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Abstract

Considering a standard nonlinear programming problem, one may view a subset of the equality
constraints as an embedded Riemannian manifold. In this paper we investigate the differences
between the Euclidean and the Riemannian approach for this problem. It is well known that
the linear independence constraint qualification for both approaches are equivalent. However,
when considering recently introduced constant rank constraint qualifications, the Riemannian
approach provides a weaker condition as the rank of the gradients must remain constant only
inside the manifold, while the Euclidean approach requires constant rank properties inside a
full-dimensional neighborhood of the ambient space. Therefore by employing a Riemannian
augmented Lagrangian method to a standard nonlinear programming problem we are able to
obtain standard global convergence to a Karush/Kuhn-Tucker point under a new weaker constant
rank condition that considers only lower dimensional neighborhoods. In this way we illustrate
how the Riemannian perspective can provide new and stronger results to classical problems
traditionally addressed through Euclidean theory. We also investigate the two alternative
augmented Lagrangian algorithms in a comprehensive computational study, where we show
some classes of problems where the Riemannian approach is much more robust in attaining
better quality solutions.

Keywords: Safeguarded augmented Lagrangian method, constrained nonlinear programming,
constraint qualifications, embedded submanifold.

AMS subject classification: 49J52, 49M15, 65H10, 90C30.

1 Introduction

This paper advances the comprehension of findings concerning constraint qualifications and conver-
gence properties inherent in an augmented Lagrangian method designed for Riemannian manifolds,
as initially outlined in [3]. It aims to demonstrate how the theoretical framework based on Rieman-
nian concepts can introduce innovative perspectives and viable alternative solutions to problems
traditionally addressed through Euclidean theory. Additionally, this study highlights the capac-
ity of modern Riemannian geometry concepts to enrich conventional Euclidean theory, thereby
refining theoretical paradigms within Euclidean space. To achieve this objective, we introduce
novel constraint qualifications and explore the applicability of Riemannian augmented Lagrangian
methods to a specific category of constrained nonlinear programming problems characterized by
both equality and inequality constraints, with the equality constraints further categorized into two
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distinct types. The constrained optimization problem under consideration is formally defined as
follows:

Minimize
q∈Rn

f(q), subject to h(q) = 0, H(q) = 0, G(q) ≤ 0, (1)

where the functions f : Rn → R, h := (h1, . . . , ht) : Rn → Rt, H := (H1, . . . ,Hs) : Rn → Rs
and G := (G1, . . . , Gm) : Rn → Rm are continuously differentiable. A standard approach to
solving problem (1) is through the augmented Lagrangian algorithm, which involves the iterative
unconstrained minimization of the standard Powell-Hestenes-Rockafellar augmented Lagrangian
function given by

Lρ(q, η, λ, µ) := f(q) +
ρ
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where ρ > 0 is a fixed penalty parameter, and safeguarded Lagrange multipliers η := (η1, . . . , ηt) ∈ Rt,
λ := (λ1, . . . , λs) ∈ Rs and µ := (µ1, . . . , µm) ∈ Rm+ are estimated in each (outer) iteration. Here
[u]+ stands for the projection of u ∈ Rm onto the non-negative orthant Rm+ . An alternative approach
to addressing constrained optimization problems in the format (1), previously utilized in [2, 16],
involves considering the so-called lower-level constraints:

M := {q ∈ Rn | h(q) = 0}. (3)

Then, a constrained augmented Lagrangian method is employed to solve the problem, which involves
iteratively minimizing the partial Powell-Hestenes-Rockafellar augmented Lagrangian function

Lρ(q, λ, µ) := f(q) +
ρ
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subject to the lower-level set M. The idea behind this division arises from the strategic advantage that
augmented Lagrangian methods offer in solving nonlinear programming problems. By partitioning
the equality constraints, a level of flexibility is introduced, allowing for the prioritization of
constraints based on their relevance to the current problem or the ease with which they can be
managed. Consequently, this approach within the augmented Lagrangian framework enables the
penalization of a specific set of constraints, potentially the most demanding ones, while ensuring
a non-penalized status for the lower-level constraints that we aim to prioritize. As a result,
subproblems are formulated as minimizing Lρ(·, η, µ) subject to M. For instance, if the goal is to
maintain feasibility for a set M, these subproblems can be addressed using methods that keep the
(inner) iterates in M. In this manner, the sequence generated by these constrained augmented
Lagrangian methods remains feasible with respect to M. Additionally, a notable aspect of this
approach applies to scenarios where the objective function and/or constraints are defined solely at
points belonging to M, rendering the equality constraint h(q) = 0 ineligible for penalization.

Understanding optimality conditions and constraint qualifications is crucial in the study of
nonlinear programing problems. The Karush/Kuhn-Tucker (KKT) conditions play a pivotal
role in identifying optimal solutions, while constraint qualifications ensure that these solutions
satisfy the KKT conditions. Over time, modern nonlinear programming theory has witnessed the
evolution of KKT conditions and the emergence of new constraint qualifications. This evolution has
significantly broadened the theoretical framework of nonlinear optimization, allowing the application
of augmented Lagrangian methods across a wide range of problem classes. Notably, constraint
qualifications such as the constant rank constraint qualification (CRCQ) [27], constant positive linear
dependence condition (CPLD) [34], relaxed-CRCQ (RCRCQ) [33], relaxed-CPLD (RCPLD) [7],
constant rank of the subspace component (CRSC) [8] and quasinormality constraint qualification
(QN) [25], have been introduced to enhance the understanding and application of optimization
techniques. Moreover, the introduction of sequential optimality conditions, such as the approximate
Karush-Kuhn-Tucker (AKKT) [5] and positive-AKKT (PAKKT) [4], has provided additional
flexibility by relaxing the KKT conditions. These developments represent important advancements
in the field and are essential for advancing the state-of-the-art in nonlinear programming research.

2



For example, within the framework of safeguarded augmented Lagrangian methods, their strength
lies in their ability to generate PAKKT sequences for constrained nonlinear programming problems.
Under any of the aforementioned constraint qualifications, this ensures that all limit points of such
sequences adhere to the KKT conditions, a topic extensively explored in the literature (see, for
instance, [4, 6, 8]). We use the adjective strict to distinguish the constraint qualifications with the
aforementioned sequential property, see [9].

To address nonlinear optimization problems in the format (1), we introduce new strict constraint
qualifications termed lower strict constraint qualifications (Lower-SCQs) to take into account
the lower-level approach of considering augmented Lagrangian subproblems constrained to the
lower-level set M. These constraint qualifications serve as less restrictive counterparts to CRCQ,
CPLD, RCRCQ, RCPLD, CRSC, and QN. In this new scenario, it is no longer guaranteed that the
limit points of the sequence generated by classic augmented Lagrangian methods satisfy the KKT
conditions. Therefore, by considering the equality constraints (3) as a Riemannian manifold, we
employ tools from Riemannian Geometry to establish a connection between the Lower-SCQs and
their Riemannian counterparts recently introduced in [3], referred to as Riemannian strict constraint
qualifications (Riemannian-SCQs). Furthermore, by introducing the concept of lower approximate
Karush-Kuhn-Tucker (Lower-AKKT) and lower positive approximate-KKT (Lower-PAKKT) for
problem (1), which serve as counterparts to AKKT and PAKKT, respectively, we show that the
Riemannian adaptation of the classic safeguarded augmented Lagrangian algorithm, an intrinsic
algorithm presented in [35], is able to produce Lower-PAKKT sequences that are feasible for M.
Moreover, under any Lower-SCQ we show that all limit points of this sequence satisfy the KKT
conditions for problem (1). Additionally, as we establish a link between these Lower-SCQs and
the Riemannian-SCQs, we highlight the robustness of the theory within Riemannian manifolds.
This robustness offers valuable support for the convergence analysis of algorithms in nonlinear
programming, especially when compared to those formulated in Euclidean spaces. This underscores
that there are various subtle aspects concerning constraint qualifications in Riemannian manifold
settings that would be overlooked if the problem were solely addressed with the existing Euclidean
theory. In this sense, as mentioned earlier, this paper serves as a complement to aid in understanding
the range of applications of the theory presented in [3].

The paper is structured as follows: Subsection 1.1 introduces terminology, notations, and basic
results on Euclidean space and calculus on embedded submanifolds. Section 2 revisits concepts
and results in nonlinear optimization in Euclidean spaces and Riemannian manifolds. Section 3
presents new strict constraint qualifications (SCQs) for problem (1), including Lower-SCQs such
as Lower-CRCQ, Lower-CPLD, Lower-RCRCQ, Lower-RCPLD, Lower-CRSC, and Lower-QN.
It also introduces the new sequential optimality conditions Lower-AKKT and Lower-PAKKT.
Section 4 establishes connections between Lower-SCQs and Riemannian-SCQs, demonstrating that
under any Lower-SCQ, limit points of the constrained augmented Lagrangian algorithm satisfy the
KKT conditions for problem (1). Section 5 presents numerical experiments, and Section 6 offers
concluding remarks.

1.1 Notations, terminology and basics results

The set of all m× n matrices with real entries is denoted by Rm×n. For M ∈ Rm×n, the matrix
M> ∈ Rn×m is the transpose of M . Let Rm ≡ Rm×1 be the m-dimensional Euclidean space with
the norm denoted by ‖ · ‖2. We denote the infinity norm in Rm by ‖ · ‖∞. The open and closed balls
of radius r > 0 in Rm, centered at p, are respectively defined by Br(p) := {q ∈ Rm | ‖p− q‖2 < r}
and Br[p] := {q ∈ Rm | ‖p− q‖2 ≤ r}. For all p, q ∈ Rm, min{p, q} ∈ Rm is the component-wise
minimum of p and q. We denote by [q]+ the Euclidean projection of q onto the non-negative
orthant Rm+ . The subspace spanned by a set C ⊂ Rm is denoted by Span(C). For a given
subspace V ⊂ Rm, its orthogonal subspace is defined by V ⊥ :=

{
z ∈ Rm | v>z = 0, ∀v ∈ V

}
and

the Euclidean projection operator onto V ⊥ is denoted by ProjV ⊥ .

Definition 1. Let V = {v1, . . . , vs} and W = {w1, . . . , wm} be two finite multisets on Rn. The
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pair (V,W ) is said to be positive-linearly dependent if there exist α = (α1, . . . , αs) ∈ Rs and
β = (β1, . . . , βm) ∈ Rm+ such that (α, β) 6= 0 and

∑s
i=1 αivi +

∑m
j=1 βjwj = 0. Otherwise, (V,W ) is

said to be positive-linearly independent. When clear, we refer to V ∪W instead of (V,W ).

We now introduce two lemmas that are essential in Section 4 to establish a connection between
the Lower-SCQs and their Riemannian counterparts. The proofs are straightforward from standard
linear algebra arguments.

Lemma 1. Let C1 := {vi ∈ Rn | i = 1, . . . , t}, C2 := {wi ∈ Rn | i = 1, . . . , s}, and C3 := {ui ∈ Rn | i = 1, . . . ,m}.
Let V := Span(C1) and V ⊥ be its orthogonal subspace. Define ProjV ⊥ C2 := {ProjV ⊥ wi | i =
1, . . . , s} and ProjV ⊥ C3 := {ProjV ⊥ ui | i = 1, . . . ,m}. Assume that C1 is linearly independent.
Then, the following statements are equivalent:

(i) The set C := (C1 ∪ C2)∪ C3 is linearly independent (respectively, positive-linearly independent);

(ii) The set P := ProjV ⊥ C2 ∪ ProjV ⊥ C3 is linearly independent (respectively, positive-linearly
independent).

Lemma 2. Let C1 := {vi ∈ Rn | i = 1, . . . , t}, C2 := {wi ∈ Rn | i = 1, . . . , s}, K ⊂ {1, . . . , s}
and CK := {wi ∈ Rn | i ∈ K}. Let V := Span(C1) and V ⊥ be its orthogonal subspace. Define
ProjV ⊥ CK := {ProjV ⊥ wi | i ∈ K} and ProjV ⊥ C2 := {ProjV ⊥ wi | i = 1, . . . , s}. Assume that C1 is
linearly independent. Then, the following statements are equivalent:

(i) The set C1 ∪ CK is a basis of Span(C1 ∪ C2);

(ii) ProjV ⊥ CK is a basis of Span(ProjV ⊥ C2).

