). For the constraint uncertainty case the authors in [HKW15] present
an example where all second-stage solutions are needed to guarantee optimality. To the best of our
knowledge there are no better bounds known for the constraint uncertainty case with integer recourse.

Contributions

• We show that in the objective uncertainty case the bound on k which is known for the linear case
holds even if we consider general non-linear objective functions which are concave in the uncertain
parameters. As a consequence we can show for the first time that for robust optimization with
decision dependent information discovery at most k = nξ + 1 solutions are needed to guarantee
optimality, where nξ is the dimension of the uncertainty.

• Based on the latter bounds on k, we derive bounds on the approximation guarantee of the
k-adaptability approach for arbitrary values of k in the objective uncertainty case.

• We derive bounds on k to guarantee optimality for the constraint uncertainty case. To this end
we introduce a new concept called recourse-stability which leads to a bound on k which depends
on the uncertainty dimension and the number of recourse-stable regions needed to cover the
uncertainty set.

• We show that for certain problem structures the bound on k for the constraint uncertainty case
can significantly reduce the value k which is needed for optimality.

2 Preliminaries

2.1 Notation and Preliminaries

For any given positive integer n we denote [n] = {1, 2, . . . , n}, we denote all n-dimensional vectors of
non-negative real numbers as Rn

+ := {x ∈ Rn : x ≥ 0} and all n-dimensional vectors of non-negative

integers as Zn
+ := {x ∈ Zn : x ≥ 0}. The euclidean norm is denoted as ∥ · ∥, i.e., ∥x∥ =

√∑n
i=1 x

2
i for

any x ∈ Rn. For a given set S ⊆ Rn we define the diameter of the set as diam (S) = maxx,y∈S ∥x− y∥,
the closure of the set as cl (S), where a point x ∈ Rn is contained in the closure of S if and only if for
every radius ε > 0 there exists a point s ∈ S with ∥x− s∥ < ε.

For any X ⊆ Rn we call a function f : X → R convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ X and 0 ≤ λ ≤ 1. A function f is concave if −f is convex. The function f is
Lipschitz continuous with Lipschitz constant L > 0 if and only if

|f(x)− f(y)| ≤ L∥x− y∥

holds for all x, y ∈ X .
One preliminary result we will use in Section 3 and 4 was derived in [CC05]. In this work the

authors study convex optimization problems of the form

P : min
x∈Rn

c⊤x

s.t. x ∈ Xi i ∈ [m]
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where m ∈ Z+, c ∈ Rn and Xi is a closed and convex set for every i ∈ [m]. The authors define the
constraint Xk to be a support constraint if removing it from the problem leads to a strictly better
optimal value compared to the original problem P. They prove the following theorem.

Theorem 1 ([CC05]). The number of support constraints for Problem P is at most n.

Note that assuming a linear objective function in P is without loss of generality since we can always
move a convex objective function into the constraints by using the epigraph reformulation.

2.2 Problem Definition

In this work we consider the general class of (non-linear) two-stage robust optimization problems of
the form

inf
x∈X

sup
ξ∈U

inf
y∈Y(x)

f(x, y, ξ) (2RO)

where X ⊆ Rnx is an arbitrary compact set containing all possible first-stage decisions, Y(x) ⊆ Y ⊂ Zny

is the set of feasible second-stage decisions y which can depend on the chosen first-stage decision x
and U ⊂ Rnξ is a convex and compact uncertainty set containing all possible scenarios ξ. We assume
that Y is bounded, i.e., it contains a finite number of solutions. Furthermore, f : X × Y × U → R is
an arbitrary function, if not stated otherwise.

While the uncertainty parameters ξ seem to appear only in the objective function in (2RO), the
problem definition also covers the case of constraint uncertainty due to the generality of the objective
function f . Indeed, we will consider the case of constraint uncertainty in Section 4, by considering the
function

f(x, y, ξ) :=

{
g(x, y, ξ) if A(ξ)x+B(ξ)y ≥ h(ξ)

∞ otherwise,

where g : X ×Y ×U → R is a given continuous objective function, A(ξ) ∈ Rm×nx , B(ξ) ∈ Rm×ny and
h(ξ) ∈ Rm are constraint parameters which are given as functions of the uncertain parameters. The
latter function f ensures that for an optimal x ∈ X and every ξ ∈ U a feasible second-stage decision
y ∈ Y(x) is available, which minimizes g(x, y, ξ), since otherwise the chosen x has objective value ∞
in Problem (2RO).

The k-adaptability approach aims at finding approximate solutions x ∈ X for (2RO). The idea
is, for a fixed parameter k ∈ N, to calculate a set of k second-stage policies y1, . . . , yk already in the
first stage, and choose the best of it in the second-stage after the scenario is known. This leads to the
problem

inf
x∈X

y1,...,yk∈Y(x)

sup
ξ∈U

inf
i=1,...,k

f(x, yi, ξ). (k-ARO)

However, using this idea we cannot guarantee that the calculated solution x ∈ X is optimal for (2RO).
In fact the quality of the optimal k-adaptable solution depends on the parameter k. The larger k,
the better is the approximation for the original two-stage problem (2RO). On the other hand, the
larger we choose k, the more complex Problem (k-ARO) becomes, since we have to introduce more
second-stage decision variables. Hence, an interesting research question is: How many second-stage
policies k do we need, such that the optimal solution of (k-ARO) is also optimal for (2RO)?

