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Abstract. The most successful approaches for the TSP use the integer programming model proposed in 1954 by Dantzig, Fulkerson,

and Johnson (DFJ). Although this model has exponentially many subtour elimination constraints (SECs), it has been observed

that relatively few of them are needed to prove optimality in practice. This leads us to wonder: What is the complexity of the DFJ

model when just a handful of SECs are imposed? Also, for a given instance, what is the minimum number of SECs needed to prove

optimality? We offer both positive and negative results. On the positive side, we give an algorithm to solve the DFJ model that runs in

polynomial time when only a constant number of SECs are imposed. With an additional condition, we also find a minimum number

of SECs in polynomial time. As part of our experiments, we show that the original 49-city TSP instance of DFJ requires a minimum

of four SECs, which we generate in a fraction of a second with a simple Python implementation.
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1. Introduction

A classic approach to solve the Traveling Salesman Problem (TSP) uses the integer programming

formulation of Dantzig, Fulkerson, and Johnson (DFJ). This formulation was originally introduced

in 1954 to solve a 49-city TSP instance (Dantzig et al. 1954) and still forms the basis of the best

solvers (Applegate et al. 2003, 2007). Given a complete undirected graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices
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with a cost 𝑐𝑒 for each edge 𝑒 ∈ 𝐸 , the DFJ model is:

min
∑︁
𝑒∈𝐸

𝑐𝑒𝑥𝑒 (1a)

s.t. 𝑥(𝛿(𝑣)) = 2 ∀𝑣 ∈𝑉 (1b)

𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 ∀𝑆 ⊆ 𝑉 : 3 ≤ |𝑆 | ≤ 𝑛− 3 (1c)

𝑥𝑒 ∈ {0,1} ∀𝑒 ∈ 𝐸. (1d)

This formulation has a linear number of degree-two constraints (1b) and an exponential number of

subtour elimination constraints (SECs) (1c), which can equivalently be written in a cut-based fashion:

𝑥(𝛿(𝑆)) ≥ 2 ∀𝑆 ⊆ 𝑉 : 3 ≤ |𝑆 | ≤ 𝑛− 3. (2)

Typically, the DFJ model is solved using a branch-and-cut approach in which the degree-two

constraints are imposed at the beginning, while the SECs are initially omitted and added later as

needed. In practice, this approach works remarkably well, despite the NP-hardness of TSP. One

possible explanation for this phenomenon is that relatively few SECs are needed to prove optimality,

as noted by Miliotis (1976), Pferschy and Staněk (2017). In the extreme case, none of the SECs

are needed, and this problem, known as the minimum-weight 2-factor problem, can be solved in

strongly polynomial time (Edmonds 1965), see Grotschel and Holland (1987) and (Schrijver 2003,

Ch.30); Gabow (2018) shows it is solvable in time 𝑂 (𝑛(𝑚 + 𝑛 log𝑛)). This leads us to wonder:

Question 1: What is the complexity of the DFJ model when just a handful of subtour elimination

constraints are imposed?

To formalize the discussion, denote by DFJ(𝐺,S) the objective value of the DFJ model over

graph 𝐺 in which a subtour elimination constraint 𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 is imposed only for each set 𝑆

in the set family S = {𝑆1, 𝑆2, . . . , 𝑆𝑘 }, i.e.,
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DFJ(𝐺,S) = min
∑︁
𝑒∈𝐸

𝑐𝑒𝑥𝑒

s.t. 𝑥(𝛿(𝑣)) = 2 ∀𝑣 ∈𝑉

𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 ∀𝑆 ∈ S

𝑥𝑒 ∈ {0,1} ∀𝑒 ∈ 𝐸.

We ask, what is the complexity of this problem as a function of 𝑘 = |S|? Or, as a function of the

sizes |𝑆1 |, |𝑆2 |, . . . , |𝑆𝑘 |? We offer both positive and negative results.