Since h = (h1, . . . , ht) : Rn → Rt is continuously differentiable on Rn, by assuming that the
set {h′i(q) | i = 1, . . . , t} is linearly independent for all q ∈ Rn, we conclude that the set (3) is
an embedded submanifold of Rn of dimension n − t. The open and closed balls of radius r > 0
in M, centered at p, are respectively defined by Br(p) := {q ∈M | d(p, q) < r} and Br[p] :=
{q ∈M | d(p, q) ≤ r}, where d(·, ·) is the Riemannian distance associated with the induced metric
from Rn. The tangent plane at q ∈M is given by

TqM :=
{
v ∈ Rn | h′(q)v = 0

}
=
{
v ∈ Rn | h′i(q)>v = 0, i = 1, . . . t

}
. (5)

To simplify the notation we also denote the metric in TqM by ‖ · ‖. It follows from (5) that

TqM := Ker h′(q), TqM⊥ = Im h′(q)
T
, Rn = TqM⊕ TqM⊥. (6)

Therefore, (5) and the second equality in (6) imply that

TqM⊥ =
{
h′(q)>η =

t∑
i=1

ηih
′
i(q) | η = (η1, . . . , ηt) ∈ Rt

}
. (7)

For a given q ∈M, it is well known that the projection operator Projq : Rn → TqM is given by

Projq v =
(
I − h′(q)>

(
h′(q)h′(q)

>
)−1

h′(q)
)
v, (8)

see, for example, [31, p. 377]. Hence, by using (8), the intrinsic gradient of a differentiable function
ϕ : M→ R is given by

gradϕ(q) = Projq ϕ
′(q). (9)

We will need the following lemma, which is easily proved:

Lemma 3. Let X1, . . . , X` be continuous vector fields on a Riemannian manifold M. Let p ∈M
and assume that {X1(p), . . . , X`(p)} are linearly independent on TpM. Then, there exists ε > 0 such
that {X1(q), . . . , X`(q)} are also linearly independent on TqM, for all q ∈ Bε(p).

We conclude this section by noting that the subspace in TqM spanned by a set C ⊂ TqM will
also be denoted by Span(C).
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2 Preliminaries

This section defines essential notations and concepts in Euclidean and Riemannian geometry, reviews
the basics for addressing the Euclidean problem (1), and uses a submanifold concept to rewrite it
as an intrinsic nonlinear optimization problem, yielding new results.

2.1 Nonlinear optimization problems on Euclidean space

The feasible set Ω ⊂ Rn of problem (1) and the set of indices of active inequality constraints at
p ∈ Ω, denoted by A(p), are defined respectively as follows:

Ω := {q ∈ Rn | h(q) = 0, H(q) = 0, G(q) ≤ 0}, A(p) := {i ∈ {1, . . . ,m} | Gi(p) = 0}. (10)

It is easy to see that Ω is closed. We say that the Karush/Kuhn-Tucker (KKT) conditions are
satisfied at p ∈ Ω when there exist Lagrange multipliers (η, λ, µ) ∈ Rt × Rs × Rm+ such that the
following two conditions hold:

(i) L′(p, η, λ, µ) = 0, (ii) µi = 0, for all i /∈ A(p),

where L(·, η, λ, µ) : Rn → R is the Lagrangian function associated with problem (1), defined by

L(q, η, λ, µ) := f(q) +
t∑
i=1

ηihi(q) +
s∑
i=1

λiHi(q) +
m∑
i=1

µiGi(q),

and L′(q, η, λ, µ) is its gradient. For p ∈ Ω, the linearized cone L(p) associated with Ω at p is defined
by

L(p) :=
{
v ∈ Rn | h′i(p)>v = 0, i = 1, . . . , t; H ′i(p)

>v = 0, i = 1, . . . , s; G′j(p)
>v ≤ 0, j ∈ A(p)

}
,

and its polar L(p)◦ is given by

L(p)◦ :=
{
v ∈ Rn | v =

t∑
i=1

ηih
′
i(p) +

s∑
i=1

λiH
′
i(p) +

m∑
j=1

µjG
′
j(p), µj ≥ 0, ηi, λi ∈ R

}
. (11)

In the following, for the sake of conciseness, we introduce some notations. Define

T := {1, . . . , t}, S := {1, . . . , s}, (12)

and consider T̄ ⊆ T , I ⊆ S, and J ⊆ A(p). For a given q ∈ Ω, we define the following sets of
vectors:

[h′T̄ , H
′
I , G

′
J ](q) :=

(
{h′i(q) | i ∈ T̄ } ∪ {H ′i(q) | i ∈ I}

)
∪ {G′i(q) | i ∈ J }. (13)

If one of the sets T̄ , I, or J is empty, then the corresponding set will not appear in (13). For instance,
for T̄ = ∅, the set in (13) will be denoted by [H ′I , G

′
J ](q) := {H ′i(q) | i ∈ I} ∪ {G′i(q) | i ∈ J }.

In addition, for sake of simplicity, we set h′ := h′T , H ′ := H ′S , and G′ := G′A(p). Two constraint
qualifications that will be used later are stated below.

Definition 2. A point p ∈ Ω is said to satisfy the linear independence constraint qualification
(LICQ) if the set [h′, H ′, G′A(p)](p) is linearly independent. It satisfies the Mangasarian-Fromovitz

constraint qualification (MFCQ) if the set [h′, H ′, G′A(p)](p) is positive-linearly independent.

We end this section by recalling the (Euclidean) safeguarded augmented Lagrangian algorithm for
solving problem (1), which uses the standard Powell-Hestenes-Rockafellar augmented Lagrangian
function given in (2), see [2, 6, 17, 28].
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Algorithm 1: Euclidean safeguarded augmented Lagrangian algorithm

Step 0. Let p0 ∈ Rn, τ ∈ [0, 1), γ > 1, ηmin < ηmax, λmin < λmax, µmax > 0, and ρ1 > 0 be given. Also, take
η̄1 ∈ [ηmin, ηmax]t, λ̄1 ∈ [λmin, λmax]s and µ̄1 ∈ [0, λmax]m initial Lagrange multipliers estimates, and (εk)k∈N ⊂ R+ a
sequence of tolerance parameters such that limk→∞ εk = 0. Set k ← 1.

Step 1. (Solve the subproblem) Compute (if possible) pk ∈ Rn such that∥∥∥L′ρk (pk, η̄k, λ̄k, µ̄k)
∥∥∥
∞
≤ εk.

If it is not possible, then stop the execution of the algorithm and declare failure.

Step 2. (Estimate new multipliers) Compute

ηk = η̄k + ρkh(pk), λk = λ̄k + ρkH(pk), µk =
[
µ̄k + ρkG(pk)

]
+
.

Step 3. (Update the penalty parameter) Define νk := µk−µ̄k

ρk
. If k = 1 or

max
{∥∥(h(pk), H(pk))

∥∥
∞,
∥∥νk∥∥∞} ≤ τ max

{∥∥(h(pk−1), H(pk−1))
∥∥
∞,
∥∥νk−1

∥∥
∞

}
,

set ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 4. (Update safeguarded multipliers) Compute η̄k+1 ∈ [ηmin, ηmax]m, λ̄k+1 ∈ [λmin, λmax]m, and µ̄k+1 ∈ [0, µmax]p.

Step 5. (Begin a new iteration) Set k ← k + 1 and go to Step 1.

Algorithm 1 is widely recognized for its ability to generate AKKT sequences (see [5, 14]).
Under strict constraint qualifications such as CRSC, or even weaker conditions, all limit points of
such a sequence satisfy the KKT conditions (see, for example, [8, 10]). In the subsequent section,
we introduce new strict constraint qualifications for problem (1). In this new scenario, it is no
longer guaranteed that the limit points of the sequence generated by Algorithm 1 satisfy the KKT
conditions. Therefore, we will employ tools from Riemannian Geometry to establish a connection
between these new strict constraint qualifications and the Riemannian strict constraint qualifications
introduced in [3]. Consequently, the Riemannian version of Algorithm 1, an intrinsic algorithm
introduced in [35], generates AKKT sequences for problem (1). Under these new strict constraint
qualifications, we will show that all its limit points satisfy the KKT conditions.

2.2 Nonlinear optimization problems on embedded submanifolds

In this subsection, we revisit some intrinsic strict constraint qualifications introduced in general
Riemannian manifolds, focusing particularly on cases where the manifold is an embedded submanifold
of Euclidean space. Hereafter, we assume that:

(H1) The set [h′](p) is linearly independent, for all p ∈ Rn.

In this way, the specific submanifold under consideration is as follows:

M := {q ∈ Rn | h(q) = 0}, (14)

where h = (h1, . . . , ht) : Rn → Rt is continuously differentiable on Rn. We denote by 〈·, ·〉 the metric
in M induced from the Euclidean metric in Rn, and by ‖ · ‖ the associated norm.

We use (14) to rewrite problem (1) in a more convenient form as an intrinsic nonlinear opti-
mization problem, stated equivalently as follows:

Minimize
q∈M

f(q), subject to H(q) = 0, G(q) ≤ 0, (15)

where f : M→ R, H = (H1, . . . ,Hs) : M→ Rs, and G = (G1, . . . , Gm) : M→ Rm are continuously
differentiable on M. Let us denote the intrinsic feasible set of problem (15) by ΩM ⊂M and the
set of indices of active inequality constraints at p ∈ ΩM by AM(p), i.e.,

ΩM := {q ∈M | H(q) = 0, G(q) ≤ 0}, AM(p) := {i ∈ {1, . . . ,m} | Gi(p) = 0} . (16)
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Remark 1. Problems (1) and (15) are topologically identical and, in particular, have the same
solutions. Additionally, from (10) and (16), we have Ω = ΩM and A(p) = AM(p). However, we
emphasize that the functions f , H, and G in problem (1) are conceptually different from those in
problem (15), as they are now defined as functions on the Riemannian manifold. Consequently, the
gradients of the functions f , Hi, and Gi are computed using formula (9), specifically grad f(q) =
Projq f

′(q), gradHi(q) = ProjqH
′
i(q), and gradGi(q) = Projq G

′
i(q).

The intrinsic Karush/Kuhn-Tucker (KKT) conditions are deemed satisfied at p ∈ ΩM if there
exist corresponding Lagrange multipliers (λ, µ) ∈ Rs × Rm+ that fulfill the following two conditions:

(i) gradL(p, λ, µ) = 0, (ii) µj = 0, for all j /∈ AM(p),

where L(·, λ, µ) :M→ R is the Lagrangian function associated with problem (15) defined by

L(q, λ, µ) := f(q) +

s∑
i=1

λiHi(q) +

m∑
j=1

µjGj(q),

and its intrinsic gradient, denoted by gradL(q, λ, µ) ∈ TqM, is given by

gradL(q, λ, µ) := grad f(q) +

s∑
i=1

λi gradHi(q) +

m∑
j=1

µj gradGj(q).

Similarly to Section 2, we introduce some notations for conciseness. Let S as in (12), and
consider I ⊆ S and J ⊆ AM(p). For a given q ∈ ΩM, define the following sets of vectors

[gradHI , gradGJ ](q) := {gradHi(q) | i ∈ I} ∪ {gradGi(q) | i ∈ J }. (17)

If one of the sets I or J is empty, then the corresponding set will not appear in (17). For instance,
for I = ∅, the set in (13) will be denoted by [gradGJ ](q) := {gradGi(q) | i ∈ J }. In addition,
for the sake of simplicity, we set gradH := gradHS . Next, we recall two intrinsic constraint
qualifications for problem (15), which were introduced in [36] and [13], respectively.

Definition 3. A point p ∈ ΩM is said to satisfy the linear independence constraint qualification
(LICQ) if [gradH, gradGAM(p)](p) is linearly independent. It satisfies the Mangasarian-Fromovitz
constraint qualification (MFCQ) if [gradH, gradGAM(p)](p) is positive-linearly independent.

For the sake of convenience, we recall the following strict constraint qualifications which were
originally introduced and studied in a general Riemannian manifold in [3].

Definition 4. A point p ∈ ΩM is said to satisfy:

(i) the constant rank constraint qualification (CRCQ) if for any I ⊂ S and J ⊂ AM(p),
whenever the set [gradHI , gradGJ ](p) is linearly dependent, there exists ε > 0 such that
[gradHI , gradGJ ](q) is linearly dependent for all q ∈ Bε(p).

(ii) the constant positive linear dependence condition (CPLD) if for any I ⊂ S and J ⊂ AM(p),
whenever the set [gradHI , gradGJ ](p) is positive-linearly dependent, there exists ε > 0 such
that [gradHI , gradGJ ](q) is linearly dependent for all q ∈ Bε(p).