This question was studied before for several special cases: In [HKW15] the authors show that
if the uncertainty only appears in the objective function and if this objective function is linear, at
most k = n + 1 second-stage policies are needed, where n is the minimum of the problem dimension
and the uncertainty dimension. This coincides with the result observed in [BK17] for min-max-min
robust combinatorial optimization problems, which is a special case of the k-adaptability problem. In
[Kur24] it was shown that under objective uncertainty, if we want to approximate (2RO) by a factor

of 1 + α(ny), then it is enough to use k = qny policies where q =
M(ny)

M(ny)+a(ny)
and M(ny) is a value

depending on the problem parameters and the dimension ny. In this work we will generalize the latter
results to the case of non-linear objective functions.

In case the uncertain parameters appear in the constraints, the best known bounds on k are not very
promising. In [BC10] the authors argue that under a given continuity assumption and for continuous
second-stage decisions the k-adaptability approach converges to an optimal solution of (2RO) for
k → ∞. Unfortunately, this result is not correct as it was shown later in [KSMM23]. The authors
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provide counterexamples where the k-adaptability approach does not lead to an optimal solution of
(2RO) for any k ∈ N. However, the authors show that the continuity assumption can be adjusted
such that original convergence result holds. Again, for the case of continuous second-stage decisions,
the authors in [EHG18] derive approximation guarantees which (k-ARO) provides for (2RO) and show
that, if the number of policies k is bounded by a polynomial in the problem parameters, (k-ARO)
cannot approximate (2RO) better than by a factor of m1−ε.

In the setting which is studied in this work, namely Y is bounded and only contains integer solutions,
the number of possible second-stage policies is finite. Hence, the convergence discussion above is not
necessary, since trivially for k = |Y| the k-adaptability problem will return the optimal solution of
(2RO). It is shown in [HKW15] that indeed there are problem instances where all k = |Y| policies are
needed, hence finding a better bound is impossible in the general setting. However, in this work we
will derive better bounds on k for certain problem structures.

3 Objective Uncertainty

In case of objective uncertainty and a linear objective function the k-adaptability problem provides an
optimal solution of (2RO) if k ≥ min{ny, nξ} + 1; see [HKW15]. The following theorem shows that
a similar result holds for arbitrary non-linear objective functions which are concave in the uncertain
parameters.

Theorem 2. Let f : X ×Y × U → R be a continuous function such that f(x, y, ξ) is concave in ξ for
every x ∈ X , y ∈ Y and let k ≥ nξ + 1. Then, a solution x ∈ X is optimal for (k-ARO) if and only if
it is optimal for (2RO).

Proof. First, note that since all sets X ,U ,Y are compact and f is continuous, all the maxima and
minima in the problem definition (2RO) exist and are finite.

Since Y is bounded and contains only integer decisions, we know that for k = |Y| the problems
(k-ARO) and (2RO) are equivalent. Fix any first-stage decision x ∈ X . By using an epigraph refor-
mulation we can rewrite the inner max-min problem of (k-ARO) with k = |Y(x)| as

max
z,ξ

z

s.t. f(x, y, ξ)− z ≥ 0 ∀y ∈ Y(x)

ξ ∈ U
z ∈ R.

Since f is concave and continuous in ξ the function f(x, y, ξ) − z is concave and continuous in (ξ, z).
Hence, the latter problem is convex, where for every y ∈ Y(x) the feasible set corresponding to the
constraint is closed and convex. Additionally, ξ ∈ U and z ∈ R are convex constraints with closed
and convex region. From Theorem 1 it follows, that the number of support constraints is at most
the dimension of the problem, i.e., nξ + 1. Hence, we can remove all constraints except nξ + 1 from
the problem without changing the optimal solution. We can conclude that at most nξ + 1 of the
second-stage solutions y ∈ Y(x) are needed. This holds for any x ∈ X which proves the result.

The latter result is interesting since the bound on k does only depend on the dimension of the
uncertainty set and not on the dimension of the decision variables x and y. Furthermore, we do not
make any assumptions on the function f regarding x and y; especially no convexity in x or y is required.

The following example shows that we can apply Theorem 2 to the robust optimization problem
with decision-dependent information discovery (DDID).

Example 3 (Robust Optimization with Decision-Dependent Information Discovery). Consider the
DDID which was introduced in [VGY20] and later studied in [PGDT22, OP23]. In both of the works
[VGY20, PGDT22] the k-adaptability version of the problem is studied which is given as

min
w∈W

y1,...,yk∈Y

max
ξ̄∈U

min
i=1,...,k

max
ξ∈U(w,ξ̄)

ξ⊤Cw + ξ⊤Pyi
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for matrices C,P of appropriate size, where W ⊆ {0, 1}nw , Y ⊆ {0, 1}ny , U ⊂ Rnξ is a polyhedral
uncertainty set and U(w, ξ̄) = {ξ ∈ U : wiξi = wiξ̄i, i = 1, . . . , nξ}. We can rewrite the problem into
the form (k-ARO) where

f(x, y, ξ̄) := max
ξ∈U(w,ξ̄)

ξ⊤Cw + ξ⊤Py.

To apply Theorem 2 we have to show that f is concave in ξ̄. We can reformulate f as

max
ξ

ξ⊤Cw + ξ⊤Py

s.t. wiξ = wiξ̄i i = 1, . . . , nξ

ξ ∈ U .

Taking the dual the problem can be transformed into the minimum of linear functions in ξ̄, which is
concave and continuous in ξ̄. Hence, from Theorem 2 it follows, that at most k = nξ + 1 second-stage
policies are needed to get an optimal solution for DDID.