On the positive side, we show that the problem is polynomial-time solvable if there is only a

constant number 𝑘 of SECs. Our approach is to reduce the problem to a sequence of minimum-

weight 2-factor problems, using a new paw-splitting gadget. As a side result, we show that the

minimum-weight triangle-free 2-factor problem is fixed-parameter tractable (FPT) with respect to

the number 𝑡 of triangles; the running time is 2𝑡 poly(𝑛). Whether this problem is polynomial or

NP-hard is a longstanding open question, first posed by Vornberger (1980), that remains open to this

day (Schrijver 2003, Kobayashi 2022), making the intermediate FPT status interesting.

On the negative side, we observe that solving the DFJ model remains NP-hard when the number

of SECs is polynomial in 𝑛. By a reduction of Vornberger (1980), hardness persists even when the

vertex subsets 𝑆1, 𝑆2, . . . , 𝑆𝑘 have size three or four. We extend this result to show that, for any 𝜀 > 0,

solving the DFJ model remains NP-hard when only 𝑛𝜀 SECs are imposed. We also ask:

Question 2: What is the minimum number of subtour elimination constraints needed to prove

the optimality of a TSP tour? How to find them?

To formalize the discussion, we define the restricted power set of set 𝑉 as

P′(𝑉) = {𝑆 ⊆ 𝑉 | 3 ≤ |𝑆 | ≤ |𝑉 | − 3},

similar to the usual power set P(𝑉) but without sets of size 0,1,2, |𝑉 | − 2, |𝑉 | − 1, or |𝑉 |. Denote by

TSP(𝐺) the cost of an optimal TSP tour in 𝐺, i.e., TSP(𝐺) = DFJ(𝐺,P′(𝑉)). Question 2 asks for a
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set family S ⊆ P′(𝑉) of minimum cardinality |S| such that DFJ(𝐺,S) = TSP(𝐺), i.e., that solves

𝑘∗ = min |S|

s.t. DFJ(𝐺,S) = TSP(𝐺)

S ⊆ P′(𝑉).

We give an algorithm to calculate this minimum number 𝑘∗ of SECs. If 𝑘∗ is a constant and if all

2-factors encountered by our algorithm have at most 𝑏 components, then it runs in time 2𝑏𝑘∗ poly(𝑛),
which is polynomial if we further have 𝑏 = 𝑂 (log𝑛). As part of our experiments, we apply the

algorithm to the famous 49-city TSP instance from the DFJ paper, finding that the minimum number

of SECs needed to prove optimality is 𝑘∗ = 4. We also experiment with other TSPLIB, HardTSPLIB,

and randomly generated instances, finding that 𝑘∗ and 𝑏 are often small (e.g., 𝑏 ∈ {2,3,4}), enabling

us to find the minimum number of SECs for nearly all TSPLIB instances that have fewer than 100

vertices via a simple Python implementation.

Outline. Section 2 provides background about the problem and surveys the literature. Section 3

considers Question 1, providing both positive results (e.g., a polynomial-time algorithm for constant

𝑘) and negative results (e.g., NP-hardness for 𝑘 = 𝑛𝜀). Section 4 considers Question 2, also providing

positive results (e.g., an exact exponential algorithm) and negative results. Computational experiments

follow in Section 5. We conclude in Section 6.

2. Background and Literature Review

2.1. Notation

We consider a simple undirected graph 𝐺 = (𝑉, 𝐸). If 𝑆 and 𝑆′ disjoint subsets of vertices, denote

by 𝛿(𝑆, 𝑆′) the subset of edges with one endpoint in 𝑆 and one endpoint in 𝑆′. If 𝑆 and 𝑆′ are

complementary, i.e., 𝑆′ =𝑉 \𝑆, then we simply refer to 𝛿(𝑆) instead of 𝛿(𝑆, 𝑆′). Further, when 𝑆 = {𝑣}
is a singleton, we simply write 𝛿(𝑣) instead of 𝛿({𝑣}). Denote by 𝐸 (𝑆) the subset of edges with

both endpoints in 𝑆. For edge subsets 𝐸′ ⊆ 𝐸 , the sum
∑

𝑒∈𝐸 ′ 𝑥𝑒 is indicated by the shorthand 𝑥(𝐸′).