(iii) the Relaxed-CRCQ (RCRCQ) if there exists ε > 0 such that the following two conditions hold:

(a) the rank of [gradH](q) is constant for all q ∈ Bε(p);
(b) Let K ⊂ S, such that [gradHK](p) is a basis for Span([gradH](p)). For all J ⊂ AM(p),

if [gradHK, gradGJ ](p) is linearly dependent, then [gradHK, gradGJ ](q) is linearly
dependent for all q ∈ Bε(p).
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(iv) the Relaxed-CPLD (RCPLD) if there exists ε > 0 such that the following two conditions hold:

(a) the rank of [gradH](q) is constant for all q ∈ Bε(p);
(b) Let K ⊂ S, such that [gradHK](p) is a basis for Span([gradH](p)). For all J ⊂ AM(p),

if [gradHK, gradGJ ](p) is positive-linearly dependent, then [gradHK, gradGJ ](q) is
linearly dependent for all q ∈ Bε(p).

Below we recall an intrinsic version of the sequential optimality conditions, which are satisfied
at a local minimizer of problem (15) in the absence of constraint qualifications. Specifically, the
AKKT conditions introduced in the general context of Riemannian manifolds in [35] and the
positive-AKKT (PAKKT) conditions introduced in [3]. Let p ∈ ΩM, (pk)k∈N ⊂M, (λk)k∈N ⊂ Rs,
(µk)k∈N ⊂ Rm+ , and consider the following statements:

(i) limk→∞ p
k = p;

(ii) limk→∞ gradL(pk, λk, µk) = 0;

(iii) µki = 0, for all i /∈ AM(p) and sufficiently large k;

(iv) if γk :=
∥∥(1, λk, µk)

∥∥
∞ → +∞ it holds:

lim
k→∞

∣∣λki ∣∣
γk

> 0 =⇒ λkiHi(p
k) > 0, ∀k ∈ N,

and

lim
k→∞

µki
γk

> 0 =⇒ µkiGi(p
k) > 0, ∀k ∈ N.

Definition 5. Assume that p ∈ ΩM. If there exist sequences (pk)k∈N ⊂ M, (λk)k∈N ⊂ Rs and
(µk)k∈N ⊂ Rm+ such that

(1) conditions (i), (ii) and (iii) hold, then p ∈ ΩM is called an approximate-KKT (AKKT) point
for problem (15);

(2) conditions (i), (ii), (iii) and (iv) hold, then p ∈ ΩM is called a positive approximate-KKT
(PAKKT) point for problem (15).

PAKKT is a necessary optimality condition, as shown in [3]. This is sufficient to conclude that
AKKT is also a necessary optimality condition.

Theorem 4. Let p ∈ ΩM be a local minimizer for problem (15). Then p is a PAKKT point.

Next, we recall two other constraint qualifications introduced for general Riemannian manifolds
in [3]. To facilitate our discussion, let us first establish the following definition: For p ∈ ΩM, we
denote by LM(p) the linearized cone associated with ΩM at p which is defined as

LM(p) =
{
v ∈ TpM | 〈gradHi(p), v〉 = 0, i ∈ S; 〈gradGj(p), v〉 ≤ 0, j ∈ AM(p)

}
,

and its polar is given by

LM(p)◦ =
{
v ∈ TpM | v =

s∑
i=1

λi gradHi(p) +

m∑
j=1

µj gradGj(p), µj ≥ 0, λi ∈ R
}
.

Definition 6. A point p ∈ ΩM is said to satisfy the constant rank of the subspace component
(CRSC) if there exists ε > 0 such that for J −M (p) = {j ∈ AM(p) | − gradGj(p) ∈ LM(p)◦}, the rank
of the set [gradH, gradGJ−(p)](q) remains constant for all q ∈ Bε(p).

Definition 7. A point p ∈ ΩM satisfies the quasinormality constraint qualification (QN) if there
do not exist λ ∈ Rs and µ ∈ Rm+ such that
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(i)
∑s

i=1 λi gradHi(p) +
∑

j∈AM(p) µj gradGj(p) = 0;

(ii) µj = 0 for all j /∈ AM(p) and (λ, µ) 6= 0;

(iii) for all ε > 0, there exists q ∈ Bε(p) such that λiHi(q) > 0 for all i ∈ S with λi 6= 0 and
µjGj(q) > 0 for all j ∈ AM(p) with µj > 0.

In the following, we present an augmented Lagrangian algorithm to address problem (1) by
refraining from penalizing the constraint set {q ∈ Rn | h(q) = 0} and instead focusing on penalizing
the constraint set {q ∈ Rn | H(q) = 0, G(q) ≤ 0}. For this purpose, we recall the intrinsic
safeguarded augmented Lagrangian algorithm introduced in [35]. This algorithm was initially
designed to solve problem (15), which represents the Riemannian version of problem (1). The
formulation of the algorithm involves the partial Powell-Hestenes-Rockafellar augmented Lagrangian
function defined by (4). The intrinsic safeguarded augmented Lagrangian algorithm is stated as
follows.

Algorithm 2: Intrinsic safeguarded augmented Lagrangian algorithm

Step 0. Let p0 ∈M, τ ∈ [0 , 1), γ > 1, λmin < λmax, µmax > 0, and ρ1 > 0 be given. Also, take λ̄1 ∈ [λmin, λmax]s and
µ̄1 ∈ [0, µmax]m initial Lagrange multipliers estimates, and (εk)k∈N ⊂ R+ a sequence of tolerance parameters such
that limk→∞ εk = 0. Set k ← 1.

Step 1. (Solve the subproblem) Compute (if possible) pk ∈ M such that∥∥∥gradLρk (pk, λ̄k, µ̄k)
∥∥∥ ≤ εk. (18)

If it is not possible, then stop the execution of the algorithm and declare failure.

Step 2. (Estimate new multipliers) Compute

λk = λ̄k + ρkH(pk), µk =
[
µ̄k + ρkG(pk)

]
+
.

Step 3. (Update the penalty parameter) Define νk = µk−µ̄k

ρk
. If k = 1 or

max
{∥∥H(pk)

∥∥
∞ ,

∥∥νk∥∥∞} ≤ τ max
{∥∥H(pk−1)

∥∥
∞ ,

∥∥νk−1
∥∥
∞

}
,

set ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 4. (Update safeguarded multipliers) Compute λ̄k+1 ∈ [λmin , λmax]m and µ̄k+1 ∈ [0 , µmax]p.

Step 5. (Begin a new iteration) Set k ← k + 1 and go to Step 1.

The capability of Algorithm 2 to generate AKKT sequences for problem (15) was demonstrated
in [35], while in [3] it was proven that it also produces PAKKT sequences. For reader’s convenience
and future reference, we revisit the main convergence results of Algorithm 2 established in [3].

Theorem 5. Suppose that p ∈ ΩM satisfies RCPLD or CRSC. If p is an AKKT point, then p is a
KKT point for problem (15).

Theorem 6. Let p ∈ ΩM be a PAKKT point with associated primal sequence (pk)k∈N and dual
sequence (λk, µk)k∈N. Assume that p satisfies QN. Then (λk, µk)k∈N is a bounded sequence. In
particular, p satisfies the KKT conditions for problem (15) and any limit point of (λk, µk)k∈N is a
Lagrange multiplier associated with p.

Theorem 7. Assume that Algorithm 2 generates an infinite sequence (pk)k∈N with a feasible limit
point p, say, limk∈K p

k = p. Then, p is a PAKKT point with correspondent primal sequence (pk)k∈K
and dual sequence (λk, µk)k∈K as generated by Algorithm 2. In particular, if RCPLD or CRSC hold,
p is a KKT point for problem (15). Alternatively, if QN holds, p is a KKT point for problem (15)
and (λk, µk)k∈K is bounded with any of its limit points being a Lagrange multiplier associated with
p.
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3 Lower strict constraint qualifications

Let us now recall the Euclidean nonlinear programming problem (1). Inspired by the Riemannian
approach, we will propose new weak constraint qualifications for problem (1). We will show that the
new conditions are able to provide standard global convergence results to a constrained augmented
Lagrangian method where a subset of linearly independent equality constraints are kept within the
subproblems. These are termed lower-level constraints, which inspire the name of the conditions.
Let us start by the extension of the sequential optimality conditions AKKT and PAKKT, which
will be generated by the constrained algorithm we propose.

That is, in the absence of constraint qualifications, the following definition introduces sequential
optimality conditions, which will be shown to be fulfilled by a local minimizer of problem (1).
Consider the nonlinear programming problem (1) under assumption (H1). Let p ∈ Ω, (pk)k∈N ⊂
{q ∈ Rn | h(q) = 0}, (ηk)k∈N ⊂ Rt, (λk)k∈N ⊂ Rs, (µk)k∈N ⊂ Rm+ , and consider the following
statements:

(i) limk→∞ p
k = p;

(ii) limk→∞ L
′(pk, ηk, λk, µk) = 0;

(iii) µki = 0, for all i /∈ A(p) and sufficiently large k;

(iv) if γk :=
∥∥(1, λk, µk)

∥∥
∞ → +∞ it holds:

lim
k→∞

∣∣λki ∣∣
γk

> 0 =⇒ λkiHi(p
k) > 0, ∀k ∈ N,

and

lim
k→∞

µki
γk

> 0 =⇒ µkiGi(p
k) > 0, ∀k ∈ N.

Definition 8. Assume that p ∈ Ω. If there exist sequences (pk)k∈N ⊂ {q ∈ Rn | h(q) = 0},
(ηk)k∈N ⊂ Rt, (λk)k∈N ⊂ Rs and (µk)k∈N ⊂ Rm+ such that

(1) conditions (i), (ii), and (iii) hold, then p ∈ Ω is called a lower approximate-KKT (Lower-
AKKT) point for problem (1);

(2) conditions (i), (ii), (iii), and (iv) hold, then p ∈ Ω is called a lower positive approximate-KKT
(Lower-PAKKT) point for problem (1).

The difference with respect to the standard definition is that the sequence {pk} must be feasible
with respect to the equality constraints that satisfy assumption (H1) while the sign control (iv) is
not required for these constraints. The companion Lower constraint qualifications are defined as
follows:

Definition 9. Consider the nonlinear programming problem (1) under assumption (H1). Let Ω
and A(p), where p ∈ Ω, be given by (10). The point p ∈ Ω is said to satisfy:

(i) the lower constant rank constraint qualification (Lower-CRCQ), if for any I ⊂ S and
J ⊂ A(p), whenever the set [h′, H ′I , G

′
J ](p) is linearly dependent, there exists ε > 0 such that

[h′, H ′I , G
′
J ](q) is linearly dependent for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}.

(ii) the lower constant positive linear dependence (Lower-CPLD), if for any I ⊂ S and J ⊂ A(p),
whenever the set [h′, H ′I , G

′
J ](p) is positive-linearly dependent, there exists ε > 0 such that

[h′, H ′I , G
′
J ](q) is linearly dependent for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}.

(iii) the Lower Relaxed-CRCQ (Lower-RCRCQ) if there exists ε > 0 such that the following two
conditions hold:
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(a) the rank of [h′, H ′](q) is constant, for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0};
(b) Let K ⊂ S be such that [h′, H ′K](p) is a basis for Span([h′, H ′](p)). For all J ⊂ A(p), if

[h′, H ′K, G
′
J ](p) is linearly dependent, then [h′, H ′K, G

′
J ](q) is linearly dependent for all

q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}.

(iv) the Lower Relaxed-CPLD (Lower-RCPLD), if there exists ε > 0 such that the following two
conditions hold:

(a) the rank of [h′, H ′](q) is constant for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0};
(b) Let K ⊂ S be such that [h′, H ′K](p) is a basis for Span([h′, H ′](p)). For all J ⊂ A(p),

if [h′, H ′K, G
′
J ](p) is positive-linearly dependent, then the set [h′, H ′K, G

′
J ](q) is linearly

dependent for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}.

As previously mentioned, the motivation behind the development of Definition 9 arises from the
application of penalty methods or augmented Lagrangian methods for solving nonlinear programming
problems where a subset of equality constraints are kept within the subproblems. This approach
provides the flexibility to preselect constraints – referred to as lower-level constraints – that align
with specific interests or are simpler to handle, while penalizing only the more challenging constraints.
Additionally, it ensures that the sequence generated by the chosen minimization method remains
feasible for these lower-level constraints. This guarantees that when the stopping criterion for this
method is satisfied at some point, the feasibility of those constraints is maintained.