The next example shows that for the capital budgeting problem the number of policies needed to
guarantee optimality can be very small, namely the number of risk factors plus one.

Example 4 (Capital Budgeting). The k-adaptable version of the two-stage robust capital budgeting
problem (CB) with objective uncertainty was studied in [SGW20]. The problem is given as

max
x∈X

y1,...,yk∈Y(x)

min
ξ∈U

max
i=1,...,k

r(ξ)⊤(x+ κyi)

where X = {0, 1}n and Y(x) = {y ∈ {0, 1}n : c⊤(x + y) ≤ B, x + y ≤ e}. Furthermore, U = [−1, 1]ρ

is an uncertainty set of all realizations of ρ different risk factors and e is the all-one vector. The risk
of project i is given as ri(ξ) = (1 + 1

2Ψ
⊤
i ξ)r

0
i where Ψi is the i-th row of a given factor loading matrix

Ψ. Note that the number of risk factors ρ is usually a small number which is independent of the other
dimensions of the problem. Clearly, the objective function f(x, y, ξ) = r(ξ)⊤(x + κy) is linear (and
therefore concave and continuous) in ξ and we can apply Theorem 2 to show that at most k = ρ + 1
second-stage policies are needed.

Next, we derive approximation bounds which the k-adaptability problem provides for (2RO). In
the following we denote by opt(k) the optimal value of the k-adaptability problem.

Theorem 5. Let f : X ×Y × U → R be a continuous function such that f(x, y, ξ) is concave in ξ for
every x ∈ X , y ∈ Y. Furthermore, assume f is Lipschitz continuous in y, i.e., there exists a constant
L > 0 such that

|f(x, y, ξ)− f(x, y′, ξ)| ≤ L∥y − y′∥ ∀x ∈ X , ξ ∈ U , y, y′ ∈ Y.

Then, for any s, k ∈ N with s ≤ k it holds

opt(s)− opt(k) ≤ Ldiam(Y)
k − s

s+ 1
.

Proof. First, we reformulate (k-ARO) as

min
x∈X

y1,...,yk∈Y(x)

max
ξ∈U

min
λ∈Rk

+∑k
i=1 λi=1

k∑
i=1

λif(x, y
i, ξ).

Since f is concave in ξ and λ ≥ 0, also the function
∑k

i=1 λif(x, y
i, ξ) is concave in ξ. We can apply

the classical minimax theorem and swap the inner maximum and minimum operator which leads to
the reformulation

min
x∈X

y1,...,yk∈Y(x)

λ∈Rk
+∑k

i=1 λi=1

max
ξ∈U

k∑
i=1

λif(x, y
i, ξ).
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Let (x∗, y1
∗
, . . . , yk

∗
, λ∗) be an optimal solution of the latter problem and assume w.l.o.g. that λ∗

1 ≥
. . . ≥ λ∗

k. We define a feasible solution for the s-adaptability problem as

x(s) = x∗, y1(s) = y1
∗
, . . . , ys(s) = ys

∗
,

and

λ(s)1 = λ∗
1, . . . , λ(s)s−1 = λ∗

s−1, λ(s)s =

k∑
i=s

λ∗
i .

Then we have

opt(s)− opt(k) ≤ max
ξ∈U

s∑
i=1

λ(s)if(x(s), y
i(s), ξ)−max

ξ∈U

k∑
i=1

λ∗
i f(x

∗, yi
∗
, ξ).

Let ξ∗(s) be a scenario which maximizes the first maximum of the latter expression. Then we can
further bound

max
ξ∈U

s∑
i=1

λ(s)if(x(s), y
i(s), ξ)−max

ξ∈U

k∑
i=1

λ∗
i f(x

∗, yi
∗
, ξ)

≤
s∑

i=1

λ(s)if(x(s), y
i(s), ξ∗(s))−

k∑
i=1

λ∗
i f(x

∗, yi
∗
, ξ∗(s))

=

k∑
i=s+1

λ∗
i

(
f(x∗, ys

∗
, ξ∗(s))− f(x∗, yi

∗
, ξ∗(s))

)

≤ L

k∑
i=s+1

λ∗
i ∥ys

∗
− yi

∗
∥

≤ Ldiam(Y)

k∑
i=s+1

λ∗
i ,

where the first inequality follows since ξ∗(s) is optimal for the first maximum and feasible for the
second maximum, the first equality follows from the definition of x(s), yi(s) and λ(s), the second
inequality follows from the Lipschitz continuity of f , and the last inequality follows from the definition
of the diameter. From the sorting λ∗

1 ≥ . . . ≥ λ∗
k and since

∑k
i=1 λ

∗
i = 1 it follows λi ≤ 1

i . Hence we
can further bound

Ldiam(Y)

k∑
i=s+1

λ∗
i ≤ Ldiam(Y)

k∑
i=s+1

1

i
≤ Ldiam(Y)

k − s

s+ 1
,

where the last inequality follows from 1
i ≤ 1

s+1 for all i ≥ s+ 1. This proves the result.

The bound in Theorem 5 can depend on the dimension ny, since diam(Y) can depend on ny.
However, it goes to zero if s → k. A similar bound was derived in [Kur24] for the linear case and it
was shown that the bound leads to interesting conclusions. Similarly, for the non-linear case studied in
this work, we can apply Theorem 5 with k = nξ+1 to obtain bounds on the quality of the k-adaptable
approximation for (2RO); see Figure 1. Furthermore, we can use Theorem 5 to provide bounds on the
number of policies k which lead to a certain additive approximation guarantee α.

