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Abstract This tutorial provides an introduction to the use of decision diagrams for solving
discrete optimization problems. A decision diagram is a graphical representation of
the solution space, representing decisions sequentially as paths from a root node to
a target node. By merging isomorphic subgraphs (or equivalent subproblems), deci-
sion diagrams can compactly represent an exponential solution space. This ability can
reduce solving time and memory requirements potentially by orders of magnitude.
That said, exact decision diagrams can still be of exponential size for a given problem,
which limits their practical applicability to relatively small instances. However, recent
research has introduced a scalable approach by compiling polynomial-sized relaxed
and restricted diagrams that yield dual and primal bounds, respectively. These can
be combined in an exact search to produce a generic decision diagram-based branch-
and-bound method. This chapter describes how this approach provides a scalable
solution method for state-based dynamic programming models. In addition, the chap-
ter shows how this approach can be applied to, and embedded in, other computational
paradigms including constraint programming, integer programming, and column elim-
ination. After this chapter, readers will have an understanding of the basic principles
of decision diagram-based optimization, an appreciation of how it compares it to other
optimization methods, and an understanding of what types of optimization problems
are most suitable for this new technology.

Keywords discrete optimization; decision diagrams; integer programming; dynamic program-
ming; constraint programming; network flows; branch and bound

1. Introduction

This tutorial provides an introduction to the use of decision diagrams for discrete optimiza-
tion problems. Decision diagrams were first introduced in computer science to compactly
represent Boolean functions through a graphical data structure for the purpose of Boolean
circuit verification (Lee [57], Akers [2]). In the decades that followed, decision diagrams
have been widely studied in the context of knowledge representation, Boolean satisfiability,
formal methods, configuration problems, and many others. An overview of the foundations
of decision diagrams as a data structure can be found in the books by Wegener [81] and
Knuth [52].

Starting in the late 1990s, decision diagrams were applied to represent the discrete solution
space of combinatorial optimization problems (Lai et al. [55], Wegener [81], Becker et al.
[7], Hawkins et al. [43]). All these methods use decision diagrams to exactly represent the
solution set to a given problem, which requires exponential memory in the worst case. In
a seminal paper from 2007, Andersen, Hadžić, Hooker, and Tiedemann [3] introduced the
concept of relaxed decision diagrams of polynomial size to define discrete relaxations for
combinatorial problems, in the context of constraint programming. This started a new line
of research by Bergman, Cire, Van Hoeve, and Hooker [13], who developed a novel branch-
and-bound method where relaxed decision diagrams provide dual bounds, restricted decision
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diagrams provide primal bounds, and an exact search is defined based on the nodes of
the diagrams. Since then, decision diagram-based optimization methods have been applied
to integer linear programming, integer nonlinear programming, constraint programming,
stochastic programming, and to application areas ranging from machine scheduling and
vehicle routing to portfolio optimization and workforce planning (Castro et al. [25]).

We will describe the main developments in this area, starting with the connection of
decision diagrams and discrete optimization in Section 2. We then present the decision
diagram-based branch-and-bound method of Bergman et al. in Section 3. This is followed
by an overview of decision diagram-based constraint programming, in Section 4. Section 5
combines decision diagram-based constraint programming and decision-diagram based opti-
mization for scheduling and routing problems. Section 6 discusses the use of decision dia-
grams in the context of integer programming. In Section 7 a new solution method called
column elimination is presented that iteratively strengthens a decision diagram relaxation,
and which is closely related to column generation. A summary is given in Section 8.

2. Decision Diagrams and Discrete Optimization Problems

We present basic decision diagram terminology, connect this to discrete optimization prob-
lems, and provide assumptions and useful properties of decision diagrams for optimization
problems.

Decision Diagram Definitions We first provide the canonical definition of decision
diagrams, following (Bryant [22]). While we will not directly use these definitions for the
purpose of optimization, they are still relevant as the formal foundation. Additionally, it
will help readers that are familiar with traditional decision diagrams make the connection
to the use in an optimization context. Specifically, we will discuss why and how decision
diagrams for optimization are different from the canonical description.

A binary decision diagram (BDD) represents a Boolean function as an acyclic directed
graph, with the nonterminal vertices labeled by Boolean variables and the leaf vertices
labeled with the values 1 and 0. Each nonterminal vertex v is associated with a Boolean
variable var(v) and has two outgoing edges, (v,hi(v)) labeled with value 1, and (v, lo(v))
labeled with value 0. We can represent the Boolean function by associating a function fv
with every vertex v in the graph. For the leaf nodes, we define f1 = 1 and f0 = 0. For a
non-terminal vertex v, we define fv = (var(v)∧fhi(v))∨ (¬var(v)∧flo(v)). Lastly, we identify
a root vertex r representing the value of the original Boolean function as fr. The result is a
recursive reformulation that is a systematic application of Boole’s expansion theorem (Boole
[19]), also known as the Shannon expansion of a Boolean function.

In an ordered binary decision diagram (OBDD), we enforce the condition that the variables
follow an arbitrary but fixed ordering rule as they are associated with vertices from the root
to a terminal. That is, for each edge (u,w) connecting two nonterminal vertices u and v, we
have that var(u) comes before var(v) in the ordering. In a reduced ordered binary decision
diagram (ROBDD), we additionally impose that there cannot be two vertices that represent
the same function. A key result is that for a given Boolean function and a given variable
ordering, there exists a unique ROBDD representation for that function (Bryant [20, 21]).
Moreover, there exist efficient algorithms to convert an OBDD into an ROBDD.

Example 1. The BDD in Fig. 1 represents the Boolean function (x1∧x2∧¬x3)∨ (¬x1∧
x3). The root vertex v1 is associated with the function fv1 = (x1 ∧ fv2)∨ (¬x1 ∧ fv3). The
functions fv2 and fv3 are similarly recursively expanded until one of the terminal vertices v5
or v6 is reached. This is an ordered BDD because the variables associated with the vertices
are ordered; in this case, lexicographically. The BDD is also reduced, because each vertex v
correspond to a unique function represented by the subgraph rooted at v.

The concepts above for binary decision variables can be generalized to functions over vari-
ables with multiple values instead of only binary decisions. Namely, if a variable has a
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Figure 1. The ROBDD repre-
senting (x1∧x2∧¬x3)∨(¬x1∧x3),
taken from (Bryant [22]).
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Figure 2. BDDs for the independent set problem.
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c. BDD for optimization

discrete set of possible values (its domain), we can define an edge (v,valj(v)) for each value
j in the domain of var(v). The result is called a multi-valued decision diagram or MDD.
Furthermore, decision diagrams can have more than two terminals to represent functions
that distinguish multiple cases, e.g., for configuration problems (Wegener [81]).

Connection with Discrete Optimization There exists a natural connection between
decision diagrams and discrete optimization problems, by interpreting the solution set of a
discrete optimization problem as the result of a Boolean (or multi-valued) function return-
ing value 1. We illustrate this with the classical NP-hard maximum independent set prob-
lem (Garey and Johnson [34]). Given a graph G = (V,E) with vertex set V and edge set
E, an independent set is a subset S ⊆ V such that no two vertices in S share an edge, i.e.,
(i, j) /∈ E for all pairs i, j ∈ S. Given a weight wi for i ∈ V , the maximum independent set
problem asks to find an independent set of maximum total weight.

Example 2. Consider the graph in Fig. 2.a with vertex set V = {a, b, c, d}. We will focus
first on enumerating all independent sets, and consider the optimization problem later. We
can algebraically represent all independent sets as solutions to the integer linear model

{(xa, xb, xc, xd) : xi +xj ≤ 1 ∀(i, j)∈E,xi ∈ {0,1} ∀i∈ V } .

Alternatively, we can interpret the variables x to be Boolean-valued and define the Boolean
function f(x) = (¬xa∨¬xc)∧(¬xb∨¬xc)∧(¬xb∨¬xd)∧(¬xc∨¬xd). If f(x) returns value 1
for a given truth assignment x, this corresponds to the independent set {i : i ∈ V,xi =
1}. Fig. 2.b depicts the ROBDD representing f : any solution (truth assignment) x to the
variables corresponds to a unique path from r to a terminal node, returning either false or
true as the evaluation of f(x). Specific for this example, paths from r to 1 represent all
independent sets of G.

For our purposes, we are only interested in feasible solutions, and can therefore ignore the
0-terminal and all paths leading to it (see Fig. 2.c in which the 1-terminal is indicated by
t). In addition, we need to express the objective function, being the sum of the weights of
vertices in an independent set. We do this by associating a ‘cost’ value to each edge in the
diagram: edge (u, v) has cost 0 if it represents decision 0, and value wi if it represents value
1 and var(u) is decision variable xi for some i ∈ V . However, the ROBDD only represents
the truth value of the Boolean function and arcs may skip variables; because many decisions
are implicit we cannot express their costs. For this reason, the BDD in Fig. 2.c does not skip
layers, but requires that edges are defined between consecutive layers. Doing so, each path
from r to t is of the same length and represents an independent set of weight equal to the
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sum of the associated edge costs. The longest r-t path corresponds to the optimal solution,
in this case S = {a, d} with weight 8 as indicated with bold edges in Fig. 2.c.