The difference between the new strict constraint qualifications introduced in Definition 9 and
the standard strict constraint qualifications lies in the requirement that the condition be satisfied
at a smaller number of points. Specifically, the new conditions must be satisfied in a neighborhood
of the point restricted to a previously chosen set of constraints, namely, Bε(p) ∩ {q ∈ Rn | h(q) =
0}. In contrast, the standard strict constraint qualifications require the point to satisfy the
defining condition in a full neighborhood, i.e., Bε(p), which is naturally more challenging to fulfill.
Additionally, the definitions of (R)CRCQ and (R)CPLD are simplified by taking into account
assumption (H1). That is, CRCQ and CPLD require taking into consideration h′Ī , where Ī ⊂ T ,
while Lower-CRCQ and Lower-CPLD require only h′. Also, in item (b) of RCRCQ and RCPLD,
h′K̄ is required where Ī ⊂ S while only h′ is considered in Lower-RCRCQ and Lower-RCPLD. Thus
it is clear that these definitions imply the usual ones. An example where the implication is strict
will be given considering a definition of Lower-CRSC which we provide next:

Definition 10. A point p ∈ Ω is said to satisfy the lower constant rank of the subspace component
(Lower-CRSC) if there exists ε > 0 such that for J −(p) = {j ∈ A(p) | −G′j(p) ∈ L(p)◦}, the rank
of the set [h′, H ′, G′J−(p)](q) is constant for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}.

Note that the standard CRSC condition requires constant rank of [h′, H ′, G′J−(p)](q) for all

q ∈ Bε(p), while Lower-CRSC requires constant rank of the same set but restricted to q ∈
Bε(p) ∩ {q ∈ Rn | h(q) = 0}. The following example illustrates that Definition 10 is strictly less
restrictive than its standard counterpart.

Example 1. Let n ≥ 4 and u, v, w ∈ Rn be linearly independent vectors. Define h,H1, G1, G2 : Rn →
R as follows:

h(x) := u>x, H1(x) := (u>x)2(v>x), G1(x) := (u>x)2 − w>x, G2(x) := w>x,

and consider an optimization problem with the feasible set Ω := {x ∈ Rn | h(x) = 0, H1(x) =
0, G1(x) ≤ 0, G2(x) ≤ 0}. It is easy to see that Ω = Span({u,w})⊥. The Euclidean gradients of h,
H1, G1 and G2 are given, respectively, by

h′(x) = u>, H ′1(x) = 2(u>x)(v>x)u> + (u>x)2vT , G′1(x) = 2(u>x)u> − w>, G′2(x) = w>.
(19)

We claim that not all x ∈ Ω satisfy the usual CRSC constraint qualification. Indeed, it follows from
(11) and (19) that J −(x) = {1, 2}, for all x ∈ Ω. In addition, the following two statements hold:
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1. rank({h′(y), H ′1(y), G′1(y), G′2(y)}) = 2, for all y ∈ Rn such that u>y = 0;

2. rank({h′(y), H ′1(y), G′1(y), G′2(y)}) = 3, for all y ∈ Rn such that u>y 6= 0.

Thus, not all x ∈ Ω satisfy the usual CRSC, as claimed. On the other hand, all x ∈ Ω satisfy Lower-
CRCQ. Indeed, we have rank({h′(y), H ′1(y), G′1(y), G′2(y)}) = 2, for all y ∈ {y ∈ Rn | h(y) = 0}.

We conclude this section by introducing a new constraint qualification, which we term lower
quasinormality.

Definition 11. A point p ∈ Ω satisfies the lower quasinormality constraint qualification (Lower-QN)
if there do not exist η ∈ Rt, λ ∈ Rs, and µ ∈ Rm+ such that

(i)
∑t

i=1 ηih
′
i(p) +

∑s
i=1 λiH

′
i(p) +

∑
j∈A(p) µjG

′
j(p) = 0;

(ii) µj = 0 for all j /∈ A(p) and (η, λ, µ) 6= 0;

(iii) for all ε > 0, there exists q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0} such that λiHi(q) > 0 for all i ∈ S
with λi 6= 0 and µjGj(q) > 0 for all j ∈ A(p) with µj > 0.

It is important to note that Lower-QN differs from the usual QN definition solely by item (iii),
where the respective item in the usual QN definition for problem (1) is given as follows:

(iii) for all ε > 0, there exists q ∈ Bε(p) such that ηihi(q) > 0 for all i ∈ T with ηi 6= 0, λiHi(q) > 0
for all i ∈ S with λi 6= 0, and µjGj(q) > 0 for all j ∈ A(p) with µj > 0.

The proof that the usual QN implies Lower-QN for problem (1) under (H1) is not immediate as
in the case of the other Lower-SCQs we introduced. Let us prove this.

Theorem 8. Let p ∈ Ω satisfy QN for problem (1) and assume (H1). Then, p satisfies Lower-QN.

Proof. Assume, by contradiction, that p ∈ Ω does not satisfy Lower-QN. Then, there exist η ∈ Rt,
λ ∈ Rs, and µ ∈ Rm+ satisfying conditions (i), (ii), and (iii) in Definition 11. Condition (iii)
implies the existence of a sequence (pk)k∈N ⊂ {q ∈ Rn | h(q) = 0} such that limk→+∞ p

k = p.
Furthermore, λiHi(p

k) > 0 for all i ∈ S with λi 6= 0, and µjGj(p
k) > 0 for all j ∈ A(p) with

µj > 0. Define the set T̄ := {i ∈ T | ηi 6= 0}. If T̄ = ∅, then p also does not satisfy the classical
definition of QN. Now, assume T̄ 6= ∅. Consider the submatrix [h′T̄ ](p) of [h′](p), where [h′](p) is
the Jacobian matrix of h, and the rows of [h′T̄ ](p) correspond to h′i(p) for i ∈ T̄ . Since assumption
(H1) implies that h′1(p), . . . , h′t(p) are linearly independent, it follows that there is no vector βT̄
of order |T̄ |, with entries βi for i ∈ T̄ , such that [h′T̄ ](p)TβT̄ = 0 with βT̄ ≥ 0 and βT̄ 6= 0. By
Gordan’s alternative theorem (see, for example, [11, p. 51]), it follows that there exists a vector
d ∈ Rn such that [h′T̄ ](p)d > 0, or equivalently, h′i(p)

Td > 0 for all i ∈ T̄ . Since we can make this

construction replacing any h′i(p) by −h′i(p), we will assume that d is such that ηih
′
i(p)

Td > 0 for
all i ∈ T̄ . On the other hand, since λiHi(p

k) > 0 for all i ∈ S with λi 6= 0 and µjGj(p
k) > 0

for all j ∈ A(p) with µj > 0, define sequences (qk)k∈N and (εk)k∈N such that qk := pk + εkd with
limk→+∞ εk = 0+ and εk ∈ R++ such that λiHi(q

k) > 0 for all i ∈ S with λi 6= 0, and µjGj(q
k) > 0

for all j ∈ A(p) with µj > 0. Given that ηi 6= 0, limk→+∞ p
k = p, and limk→+∞ εk = 0+, we have

limk→+∞
(
(ηihi(p

k + εkd)− ηihi(p))/εk
)

= ηih
′
i(p)

Td > 0 for all i ∈ T̄ . Therefore, since hi(p) = 0,
there exists ki ∈ N such that ηihi(q

k) = ηihi(p
k + εkd) > 0 for all k > ki. Let k̄ = max{ki | i ∈ T̄ }.

Consequently, since limk→+∞ p
k = p, for any ε > 0, there exists qk ∈ Bε(p) such that ηihi(q

k) > 0
for all i ∈ T with ηi 6= 0, λiHi(q

k) > 0 for all i ∈ S with λi 6= 0, and µjGj(q
k) > 0 for all j ∈ A(p)

with µj > 0 and all k ≥ k̄. Since η ∈ Rt, λ ∈ Rs, and µ ∈ Rm+ satisfy conditions (i) and (ii) in
Definition 11, this contradicts the classical definition of QN.

Let us now show that the above implication is strict.
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Example 2. Let n ≥ 3 be a positive integer and u, v ∈ Rn be such that u 6= 0, v 6= 0, uT v = 0 and
h,H1, G1 : Rn → R be functions defined, respectively, by

h(x) := uTx− vTx, H1(x) := (uTx)2 + (vTx)2, G1(x) := (uTx)2 − (vTx)2. (20)

Let f : Rn → R be a function. Consider the following constrained optimization problem

Minimize
x∈Rn

f(x) subject to h(x) = 0, H1(x) = 0, G1(x) ≤ 0. (21)

The Euclidean gradients of the functions h, H1 and G1 are given, respectively, by

h′(x) = uT − vT , H ′1(x) = 2(uTx)uT + 2(vTx)vT , G′1(x) = 2(uTx)uT − 2(vTx)vT . (22)

Denote by Ω = {x ∈ Rn | h(x) = 0, H1(x) = 0, G1(x) ≤ 0} the feasible set of Problem (21).
Thus, using (20) we have Ω = Span{u, v}⊥ and A(x) = {1}, for all x ∈ Ω . Thus, by using (22),
note that for items (i) and (ii) of Definition 11 to be satisfied at x ∈ Ω we must take η = 0 and
λ1 ∈ R and µ1 ∈ R+ are arbitrary. In addition, given ε > 0 and x ∈ Ω, we can choose y ∈ Bε(x)
with y /∈ Ω satisfying H1(y) = (uT y)2 + (vT y)2 > 0 and G1(y) = (uT y)2 − (vT y)2 > 0. For
instance, for y := x+ αu we can choose α > 0 such that y ∈ Bε(x) and H1(y) = α2‖u‖4 > 0 and
G1(y) = α2‖u‖4 > 0. Thus, choosing η1 = 0, λ1 > 0 and µ1 > 0, all three items of the usual
definition of QN are satisfied. Hence, all x ∈ Ω do not satisfy the usual QN. On the other hand,
since G1(y) = 0, for all y ∈ Bε(x)∩ {y ∈ Rn : h(y) = 0}, there is no µ1 > 0 satisfying item (iii) of
Definition 11 such that µ1G1(y) > 0. Therefore, all x ∈ Ω satisfy Lower-QN.

4 Connecting the extrinsic and intrinsic approaches

This section establishes connections between the extrinsic concepts discussed earlier in Section 3,
related to the nonlinear optimization problem presented in the format (1), and the ideas addressed
in Subsection 2.2 regarding the nonlinear optimization problem presented intrinsically in (15). Our
goal is to establish new global convergence results of an augmented Lagrangian algorithm for the
Euclidean problem by means of the equivalent optimization problem on an embedded manifold.
In order to do this we will first show that the Euclidean KKT conditions for problem (1) and the
Riemmanian KKT conditions for the equivalent problem (15) are in fact equivalent. This appears
to be new as we only found a proof of this fact under convexity assumptions, see [36].

Recall that we are under assumption (H1), hence it follows from (8) that the mapping Projq is
well-defined for all q ∈ Rn.

Theorem 9. A point p ∈ Ω is a KKT (respectively, Lower-AKKT and Lower-PAKKT) point
of problem (1) if and only if p ∈ ΩM is a KKT (respectively, AKKT and PAKKT) point of
problem (15).

Proof. First, we establish the equivalence for KKT points. Assume that p ∈ Ω is a KKT point for
problem (1). Thus, there exist (η, λ, µ) ∈ Rt × Rs × Rm+ such that L′(p, η, λ, µ) = 0 and µi = 0 for
all i /∈ A(p), i.e.,

f ′(p) +
t∑
i=1

ηih
′
i(p) +

s∑
i=1

λiH
′
i(p) +

m∑
i=1

µiG
′
i(p) = 0, µi = 0, ∀ i /∈ A(p). (23)

From (7), it follows that h′(p)>η =
∑t

i=1 ηih
′
i(p) ∈ TpM⊥. Consequently, considering (8), we

conclude that Projp h
′(p)>η = 0. Thus, by applying Projp to (23) and using (9) along with the fact

that A(p) = AM(p), we obtain

grad f(p) +

s∑
i=1

λi gradHi(p) +

m∑
i=1

µi gradGi(p) = 0, µi = 0, ∀ i /∈ AM(p).
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Therefore, gradL(p, λ, µ) = 0 and µj = 0, for all j /∈ AM(p). Hence, since we also have p ∈ ΩM, it
follows that p is a KKT point for problem (15) as well.