Corollary 6. Assume that k ≥ nξ + 1−max{0, αnξ

Ldiam(Y)+α} and α > 0. Then it holds

opt(k) ≤ opt(2RO) + α,

where opt(2RO) is the optimal value of (2RO).
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Figure 1: Plot of the additive approximation guarantee α = C
nξ+1−k

k+1 which (k-ARO) provides for
(2RO) depending on k for different constants C and nξ = 1000.

Proof. From Theorem 2 we know that opt(2RO) = opt(nξ + 1). Hence, if max{0, αnξ

Ldiam(Y)+α} =

0, the result holds trivially even for α = 0. Assume now that
αnξ

Ldiam(Y)+α > 0. Then, for l :=

max{0, αnξ

Ldiam(Y)+α} from Theorem 5 we obtain

opt(k)− opt(2RO) ≤ opt(nξ + 1− l)− opt(nξ + 1)

≤ Ldiam(Y)
l

nξ + 2− l

=

Ldiam(Y)αnξ

Ldiam(Y)+α

(nξ+2)(Ldiam(Y)+α)−αnξ

Ldiam(Y)+α

=
Ldiam(Y)αnξ

nξLdiam(Y) + 2Ldiam(Y) + 2α

≤ Ldiam(Y)αnξ

nξLdiam(Y)

= α,

where the first inequality follows from k ≥ nξ+1− l, the second inequality follows from Theorem 5, the
first equality follows from the definition of l, and the last inequality follows since 2Ldiam(Y) + 2α ≥
0.

4 Constraint Uncertainty

In this section we study the connection between Problems (2RO) and (k-ARO) when the uncertainty
appears in the constraints. More precisely, we consider functions

f(x, y, ξ) :=

{
g(x, y, ξ) if A(ξ)x+B(ξ)y ≥ h(ξ)

∞ otherwise,

where g : X × Y × U → R is a given continuous objective function which is concave in ξ and A(ξ) ∈
Rm×nx , B(ξ) ∈ Rm×ny and h(ξ) ∈ Rm are the constraint parameters which are given as affine-linear
functions of the uncertain parameters. The two-stage robust problem is then given as

inf
x∈X

sup
ξ∈U

inf
y∈Y(x)

f(x, y, ξ) (2RO-C)
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and the k-adaptability problem is given as

inf
x∈X

y1,...,yk∈Y(x)

sup
ξ∈U

inf
i=1,...,k

f(x, yi, ξ). (k-ARO-C)

Note that in contrast to the objective uncertainty case we have to use the infimum and supremum
operators since for discontinuous functions f we cannot guarantee that the maximum or minimum is
always attained; see [HKW15] for an example. Since Y is finite at least the inner infimum could be
replaced by the minimum operator, but for comprehensibility we will use the infimum operator instead.

Note that for any x ∈ X for which a ξ ∈ U exists such that there exists no y ∈ Y(x) which is feasible
for A(ξ)x + B(ξ)y ≥ h(ξ), the objective value is ∞. We call such a solution infeasible. Furthermore,
we assume that (k-ARO-C) with k = 1 always has at least one feasible solution x, i.e., the problems
(2RO-C) and (k-ARO-C) are feasible for any k. Since g is continuous and all sets X ,U ,Y are compact,
it follows that the optimal value of all the latter problems is finite.

Unfortunately, the bounds on k derived in the previous section are not valid in the constraint
uncertainty case. In [HKW15] the authors provide an example where in (k-ARO-C) all k = |Y|
second-stage policies are needed to obtain an optimal solution to (2RO-C). Hence, there is no hope to
obtain a better bound in the general setting. However, we will derive better bounds in this section for
certain problem structures.

The main idea for the results is presented in the following. Consider any fixed first-stage solution
x ∈ X which is feasible. Following the reformulation of the proof of Theorem 2 we can reformulate the
inner sup-inf problem of (k-ARO-C) for k = |Y(x)| as

sup
z,ξ

z

s.t. f(x, y, ξ)− z ≥ 0 ∀y ∈ Y(x)

ξ ∈ U , z ∈ R.

(1)

Unfortunately, we cannot apply the same argumentation as in the proof of Theorem 2 since now the
function f is not concave in ξ. In fact, the latter problem is a problem with up to |Y(x)| non-convex
constraints and we cannot use Theorem 2 in [CC05] to bound the number of support constraints.
However, assume we know a convex region D ⊂ U for which the following holds: for every y ∈ Y(x),
the solution y is feasible for the constraint system B(ξ)y ≥ h(ξ)−A(ξ)x either for all ξ ∈ D or for no
ξ ∈ D. We call such a region recourse-stable and we denote by YD(x) the set of second-stage solutions
in Y(x) which are feasible for all ξ ∈ D. Note that D can be an open set.

If we consider Problem (1) only on a convex recourse-stable region D (instead of U) then we can
remove all constraints for which the corresponding second-stage solution y is infeasible on D since the
left-hand-side constraint value is infinity. For all others, we can replace the function f by the function
g, leading to

sup
z,ξ

z

s.t. g(x, y, ξ)− z ≥ 0 ∀y ∈ YD(x)

ξ ∈ cl (D) , z ∈ R,

(2)

where we additionally replaced D by its closure. This can be done since h,A,B are affine linear
functions in ξ and hence the set of ξ which fulfill the constraints B(ξ)y ≥ h(ξ) − A(ξ)x for a given
y ∈ YD(x) is closed and contains the set D. It follows that all solutions in YD(x) are also feasible for
all ξ ∈ cl(D) and using function g instead of f is valid.