Assumptions for Optimization Problems There are important differences in how
decision diagrams are built (or compiled) in the classical computer science literature and in
the context of optimization. The classical definitions of BDDs were designed to efficiently
manipulate and evaluate Boolean functions. In particular, as soon as a decision for vertex v
evaluates to 1 or 0, the associated edge is directed to the respective terminal vertex, skipping
any decision variable that has not yet been considered. We have seen in Example 2 that this
may lead to challenges in representing the objective function for optimization problems, and
we therefore imposed that edges must connect vertices in subsequent layers. More generally,
imposing that edges are defined between consecutive layers gives the ability to provide an
explicit mapping between solutions of an integer program and paths in the decision diagram,
as each path is now of the same fixed length over the same ordered sequence of variables. This
is particularly relevant when decision diagrams are integrated into integer programming or
constraint programming solvers, in which case the decision diagram representation interacts
with the original integer programming or constraint programming model.

This also relates to differences in how decision diagrams are compiled. Most classical
methods apply a compositional approach to build larger BDDs from smaller ones, by first
representing individual clauses as BDDs and then taking their conjunction. This is effective
because each problem is a Boolean function, and the decisions are made without any seman-
tic information. In contrast, in the context of decision diagram-based optimization, most
methods follow a top-down compilation method that builds the diagram layer by layer from
the root. One reason for this is that optimization problems are not presented as Boolean
functions, but typically as state-based models or dynamic programming models. Such mod-
els do have semantic information, e.g., related to the evaluation of a cost function or resource
constraints. By incorporating that information into the compilation method, the diagrams
can be built much more efficiently.

For the above reasons, the decision diagram-based optimization literature usually men-
tions that edges can only connect subsequent layers. It is still possible to apply the concept
of a reduced diagram in that case, by imposing that no two nodes in a layer can be equiv-
alent. As an example, the BDD in Fig. 2.c is a reduced ordered BDD under the condition
that edges only connect vertices in subsequent layers. However, when no direct link with an
integer program or constraint program is required, it is often more efficient to compile deci-
sion diagrams with edges that do skip layers, as long as the appropriate problem structure
can be represented.

3. Decision Diagram-Based Branch-and-Bound

This section describes the generic branch-and-bound framework based on decision diagrams
by Bergman et al. [13]. Working from a state-based formulation (e.g., a dynamic program),
this approach compiles relaxed decision diagrams to compute dual bounds (Bergman et al.
[18, 14]), restricted decision diagrams to compute primal bounds (Bergman et al. [16]),
and embeds these in an exact branch-and-bound search method (Bergman et al. [15]). We
consider discrete optimization problems of the form

P : max f(x)
s.t. Ci(x), i= 1, . . . ,m,

x∈D
(1)

where x= (x1, . . . , xn) is a tuple of n decision variables, f is a real-valued objective function
over x, C1, . . . ,Cm are constraints over x, and D =D1 × · · · ×Dn is the Cartesian product
of the domains of the variables, i.e., xi ∈Di for i= 1, . . . , n. We assume that each domain is
finite.
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Dynamic Programming Model The set of solutions to P can be modeled using a
state-based dynamic programming (DP) formulation. In dynamic programming, a solution
is represented as a sequence of state-based decisions (Bellman [9]). It uses ‘state variables’
s1, s2, . . . , sn+1 and ‘decision variables’ x1, x2, . . . , xn, where a decision variable transitions
one state into another state depending on the decision value (or ‘label’). One typical form
to represent DP models is a recursive algebraic formulation, which is common in operations
research (Bellman [9]). Another form is a state-based formulation, i.e., a labeled transition
system (Keller [50]). Bergman et al. [13] follow the latter approach, as it is more closely
aligned with how decision diagrams are compiled. That is, a dynamic program for problem
P consists of the following elements:

• A state space S with a root state r and a terminal state t. (In general we would allow
multiple terminal states.) To facilitate notation, we also introduce an infeasible state 0̂ to
represent infeasible solutions to P . The state space is partitioned into sets for each of the
n+1 stages; i.e., S is the union of the sets S1, ..., Sn+1, where S1 = {r} and Sn+1 = {t, 0̂},
and 0̂∈ Sj for j = 2, . . . , n.

• Transition functions τj : Sj ×Dj → Sj+1, for j = 1, . . . , n, representing decision xj as a
transition between states in layers Sj and Sj+1,

• Transition cost functions hj : S × Dj → R for j = 1, . . . , n, representing the cost of a
decision,

• A root value vr ∈R accounting for objective function constants.

The DP formulation of P with variables (s1, . . . , sn+1, x1, . . . , xn) has the following form:

max vr +

n∑
j=1

hj(sj , xj)

s.t. sj+1 = τj(sj , xj) for all xj ∈Dj , j = 1, . . . , n,
sj ∈ Sj for all j = 1, . . . , n+1.

Observe that the objective function f(x) and constraints C1, . . . ,Cm are captured through
appropriately defining the state definitions and transition functions.

Example 3. Consider the maximum independent set problem on a weighted graph G=
(V,E) with node set V = {1, . . . , n} and edge set E, where each node j ∈ V has a ‘weight’
wj (see Example 2). We let N(j) represent the set of neighbors of vertex j, i.e., N(j) = {j′ :
(j, j′) ∈E} ∪ {j}. We have already seen an example BDD for this problem in Fig. 2.c. For
the DP formulation, we maintain in each stage a set of eligible vertices Vj ⊆ {j, j+1, . . . , n}
that can be added to the independent set so far constructed from the root up to stage j.
When we include a vertex j, the transition removes that vertex and all its neighbors from
the eligible set as we transition to stage j+1. To build the DP model, we introduce decision
variables xj ∈ {0,1} for j ∈ V and state variables s1, . . . , sn+1, and define the formulation as
follows:

• State space: Sj = 2Vj , root r= V , and terminal t=∅.

• Transition functions: τj(sj ,0) = sj \ {j}, and τj(sj ,1) =

{
sj \N(j) , if j ∈ sj
0̂ , if j /∈ sj

.

• Transition cost functions: hj(sj ,0) = 0, hj(sj ,1) =wj .
• Root value: vr = 0.

Exact, Relaxed, and Restricted Decision Diagrams Given a DP model, we can
compile the associated decision diagrams similar to the state-transition graph in dynamic
programming. That is, we define the decision diagrams as a weighted directed acyclic graph
D= (N,A) where node set N corresponds to the set of state variables and arc set A corre-
sponds to the state transition function τ . Each state s∈ S has an associated node in N (also
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named s). For each transition τ(s, ℓ) = s′ with s ∈ Sj , s
′ ∈ Sj+1 in the DP model we define

an arc (s, s′)∈A with associated label ℓ and weight w(s, s′) = hj(s, ℓ). The labels along each
arc-specified path from the root node to the terminal node t correspond to a solution to P
and vice versa. Furthermore, the longest r-t path corresponds to the optimal solution to P .
By construction D is a layered graph, where layer j = 1,2, . . . , n corresponds to decision xj

and layer n+1 is the terminal layer.
Let Sol(D) denote the set of solutions represented by the decision diagram D, and let

Sol(P ) represent the set of solutions of P . For each arc-specified r-t path p, let w(p) denote
its total weight and let xp denote its sequence of arc labels.

Definition 1. A decision diagram D is exact w.r.t. P if Sol(D) = Sol(P ) and w(p) = f(xp)
for all r-t paths p in D.

Exact decision diagrams can be compiled in a ‘top-down’ manner starting at the root state,
by recursively expanding the state space according to the transition function, while merging
equivalent states. If the exact decision diagram fits into computer memory, we can directly
solve P by computing the longest path. However, because the exact decision diagram can
grow exponentially large in n, its size often prohibits a complete compilation. The crucial
element of decision-diagram based optimization is to utilize relaxed decision diagrams of
polynomial size to obtain a relaxation bound on P .

Definition 2. A decision diagram D is relaxed w.r.t. P if Sol(D) ⊇ Sol(P ) and w(p) ≥
f(xp) for all r-t paths p in D such that xp ∈ Sol(P ).

Relaxed decision diagrams are obtained by merging states that are not equivalent. This is
accomplished by applying a merge operator ⊕(·) to a set of states S′ ⊂ S, resulting in a
new ‘merged’ state ⊕(S′). In order to define a relaxed decision diagram, we must take care
that the merged state does not exclude feasible solutions nor underestimates the objective
function. The merge operator is iteratively applied until the size of the diagram meets a
maximum size limit, typically defined as a maximum width, i.e., the maximum number of
nodes in each layer. Note that the merge operator changes the definition of the dynamic
program: the newly merged states need to be added to S if they were not defined recursively
before by the DP model.