Reciprocally, suppose that p ∈ ΩM is a KKT point for problem (15). Thus, there exist
(λ, µ) ∈ Rs × Rm+ such that gradL(p, λ, µ) = 0 and µj = 0, for all j /∈ AM(p), i.e.,

grad f(p) +
s∑
i=1

λi gradHi(p) +
m∑
i=1

µi gradGi(p) = 0, µi = 0, ∀ i /∈ AM(p).

Therefore, using the projection formula Projp and (9), we have

Projp

(
f ′(p) +

s∑
i=1

λiH
′
i(p) +

m∑
i=1

µiG
′
i(p)

)
= 0, µi = 0, ∀ i /∈ AM(p).

Hence, by (6), we conclude that f ′(p) +
∑s

i=1 λiH
′
i(p) +

∑m
i=1 µiG

′
i(p) ∈ TpM⊥. Thus, (7) implies

that there exists η ∈ Rt such that

f ′(p) +

s∑
i=1

λiH
′
i(p) +

m∑
i=1

µiG
′
i(p) = −

t∑
i=1

ηih
′
i(p).

Consequently, we conclude that there exists (η, λ, µ) ∈ Rt × Rs × Rm+ such that

f ′(p) +
t∑
i=1

ηih
′
i(p) +

s∑
i=1

λiH
′
i(p) +

m∑
i=1

µiG
′
i(p) = 0, µi = 0, ∀ i /∈ AM(p).

Therefore, L′(p, η, λ, µ) = 0 and µi = 0, for all i /∈ AM(p). Since p ∈ ΩM = Ω and AM(p) = A(p),
the point p satisfies the KKT conditions for problem (1), concluding the proof for KKT points.

To establish the statements regarding other equivalences, we first note that the projection map
Projq, defined in (8), is continuous. Consequently, the part of the proof involving the Lagrangian
follows arguments similar to those used for establishing the statement related to KKT points. Given
that M = {q ∈ Rn | h(q) = 0}, ΩM = Ω, and AM(p) = A(p), we conclude the proof by observing
that the additional conditions required are directly equivalent.

The next theorem shows that Euclidean LICQ and MFCQ are equivalent to their Riemannian
counterparts. The proof for the LICQ case is in [36]. Since both proofs follow directly from
Lemma 1, we omit them.

Theorem 10. A point p ∈ Ω satisfies LICQ (respectively, MFCQ) for problem (1) if and only if
p ∈ ΩM satisfies LICQ (respectively, MFCQ) for problem (15).

We now begin the discussion where we establish the connection between the extrinsic Definition 9
and the intrinsic Definition 4. Our discussion commences by establishing the connection between
the first two items of these definitions.

Theorem 11. A point p ∈ Ω satisfies Lower-CRCQ (respectively, Lower-CPLD) for problem (1) if
and only if p ∈ ΩM satisfies CRCQ (respectively, CPLD) for problem (15).

Proof. Suppose that p ∈ Ω satisfies Lower-CRCQ (respectively, Lower-CPLD) for problem (1). As-
sume, by contradiction, that p ∈ ΩM does not satisfies CRCQ (respectively, CPLD) for problem (15).
According to Definition 4, there exist I ⊂ S and J ⊂ AM(p) = A(p) such that [gradHI , gradGJ ](p)
is linearly dependent (respectively, positive-linearly dependent), and for each k ∈ N, there exists
qk ∈ B1/k(p) such that [gradHI , gradGJ ](qk) is linearly independent. Taking into account that
[h′](p) is linearly independent and qk ∈ B1/k(p) for all k ∈ N, we can assume without loss of
generality that [h′](qk) is also linearly independent. Consequently, by applying Lemma 1 and
considering (5) and (9), we conclude that [h′, H ′I , G

′
J ](qk) is also linearly independent for each
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qk ∈ B1/k(p). On the other hand, since [gradHI , gradGJ ](p) is linearly dependent (respectively,
positive-linearly dependent), applying again Lemma 1 and taking into account (5) and (9), we
obtain that [h′, H ′I , G

′
J ](p) is linearly dependent (respectively, positive-linearly dependent). Thus,

since p ∈ Ω satisfies Lower-CRCQ (respectively, Lower-CPLD) for problem (1), item (i) (respec-
tively, item (ii)) of Definition 9 implies that there exists ε > 0 such that [h′, H ′I , G

′
J ](q) is linearly

dependent (respectively, positive-linearly dependent) for all q ∈ Bε(p)∩ {q ∈ Rn | h(q) = 0}. Hence,
as Bε(p) ∩ {q ∈ Rn | h(q) = 0} is an open subset of M and limk→+∞ qk = p, there exists k̄ ∈ N
such that qk̄ ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0} ∩ B1/k̄(p) and [h′, H ′I , G

′
J ](qk̄) is linearly dependent

(respectively, positive-linearly dependent), which is a contradiction. Therefore, p ∈ ΩM satisfies
CRCQ (respectively, CPLD) for problem (15).

Reciprocally, suppose that p ∈ ΩM satisfies CRCQ (respectively, CPLD) for problem (15).
Assume, by contradiction, that p ∈ Ω does not satisfy Lower-CRCQ (respectively, Lower-CPLD) for
problem (1). Thus, there exist I ⊂ S and J ⊂ A(p) = AM(p) such that [h′, H ′I , G

′
J ](p) is linearly

dependent (respectively, positive-linearly dependent) and, for all k ∈ N, there exists qk ∈ B1/k(p) ∩
{q ∈ Rn | h(q) = 0} such that [h′, H ′I , G

′
J ](qk) is linearly independent. Hence, by using Lemma 1 and

considering (5) and (9), the set [gradHI , gradGJ ](qk) is linearly independent. Since [h′, H ′I , G
′
J ](p)

is linearly dependent (respectively, positive-linearly dependent), by employing Lemma 1 and
considering (5) and (9), the set [gradHI , gradGJ ](p) is linearly dependent (respectively, positive-
linearly dependent). Thus, considering that p ∈ ΩM satisfies CRCQ (respectively, CPLD) for
problem (15), there exists ε > 0 such that [gradHI , gradGJ ](q) is linearly dependent for all
q ∈ Bε(p). Since B1/k(p) ∩ {q ∈ Rn | h(q) = 0} is an open subset of M and limk→+∞ qk = p, there
exists k̄ ∈ N such that qk̄ ∈ Bε(p) ∩ B1/k̄(p) ∩ {q ∈ Rn | h(q) = 0} and [gradHI , gradGJ ](qk̄) is
linearly dependent, which is a contradiction. Therefore, p ∈ Ω satisfies Lower-CRCQ (respectively,
Lower-CPLD) for problem (1), which concludes the proof.

The following theorem establishes the connection between Lower-RCRCQ and Lower-RCPLD
for problem (1), and RCRCQ and RCPLD for problem (15).

Theorem 12. A point p ∈ Ω satisfies Lower-RCRCQ (respectively, Lower-RCPLD) for problem (1)
if and only if p ∈ ΩM satisfies RCRCQ (respectively, RCPLD) for problem (15).

Proof. Suppose that p ∈ Ω satisfies Lower-RCRCQ (respectively, Lower-RCPLD) for problem (1).
Assume, by contradiction, that p ∈ ΩM does not satisfies RCRCQ (respectively, RCPLD) for
problem (15). Thus, taking K ⊂ S such that [gradHK](p) is a basis for Span([gradH](p)), at least
one of the following two conditions holds for each k ∈ N:

(a) there exists qk ∈ B1/k(p) such that |K| = rank([gradH](q)) 6= rank([gradH](qk));

(b) there exist J ⊂ A(p) and qk ∈ B1/k(p) such that [gradHK, gradGJ ](p) is linearly dependent
(respectively, positive-linearly dependent) and [gradHK, gradGJ ](qk) is linearly independent.

First, assume that (a) holds for infinitely many k ∈ N. Using Lemma 3, it follows that there exists
a subsequence (qkj )j∈N of (qk)k∈N such that |K| < rank([gradH](qkj )) for all j ∈ N. Thus, since S
is finite, there exists K̄ ⊂ {1, . . . , s} satisfying

|K| < |K̄| := rank([gradHK̄](qkj )), ∀j ∈ N. (24)

In particular, the definition of K̄ implies that [gradHK̄](qkj ) is linearly independent. Since [h′](qkj )
is linearly independent, applying Lemma 1 and using (5) and (9), we conclude that [h′, H ′K̄](qkj ) is
also linearly independent for all j ∈ N. Hence, due to K̄ ⊂ S, we have

t+ |K̄| ≤ rank([h′, H ′](qkj )), ∀j ∈ N. (25)

Since p ∈ Ω satisfies Lower-RCRCQ (respectively, Lower-RCPLD) for problem (1), there exists ε > 0
such that rank([h′, H ′](q)) is constant for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}. Thus, considering
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that [h′](q) is linearly independent for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}, there exists K̂ ⊂ S such
that [H ′K̂](p) is linearly independent and

t+ |K̂| = rank([h′, H ′](q)), ∀q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}. (26)

Since limj→+∞ qkj = p, there exist j0 such that qkj ∈ Bε(p) ∩ {p ∈ Rn | h(p) = 0} for all j ≥ j0.
Hence, (25) and (26) imply that

|K̄| ≤ |K̂|. (27)

Thus, utilizing Lemma 1 and considering (5) and (9), if follows that [gradHK̂](p) is also linearly
independent. Hence, considering that [gradHK](p) is a basis for Span([gradH](p)), we conclude that
|K̂| ≤ |K|. Thus, by (24), we obtain |K̂| ≤ |K| < |K̄|, contradicting (27). Therefore, (a) must hold
only for a finite number of k ∈ N. Hence, it follows that (b) holds for all sufficiently large k ∈ N. We
may assume, without loss of generality, that (b) holds for all k ∈ N. Note that by applying Lemma 2
and using (5) and (9), we obtain that [h′, H ′K](p) is a basis for Span([h′, H ′](p)). Let J ⊂ A(p) be
such that [gradHK, gradGJ ](p) is linearly dependent (respectively, positive-linearly dependent)
and (qn)k∈N ⊂ B1/k(p) be a sequence such that [gradHK, gradGJ ](qk) is linearly independent for
all k ∈ N. Given that [h′](qk) is linearly independent for all k ∈ N, by applying Lemma 1 and
considering (5) and (9), we have

[h′, H ′K, G
′
J ](qk) (28)

is also linearly independent for all k ∈ N. Now, as [gradHK, gradGJ ](p) is linearly dependent
(respectively, positive-linearly dependent), using Lemma 1 and taking into account (5) and (9), we
obtain that [h′, H ′K, G

′
J ](p) is also linearly dependent (respectively, positive-linearly dependent).

Since the point p ∈ Ω satisfies Lower-RCRCQ (respectively, Lower-RCPLD) for problem (1), there
exists ε > 0 such that [h′, H ′K, G

′
J ](q) is linearly dependent for all q ∈ Bε(p) ∩ {p ∈ Rn | h(p) = 0}.

Thus, due to limk→+∞ qk = p, there exist qk ∈ Bε(p) such that the set in (28) is linearly dependent,
which is also a contradiction. Therefore, p ∈ ΩM satisfies RCRCQ (respectively, RCPLD) for
problem (15).

Reciprocally, suppose that p ∈ ΩM satisfies RCRCQ (respectively, RCPLD) for problem (15).
Assume, by contradiction, that p ∈ Ω does not satisfy Lower-RCRCQ (respectively, Lower-RCPLD)
for problem (1). Thus, taking K ⊂ S such that [h′, H ′K](p) is a basis for Span([h′, H ′](p)), at least
one of the following two conditions holds for each k ∈ N:

(c) there exists qk ∈ B1/k(p) ∩ {q ∈ Rn | h(q) = 0} such that t + |K| := rank([h′, H ′](p)) 6=
rank([h′, H ′](qk));

(d) there exist J ⊂ A(p) and qk ∈ B1/k(p) ∩ {q ∈ Rn | h(q) = 0} such that [h′, H ′K, G
′
J ](p) is

linearly dependent (respectively, positive-linearly dependent) and [h′, H ′K, G
′
J ](qk) is linearly

independent.

Let us assume that condition (c) holds for infinitely many k ∈ N. Then, there exists a subsequence
(qkj )j∈N of (qk)k∈N such that

t+ |K| < rank([h′, H ′](qkj )), ∀j ∈ N.