Since g is concave in ξ, Problem (2) is a convex problem and since g is continuous in ξ every
constraint describes a closed convex set and the supremum can be replaced by the maximum. We
can apply Theorem 1 to show that at most nξ + 1 support constraints exists, i.e., we can remove all
but nξ + 1 of the second-stage policies without changing the optimal solution. Assume now we have
R convex recourse-stable regions D1, . . . ,DR ⊆ U such that cl (D1) ∪ . . . ∪ cl (DR) = U . We can now
apply the latter idea to every of the recourse-stable regions, which indicates that we need at most
R(nξ + 1) second-stage policies in total. Note that the recourse-stability of a region depends on the
solution x ∈ X . However, if such a cover of at most R convex recourse-stable regions exists for every
x the previous derivation motivates the following Theorem.
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Theorem 7. Let g : X × Y × U → R be a continuous function such that g(x, y, ξ) is concave in ξ for
every x ∈ X , y ∈ Y. Furthermore, assume that for every x ∈ X there exist R convex recourse-stable
regions D1, . . . ,DR ⊆ U such that cl (D1) ∪ . . . ∪ cl (DR) = U . Then, if

k ≥ min {R(nξ + 1), |Y|} ,

a solution x ∈ X is optimal for (k-ARO-C) if and only if it is optimal for (2RO-C).

Proof. Consider any fixed x ∈ X and R convex recourse-stable regions D1, . . . ,DR ⊆ U such that
cl (D1) ∪ . . . ∪ cl (DR) = U . Since g is concave in ξ, for every i ∈ [R] Problem (2) with D = Di is
convex and since g is continuous in ξ every constraint corresponds to a convex closed set. Hence, we
can apply Theorem 1 which shows that we can remove all constraints except nξ+1 support constraints
without changing the optimal value of the problem. For every i ∈ [R] let yi1, . . . , yi(nξ+1) ∈ YDi

(x) be
the solutions related to the support constraints. We define now the problem

sup
z,ξ

z

s.t. f(x, yij , ξ)− z ≥ 0 ∀i ∈ [R], j ∈ [nξ + 1]

ξ ∈ U , z ∈ R.

(3)

which uses at most R(nξ + 1) second-stage solutions. To prove the lemma we show that the optimal
value of (3) is equal to the optimal value of (1).

First, consider the case where x is an infeasible solution for (2RO-C), i.e., there exists a ξ ∈ U such
that no y ∈ Y(x) is feasible for the constraint system A(ξ)x+B(ξ)y ≥ h(ξ). Clearly the optimal value
of (1) and (3) are both ∞ in this case.

Now, consider the case where x is a feasible solution, i.e., for every ξ ∈ U there exists a feasible
second-stage solution. In the following we denote the optimal value of Problem (1) and (3) as opt(1)
and opt(3). Since yij ∈ Y(x) for all i ∈ [R] and j ∈ [nξ + 1], it follows that opt(1) ≤ opt(3).

To show the reverse inequality let (ξ∗, z∗) be an optimal solution of (3). Then there exists an
i∗ ∈ [R] such that ξ∗ ∈ cl (Di∗). Hence, we obtain

opt(3) =

sup
z,ξ

z

s.t. f(x, yij , ξ)− z ≥ 0 i ∈ [R], j ∈ [nξ + 1]

ξ ∈ cl (Di∗) , z ∈ R,
which is smaller or equal to

sup
z,ξ

z

s.t. f(x, yi
∗j , ξ)− z ≥ 0 j ∈ [nξ + 1]

ξ ∈ cl (Di∗) , z ∈ R.

The optimal value of the last problem is equal to the optimal value of

sup
z,ξ

z

s.t. g(x, yi
∗j , ξ)− z ≥ 0 j ∈ [nξ + 1]

ξ ∈ cl (Di∗) , z ∈ R,

(4)

since for every ξ ∈ Di∗ it holds f(x, yi
∗j , ξ) = g(x, yi

∗j , ξ) since yi
∗j ∈ YDi∗ (x). The same can be

shown for ξ ∈ cl (Di∗) \ Di∗ since h,A,B are affine linear functions in ξ and hence the set of ξ which
fulfill the constraints B(ξ)y ≥ h(ξ)−A(ξ)x for a given y ∈ YDi∗ (x) is closed and contains the set Di∗ .
Hence, it must contain cl (Di∗) and we can conclude that all solutions in YDi∗ (x) are also feasible for
all ξ ∈ cl(Di∗) and we can use function g instead of f on the whole closure.

By the definition of the support constraints the optimal value of (4) is equal to

sup
z,ξ

z

s.t. g(x, y, ξ)− z ≥ 0 y ∈ YDi∗ (x)

ξ ∈ cl (Di∗) , z ∈ R.

(5)
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If we can show that any optimal solution of (5) is feasible for (1) then we proved opt(3) ≤ opt(1).
Consider any optimal solution (ξ̄, z̄) for (5) with ξ̄ ∈ Di∗ . Then it holds that f(x, y, ξ̄) = g(x, y, ξ̄)
for every y ∈ YDi∗ (x) and f(x, y, ξ̄) = ∞ otherwise. From feasibility for (5) it follows that the
corresponding solution must be feasible for (1). Now consider the remaining case where ξ̄ ∈ cl (Di∗) \
Di∗ . Then there exists an infinite sequence {ξ̄t}t∈N with ξ̄t ∈ Di∗ and limt→∞ ξ̄t = ξ̄. Set z̄t =
miny∈YDi∗ (x) g(x, y, ξ̄t). Then (ξ̄t, z̄t) is feasible for (5) for every t and limt→∞(ξ̄t, z̄t) = (ξ̄, z̄). Since

ξ̄t ∈ Di∗ for every t, by the discussion above every (ξ̄t, z̄t) is feasible for (1) and hence, the optimal
value of (1) must be at least z̄ which is the optimal value of (5). This shows opt(1) ≥ opt(3) and we
proved opt(1) = opt(3).