To find primal (heuristic) solutions, we can use restricted decision diagrams that represent
a subset of the feasible solutions:

Definition 3. A decision diagram D is restricted w.r.t. P if Sol(D)⊆ Sol(P ) and w(p)≤
f(xp) for all r-t paths p in D such that xp ∈ Sol(P ).

Restricted decision diagrams are easier to compile than relaxed decision diagrams. Given a
priority of the nodes and a maximum size limit (typically defined per layer), a restricted
decision diagram is obtained by simply discarding the lowest priority nodes beyond the
maximum size limit. The longest r-t path, if it exists, is a primal solution to P .

Example 4. We illustrate the top-down compilation of the decision diagram for the DP
model in Example 3 in Fig. 3.a. The compilation applies the fixed lexicographic variable
ordering xa, xb, xc, xd. The root node, representing decision xa, has associated state variable
V = {a, b, c, d} representing the initial set of eligible vertices. Applying the transition function
to this state yields the two states {b, c, d} (for xa = 0) and {b, d} (for xa = 1) in the layer
associated with decision xb. By recursively applying the transition function, we arrive at the
layer for xc in which two states are equivalent (representing the empty set) and can hence be
merged. The merged state is depicted in Fig. 3.b, which also shows the complete compilation
of the decision diagram. (In these diagrams, we do not depict arcs leading to the infeasible
state 0̂.) Each arc has an associated weight that is indicated in the figure. The longest path,
depicted with bold edges, corresponds to the optimal solution (xa, xb, xc, xd) = (1,0,0,1)
with total weight 8.
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Figure 3. Top-down compilation and the exact, relaxed, and restricted decision diagrams for the
maximum independent set problem of Example 3 using the input graph in Fig. 2a.
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Observe that the width (the size of the largest layer) of the exact diagram is 3. Suppose
we now impose a maximum width limit of two nodes and wish to create a relaxed decision
diagram. Fig. 3.a shows that we first exceed the width limit for the layer associated with xc,
having four nodes. Because the two states representing the empty set are merged, we are
left with three nodes. We can heuristically select any two states to be merged to reach the
maximum width 2, for example {c, d} and {d}. As merging operator, we define the union of
their respective sets:

⊕({s1, s2, . . . , sk}) =∪k
i=1si.

This operator ensures that no solution is lost, but we may introduce non-solutions. Applying
it to our example, our merged state is {c, d}∪{d}= {c, d}. Fig. 3.c shows how the arc with
label 0 from state {b, d} in the layer for xb is now directed to the new merged state {c, d} in
the next layer. Further top-down compilation does not exceed the width limit, resulting in
the presented relaxed diagram. The longest path is now (xa, xb, xc, xd) = (1,0,1,0) providing
a dual bound of value 9. It corresponds to {a, c} which is not an independent set.
Lastly, we compile a restricted diagram of maximum width 2. As before, we consider the

layer for decision xc in Fig. 3.c. We can heuristically select any state, say {d} and simply
discard it from the layer. Further top-down compilation does not exceed the width limit,
resulting in the restricted diagram presented in Fig. 3.d. Its longest path is (xa, xb, xc, xd) =
(1,1,0,0) providing a primal bound of value 7. It corresponds to {a, b} which is indeed an
independent set but not optimal.

An alternative to the top-down compilation method above is compilation by separation,
first proposed by Hadzic et al. [42] under the name ‘incremental refinement’. In this method,
we start with a decision diagram of width one and iteratively refine the diagram by separating
out paths via new nodes. The initial decision diagram can be defined by applying the top-
down compilation method with a limit of one node per layer, i.e., in each layer we apply the
merging operator until one node remains. We then iteratively compute an optimal solution
(the longest r-t path) and inspect whether it violates a constraint or overestimates the
objective function. If not, we found the optimal solution to the original problem. Otherwise,
we separate the path as follows. Starting from the root, we follow the arc-specified path.
In each layer, we split the path by redirecting the solution arc (u, v) from node v to a
newly created node v′, thus creating arc (u, v′). We copy all arcs (v,w) to become arcs
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(v′,w), but remove any arc (v′,w) that is not feasible. We will see examples of this algorithm
in Section 4 (constraint programming), Section 5 (scheduling and routing), and Section 7
(column elimination).

Branch-and-Bound Search To obtain an exact solution, we follow a branch-and-
bound search process. We start by compiling a relaxed and restricted decision diagram,
resulting in a dual and primal bound. We then identify an exact r-t cutset of nodes C ⊂N
in the relaxed decision diagram. Typical choices are the frontier cutset or the last exact
layer (Bergman et al. [13]). Nodes in C must all be exact, i.e., they are not the result of
the merge operator. With each node u∈C we record the value of the longest r-u path as a
constant to be added to its objective function.

Because of the Markovian property of the states in the DP model we can independently
consider the nodes in C and use them to define new subproblems, where the state of each
node in C corresponds to the root state of the subproblem. This preserves optimality because
the optimal solution must pass through one of the nodes in C. Each subproblem will again
compile a relaxed and restricted decision diagram, as well as an exact cutset, if needed. We
recursively continue this process until each subproblem is either exact or proven suboptimal
because of the optimization bounds. Given enough time, and assuming that the width limit
allows to compile at least one exact layer with more than one node, this process terminates
with the optimal solution. Otherwise, it provides a lower and upper bound on the optimal
solution.

Example 5. Continuing our running example, the last exact layer in the relaxed decision
diagram depicted in Fig. 3.c is the layer associated with decision xb having states {b, c, d}
(with value 0) and {b, d} (with value 5). We can identify a subproblem with both states, and
continue the process recursively. Doing so, we will find the optimal solution (xa, xb, xc, xd) =
(1,0,0,1) with weight 8.

A recent alternative method, called ‘peel-and-bound’, integrates ideas from compilation
by separation into the branch-and-bound process (Rudich et al. [67, 68]). Instead of using
an exact cut-set to define the branch-and-bound search, it branches on single exact nodes
while the search queue stores diagrams. When a new diagram is compiled, it can re-use the
sub-diagram that was already compiled in its parent diagram, and separate those nodes in
a similar fashion as compilation by separation. A key advantage of this approach is that
it reduces the repeated compilation of the same sub-diagrams that is common when using
top-down compilation with the cut-set branch-and-bound.

Computational Performance Bergman et al. [13] evaluated the decision diagram-
based branch-and-bound method on three classical combinatorial optimization problems,
the maximum independent set problem, the maximum cut problem, and the MAX-2SAT
problem, obtaining competitive results. In several cases their approach outperformed a state-
of-the-art integer programming solver, and for the maximum cut problem improved bounds
were found for open benchmark instances. Gillard et al. [38, 37] developed the generic deci-
sion diagram-based optimization solver Ddo, which has been applied to a range of additional
applications including Single-Row Facility Layout Problems (Coppé et al. [31]). The same
approach has been implemented as the core methodology of the industrial solver main-
tained by the company NextMv,1 that is particularly focused on scheduling and vehicle
routing applications (O’Neil and Hoffman [62]). Lastly, the decision-diagram based branch-
and-bound search is particularly suitable for parallelization (Bergman et al. [11]).

4. Constraint Programming with Decision Diagrams

Constraint programming (CP) solvers combine a systematic search with constraint propaga-
tion to find feasible or optimal solutions to combinatorial optimization problems (Rossi et al.

1 https://www.nextmv.io/
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[66]). Decision diagrams can be naturally integrated into this solving process, by designing
dedicated constraint propagation algorithms that are based on decision diagrams. One line
of research in this area uses decision diagrams as a data structure for improved constraint
propagation of individual constraints (Hawkins et al. [43], Cheng and Yap [26, 27], Perez and
Régin [63], Verhaeghe et al. [80], Jung and Régin [47]). Another line of research extends the
constraint propagation process by communicating (relaxed) decision diagrams between con-
straints, unlocking the potential of exponential reductions in the search tree size (Andersen
et al. [3]). The latter approach will be the primary topic of this section.

Constraint Programming Methodology A constraint optimization problem, or COP,
is defined by a set of decision variables X = {x1, x2, . . . , xn}, a set of constraints C defined
over (subsets of) X, and an objective function f :X →R. Each variable xi has an associated
domain Di of possible values, for i= 1, . . . , n. An optimal solution to the COP is a variable
assignment that satisfies all constraints and optimizes the objective function. If no objective
function is given, the formulation is called a constraint satisfaction problem, or CSP.
What distinguishes CP from similar methodologies such as mixed integer programming

(MIP), is that the variables can range over a variety of domains (e.g., continuous, integers,
discrete sets, intervals, graphs) and that the constraints and the objective function can
be arbitrary relations or expressions. CP libraries also contain so-called global constraints
that typically represent a (combinatorial) structure over a set of variables. An example of
a global constraint is alldifferent(x1, . . . , xn), which specifies that variables x1, . . . , xn

take distinct values. It is semantically equivalent to the set of pairwise not-equal constraints
but represents a structure that allows for stronger constraint reasoning (Régin [64]). Global
constraints are often key to the fast performance of constraint programming solvers (van
Hoeve and Katriel [79], Régin [65]).