Considering that {1, . . . s} is finite, there exists K̄ ⊂ {1, . . . s} satisfying

t+ |K| < t+ |K̄| := rank([h′, H ′K̄](qkj )), ∀j ∈ N. (29)

Hence, [h′, H ′K̄](qkj ) is linearly independent for all j ∈ N. Thus, using Lemma 1 and considering (5)
and (9), we conclude that [gradHK̄](qkj ) is also linearly independent for all j ∈ N. In particular,
we have

|K̄| ≤ rank([gradH](qkj )), ∀j ∈ N. (30)
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Since p ∈ ΩM satisfies RCRCQ (respectively, RCPLD) for problem (15), there exists ε > 0 such
that rank([gradH](q)) is constant for all q ∈ Bε(p). Let K̂ ⊂ {1, . . . , s} be such that [gradHK̂](p)
is a basis of Span([gradH](p)). Thus,

|K̂| = rank([gradH](q)), ∀q ∈ Bε(p). (31)

Hence, due to limj→+∞ qkj = p, there exist qkj ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}, which, together with

(30) and (31), implies that |K̄| ≤ |K̂|. On the other hand, taking into account Lemma 1, we conclude
that [h′, H ′K̂](p) is linearly independent. Since [h′, H ′K](p) is a basis for Span([h′, H ′](p)), we have

|K̂| ≤ |K|. The latter two inequalities imply that |K̄| ≤ |K̂| ≤ |K|, contradicting (29). Therefore,
(c) must hold only for a finite number of indexes k ∈ N. Hence, without loss of generality, we
may assume that (d) holds for all k ∈ N. Since [h′, H ′K](p) is a basis for Span([h′, H ′](p)), applying
Lemma 2 and using (5) and (9), we obtain that [gradHK](p) is also a basis for Span([gradH](p)).
Let J ⊂ A(p) be such that [h′, H ′K, G

′
J ](p) is linearly dependent (respectively, positive-linearly

dependent), and consider a sequence (qk)k∈N ⊂ B1/k(p) such that [h′, H ′K, G
′
J ](qk) is linearly

independent for all k ∈ N. Since [h′](qk) is linearly independent, applying Lemma 1 and considering
(5) and (9), we have

[gradHK, gradGJ ](qk) (32)

is also linearly independent. Now, as [h′, H ′K, G
′
J ](p) is linearly dependent (respectively, positive-

linearly dependent), applying Lemma 1 and considering (5) and (9), we have that [gradHK, gradGJ ](p)
is also linearly dependent (respectively, positive-linearly dependent). Taking into account that
p ∈ ΩM satisfies RCRCQ (respectively, RCPLD) for problem (15), there exists ε > 0 such that
[gradHK, gradGJ ](q) is linearly dependent for all q ∈ Bε(p). Given that limk→+∞ qk = p, there
exist qk ∈ Bε(p) such that the set in (32) is linearly dependent, which is a contradiction.

As a consequence of Theorems 10, 11, and 12, along with the relationships established for
strict constraint qualifications in [3] for a general Riemannian manifold, the diagram in Figure 1
illustrates the relationship among the lower strict constraint qualifications given in Definition 9.

LICQ Lower-CRCQ Lower-RCRCQ

MFCQ Lower-CPLD Lower-RCPLD

Figure 1: Lower strict constraint qualifications for problem (1).

To establish the relationship between Lower-CRSC and CRSC, we need to show the equality of
the sets J −(p) and J −M (p). Since the proof is straightforward, we will omit it.

Lemma 13. Let J −(p) and J −M (p) be as in Definitions 10 and 6, respectively. Then, it holds that
J −(p) = J −M (p).

In the next theorem we establish the connection between Lower-CRSC and CRSC.

Theorem 14. A point p ∈ Ω satisfies Lower-CRSC for problem (1) if and only if p ∈ ΩM satisfies
CRSC for problem (15).

Proof. Suppose that p ∈ Ω satisfies Lower-CRSC for problem (1). Assume, by contradiction, that
p ∈ ΩM does not satisfies CRSC for problem (15). Thus, for each k ∈ N, there exists qk ∈ B1/k(p)
such that |K| := rank([gradH, gradGJ−M (p)](p)) 6= rank([gradH, gradGJ−M (p)](qk)). Using Lemma 3,

we may assume that there exists a subsequence (qkj )j∈N of (qk)k∈N such that

|K| < rank([gradH, gradGJ−M (p)](qkj )), ∀j ∈ N.

Thus, due to S and J −M (p) being finite sets, there exist K̄ ⊂ S and K̄− ⊂ J −M (p) such that
|K̄| := rank([gradHK̄](qkj )) and |K̄−| := rank([gradGK̄− ](qkj )), satisfying

|K| < |K̄|+ |K̄−|, (33)
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and [gradHK̄, gradGK̄− ](qkj ) is linearly independent. Hence, considering that [h′](qkj ) is linearly
independent, applying Lemma 1 and using (5) and (9), we conclude that [h′, H ′K̄, G

′
K̄− ](qkj ) is also

linearly independent for all j ∈ N. By using Lemma 13, we obtain that J −M (p) = J −(p). Therefore,
due to K̄ ⊂ S and K̄− ⊂ J −M (p) = J −(p), we have

t+ |K̄|+ |K̄−| ≤ rank([h′, H ′, G′J−(p)](qkj )), ∀j ∈ N. (34)

Considering that p ∈ Ω satisfies Lower-CRSC for problem (1), there exists ε > 0 such that
rank([h′, H ′, G′J−(p)](q)) is constant for all q ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}. Thus, there exist

K̂ ⊂ S and K̂− ⊂ J −(p) such that [h′, H ′K̂, G
′
K̂− ](q) is linearly independent for all q ∈ Bε(p) ∩ {q ∈

Rn | h(q) = 0}, and
t+ |K̂|+ |K̂−| = rank([h′, H ′, G′J−(p)](q)), (35)

for all q ∈ Bε(p)∩{q ∈ Rn | h(q) = 0} (perhaps decreasing ε if necessary). Given that limj→+∞ qkj =

p, there exists ĵ such that qkj ∈ Bε(p) ∩ {p ∈ Rn | h(p) = 0} for all j ≥ ĵ. Hence, (34) and (35)
imply that

|K̄|+ |K̄−| ≤ |K̂|+ |K̂−|. (36)

On the other hand, since [h′, H ′K̂, G
′
K̂− ](q) is linearly independent, applying Lemma 1 and taking

into account (5) and (9), we obtain that [gradH ′K̂, gradGK̂− ](q) is also linearly independent. Thus,

considering that |K| := rank([gradH, gradGJ−M (p)](p)), we have |K̂|+ |K̂−| ≤ |K|. This, together

with (33), implies |K̂|+ |K̂−| ≤ |K| < |K̄|+ |K̄−|, leading to a contradiction with (36). Therefore,
p ∈ ΩM satisfies CRSC for problem (15).

Reciprocally, suppose that p ∈ ΩM satisfies CRSC for problem (15). Consider J −(p) = {j ∈
A(p) | −G′j(p) ∈ L(p)◦} and assume, by contradiction, that p ∈ Ω does not satisfy CRSC for
problem (1). Thus, for each k ∈ N, there exists qk ∈ B1/k(p)∩{q ∈ Rn | h(q) = 0} such that t+|K| :=
rank([h′, H ′, G′J−(p)](q)) 6= rank([h′, H ′, G′J−(p)](qk)). Therefore, by using Lemma 3, we conclude

that there exists a subsequence (qkj )j∈N of (qk)k∈N such that t+ |K| < rank([h′, H ′, G′J−(p)](qkj )) for

all j ∈ N. Considering that S and J −(p) are finite, there exist K̄ ⊂ S and K̄− ⊂ J −(p) = J −M (p)
such that t+ |K| < t+ |K̄|+ |K̄−| := rank([h′, H ′K̄, G

′
K̄− ](qkj )) and [h′, H ′K̄, G

′
K̄− ](qkj ) are linearly

independent for all j ∈ N. Thus, by applying Lemma 1 and considering (5) and (9), we conclude
that [gradHK̄, gradGK̄− ](qkj ) are also linearly independent for all j ∈ N. In particular, we have

|K̄|+ |K̄−| ≤ rank([gradH, gradGJ−M (p)](qkj )), ∀j ∈ N. (37)

Since p ∈ ΩM satisfies CRSC for problem (15), there exists ε > 0 such that rank([gradH, gradGJ−M (p)](q))

remains constant for all q ∈ Bε(p). Let K̂ ⊂ S and K̂− ⊂ J −(p) = J −M (p) be such that
[gradHK̂, gradGK̂− ](p) is a basis of Span([gradH, gradGJ−M (p)](p)). Thus,

|K̂|+ |K̂−| = rank([gradH, gradGJ−M (p)](q)), ∀q ∈ Bε(p). (38)

Hence, given that limj→+∞ qkj = p, there exist qkj ∈ Bε(p) ∩ {q ∈ Rn | h(q) = 0}, which together
with (37) and (38) imply that

|K̄|+ |K̄−| ≤ |K̂|+ |K̂−|. (39)

On the other hand, by applying Lemma 1 and taking into account (5) and (9), we obtain that
[h′, H ′K̂, G

′
K̂− ](p) is linearly independent. Since t+ |K| := rank([h′, H ′, G′J−(p)](p)), we have |K̂|+

|K̂−| ≤ |K|, which together with (39) implies that |K̄|+ |K̄−| ≤ |K̂|+ |K̂−| ≤ |K|. Considering that
|K| < |K̄|+ |K̄−|, we have a contradiction.

As a consequence of Theorems 5, 9, 12 and 14, we obtain that Lower-RCPLD and Lower-CRSC
are constraint qualifications for problem (1). In particular, all other conditions shown in Figure 1
are also constraint qualifications. More specifically, Theorem 5 translated to problem (1) gives the
following:
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Corollary 15. Suppose that p ∈ Ω satisfies Lower-RCPLD or Lower-CRSC. If p is a Lower-AKKT
point for problem (1), then p is a KKT point for problem (1).

In [35], the capability of Algorithm 2 to generate AKKT sequences for problem (15) was
demonstrated. This finding, supported by Theorem 9, indicates that Algorithm 2 also produces
Lower-AKKT sequences for the related problem (1). It is noteworthy that a comprehensive global
convergence analysis of Algorithm 2, specifically designed to address problem (15), was presented
in [3]. Given that problem (15) is essentially the Riemannian version of problem (1), Algorithm 2
is applicable to solving both problem instances. The next theorem establishes that, subject to
any lower strict constraint qualification in Definition 9, any feasible limit point of the sequence
generated by Algorithm 2 is a KKT point for problem (1). It is important to highlight that the
sequence (pk)k∈N generated by Algorithm 2 is feasible for the constraint {q ∈ Rn | h(q) = 0}.

Theorem 16. Let p ∈ Ω be a limit point of a sequence (pk)k∈N generated by Algorithm 2. Assume
that p satisfies Lower-RCPLD or Lower-CRSC. Then, p satisfies the KKT conditions for problem (1).

Proof. Let p ∈ Ω satisfy Lower-RCPLD (respectively Lower-CRSC). By Theorem 12 (respectively,
Theorem 14), it follows that p ∈ ΩM and also satisfies RCPLD (respectively, CRSC). According
to [35, Theorem 3], p is an AKKT point for problem (15). Using Theorem 9, we conclude that
p is a Lower-AKKT point for problem (1). Therefore, by Corollary 15, p is a KKT point for
problem (1).

The next theorem establishes the connection between Lower-QN and QN for problem (15).

Theorem 17. A point p ∈ Ω satisfies Lower-QN for problem (1) if and only if p ∈ ΩM satisfies
QN for problem (15).

Proof. First, assume that p ∈ Ω satisfies Lower-QN for problem (1). Assume, by contradiction,
that p ∈ ΩM does not satisfies QN for problem (15). Since Ω = ΩM, we have p ∈ ΩM, and item (i)
of Definition 7 implies that there exist λ ∈ Rs and µ ∈ Rm+ such that

s∑
i=1

λi gradHi(p) +
∑

j∈AM(p)

µj gradGj(p) = 0.