2.2. 2-Factors

Following Schrijver (2003), a 2-matching is a nonnegative integer vector 𝑥 ∈ Z𝐸+ that satisfies the

inequality 𝑥(𝛿(𝑣)) ≤ 2 for each vertex 𝑣 ∈𝑉 . If these inequalities hold at equality then 𝑥 is perfect,
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and if 𝑥 is binary then it is simple. A 2-factor is a simple perfect 2-matching, i.e., it satisfies the

degree constraints (1b) and binary restrictions (1d). Equivalently, we can think of a 2-factor as a

subset of edges such that each vertex touches two of them. We seek a minimum-weight 2-factor that

satisfies a collection of 𝑘 SECs of the form (1c) or equivalently (2).

Finding a 2-factor is polynomial. In fact, the minimum-weight 2-factor problem is solvable in

strongly polynomial time using matching techniques (Edmonds 1965), see (Schrijver 2003, Ch.30).

Indeed, Gabow (2018) shows it is solvable in time 𝑂 (𝑛(𝑚 + 𝑛 log𝑛)).
However, these problems become hard when we impose length restrictions on the cycles of the

2-factor. By reduction from exact cover, Vornberger shows that determining the existence of a 2-factor

without cycles of length at most five is NP-complete (Vornberger 1980, Thm 2.4). Also, the problem

of finding a minimum-weight 2-factor without cycles of length at most four is NP-hard (Vornberger

1980, Thm 2.3). These problems remain hard when the maximum degree is three.

Theorem 1 (Vornberger (1980)). The minimum-weight 2-factor problem without cycles of length

at most four is NP-hard.

A closely related problem is the minimum-weight triangle-free 2-factor problem. Its complexity

has been an open question since Vornberger’s 1980 paper, see also Schrijver (2003). Recently,

Kobayashi (2022) mentions its complexity as still being open. However, special cases are polynomial-

time solvable, such as in subcubic graphs (Bérczi 2012, Hartvigsen and Li 2013, Kobayashi 2010).

Kobayashi (2022) shows that it is polynomial when the (forbidden) triangles are edge-disjoint.

The approach is to construct an extended formulation for the problem that has exponentially many

constraints and show that the associated separation problem is polynomial-time solvable; thus, this

special case is polynomial by the ellipsoid method (Grötschel et al. 1993).

The literature is also rich with papers on the related maximum-weight 2-matching problem, which

allows each edge to be chosen once, twice, or not at all and for each vertex to be incident to zero,

one, or two edges. We refer the reader to (Schrijver 2003, Ch.30) and Kobayashi (2022) for more.

2.3. TSP

The TSP is well-known to be NP-hard, a consequence of the NP-completeness of the Hamiltonian

cycle problem (Karp 1972). The dynamic programming algorithms for TSP by Bellman (1962) and

Held and Karp (1962) run in time 𝑂 (2𝑛𝑛2).
Several approximation algorithms have been developed. First of all, note that for general costs

no 𝛼-approximation algorithm can exist unless P = NP, see Sahni and Gonzalez (1976). However,



Vercesi and Buchanan: The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints
6

the situation changes with the assumption of triangle inequality, namely, 𝑐𝑖 𝑗 ≤ 𝑐𝑖𝑘 + 𝑐 𝑗 𝑘 for distinct

𝑖, 𝑗 , 𝑘 ∈𝑉 . The famous approximation algorithm of Christofides (1976) guarantees a solution within

a factor of 3/2. Recently, this bound has been slightly improved by Karlin et al. (2021) to 3/2−10−36.

For a survey on the approximation ratios of other heuristics, such as the Lin-Kernighan heuristic,

we refer the reader to Zhong (2021a). There are also several polynomial special cases of the

TSP (Gilmore et al. 1984, Burkard et al. 1998, Kabadi 2007, Deineko et al. 2014).