Because CP models need not be linear or differentiable, the core solving process of CP uses
a mechanism that does not rely on such properties: constraint propagation. Each constraint
has an associated algorithm that performs two functions: 1) feasibility checking when all
variables are instantiated, and 2) eliminating domain values that are proven to be infeasible
to that constraint. The latter is also referred to as domain filtering. When all domain values
are part of a solution to a given constraint (and thus no domain values can be filtered),
the constraint is said to be domain consistent. The propagation algorithm associated with
a constraint ideally achieves domain consistency in polynomial time. For some constraints
(e.g., certain scheduling constraints) this is not possible, and we need to be satisfied with
propagation algorithms that may not identify all infeasible domain values but are computa-
tionally efficient. A CP solver applies domain filtering to each constraint and then propagates
any updated variable domains to the other constraints that have that variable in their scope.
This process of constraint propagation continues until a fixed point is reached. Under certain
assumptions on the domain filtering algorithms, it can be shown that the fixed point is
unique, regardless of the order in which the constraints are considered (Apt [4]).

Example 6. Consider the following CSP:

x1 >x2 (2)

x1 +x2 = x3 (3)

alldifferent(x1, x2, x3, x4) (4)

x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}, x4 ∈ {0,1}. (5)

We apply domain filtering to the constraints in the order listed: Constraint (2) eliminates
values {2,3} from D2, resulting in x2 ∈ {0,1}. Constraint (3) has no impact. For constraint
(4), observe that x2 and x4 both range over {0,1} and therefore x1 cannot take value 1,
i.e., x1 ∈ {2}. It subsequently leads to eliminating value 2 from D3, i.e., x3 ∈ {3}. This
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Figure 4. MDD-based constraint propagation for the CP model in Example 7.
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c. Propagating x1 +x2 +x3 ≥ 9

completes one round of propagation. Because the domains were updated, we repeat the
process, ultimately resulting in the following updated domains:

x1 ∈ {2}, x2 ∈ {1}, x3 ∈ {3}, x4 ∈ {0}.

In the example above, constraint propagation resulted in finding the solution to the CSP. In
most cases, however, constraint propagation alone is not sufficient to solve the problem. The
propagation process is therefore embedded within a systematic search procedure, which is
typically a depth-first search over the variables. After each search decision (or branch) the
constraint propagation is again applied so as to prune the resulting search tree as much as
possible. For many applications this approach can be very effective especially in the context
of complex industrial applications such as machine scheduling with resource limitations and
side constraints.

MDD-based Constraint Propagation As illustrated in Example 6, classical con-
straint propagation communicates domains from one constraint to the next, using a central
domain store. A drawback of this approach is that more refined structural relations between
variables captured by a (global) constraint are not visible to other constraints, while they
could be useful. The idea behind MDD-based constraint propagation is to additionally uti-
lize an MDD store to propagate higher-order information between constraints (Andersen
et al. [3]). This is illustrated in the following example.

Example 7. Consider the following CSP:

alldifferent(x1, x2, x3, x4) (6)

x1 +x2 +x3 ≥ 9 (7)

xi ∈ {1,2,3,4}, for i= 1, . . . ,4. (8)

One can inspect that individually the constraints (6) and (7) do not permit to identify any
infeasible domain value; i.e., the constraints are domain consistent. However, if x4 would
take any value other than 1, the constraints cannot be simultaneously satisfied. We can
deduce this information using MDD-based constraint propagation. We define a multivalued
decision diagram which initially represents the Cartesian product of the variable domains
(see Fig. 4.a). This MDD functions as our MDD store and we let constraint (6) refine it to
represent all its solutions (see Fig. 4.b). We then propagate the updated MDD to constraint
(7) which further refines it, resulting in the MDD in Fig. 4.c. As expected, this MDD restricts
x4 to take only the value 1. We can communicate the MDD information to the domain store
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Figure 5. Overview of automatic MDD-based constraint programming in Haddock on an exam-
ple constraint optimization problem ⟨X,D,C, f⟩ with variables X, domains D, constraints C and
objective function f . The constraint programming search employs a branch-and-bound best-first
strategy (BFS). The MDD specification and compilation are derived automatically from the model
declaration. The illustration is taken from (Gentzel et al. [35]).

Model:
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i=1 cixi
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by projecting the domain values along each layer onto the variable domains, resulting in
D1 =D2 =D3 = {2,3,4} and D4 = {1}. Observe that the domain store (similar to the MDD
of width 1 in Fig 4.a) implicitly represents 44 = 256 solutions. After propagating alldif-

ferent only 24 solutions are left, and subsequently propagating constraint (7) results in an
MDD representing just 6 solutions.

MDD-based constraint propagation was first introduced by Andersen et al. [3]. They rec-
ognized that sharing this structural information between constraints has enormous potential
to improve constraint propagation, thereby reducing the search tree size. The caveat is that
the MDDs can grow exponentially large, even when representing an individual constraint
such as the alldifferent constraint. They therefore introduced the concept of a relaxed
MDD of polynomial size by restricting its width (as in Definition 2). This opened a new
research direction for studying and developing MDD propagation algorithm for a variety of
constraint types (Hoda et al. [44], Bergman et al. [13]).

A central concept in this research is that of MDD consistency, which is the MDD analog
of domain consistency. Consider a constraint C(X) over a set of variables X and a decision
diagram D over the variables X. We say that C is MDD-consistent with respect to D if every
arc in D belongs to a path that is feasible for C. Similar to domain propagation algorithms,
for some constraints it is not possible to establish MDD consistency in polynomial time;
one example is the alldifferent constraint. In such cases, efficient MDD propagation
algorithms may be designed that can still be effective. MDD propagation algorithms can also
be applied to strengthen decision diagram representations in contexts other than CP. For
example, Tjandraatmadja and van Hoeve [74] apply MDD propagation to decision diagrams
for use in an integer programming solver.

All known MDD propagation algorithms can be expressed in terms of a generic state-based
framework that associates a separate DP-style transition system with each constraint (Hoda
et al. [44]). The propagation algorithm applies the state-transition functions to systemat-
ically update states and eliminate infeasible arcs. This framework forms the basis of the
Haddock system that integrates MDD propagation into a CP solver (Gentzel et al. [36]).
Haddock can automatically compile MDDs from a given CP model description by con-
verting each constraint into a state-based representation. Moreover, Haddock allows to
generically define MDD filtering algorithms for each constraint, and combine them into an
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MDD propagation process. The MDD propagation is part of the overall constraint propa-
gation algorithm as well as the systematic search. A schematic illustration of Haddock is
shown in Fig 5.

Because MDDs can be used to evaluate an objective function, as we have seen in Section 3,
MDD-based constraint programming offers a new perspective of handling optimization prob-
lems. Indeed, the Haddock system can automatically integrate an objective function into
the MDD, again using a state-based representation, and use it to compute dual and primal
bounds for the CP solver (Gentzel et al. [35]). We refer to the survey paper (Castro et al.
[25]) and the textbook (Bergman et al. [13]) for more information on MDD-based constraint
programming.

5. Decision Diagrams for Scheduling and Routing

One of the earliest successful applications of decision diagram-based optimization was in
the context of sequencing problems such as single machine scheduling and the traveling
salesman problem with time windows (Ciré and van Hoeve [29]). That work combines ideas
from MDD-based constraint programming and decision-diagram based optimization. This
section presents the basic representation, problem variants, and methodological extensions
for this problem domain.

Sequencing Problems We consider sequencing problems as constraint-based scheduling
problems over a discrete and finite time horizon H with the following elements (Baptiste
et al. [5]):

• A set of activities A that need to be scheduled. We associate a non-negative processing
time pi, release time ri ∈H, and deadline di ∈H with each activity i∈ A.

• A non-preemptive resource that can process at most one activity at a time.
• Decision variables si representing the start time for activity i ∈ A, with domain D(si)⊆

{ri, . . . , di}.

We also introduce an auxiliary variable ei representing the end time of activity i, together
with the invariant relationship si+di = ei, for all i∈ A. In addition to these basic elements,
we consider:

• A set of precedence relations Prec of the form i≪ j representing that activity i must be
executed before j, where i, j ∈ A.

• Sequence-dependent setup times tij for i, j ∈ A. If i has j as its immediate successor, then
there must be at least tij time units between the completion of i and the start of j.

• Various objective functions, including makespan (the end time of the last activity), sum
of setup times, (weighted) sum of completion times, (weighted) tardiness, and number of
late jobs (by interpreting the deadline as a due date) can be considered.