Given that AM(p) = A(p), and using similar arguments as in the proof of Theorem 9, we can
conclude that there exist (η, λ, µ) ∈ Rt × Rs × Rm+ such that

t∑
i=1

ηih
′
i(p) +

s∑
i=1

λiH
′
i(p) +

∑
j∈A(p)

µiG
′
i(p) = 0. (40)

Additionally, considering item (ii) of Definition 7 and the fact that AM(p) = A(p), we obtain

µj = 0, ∀j /∈ A(p), (η, λ, µ) 6= 0. (41)

Finally, take ε > 0. It follows from item (iii) of Definition 7 that, for each k ∈ N, there exists
qk ∈ B1/k(p) such that λiHi(qk) > 0 for all i ∈ S with λi 6= 0, and µjGj(qk) > 0 for all j ∈ AM(p)

with µj > 0. Given that limk→+∞ qk = p, there exists k̂ ∈ N such that qk ∈ Bε(p) ∩ {p ∈ Rn |
h(p) = 0} for all k ≥ k̂. Hence, considering that AM(p) = A(p), it follows that there exists
q ∈ Bε(p)∩{q ∈ Rn | h(q) = 0} such that λiHi(q) > 0 for all i ∈ S with λi 6= 0, and µjGj(q) > 0 for
all j ∈ A(p) with µj > 0. This, together with (40) and (41), contradicts Definition 11. Therefore,
p ∈ ΩM satisfies QN for problem (15).

Reciprocally, suppose that p ∈ ΩM satisfies QN for problem (15). Assume, by contradiction,
that p ∈ Ω does not satisfy Lower-QN for problem (1). According to item (i) of Definition 11, there
exist η ∈ Rt, λ ∈ Rs, and µ ∈ Rm+ such that

t∑
i=1

ηih
′
i(p) +

s∑
i=1

λiH
′
i(p) +

∑
j∈A(p)

µiG
′
i(p) = 0. (42)
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Given that AM(p) = A(p), and using similar arguments as in the proof of Theorem 9, we can
conclude that there exist λ ∈ Rs and µ ∈ Rm+ such that

s∑
i=1

λi gradHi(p) +
∑

j∈AM(p)

µj gradGj(p) = 0. (43)

Additionally, item (ii) of Definition 11 implies that µj = 0 for all j /∈ A(p) = AM(p) and (η, λ, µ) 6= 0.
Moreover, since {h′i(q) | i = 1, . . . , t} is linearly independent, (42) implies that if λ = µ = 0 then
η = 0, which means (η, λ, µ) = 0. Given that (η, λ, µ) 6= 0 we have (λ, µ) 6= 0. Thus,

µj = 0, ∀j /∈ AM(p), (λ, µ) 6= 0. (44)

Now, take ε > 0. It follows from item (iii) of Definition 11 that for each k ∈ N, there exists
qk ∈ B1/k(p)∩{q ∈ Rn | h(q) = 0} such that λiHi(qk) > 0 for all i ∈ S with λi 6= 0, and µjGj(qk) > 0
for all j ∈ A(p) with µj > 0. Since AM(p) = A(p), B1/k(p) ∩ {q ∈ Rn | h(q) = 0} is an open subset
of M, and limk→+∞ qk = p, there exists k̄ ∈ N such that qk̄ ∈ Bε(p)∩B1/k̄(p)∩ {q ∈ Rn | h(q) = 0},
with λiHi(qk̄) > 0 for all i ∈ i ∈ S with λi 6= 0, and µjGj(qk̄) > 0 for all j ∈ AM(p) with µj > 0.
This, together with (43) and (44), contradicts Definition 7. Therefore, p ∈ Ω satisfies Lower-QN for
problem (1).

Theorem 18. Let p ∈ Ω be a Lower-PAKKT point with associated primal sequence (pk)k∈N and
dual sequence (ηk, λk, µk)k∈N. Assume that p satisfies Lower-QN. Then, (ηk, λk, µk)k∈N is a bounded
sequence. In particular, p satisfies the KKT conditions, and any limit point of (ηk, λk, µk)k∈N is a
Lagrange multiplier associated with p.

Proof. Using Theorems 6, 9 and 17, it follows that (λk, µk)k∈N is bounded. Assume, by contradiction,
that (ηk) is unbounded. Let K1 ⊂ N be an infinite set and η ∈ Rt with ‖η‖2 = 1, such that
limk∈K1 ‖ηk‖2 = +∞ and limk∈K1(ηk/‖ηk‖2) = η. Since p ∈ ΩM is Lower-PAKKT with associated
primal sequence (pk)k∈N and dual sequence (ηk, λk, µk)k∈N, we have limk→∞ L

′(pk, ηk, λk, µk) = 0.
Therefore,

lim
k→∞

t∑
i=1

ηki
‖ηk‖

h′i(p
k) +

s∑
i=1

λki
‖ηk‖

H ′i(p
k) +

∑
j∈A(p)

µkj
‖ηk‖

G′j(p
k) = 0.

Consequently, we obtain
∑t

i=1 ηih
′
i(p) = 0, with η 6= 0, contradicting assumption (H1). Thus,

(ηk, λk, µk)k∈N is a bounded sequence.

Next, we show that Algorithm 2 produces Lower-PAKKT sequences, thereby establishing its
global convergence under the Lower-QN condition.

Theorem 19. Assume that Algorithm 2 generates an infinite sequence (pk)k∈N with a feasible
limit p ∈ Ω, say, limk∈K p

k = p. Then, p is a Lower-PAKKT point with the correspondent
primal sequence (pk)k∈K and dual sequence (ηk, λk, µk)k∈K , where (ηk)k∈K can be determined from
(λk, µk)k∈K which is generated by the algorithm. In particular, p is a KKT point, and any limit
point of (ηk, λk, µk)k∈K is a Lagrange multiplier associated with p.

Proof. By Theorem 7, we obtain that p is a PAKKT point with the correspondent primal sequence
(pk)k∈K and dual sequence (λk, µk)k∈K as generated by Algorithm 2. Using Theorem 9, we conclude
that p is a Lower-PAKKT point. Furthermore, similar to the proof of Theorem 9, we find that
(ηk)k∈K can be determined from (λk, µk)k∈K .

In [3], the authors introduced the concept of Scaled-PAKKT point for problem (15). Essentially,
it coincides with the definition of PAKKT with the condition limk→∞ gradL(pk, λk, µk)/γk = 0,
where γk :=

∥∥(1, λk, µk)
∥∥
∞, replacing item (ii) in Definition 5. We conclude this section by noting

that, similarly to Lower-PAKKT, we can also define the concept of Lower-Scaled-PAKKT and
establish its connection with Scaled-PAKKT. It was demonstrated in [3] that Algorithm 2 is
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capable of generating Scaled-PAKKT sequences by ensuring
∥∥gradLρk(pk, λ̄k, µ̄k)/γk

∥∥ ≤ εk, rather
than (18) in Step 1. Moreover, QN ensure that the dual Scaled-PAKKT sequence is bounded.
Therefore, Theorems 9 and 17 imply that Lower-QN is sufficient to guarantee that the dual
Lower-Scaled-PAKKT sequence is bounded.

5 Numerical experiments

This section presents numerical results to illustrate the practical advantages of exploiting Riemannian
techniques in solving certain classes of optimization problems. The experiments were conducted in
MATLAB version 9.11.0 (R2021b), on a computer with a 3.7 GHz Intel Core i5 6-Core processor
and 8GB 2667MHz DDR4 RAM, running macOS Sonoma 14.4.1. All codes are available at https:
//github.com/lfprudente/RiemannianAL. We compare the performance of the Riemannian and
Euclidean safeguarded augmented Lagrangian methods as follows:

• Riemannian-AL (Riemannian augmented Lagrangian): Algorithm 2 with Manopt [18] to
solve the subproblem in Step 1. We use the RLBFGS solver, a Riemannian limited memory
BFGS algorithm [26].

• Euclidian-AL (Euclidian augmented Lagrangian): Algorithm 1 with ASA [24] to solve the
subproblem in Step 1. In the Euclidian version, boxes are treated as lower-level constraints.
ASA is an active set algorithm coded in C for box-constrained optimization that combines a
gradient projection algorithm [21] and the conjugate gradient algorithm, as implemented in
the code CG DESCENT [22, 23]. We use the MATLAB interface provided in [12].

Given tolerances εopt > 0, εfeas > 0, and εcompl > 0 for optimality, feasibility, and complementar-
ity, respectively, the Riemannian-AL (resp. Euclidian-AL) algorithm stops successfully at iteration
k with (pk, λk, µk) ∈M× Rs × Rm+ (resp. (pk, ηk, λk, µk) ∈ Rn × Rt × Rs × Rm+ ) when:

‖ gradL(pk, λk, µk)‖ ≤ εopt (resp. ‖L′(pk, ηk, λk, µk)‖ ≤ εopt),

max{‖H(pk)‖∞, ‖G(pk)+‖∞} ≤ εfeas (resp. max{‖h(pk)‖∞, ‖H(pk)‖∞, ‖G(pk)+‖∞} ≤ εfeas),

min{−Gi(pk), µki } ≤ εcompl, for all i = 1, . . . ,m.

These conditions correspond to the approximate fulfillment of the KKT conditions. We also
stopped the execution of the algorithms if the penalty parameter became too large (ρk > 1020)
or if the algorithms exceeded the maximum number of 50 outer iterations allowed. These two
criteria are related to failures. For both algorithms, we used the following parameters: τ = 0.5,
γ = 10, λmin = −1020, λmax = µmax = 1020, λ̄1 = µ̄1 = 0, εopt = εfeas = εcompl = 10−5,

εk = max{εopt,
√
εopt/10k−1} for all k ≥ 1, and

ρ1 = max

{
10−8,min

{
10

max{1, f(p0)}
max{1, ‖h(p0)‖22 + ‖H(p0)‖22 + ‖G(p0)+‖22}

, 108

}}
,

as suggested in [14]. For each experiment, both solvers used the same starting point. In the
following subsections, we describe three applications that can be modeled as problem (15), along
with the corresponding results.

5.1 Greediness phenomenon

The greediness phenomenon is the tendency of some nonlinear programming methods to find highly
infeasible points with very small functional values, typically in the initial iterations, see [20]. The
phenomenon can occur in problems for which the objective function assumes significantly lower
values at infeasible points than in the feasible region. In an augmented Lagrangian algorithm,
unconstrained minimizers may attract the iterates at early stages of the calculations, causing the
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penalty parameter to grow excessively. This excessive growth leads to ill-conditioning, which harms
the overall convergence. Consider the following example [20]:

Minimize
x∈Rn

−
n∑
i=1

(x8
i + xi), subject to ‖x‖2 = 1, x2 +

n∑
i=1

xi ≤ 0. (45)

Since ‖x‖2 = 1 defines the unit sphere Sn−1 ⊂ Rn, problem (45) can be rewritten as:

Minimize
x∈Sn−1

−
n∑
i=1

(x8
i + xi), subject to x2 +

n∑
i=1

xi ≤ 0. (46)

We applied Euclidian-AL and Riemannian-AL algorithms to problems (45) and (46), respectively.
We set n = 50 and randomly generated 100 starting points on the sphere Sn−1. The Euclidian-AL
algorithm failed in all instances, typically generating the first iterate with ‖x1‖∞ ≈ 1043 and
f(x1) = −∞. From there, two situations were observed: either NaNs were generated, resulting in
algorithm failure, or the penalty parameter grew beyond the maximum allowed. In contrast, the
Riemannian-AL algorithm successfully solved the problem in all instances. The maximum number
of iterations was 6, and the greatest final penalty parameter was less than 20. For illustrative
purposes, Figure 2 shows the behavior of the Riemannian-AL algorithm in the case where n = 2,
x0 = (

√
2/2,
√

2/2), and ρ1 ≈ 7. The Riemannian-AL algorithm converged to the global solution
x∗ = (2

√
5/5,−

√
5/5) in 4 iterations. Visually, the second iterate x2 is virtually identical to the

solution x∗. In contrast, as for the larger instances, the Euclidian-AL algorithm failed to solve the
problem.

Figure 2: Iterates generated by the Riemannian-AL algorithm for problem (46) with n = 2. The feasible set is highlighted
in blue and the level sets of the objective function are given in light grey. The algorithm converges in 4 iterations, with the
second iterate x2 closely coinciding with the global solution x∗.

We conclude that when the greediness is associated with the manifold M, the Riemannian
algorithm uses the geometric structure to maintain feasibility with respect to M, control the penalty
parameter, and improve the convergence of the augmented Lagrangian method.