In summary we showed that for every x ∈ X there exist at most R(nξ + 1) second-stage solutions
such that Problems (1) and (3) have the same optimal value which proves the result.

As for the bound derived in Theorem 2, the result in Theorem 7 is interesting since the bound on
k only depends on the dimension of the uncertain parameters. However, the dimension ny may be
hidden in the number R as we will see in the following section. Note, again no convexity is required
for g regarding the variables x and y.

Remark 8. If the objective function g does not depend on ξ, i.e., g(x, y, ξ) = ḡ(x, y), then for each
recourse-stable region Di the Problem (2) is equivalent to

max
ξ∈cl(Di)

min
y∈YDi

ḡ(x, y)

and hence there exists a single solution in YDi
which minimizes ḡ(x, y) for every ξ ∈ cl (Di). It follows

that in this case the bound on k from Theorem 7 can be improved to

k ≥ min {R, |Y|} .

Finally, we can show that for constraint-wise uncertainty and fixed-recourse we only need k = 1
second-stage solutions for optimality. A similar result was shown for continuous decisions in [MDH18].

Corollary 9. Assume g does not depend on ξ, B(ξ) = B for all ξ ∈ U and the uncertainty appears
constraint-wise, i.e., we consider the problem

inf
x∈X

sup
ξ1,...,ξm∈U

inf
y∈Y(x)

f(x, y, ξ)

where the constraints are given as

ai(ξ
i)⊤x+ b⊤i y ≥ hi(ξ

i) i ∈ [m].

Then, for k = 1 a solution for (k-ARO-C) is optimal if and only if it is optimal for (2RO-C).

Proof. Since for every x ∈ X the function hi(ξ
i) − ai(ξ

i)⊤x is continuous in ξi and U compact, for
every i ∈ [m] there exists ξ̄i ∈ U which maximizes the latter function over U . This scenario leads
to the smallest number of feasible second-stage solutions and is hence a maximizing scenario. The
problem reduces to

inf
x,y

g(x, y)

s.t. ai(ξ̄
i)⊤x+ b⊤i y ≥ hi(ξ̄

i) i ∈ [m]

x ∈ X , y ∈ Y(x)

which shows that only k = 1 solutions are needed.

The main task in the following is to bound the number of recourse-stable regions for certain problem
structures to obtain good values for R.
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4.1 Bounds on the Number of Recourse-Stable Regions

In this section we derive bounds on the number of recourse-stable regions which are needed to cover
the uncertainty set U . By Theorem 7 we obtain then a bound on the number of policies k which are
needed to get an optimal solution for (2RO-C).

We assumed that all constraint parameters are given as affine-linear functions of the uncertain
parameters ξ, i.e., we have

h(ξ) = h+Hξ, A(ξ) = A+

nξ∑
i=1

Aiξi, B(ξ) = B +

nξ∑
i=1

Biξi

where h ∈ Zm, H ∈ Zm×nξ , A,Ai ∈ Zm×nx , B,Bi ∈ Zm×ny for all i ∈ [nξ] are given parameters. We
can reformulate the constraint system A(ξ)x+B(ξ)y ≥ h(ξ) as

nξ∑
i=1

(Aix+Biy −Hi)ξi ≥ h−Ax−By (6)

where Hi is the i-th column of H. The latter inequality system describes a polyhedron in the ξ-space
defined by m halfspaces.

The main idea to derive the results of this section is the following: if we can bound the number of
hyperplanes in the ξ-space which can appear (over all different second-stage solutions y) in (6) then we
can bound the number of regions which are enclosed by hyperplanes and which are not intersected by
any other hyperplane. We will show that the interior of each of these regions is a convex recourse-stable
region and taking the union of the closures of all these regions defines a cover for U . Then we can
apply Theorem 7 to get a bound on k.

Fix any x ∈ X and define the set of all possible hyperplanes appearing in the constraints in (6)
over all y ∈ Y(x) which intersect with U as

H(x) :=
{
H = {ξ : ai(x, y)

⊤ξ = hi(x, y)} : H ∩ U ̸= ∅, y ∈ Y(x), i = 1, . . . ,m
}

where ai(x, y) is the i-th row of the matrix

A(x, y) :=
(
A1x+B1y −H1, . . . , A

nξx+Bnξy −Hnξ

)
and hi(x, y) is the i-th entry of the vector h(x, y) := h − Ax − By. Define the maximum number of
hyperplanes over all feasible x as

η := max
x∈X

x feasible

|H(x)|.

Note that η can be significantly smaller than |Y|, e.g. if B,Bi are matrices with integer values. Then
η can be bounded by terms in the size of the numbers in B,Bi which we will discuss later in more
detail. Consider Example 10 to motivate the results of this section.