Example 8. Let V be a set of locations, and let dij be the distance between each ordered
pair (i, j)∈ V ×V , i ̸= j. Thus, the distances are not necessarily symmetric. The asymmetric
traveling salesman problem (ATSP) asks to find a closed tour of minimum total distance
that visits each location exactly once. We consider two variants, both of which assume that
we designate one location as the ‘depot’ that functions as start and end of the tour:

• The asymmetric traveling salesman problem with time windows (ATSPTW) is an ATSP
for which we are additionally given a time window [li, ui] such that location i must be
visited between time li and ui. We assume here that the distances dij reflect time units.

• The sequential ordering problem (SOP) is an ATSP for which we are additionally given a
set of ordered precedence relations P ⊆ V ×V . If (i, j)∈ P then location i must be visited
before location j is visited.
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We will represent these variants as scheduling problems using the sequencing formalism
above. We assume that the location set is V = {1,2, . . . , n}, designating location 1 as the
depot. We define an activity i for each location i ∈ {2, . . . , n}. For the depot, we introduce
two activities 1start and 1end to represent the start and the end of the tour. The duration
for each activity is 0 time units. The distances are represented as sequence-dependent setup
times, i.e., tij = dij for all i, j ∈ V . As objective function we can either minimize the sum
of the setup times, or minimize the makespan represented by the end time of 1end. This
completes the sequencing model for the basic ATSP.

For the ATSPTW, we define ri = li and di = ui as release date and deadline for each activ-
ity i∈ {2, . . . , n}, while activities 1start and 1end have min{H} as release date and max{H}
as deadline. For the SOP, we define a precedence constraint i≪ j for each precedence rela-
tion (i, j)∈ P . Because the time window constraints in the ATSPTW may imply wait times
at the locations, the objective functions are no longer equivalent: minimizing makespan
includes wait times while the sum of the setup times only consider the actual travel time.

Natural extensions to these variants are a combination of time windows and precedence
relations, immediate predecessor/successor constraints, processing times, etcetera. All of
these can be expressed in the underlying constraint-based scheduling framework.

Decision Diagram Representation As shown in (Ciré and van Hoeve [29]), sequenc-
ing problems can be naturally represented in a decision diagram via the permutation model.
That is, we view a solution as a permutation of the set of activities A. Given a permutation
π : A→ A, the implied schedule can be inferred from the relation sπi

≥ sπi−1
+ tπi−1,πi

+pπi−1
.

The aim is to represent all feasible permutations compactly in an MDD such that the deci-
sions along each r-t path correspond to a feasible ordered sequence of activities. We let
ℓ(a)∈ A represent the label (decision) associated with arc a in the MDD.

Because these MDDs can grow exponentially large in the worst case, we again utilize
relaxed MDDs of limited width that provide a polynomial size over-approximation of the set
of solutions. We can build the MDD using a compilation method that combines constraint
propagation and node splitting, similar to compilation by separation. It takes the sequencing
model as input and associates the following information with each node v in the MDD:

• The set Av represents the set of activities that are taken on all paths from r to v.
• The set Sv represents the set of activities that are taken on some paths from r to v.
• The integer Ev denotes the earliest completion time of all paths from r to v.
• The integer Lv denotes the latest completion time of all paths from r to v.

Given an MDD, each of these can be computed recursively in a top-down manner starting
from the root node r. That is, for each node v ̸= r with incoming arc set δ−(v) we compute

Av =
⋂

(u,v)∈δ−(v)Au ∪{ℓ(u, v)},

Sv =
⋃

(u,v)∈δ−(v) Su ∪{ℓ(u, v)}.

For computing Ev and Lv, recall that the completion time of an activity depends on the
completion time of the previous activity, the setup time, and the problem parameters: eπi =
max{rπi

, eπi−1
+ tπi−1,πi

}+ pπi
. We thus have

Ev =min(u,v)∈δ−(v)

{
max{rℓ(u,v),min(u′,u)∈δ−(u)Eu + tℓ(u′,u),ℓ(u,v)}+ pℓ(u,v)

}
,

Lv =max(u,v)∈δ−(v)

{
max{rℓ(u,v),max(u′,u)∈δ−(u)Eu + tℓ(u′,u),ℓ(u,v)}+ pℓ(u,v)

}
.

The constraint propagation process considers an arc (u, v) in the MDD and determines
whether assigning ℓ(u, v) violates any constraint and causes arc (u, v) to be infeasible. For
example:

• For the permutation (or alldifferent) constraint: if ℓ(u, v)∈Au then (u, v) is infeasible.
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Figure 6. The sequencing model and associated MDD compilation for Example 9. Dashed arcs
indicate infeasible decisions and can be removed.
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• For precedence constraints: if (i, j) ∈ Prec and ℓ(u, v) = j but i /∈ Su then (u, v) is infea-
sible.

• For time window constraints: if rℓ(u,v) >Lu or if Eu+ pℓ(u,v) >dℓ(u,v) then (u, v) is infea-
sible.

Additional constraint propagation rules are described in (Ciré and van Hoeve [29], Bergman
et al. [13]).

The MDD compilation proceeds in stages, considering layers i= 1,2, . . . , n in turn:

• Propagation: Remove infeasible arcs from layer i based on the MDD propagation rules.
• Node splitting: If the number of nodes in layer i is less than the maximum width, split
any node u that has multiple incoming arcs into separate nodes, one for each arc. Create
a copy of the arcs going out of u for each newly created node copy.

This process has several heuristic choices; the selection of which nodes to split is often the
most important. These are discussed in in (Ciré and van Hoeve [29], Bergman et al. [13]).

Example 9. Consider the sequencing problem with activity set A= {a, b, c}, time horizon
H = {0,1, . . . ,12}, and model parameters in Fig. 6.a. In addition to the release date ri,
processing time pi, and deadline di, for i∈ A, the model contains one precedence constraint
c≪ a. We assume that the objective is to minimize the makespan.

The MDD compilation process starts with the width-1 MDD in Fig. 6.b. Starting at the
root node in layer 1, it identifies and removes the infeasible outgoing arc with label a, based
on the precedence constraint. It then splits node u in the next layer into two nodes u1 and
u2, copying the outgoing arcs of u for each. Constraint propagation in layer 2 determines
that the arc (u1, v) with label a is infeasible (again based on c≪ a) and the arc (u1, v) with
label b is infeasible because of the alldifferent constraint (b ∈ Au1). Simularly, the arc
(u2, v) with label c is infeasible because c ∈ Au2

. We proceed by splitting node v into two
nodes v1, v2. Observe that Av1 = {b, c} which means that the arcs (v1, t) with labels b and
c are infeasible. Likewise for arcs (v2, t) with labels a and c.

The resulting MDD in Fig. 6.e is exact with respect to the permutation and time window
constraints. To evaluate the objective function, we consider the earliest completion time at
each node (indicated in the figure) and determine that the shortest path, corresponding to
sequence [b, c, a] is the optimal solution with makespan 9.

Computational Performance Compiling the MDD using the permutation represen-
tation has two main advantages. First, the variable ordering is implicit and fixed: layer i
corresponds to the i-th activity to be sequenced. Second, it allows for a natural computation
of earliest and latest completion times. An additional advantage is inherent in the design of
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MDD-based optimization: We can compute both top-down and bottom-up information for
each node in the MDD, which can strengthen the propagation rules for the arcs.

Cire and van Hoeve [29] demonstrated the computational benefits of their approach on
a variety of sequencing problems, including the SOP, TSPTW, and objective functions
such as weighted tardiness. They provided very competitive results, often outperforming
the state-of-the-art constraint-based scheduling solver in ILOG CP Optimizer. Specifically,
they closed three open SOP instances from the TSPLIB benchmark set for the first time.
Extensions of their work include strengthening the MDD bounds with a Lagrangian relax-
ation (Bergman et al. [12], Hooker [45]), time-dependent travel times (Kinable et al. [51]),
Pickup-and-Delivery TSP (O’Neil and Hoffman [62], Castro et al. [23]), and multi-machine
scheduling (van den Bogaerdt and de Weerdt [75, 76]).

6. Decision Diagrams for Integer Programming

This section describes how decision diagrams can be used as a computational tool within
integer programming solvers. One such application is using decision diagrams to generate
cutting planes for integer linear or nonlinear programming problems. Other applications
are the embedding of (relaxed) decision diagrams into integer programming models, or the
use of BDD-based bounds in branch-and-bound solvers. A foundational element of these
approaches is the polyhedral connection between decision diagrams and integer programming
models to represent a set of solutions. This was first proposed in (Becker et al. [7], Behle
[8]) who use decision diagrams for generating cutting planes in a branch-and-cut framework
to solve binary linear programming problems.