5.2 Packing circles within ellipses

The circle packing problem involves finding the maximum radius r of N identical circles that can
be fitted without overlapping into a two-dimensional fixed-size container [32]. This problem has
a wide range of applications, as discussed in [32, 15] and the references therein. In this section,
we consider the container to be an ellipse with semi-axes a ≥ b > 0. Using continuous variables
(r;u, v, s) ∈ R× (Rn)3 , this problem can be modeled [15] as follows:

Maximize
(r;u,v,s)∈R×(Rn)3

r

subject to u2
i + v2

i = 1, ∀i = 1, . . . , N,
b2(si − 1)2[(b2/a2)u2

i + v2
i ] ≥ r2, ∀i = 1, . . . , N,

a2
[
(1 + (si − 1)(b2/a2))ui − (1 + (sj − 1)(b2/a2))uj

]2
+ b2(sivi − sjvj)2 ≥ 4r2, ∀i < j,

0 ≤ si ≤ 1, ∀i = 1, . . . , N,
r ≥ 0.

(47)
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The Cartesian coordinates (xi, yi) of the circles’ centers can be recovered using:

xi = a[1 + (si − 1)(b2/a2)]ui, yi = bsivi, ∀i = 1, . . . , N.

Since, for all i = 1, . . . , N , the constraint u2
i + v2

i = 1 defines the unit circle S1 ⊂ R2, problem (47)
can be written in the format of (15) by taking (r; (u, v); s) ∈ M := R× (S1)n × Rn and omitting
the first group of constraints.

We considered eight instances of the problems with (a, b) = (2, 1) andN ∈ {3, 10, 20, 30, 40, 50, 80, 100}.
The starting points (r0; (u0, v0); s0) were randomly generated in [0, 1]×(S1)n× [0, 1]n. Table 1 shows
the results. In the table, “N” is the number of circles to be packed, “n” is the number of variables
and “#c.” is the number of constraints. For the Riemannian-AL algorithm, the manifold constraints
are excluded from the count, and for the Euclidean-AL algorithm, the box constraints are excluded.
“It” is the number of augmented Lagrangian iterations, “Obj.” is the final optimal radius, “Feas.”
is the feasibility measure at the final iterate p∗ given by max{‖h(p∗)‖∞, ‖H(p∗)‖∞, ‖G(p∗)+‖∞},
and “Time” is the CPU time in seconds. The best reported data for each instance is highlighted in
bold. Figure 3 illustrates the “solutions” found by the Riemannian-AL algorithm.

Riemannian-AL Euclidian-AL
N n #c. It. Obj. Feas. Time #c. It. r Feas. Time
3 10 13 5 6.667e-01 5.0e-07 1.0 9 5 6.667e-01 3.0e-06 0.2
10 31 76 8 3.793e-01 1.9e-06 9.7 65 5 3.638e-01 3.1e-06 3.6
20 61 251 6 2.751e-01 2.7e-06 27.4 230 13 2.747e-03 7.5e-06 5.7
30 91 526 6 2.254e-01 1.0e-06 136.3 495 7 2.238e-01 8.8e-07 184.2
40 121 901 9 1.977e-01 5.1e-06 315.0 860 14 2.096e-03 4.3e-06 24.9
50 151 1376 8 1.757e-01 2.5e-06 587.3 1325 6 1.776e-01 6.9e-06 815.6
80 241 3401 8 1.401e-01 9.7e-06 1235.2 3320 13 2.659e-03 7.0e-06 103.9
100 301 5251 6 1.262e-01 5.0e-06 1794.4 5150 12 1.905e-03 3.6e-06 347.8

Table 1: Performance of Riemannian-AL and Euclidean-AL algorithms for packing circles within an ellipse.

As can be seen, the Riemannian-AL algorithm consistently outperformed the Euclidean-AL
algorithm in terms of the final optimal radius. For larger instances, the Euclidean-AL algorithm
often encountered issues where the centers of some circles moved to the ellipse boundary, resulting
in a significantly smaller radius (r in the order of 10−3). This phenomenon led to poor local
minimizers and was never observed with the Riemannian-AL algorithm. For example, when packing
20 circles, the Euclidean-AL algorithm required 15 different starting points, taking a total of
183.1 seconds to find a solution with r in the order of 10−1. Similarly, for packing 40 circles, the
Euclidean-AL algorithm needed 7 initial points, taking a total of 1060.7 seconds. Notably, for
packing 80 circles, the Euclidean-AL algorithm used 100 starting points and spent over 13 hours
without finding a solution with a final radius r in the order of 10−1. These results show that while
the Riemannian-AL algorithm efficiently solves all instances without needing multiple starting
points, the Euclidean-AL algorithm frequently requires several initial points to find good solutions,
resulting in more computational time.

N = 3 N = 10 N = 20 N = 30

N = 40 N = 50 N = 80 N = 100

Figure 3: Illustration of the “solutions” found by the Riemannian-AL algorithm for packing N circles within an ellipse with
(a, b) = (2, 1).
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5.3 k-Means clustering

Given a set of N data points, the k-means clustering problem involves partitioning these points
into k clusters, with the goal of minimizing the sum of squared distances between each data point
and the centroid of its corresponding cluster. This process helps in grouping similar data points
together, uncovering underlying patterns or structures within the data. We refer to [1] for numerous
applications across various domains. Let P := {x1, . . . , xN} ⊂ R` represent the given data points,
and denote the clusters by C1, . . . , Ck ⊂ P. The k-means clustering problem can be formulated as
follows:

Minimize
C1,...,Ck

k∑
j=1

∑
xi∈Cj

‖xi − µj‖2, subject to P =

k⋃
j=1

Cj , Ci ∩ Cj = ∅, ∀i 6= j,

where µj := 1
|Cj |
∑

xi∈Cj xi and |Cj | is the cardinality of Cj . According to [19], this problem can be

equivalently reformulated as a continuous optimization problem with nonnegative orthogonality
constraints, expressed as follows:

Minimize
Y ∈RN×k

− tr(Y >DY ), subject to Y >Y = I, Y ≥ 0, Y Y >e = e, (48)

where D := (Dij) ∈ RN×N with Dij = x>i xj for all i, j = 1, . . . , N , I is the N -dimensional
identity matrix, the inequality Y ≥ 0 is component-wise, and e ∈ RN is the vector of ones. The
constraint Y >Y = I is the Stiefel manifold embedded in the N × k real matrix space, denoted by
StN,k := {Y ∈ RN×k | Y >Y = I}. Thus, problem (48) can be written in the format of (15) by
taking Y ∈ StN,k and omitting the constraint Y >Y = I. A feasible point Y ∈ RN×k has exactly one
non-negative entry per row and all non-zero entries of a column are equal. A point xi is assigned to
cluster Cj if Yij 6= 0. This property ensures that the clustering structure can be directly recovered
from the solution matrix Y .

As in [30], we considered some datasets from the UCI Machine Learning Repository [29]. The
main characteristics of the considered problems are described in Table 2. The table also shows
the number of variables related to problem (48), and the number of constraints of its Riemannian
(#c(Riem.)) and Euclidean (#c(Eucl.)) versions. The starting points were generated corresponding
to a random cluster classification. For all k-means problems, we used εopt = 10−4 in the stopping
criterion.

Problem name Number of datas (N) Features (`) Clusters (k) n #c(Riem.) #c(Eucl.)
Breast cancer 569 30 2 1138 1707 572
Cloud 2048 10 2 4096 6144 2051
Ecoli 336 7 8 2688 3024 372
Ionosphere 351 34 2 702 1053 354
Iris 150 4 3 450 600 156
Parkinsons 195 22 2 390 585 198
Pima diabetes 768 8 2 1536 2304 771
Raisin 900 7 2 1800 2700 903
Seeds 210 7 3 630 840 216
SPECTF 267 44 2 534 801 270
Thyroid 215 5 3 645 860 221
Transfusion 748 4 2 751 2244 1496
Wine 178 13 3 534 712 184

Table 2: Main characteristics of the considered k-means problems.

Table 3 shows the results organized similarly to Table 1, with the addition of the “Acc.” column,
which reports the accuracy of correct classifications. The results indicate that the Riemannian-AL
algorithm consistently produces higher clustering accuracy (Acc.) compared to the Euclidean-AL
algorithm. Despite generally requiring more computational time, the Riemannian-AL algorithm
achieves lower objective values (Obj.) and maintains a high level of feasibility (Feas.). The Euclidean-
AL algorithm often faced convergence difficulties and failed to provide results for several datasets.
Specifically, for the Cloud, Iris, Pima diabetes, Raisin, and SPECTF problems, the Euclidean-AL
algorithm got stuck at infeasible points that are stationary for an infeasibility measure, leading to
excessive increases in the penalty parameter until the algorithm failed. The convergence to such
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infeasible points impairs the overall performance of an augmented Lagrangian algorithm and is
often used as a stopping criterion related to failure, see [14].

Riemannian-AL Euclidian-AL
Problem It. Obj. Feas. Time Acc.(%) It. Obj. Feas. Time Acc. (%)
Breast cancer 9 -2.732e+03 2.2e-06 59.4 91.0 11 -2.732e+03 1.7e-06 14.8 91.0
Cloud 13 -4.274e+03 9.9e-07 178.2 100.0 - - - - -
Ecoli 9 -9.046e+02 2.8e-06 487.8 65.8 5 -8.820e+02 3.1e-06 25.9 55.1
Ionosphere 8 -1.134e+03 3.5e-07 29.0 71.2 9 -1.134e+03 3.2e-06 9.6 71.2
Iris 9 -2.276e+02 2.9e-06 42.7 83.3 - - - - -
Parkinsons 6 -7.969e+06 2.3e-07 44.1 75.4 5 -7.479e+06 1.1e-06 1.0 51.3
Pima diabetes 9 -5.070e+02 1.0e-06 139.4 67.4 - - - - -
Raisin 10 -1.449e+03 2.8e-06 98.7 76.8 - - - - -
Seeds 11 -5.158e+02 7.4e-06 80.4 91.4 7 -5.172e+02 7.0e-06 12.2 92.4
SPECTF 8 -1.377e+03 4.3e-06 28.6 66.3 - - - - -
Thyroid 8 -3.049e+02 1.6e-06 56.4 87.4 17 -1.573e+02 9.2e-06 20.1 77.2
Transfusion 7 -1.160e+09 6.0e-07 23.6 73.9 7 -1.160e+09 1.1e-06 13.4 73.9
Wine 9 -5.151e+02 9.0e-07 49.0 96.6 8 -5.151e+02 9.8e-06 3.1 96.6

Table 3: Performance of Riemannian-AL and Euclidean-AL algorithms for the k-means clustering problem.

We conclude this section by illustrating the “solution” found by the Riemannian-AL algorithm
in a synthetic k-means problem with ` = 2. We generated 500 randomly perturbed data points
around the reference points (3, 3), (−3,−3), and (6,−6), resulting in a problem with 1500 variables
and 2000 constraints. The Riemannian-AL algorithm took 8 iterations and a total of 103.3 seconds
to find a solution with Obj = −9.919× 103 and Feas = 1.7× 10−8. Figure 4 shows the algorithm’s
success in correctly clustering the dataset.

Figure 4: Illustration of the “solution” found by the Riemannian-AL algorithm in a synthetic k-means
problem with ` = 2.

6 Conclusions

This paper examines the use of augmented Lagrangian methods for solving constrained nonlinear
programming problems involving both equality and inequality constraints, with an emphasis on
lower and upper-level constraints. We introduce and analyze lower strict constraint qualifications
(Lower-SCQs) within this framework, demonstrating their reduced restrictiveness compared to
traditional constraint qualifications. By applying Riemannian Geometry, we connect Lower-SCQs
with their Riemannian counterparts, thereby enhancing the theoretical foundation of optimization
on Riemannian manifolds. Our study reveals significant theoretical advancements and practical
implications, including the introduction of new sequential optimality conditions in the safeguarded
augmented Lagrangian algorithm. This algorithm generates Lower-PAKKT sequences that adhere
to manifold constraints and ensure all limit points satisfy the KKT conditions under any Lower-
SCQ. This finding highlights the robustness of our framework and the advantages of Riemannian
optimization methods. The comparison between classic and Riemannian versions of the algorithm
reveals that the intrinsic approach often outperforms the extrinsic one in certain cases. This
advocates for the use of Riemannian methods in specific optimization problems and suggests new
research directions beyond Euclidean spaces. In conclusion, this work advances both the theory and
practical applications of nonlinear programming, emphasizing the dynamic nature of optimization
research and encouraging further investigation into Riemannian methods across various theoretical
and practical settings.
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