Example 10. Consider the problem without first-stage solutions where the second-stage feasible region
is given as

Y =
{
y ∈ {0, 1}2 : y1 + ξ2y2 ≥ ξ1, y1 + 3y2 ≥ ξ2

}
and uncertainty set U = [ 12 ,

7
2 ]× [ 12 ,

5
2 ]. We can go through all possible second-stage solutions in {0, 1}2

and draw the corresponding hyperplanes of the two constraints in Y; see Figure 2. The interior of
the resulting regions are all recourse-stable. Only the ones which intersect with U are relevant. The
feasible second-stage solutions for each region are given as

YD1
=

{(
1
1

)}
, YD2

=

{(
1
1

)
,

(
0
1

)}
, YD3

=

{(
1
1

)
,

(
0
1

)}
.

We can prove now the following lemma.

Lemma 11. For every feasible x ∈ X there exist at most R ∈ O (ηnξ) convex recourse-stable regions
such that the union of its closures covers U .
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Figure 2: All hyperplanes in H(x) and corresponding recourse stable regions for Example 10.

Proof. Let x ∈ X be an arbitrary feasible solution. Consider H(x) which contains at most η hyper-
planes. This set of hyperplanes induces a set of full-dimensional regions, where each region is enclosed
by a subset of these hyperplanes and no other hyperplane in H(x) is intersecting the region. It was
shown in Lemma 4 in [STR18] that this number of regions can be bounded by

rank(V )∑
i=0

(
η

i

)
∈ O

(
ηrank(V )

)
,

where V is the matrix which results from the concatenation of all row vectors ai(x, y) appearing in
H(x). We can bound the rank of V by nξ which yields the number of regions stated in the lemma.

Next, we have to show that the interior of each of the induced regions is in fact a convex recourse-
stable region. Convexity follows since each region is polyhedral. To show recourse-stability consider
any full-dimensional region D̄ induced by the set of hyperplanes in H(x). For any ξ in the interior of
this region consider any y ∈ Y(x) which is feasible for this ξ. Then ξ lies in the polyhedron (6) for
this y. Since none of the hyperplanes which defines (6) intersects the interior of D̄, the whole interior
of the region must be contained in (6) and hence y is feasible for all ξ in the interior of this region.
Hence, we proved that the interior of each region is recourse-stable.

Finally, we have to show that the union of the closures of these regions covers U . This is trivially
the case since we actually bounded the number of regions to cover the whole space Rnξ .

The bound on the size of the cover can be improved if we consider fixed recourse, i.e., the recourse
matrix B(ξ) does not depend on ξ.

Lemma 12. Assume fixed recourse, i.e., B(ξ) =: B for all ξ ∈ U . For every feasible x ∈ X there
exists a cover of at most R ∈ O

(
ηmin{m,nξ}

)
convex recourse-stable regions for U .

Proof. In the case of fixed recourse, we have Bi = 0 for all i ∈ [nξ]. Hence, A(x, y) is the same matrix
for every y ∈ Y(x). Following the proof of Lemma 11 the number of regions for the cover can be
bounded by O

(
ηrank(V )

)
where V is the matrix derived from concatenating the same matrix A(x, y)

multiple times. Hence, V has rank at most min{m,nξ}. Following the rest of the proof of Lemma 11
proves the result.

We can summarize the latter results now in the following theorem.

Theorem 13. Let g : X × Y × U → R be a continuous function such that g(x, y, ξ) is concave in ξ
for every x ∈ X , y ∈ Y. Then, the number of second-stage policies needed in (k-ARO-C) to ensure an
optimal solution for (2RO-C) is

• k ∈ O
(
ηmin{m,nξ}(nξ + 1)

)
if fixed recourse holds
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• k ∈ O (ηnξ(nξ + 1)) if random recourse holds.

Proof. The result directly follows from Lemma 11 and 12 together with Theorem 7.

By Remark 8 it follows that, if g does not depend on ξ, we can improve the bounds to k ∈
O
(
ηmin{m,nξ}

)
if fixed recourse holds and k ∈ O (ηnξ) if random recourse holds.

Calculating the value η which is required for the bounds in Theorem 13 is not always easy. In the
following remarks we provide bounds which are easier to calculate.

Remark 14. Assume Y ⊆ Zny

+ ∩ [0, u] where u ∈ Zny

+ are given upper bounds on the second-stage
decision values. Furthermore, assume fixed recourse and B(ξ) = B with B ∈ Zny . Since B is integer
for each of the m rows bi, the term b⊤i y can attain at most

β = max
i=1,...,m

2|bi|⊤u

different values, where |bi| denotes the vector containing the absolute values of all entries in bi. We
can conclude that there are at most β values for hi(x, y). Since all Bi = 0 there is only one matrix
A(x, y). For each of the m constraints we therefore have at most β many right-hand-side values and
we can conclude that H(x) contains at most η ≤ mβ hyperplanes. Note that this value only depends
on the number of constaints and the values in B and not on the dimensions of the problem.

Remark 15. The number of right-hand-side values in Remark 14 can be improved in some situations.
Note that for every right-hand-side value in (6) which is larger than all left-hand-side values, the
corresponding regions do not intersect with U . On the other hand if the right-hand-side value is
smaller than the smallest left-hand-side value the regions contain the full set U . Hence, we do not need
to consider these values in H(x).

Remark 16. Assume Y ⊆ Zny

+ ∩ [0, u] where u ∈ Zny

+ are given upper bounds on the second-stage
decision values. Furthermore, assume random recourse and B,Bi ∈ Zny for all i. Define similar to
the previous remark the number of possible values which can appear in row i of matrix Bj, i.e., the
values (bji )

⊤y over all y ∈ Y(x) as

β̃ = max
i=1,...,m

max
j=1,...,nξ

2|bji |
⊤u,

where |bji | denotes the vector containing the absolute values of all entries in bji . Fix one constraint

i ∈ [m] and consider all hyperplanes ai(x, y)
⊤ξ = hi(x, y) in H(x). For ai(x, y) we have at most β̃nξ

vectors and for hi(x, y) at most β values, as derived in Remark 14. Hence we have at most β̃nξβ
hyperplanes for constraint i which leads to η ≤ mβ̃nξβ.