A Polyhedral View of Decision Diagrams Consider the general integer program-
ming problem

max
{
cTx :Mx≤ b, x∈Zn

}
(9)

where c∈Rn, M ∈Zm×n, b∈Zm, and x is a vector of integer decision variables. We define
PI = conv({x ∈ Zn :Mx≤ b}) as the convex hull of all feasible integer points of (9). Given
an arbitrary ordering of the variables x, the set of integer points in PI can be represented by
a decision diagram. We assume that such diagram has been compiled, as D = (N,A) with
node set N , arc set A, root r ∈N and single terminal t∈N . Denote by L(u) the index i of
the layer of u∈N , corresponding to the associated decision variable xi. Let ℓ(a) denote the
label (an integer decision value) associated with arc a∈A.

We can reformulate the integer program (9) as a network flow problem over D. For each
arc a ∈ A we introduce a ‘flow’ variable ya. We also define a ‘weight’ wa = ℓ(a)ci, where
i=L(u) for a= (u, v). The network flow model is defined as

max
∑
a∈A

waya (10)

s.t.
∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0, ∀u∈N \ {r, t}, (11)

∑
a∈δ+(r)

ya = 1, (12)

∑
a∈δ−(t)

ya = 1, (13)

0≤ ya ≤ 1, ∀a∈A, (14)

where δ−(u) and δ+(u) are the sets of incoming and outgoing arcs for u∈N , respectively. In
this model, we require that exactly one unit of flow leaves the root node r (constraint (12))
and enters the terminal node t (constraint (13)). For the other nodes u∈N \{r, t} we require
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Figure 7. The polytope defined by the inequalities in Example 10 (a), the associated exact binary
decision diagram (b), and the flow model representing the solutions in the BDD, together with the
mapping to the original variables (c). Each of the four r-t paths in the BDD corresponds to an
integer point in the polytope.
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flow conservation, i.e., the total flow into u equals the total flow out of u (constraints (11)).
Because the network flow model solutions are integral (Ahuja et al. [1]), each integer solution
of (9) has a one-to-one correspondence with a r-t path of flow value 1 in D. Given a solution
y to (11)-(14), we can obtain the associated solution x for problem (9) by defining

xi =
∑

(u,v)∈A:L(u)=i

ℓ(u, v)y(u,v) ∀i∈ {1, . . . , n}. (15)

Example 10. Consider the set of points described by

{x∈ {0,1}3 : x1 +x2 −x3 ≤ 1,
x1 −x2 +x3 ≤ 1,

−x1 +x2 +x3 ≤ 1,
x1 +x2 +x3 ≤ 2}.

(16)

Fig. 7.a shows the polytope defined by the inequalities in (16), containing the integer points
{(0,0,0), (0,0,1), (0,1,0), (1,0,0)}. The same set of integer points is represented in the deci-
sion diagram in Fig. 7.b. The flow model associated with the diagram is presented in Fig. 7.c,
together with the mapping to the original x-variables.

The one-to-one correspondence between solutions of the original integer program and
the network flow model can be formalized in the following manner. First, define the poly-
tope Pflow(D) = {y ∈R|A| : (11)-(14)} corresponding to the feasible set of the network flow
model. We add the equations (15) to Pflow(D) and obtain a polytope P (y,x)⊆R|A|+n. The
projection of P (y,x) onto x is defined as

Projx(P (y,x)) := {x∈Rn : ∃y ∈R|A| such that (y,x)∈ P (y,x)}.

Behle [8] showed that the projection of P (y,x) onto the x-space is precisely the convex hull
of the original binary linear programming problem, i.e.,

PI =Projx(P (y,x)).

This result is useful in that it shows that the decision diagram representation provides the
tightest possible description of PI , although in the worst case it needs an exponentially large
exact diagram to represent the integer program.
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Decision Diagrams for Cut Generation The most successful approach to solving
integer programming problems is based on the branch-and-bound method (Land and Doig
[56]). It relies heavily the strength of the continuous linear programming relaxation whose
solution yields a dual bound. A fundamental approach to strengthening the linear program-
ming relaxation is to (iteratively) add valid inequalities that eliminate a given fractional
solution but do not remove any feasible integer solution (Conforti et al. [30]). We next
describe how decision diagrams can be used for this purpose.

To start, suppose we are given a point x∗ as a solution to the linear programming relax-
ation of the integer program (9). The separation problem is to decide whether x∗ is inside
the convex hull of integer feasible points, i.e., x∗ ∈ PI . This can be determined by finding
a hyperplane αx≤ β that is satisfied by all points x ∈ PI , while αx∗ > β. If so, we add the
valid inequality αx≤ β to the linear program to cut off x∗ and resolve the linear program.
Here, we will assume that the fractional solution x∗ is obtained from solving the linear pro-
gram in the original space x∈Rn, whereas the cuts are derived from a pre-compiled decision
diagram in the space y ∈R|A|, projected back onto the x-space.

One generic way to compute valid inequalities (in fact, a ‘deepest’ cut) is to use a cut-
generating linear program, or CGLP (Conforti et al. [30]). It computes (α,β) such that
αx∗ − β is maximized while ensuring that no feasible integer solution is removed. In our
case, we derive these cuts from the decision diagram D whose linear description, projected
onto the original x-variable space, provides PI . In fact, we can utilize the special network
flow structure of the decision diagram, and use the dual formulation of the model (11)-(15).
By using dual variables θu for u ∈N and γi for i ∈ {1, . . . , n}, the CGLP can be defined as
(Behle [8], Davarnia and van Hoeve [33]):

max

n∑
i=1

x∗
i γi − θt (17)

s.t. θu − θv + ℓ(u, v)γi ≤ 0 i∈ {1, . . . , n},∀(u, v)∈A :L(u) = i, (18)

θr = 0, (19)
n∑

i=1

γi +
∑
u∈N

θu ≤ 1, (20)

where constraint (20) is a normalization constraint to ensure the solution is bounded. Let
(θ̄, γ̄) be a solution to model (17)-(20) with objective value β. Then γ̄x ≤ β is a valid
inequality for the integer program (9).

Example 11. We continue Example 10 and consider the integer program max{x1+x2+
x3 : (16)}. We solve the linear programming relaxation and obtain the fractional solution
x∗ = (x1, x2, x3) = (1, 12 ,

1
2 ) with objective value 2. To cut off x∗, we solve the CGLP and

obtain the solution (γ1, γ2, γ3) = ( 16 ,
1
6 ,

1
6 ), (θr, θe, θf , θg, θh, θt) = (0,0, 16 ,0,

1
6 ,

1
6 ), with objec-

tive value β = 1
6 . This results in the valid inequality 1

6x1+
1
6x2+

1
6x3 ≤ 1

6 , or x1+x2+x3 ≤ 1.
Indeed this cut, together with the nonnegativity constraints, defines the convex hull of (16).

Different approaches have been proposed in the literature to solve the CGLP over D. All
of them exploit the network flow structure to obtain the dual values γi for the projection
constraints (15). For example, in the context of binary programs, Becker et al. [7] use a
Langrangian reformulation of (11)-(15) by relaxing the constraints (15) with Langrangian
multipliers γi. The Lagrangian relaxation assigns a weight γi to each arc in layer i with
label 1, and the resulting problem, for fixed γ, can be solved efficiently as a shortest path
problem in D. The optimal Lagrangian bound is then found using a subgradient search
over γ. Tjandraatmadja and van Hoeve [73] take a different approach and formulate the
valid inequalities as target cuts for which they develop a CGLP. The associated procedure
generates cuts that are facet defining with respect to the convex hull of the integer points
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represented by the decision diagram. Lastly, Davarnia and van Hoeve [33] reformulate model
(17)-(20) as a bilevel program and develop an efficient projected subgradient method that
only contains γ-variables at the higher level.

In practice, one would never use an exact decision diagram representing all solutions
to the integer programming problem to derive cutting planes. Namely, if such a diagram
can be compiled and fits in computer memory, the integer optimal solution can readily be
found in polynomial time (in the size of the diagram). Otherwise, the diagram would be
too large to be computationally practical. Becker et al. [7] therefore choose to a subset of
constraints M ′x≤ b′ for which an exact BDD D′ of reasonable size can be compiled, to apply
the separation procedure. Determining the best set of constraints to form D′ is problem
dependent. As an alternative, Tjandraatmadja and van Hoeve [73] propose the use of relaxed
decision diagrams of polynomial size. Also, multiple different diagrams can be compiled and
evaluated. Note that when the diagram D is not exact, a point x∗ may be outside PI and
inside Pflow(D). In such cases, the decision diagram will not be able to cut off that point.
Determining under what conditions a relaxed decision diagram is guaranteed to separate a
given point x∗ /∈ PI is an open question.