We now present applications studied in other works and apply the previous results.

Example 17 (Capital Budgeting with Constraint Uncertainty). Consider the capital budgeting prob-
lem from Example 4 where now also the budget-constraint contains uncertain parameters, i.e., we have
Y(x) = {y ∈ {0, 1}n : c(ξ)⊤(x+ y) ≤ B, x+ y ≤ e} where again U = [−1, 1]ρ is an uncertainty set of
all realizations of ρ different risk factors and e is the all-one vector. The costs of project i are given
as ci(ξ) = (1 + 1

2Φ
⊤
i ξ)c

0
i where Φi is the i-th row of a given factor loading matrix Φ. We assume that

all entries of Φ and c0 are integer, which can be obtained after scaling.
We can reformulate the budget constraint as

ρ∑
j=1

(
n∑

i=1

c0i (xi + yi)Φij

)
ξj +

n∑
i=1

c0i (xi + yi) ≤ B. (7)

To apply Theorem 13 we have to calculate η, which is the maximum number of hyperplanes which can
appear in (7) over all y for a given x. The maximum number of options appears clearly if x = 0. In
this case the maximum number of values over all y for each coefficient

∑n
i=1 c

0
i (xi + yi)Φij is

ϕ := 2 max
j=1,...,ρ

n∑
i=1

|Φijc
0
i |.
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The constant term can have at most c̄ = 2
∑n

i=1 |c0i | values over all y. Hence the number of possible
hyperplanes is η ≤ ϕρc̄. From Theorem 13 it follows that we need at most k ∈ O ((ϕρc̄)ρ(ρ+ 1))
second-stage policies to ensure optimality. From Remark 8 it follows, that if the objective parameters
are not uncertain this bound improves to k ∈ O ((ϕρc̄)ρ). Note again that ρ is usually a fixed and small
number and the actual number of possible second-stage solutions can be |Y| = 2ny .

Example 18. Consider a capacitated facility location problem with uncertain transportation costs and
uncertain capacities. We have a set of customers J and a set of locations I and transportation costs
tij(ξ) between each i ∈ I and j ∈ J which depend on the uncertain scenario ξ ∈ U . Furthermore,
each location i ∈ I has a capacity Ci(ξ) = c⊤i ξ which is uncertain as well. Each customer j ∈ J has
a known integer demand dj > 0. We are allowed to open at most p facilities in the first-stage and for
every scenario ξ we afterwards have to assign each customer to an opened facilities such that the sum
of assigned demands for each facility does not exceed the capacity. The problem can be formulated in
the form (2RO-C) where X =

{
x ∈ {0, 1}I :

∑
i∈I xi ≤ p

}
and

Y(x) =

y ∈ {0, 1}I×J :
∑
i∈I

yij = 1 ∀j ∈ J ,
∑
j∈J

djyij ≤ c⊤i ξxi ∀i ∈ I

 .

The objective function is g(y, ξ) =
∑

i∈I
∑

j∈J tij(ξ)yij. To calculate η first observe that, since at
most p facilities can be openend, at most p of the capacity constraints are non-zero. Since all demands
are integer, the left-hand-side of the capacity constraints can only take the values {0, 1, . . . , D}, where
D =

∑
j∈J dj. For each opened facility the coefficient vector ci is fixed which leads to D + 1 different

hyperplanes for each opened facility. In total we have at most η ≤ p(D + 1) hyperplanes. Applying
Theorem 13 show that we need at most k ∈ O ((p(D + 1))p(nξ + 1)) second-stage policies. From Re-
mark 8 it follows, that if the travel costs are not uncertain this bound improves to k ∈ O ((p(D + 1))p).
In contrast, the number of second-stage solutions can be |Y| = 2|I||J |.

5 Conclusion

In this work we derived bounds on the number k of second-stage solutions which are needed such that
the k-adaptability approach returns an optimal solution for the original two-stage robust problem.
We distinguished the two cases of objective uncertainty and constraint uncertainty. Interestingly, for
objective uncertainty the number of solutions needed is k = nξ+1, i.e., it depends only on the dimension
of the uncertainty. This results hold for a very general class of (non-linear) objective functions. We
used the latter result to derive approximation guarantees the k-adaptability problem provides for all
values of k smaller than the bound above.

For constraint uncertainty we developed a new concept called recourse-stability. A recourse-stable
region is a subset of the uncertainty set such that each second-stage solution is either feasible or
infeasible on the whole set. We could show that to guarantee optimality we need at most k = R(nξ+1)
second-stage solutions, where R is the number of recourse-stable regions needed to cover the uncertainty
set. We show that we can determine a value for R by considering all possible hyperplanes which can
appear in the uncertain constraints by plugging in all possible second-stage solutions. Examples show
that the derived value for R provides good bounds on k for many problem structures.

There remain several open questions to be tackled in the future. First, it would be interesting if
we can achieve better values for R by focusing on certain applications and the corresponding problem
structures. Furthermore, it would be interesting if approximation bounds as for objective uncertainty
could also be derived for the constraint uncertainty case. Finally, an important question is if the
methodology derived in this work can contribute to the development of efficient solution methods.

Acknowledgement The author wants to thank Henri Lefebvre and Dick den Hertog for a lot of
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