Nonlinear Programming Even though optimizing over decision diagrams corresponds
to solving a linear objective function over the arcs in the diagram, the explicit representation
of the discrete solutions as paths often allows to encode nonlinear relations effectively. One
successful example is the work by Bergman and Cire [10] who consider binary optimization
problems with nonlinear objectives and linear constraints. They introduce a decomposition
approach that partitions the objective function into separate low-dimensional dynamic pro-
gramming models, each of which can be equivalently represented as a shortest-path problem
in a decision diagram. By reformulating the decision diagrams as linear network flow prob-
lems, the resulting model can be solved using standard mixed-integer programming (MIP)
solvers. To make their method scalable, they apply relaxed decision diagrams of polynomial
size, ensuring that the resulting MIP solver provides both lower and upper bounds. The
computational benefits are strong, outperforming state-of-the-art approaches often by orders
of magnitude on problems in revenue management, portfolio optimization, and healthcare.

A related work by Bergman and Lozano [17] applies a similar approach to binary opti-
mization problems with quadratic constraints. They show how a quadratic matrix can be
decomposed into multiple decision diagrams, each of provably limited size. The BDDs are
linked through channeling constraints to ensure that the solution represented is consistent
across all diagrams. This approach can be readily embedded in general-purpose integer
programming solvers, and provides significant computational improvements relative to state-
of-the-art solvers. As a related work, González et al. [39] study the integration of BDDs into
MIP solving for the quadratic stable set problem.

Another example is the extension of BDD-based cutting plane procedures for integer
linear programming problems to integer nonlinear problems. For example, Davarnia and
Van Hoeve [33] developed a cut generation method for optimization problems with integer
variables, a linear objective, and nonlinear constraints. Their approach is a generalization
of the well-known outer approximation framework, as the decision diagram-based cutting
planes can also be derived for nonconvex integer programs. Another recent work is by Castro
et al. [24] who develop a general cut-and-lift procedure based on decision diagrams, with a
specific application to second-order conic inequalities.

Lastly, Davarnia [32] extends the application of decision diagrams to nonlinear optimiza-
tion problems with continuous variables. Because decision diagrams rely on the decisions
to be discrete and finite, continuous decisions pose a challenge. In (Davarnia [32]) this is
tackled by first defining a Riemann approximation of the nonlinear functions, after which
only the breakpoints are used to define the discrete ‘decisions’, yielding a so-called ‘arc-
reduced’ decision diagram relaxation. This relaxation is then used to derive cutting planes
that form a linear outer approximation for the original solution set. This procedure is also
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Figure 8. (a) General integer program with S ⊂Nn, M ∈Rm×n, b∈Rm, (b) the column reformu-
lation with ck ∈R, ak ∈Rm×1, b∈Rm, and (c) a column reformulation form if S can be decomposed
into n identical subsets.

min c(x)

s.t. Mx≥ b

x∈ S

x integer

min
∑

k ckλk

s.t.
∑

k akλk ≥ b∑
k λk = 1

λk ∈ {0,1}

min
∑

k ckλk

s.t.
∑

k akλk ≥ b∑
k λk = n

λk ≥ 0 and integer

a. General form b. Column reformulation c. Identical subsets form

used in (Salemi and Davarnia [69]) to handle continuous variables to solve the unit commit-
ment problem in the electric grid market.

Computational Performance To date, the most successful use of decision diagrams
in general-purpose mixed-integer programming (MIP) solvers is the direct embedding of
(relaxed) decision diagrams by reformulating the diagrams as a network flow. This is most
effective when the diagram can represent a sub-structure of the problem that is otherwise
challenging to handle with a linear programming formulation. Indeed, the work by Bergman
and Cire [10] who embed nonlinear objective functions as BDD-based network flows into a
MIP model showed strong computational benefits.

Tjandraatmadja and van Hoeve [74] propose a generic framework for applying decision
diagrams in general-purpose MIP solvers to improve the dual and primal bound calculations.
They use the conflict graph that is maintained by the MIP solver as the combinatorial
structure from which to compile a relaxed BDD. Constraint propagation is used to refine the
BDD, and a Lagrangian relaxation is embedded to strengthen the dual bound. The BDD
is dynamically applied throughout the branch-and-bound search to help prune suboptimal
nodes and find primal solutions. Their computational study shows that substantial speedups
can be obtained when conflict graphs of sufficient importance are present.

The use of decision diagrams for cut generation can be effective on specific problem
domains, or when the problem possesses a combinatorial structure that is amenable to
compiling BDDs of small size. A direct application on domain-agnostic MIP models, i.e., by
compiling decision diagrams for a subset of the linear constraints, has not yet been shown
computationally effective.

7. Column Elimination

In most of the applications so far, our goal was to find a single discrete solution, or r-t path,
in the decision diagram, e.g., to find a dual or primal bound. This section discusses how
we can leverage multiple paths simultaneously in a single diagram to solve a combinatorial
optimization problem. This is done by representing the solutions as a network flow, and
adding appropriate side constraints to ensure that the problem requirements are met. As
we will see below, this approach is particularly effective when the original decision variables
represent a combinatorial structure, e.g., a vehicle route or machine schedule. For these
problems, column generation has been very successful. Decision diagrams allow taking an
analogous approach to iteratively remove columns until an optimal solution is found.
Problem Representation Following the formalism for column generation (Barnhart

et al. [6]), we consider integer programs of the general form depicted in Fig. 8.a. In this
form, x is a vector of variables, and the objective function c(x) can be linear or nonlinear.
We assume that set S is bounded, and as a consequence that the set S∗ consisting of all
integer points in S is finite. Let S∗ = {y1, . . . , yp}. To obtain the column reformulation, define
variable λk ∈ {0,1} for each integer point yk ∈ S∗. So, any point y ∈ S∗ can be written as
y =

∑
k ykλk. Requiring that

∑
k λk = 1 and defining ck = c(yk) and ak = Myk gives the
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Figure 9. Overview of the column elimination framework, taken from [48]. If the network flow
problem F (D) is solved as an integer program, the framework returns the optimal solution. If F (D)
is the continuous linear program, a dual bound is returned.

Initial relaxed
decision diagram D

Constrained
network flow F (D)

D Path
decomposition

solution

Conflict?

path(s)

Conflict
refinement

yes Return
solution

no

refined D

explicit linear reformulation of the general model in Fig. 8.b. Note that neither c(x) nor the
description of S needs to be linear.
Often S can be decomposed into different subsets for different components of x, i.e., S =

∪n
j=1Sj where S∗

j = {xj ∈ Sj : xj integer}, yielding column reformulations of different forms.
In particular, if the subsets in the decomposition are identical, i.e., S∗

j = S∗ = {y1, . . . , yp}
for j = 1, . . . , n, we obtain the reformulation depicted in Fig. 8.c. In this case, a solution
represents selecting n points from S∗, including multiplicity. It is also possible for the model
to use a subset of columns of arbitrary size, as illustrated in the following example.

Example 12. Given a graph G = (V,E) with vertex set V and edge set E, a vertex
coloring is an assignment of a ‘color’ to each vertex such that no two adjacent vertices have
the same color. The graph coloring problem asks to find a vertex coloring that uses the
minimum number of colors (Garey and Johnson [34]).

We can represent this problem as an integer programming model using a column formu-
lation (Mehrotra and Trick [60]). First, observe that for a given vertex coloring all vertices
with the same color form an independent set (see Sec. 2). Conversely, each independent set
of G can be used as a color class by labeling each vertex in the set the same color. We let
S be the set of all independent sets of G, and define a binary decision variable xj for each
j ∈ S. We define aij = 1 if vertex i∈ V belongs to independent set j ∈ S. The graph coloring
problem can then be formulated as:

min
∑
j∈S

xj (21)

s.t.
∑
j∈S

aijxj = 1 ∀i∈ V, (22)

xj ∈ {0,1} ∀j ∈ S. (23)

Indeed, this column formulation does not impose a fixed number of points in S to be used.

Column Elimination Algorithm Column formulations have been successfully applied
to a variety of industrial applications, including cutting stock production (where a column is
a cutting pattern), vehicle routing (where a column is a route), airline crew scheduling (where
a column is an employee schedule), and many more. Because the number of columns can
generally grow exponentially large in the original problem size, column generation methods
solve the linear programming relaxation iteratively, generating and adding columns with
negative reduced cost until the linear programming solution is optimal. Throughout this
process, column generation maintains a restricted master problem containing a subset of
the columns.

In contrast, column elimination maintains a relaxed master problem that contains all orig-
inal columns as well columns that are infeasible (van Hoeve [77, 78]). While this may seem
counter-intuitive, the relaxation can be represented compactly as a decision diagram which
allows solving a polynomial-sized master problem that implicitly represents an exponential
number of columns. The column elimination algorithm proceeds as follows (see Fig. 9):
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Figure 10. Applying column elimination to solve the graph coloring problem on the input graph
in (a). The initial relaxed diagram (b) is iteratively refined (c)-(e) until the optimal solution (the
flow paths) no longer contains infeasible color classes (e). Images taken from [78].

a b

c d
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(1) An initial relaxed decision diagram D is compiled such that Sol(D)⊇ S.
(2) A master (integer) linear problem is formulated as a minimum-cost network flow over D.

Any side constraints are expressed over the arc flow variables in D.
(3) The optimal solution is decomposed into r-t paths, each corresponding to a column. Each

path is checked for feasibility; if all paths are feasible, we return the optimal solution.
(4) Otherwise, each infeasible path is eliminated from the diagram by removing the associ-

ated partial paths. This usually requires splitting nodes; at most one node needs to be
created per layer to remove an infeasible path. We continue the process on the refined
diagram until no more paths in the solution are infeasible.

For a given decision diagram D, the network flow formulation is similar to the network
flow model in Section 6; in this case we allow the flow value to be larger than 1. That is,
the master problem for decision diagram D= (N,A) with node set N , arc set A, arc weights
wa and arc decision labels ℓ(a) for a ∈A, takes the general form analogous to the column
generation models in Fig 8:

min
∑
a∈A

waya (24)∑
a∈δ−(v)

ya −
∑

a∈δ+(v)

ya = 0 ∀v ∈N \ {r, t}, (25)

M ′y≥ b, (26)

ya ≥ 0 ∀a∈A. (27)

Here we assume that constraint set M ′y ≥ b is a reformulation of the original constraint
set Mx ≥ b using the mapping from the flow variables y to the original x variables, as
in equation (15). Generally, constraints (26) do not retain the integrality property of the
network flow solution. We can either solve the model as a linear program to obtain a dual
bound as solution, or impose integrality constraints on the flow variables y to obtain the
integer optimal solution.

Example 13. We apply the column elimination algorithm to the graph coloring problem
in Example 12, using the input graph depicted in Fig. 10.a as illustration. Recall that the
set S represents all independent sets of graph G. We have seen in Example 4 how the exact
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diagram representing all independent sets can be compiled in a top-down manner. Here,
we instead apply compilation by separation, starting with the trivial relaxed diagram D of
width 1 (see Fig. 10.b). The constrained network flow model for this problem is:

min
∑

(r,v)∈A

y(r,v) (28)

s.t.
∑

a∈δ−(v)

ya −
∑

a∈δ+(v)

ya = 0 ∀v ∈N \ {r, t}, (29)

∑
(u,v)∈A:L(u)=i,

ℓ(u,v)=1

y(u,v) = 1 ∀i∈ V, (30)

ya ∈ {0,1, . . . , |V |} ∀a∈A. (31)

Observe that this model minimizes the total flow out of the root, while ensuring that each
vertex is part of exactly one path (constraints (30)). Also, this model imposes integrality
constraints on y.

After solving the initial network flow model, we apply a path decomposition (see Fig. 10.b)
and identify that the all-ones solution has a conflict: edge (1,3) along the partial path
(x1, x2, x3) = (1,1,1). Fig. 10.c shows the refined diagram that no longer contains this partial
path. We resolve the network flow model and decompose its solution into paths (Fig. 10.c).
The dual bound increases from 1 to 2, but we identify a conflict (edge (2,4)). Fig. 10.c
separates the associated partial path, and we continue the process one more time (refin-
ing conflict (3,4) after which the resulting path decomposition contains no more conflicts
(Fig. 10.d) and the optimal solution is returned: color classes {a, d} and {c, b}.

Column elimination was first introduced as an alternative to branch-and-price to solve
the vertex coloring problem in (van Hoeve [78]). A follow-up work studies the impact of the
variable ordering in this context (Karahalios and van Hoeve [49]). Column elimination was
subsequently applied to solve a truck-drone routing problem (Tang and van Hoeve [72]),
which includes a subgradient descent method for solving a Lagrangian reformulation of the
model. Most recently, column elimination was used to solve a capacitated vehicle routing
problem (Karahalios and van Hoeve [48]). The latter work includes the addition of cutting
planes, reduced cost based variable fixing, and a more general and improved subgradient
descent method. A related work, using a similar network flow formulation but on a static
decision diagram, was developed for parallel machine scheduling problems (Kowalczyk et al.
[54]).

Computational Performance Column elimination has several potential computa-
tional advantages with respect to column generation, its close cousin. First, as it works with
a relaxed master problem instead of a restriction, it can be terminated at any time and
return a dual bound. Second, the flow model can be solved as an integer program, avoiding
the need for branch-and-price. Third, because column elimination has no pricing problem it
avoids computational issues related to dual degeneracy which is often a challenge in column
generation. Fourth, its architecture is relatively simple: the decision diagram is a layered
directed graph, the flow models are easily defined and solved, and the refinement process
is well understood. In contrast, branch-and-price implementations often involve delicate
algorithms for solving the pricing problem efficiently.

A drawback of column elimination, again relative to column generation, is that the network
flow model has many more arc variables than the typical column formulation that has one
variable per column. It therefore can take more time to solve the (integer) linear program for
each iteration. Furthermore, it may take more refinement iterations for column elimination
to arrive at an optimal solution than it takes pricing iterations for column generation. Lastly,
the most successful column generation approaches, e.g., for vehicle routing, require only a
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few branch-and-price search tree nodes due to addition of strong cuts at the root node. The
addition of similarly strong cuts to column elimination has been studied (Karahalios and
van Hoeve [48]) but requires more development before it reaches similar performance.

Overall, column elimination is a promising new approach that has been shown to be
competitive with the state of the art on graph coloring (van Hoeve [78], Karahalios and
van Hoeve [49]), truck-drone routing (Tang and van Hoeve [72]), and capacitated vehicle
routing (Karahalios and van Hoeve [48]). Specific opportunities for further development
include state-based cut generation and the application to non-linear problem structures.

8. Summary

This tutorial introduced the use of decision diagrams in the context of discrete optimization.
We have seen that decision diagrams can compactly represent an exponential set of solutions,
and that optimizing over a decision diagram can be done in polynomial time in the size of
the diagram. However, decision diagrams can grow exponentially large, which prevents their
general application to be computationally practical. This tutorial discussed three ways in
which decision diagrams have been successfully applied to optimization problems:

• The first is using exact diagrams, either to represent the entire problem (when it fits in
memory), or a sub-structure of the problem. For example, in constraint programming we
may choose an exact decision diagram to represent one constraint to improve propagation.
In integer programming, we may choose to select a subset of constraints, or the objective
function, to be represented using one or more exact decision diagrams. The decision
diagrams can then be embedded as linear network flow reformulations into the broader
integer programming model.

• The second is using relaxed and/or restricted diagrams of polynomial size. The diagrams
can be built using the top-down compilation method or via compilation by separation,
up to a maximum size limit. One option is to use the relaxed and restricted diagrams
to obtain dual and primal bounds and embed them in a branch-and-bound search, as a
stand-alone solver. Another option is to embed relaxed decision diagrams into constraint
programming solvers to improve constraint propagation, or into integer programming
solvers to generate cuts and improve dual or primal bounds. Various applications of this
approach have shown state-of-the art computational performance on a variety of academic
benchmarks. They have also been applied in industrial settings in the context of vehicle
routing.

• The third is using relaxed decision diagrams in a process called column elimination, in
which a solution is computed as a network flow over the diagram, possibly consisting
of multiple paths. Rather than compiling the relaxed diagram in a top-down fashion, it
is iteratively refined by removing infeasible paths until an optimal feasible solution is
obtained. This approach has been applied to graph coloring and vehicle routing applica-
tions, showing competitive computational results.

The tutorial has focused on presenting the main underlying concepts of decision diagrams
and their use in integer optimization solvers. Many more applications of decision diagrams
have recently appeared in the broader optimization literature, including stochastic optimiza-
tion (Lozano and Smith [58], Salemi and Davarnia [70], MacNeil and Bodur [59]), Benders
decomposition (Guo et al. [40]), pricing in column generation (Morrison et al. [61], Kowal-
czyk and Leus [53]), post-optimality analysis (Hadzic and Hooker [41], Serra and Hooker
[71]), domain-specific applications (Cire et al. [28], Hosseininasab and van Hoeve [46]), and
many more (Castro et al. [25]). For each of these, the goal is to leverage decision diagrams
to capture a (combinatorial) structure that would be challenging to represent using existing
methods.
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[24] Castro MP, Ciré AA, Beck JC (2022) A combinatorial cut-and-lift procedure with an
application to 0-1 second-order conic programming. Math. Program. 196(1):115–171.
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[37] Gillard X, Coppé V, Schaus P, Ciré AA (2021) Improving the Filtering of Branch-and-
Bound MDD Solver. Stuckey PJ, ed., Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 18th International Conference, CPAIOR 2021,
Vienna, Austria, July 5-8, 2021, Proceedings, volume 12735 of Lecture Notes in Com-
puter Science, 231–247 (Springer).



Van Hoeve: Decision Diagrams for Optimization
26 Tutorials in Operations Research, © 2024 INFORMS
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