Papadimitriou and Steiglitz (1978) introduce a class of TSP instances that are “unsolvable” by

local search. They have 𝑛 = 8𝑘 cities, one optimal solution, and 2𝑘 (𝑘 − 1)! other local optima that

are next best and cannot be improved with any fewer than 3𝑘 edge exchanges. Interestingly, Padberg

and Sung (1988) show that these instances can easily be solved with the DFJ model; specifically, its

linear programming (LP) relaxation gives a sharp bound, and just 𝑛/8 SECs suffice. Subsequently,

Chvátal (1989) shows that it is generally NP-hard to determine whether the LP relaxation of the

DFJ model is integral. Note that in this paper we consider a different relaxation. We relax not the

integrality constraints, but instead all but 𝑘 of the SECs.

Chvátal et al. (1989) prove that cutting plane algorithms for TSP that start with the DFJ model’s

LP relaxation and generate only Chvátal-Gomory cuts require at least 2𝑛/8/(3𝑛) cuts. Cook and

Hartmann (1990) prove that branch-and-cut algorithms for TSP require Ω(2𝑛/16/𝑛2) operations,

even when there is an oracle for optimizing over the DFJ model’s LP relaxation; this result assumes

“simple” variable branching, i.e., disjunctions of the form 𝑥𝑒 ≤ 0 or 𝑥𝑒 ≥ 1. Dey et al. (2023) prove

that there exist TSP instances for which the smallest general branch-and-bound tree (i.e., allowing

arbitrary disjunctions of the form 𝜋𝑇𝑥 ≤ 𝜋0 or 𝜋𝑇𝑥 ≥ 𝜋0 + 1) has size at least 2𝑛/16−2, even when the

root LP relaxation includes all SECs.

Many practical approaches for TSP apply LP-based branch-and-bound, where initially omitted

SECs are added to the model as needed. This includes the famous Concorde implementation (Apple-

gate et al. 2007), which cuts off fractional points 𝑥∗ using SECs (and other types of cuts) and has

solved instances with 85,900 cities (Applegate et al. 2003, 2009). Much simpler implementations

that cut off only integer points can perform quite well for smaller instances, see Pferschy and Staněk

(2017). Each iteration of these integer-separation variants amounts to solving the DFJ model over a

subset of the SECs. Our first question asks for the complexity of these subproblems.

The long history of the TSP contains many combinatorial branch-and-bound algorithms, see the

surveys by Bellmore and Nemhauser (1968), Balas and Toth (1983), and Laporte (1992). Most of

them use the assignment problem relaxation. Bellmore and Nemhauser describe an early approach
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of Eastman (1958) in which an assignment problem is solved at each iteration, and when a subtour,

say (1,2, . . . , 𝑓 , 1) is encountered, 𝑓 subproblems are created, with each subproblem picking one

subtour edge and effectively setting its variable to zero by giving it a large cost. These subproblems

do not partition the solution space, leading to redundant effort. A better way to branch, that partitions

the solution space, is to create 𝑓 branches across the subtour’s edges 𝑒1, 𝑒2, . . . , 𝑒 𝑓 like:

• Subproblem 1: 𝑥𝑒1 = 0;

• Subproblem 2: 𝑥𝑒2 = 0 and 𝑥𝑒1 = 1;

• Subproblem 3: 𝑥𝑒3 = 0 and 𝑥𝑒1 = 𝑥𝑒2 = 1;

• . . .

• Subproblem 𝑓 : 𝑥𝑒 𝑓
= 0 and 𝑥𝑒1 = · · · = 𝑥𝑒 𝑓 −1 = 1.

Balas and Toth (1983) attribute this branching rule to works as early as Murty (1968). A subsequent

branching rule, which Balas and Toth attribute to Garfinkel (1973), considers a subtour over vertices

𝑆 = {1,2, . . . , 𝑓 } and essentially constructs subproblems based on how many edges cross the cut

from each vertex of 𝑆 to 𝑉 \ 𝑆:

• Subproblem 1: 𝑥1 𝑗 = 0 for 𝑗 ∈ 𝑆;

• Subproblem 2: 𝑥2 𝑗 = 0 for 𝑗 ∈ 𝑆 and 𝑥1 𝑗 = 0 ∀ 𝑗 ∈𝑉 \ 𝑆;

• Subproblem 3: 𝑥3 𝑗 = 0 for 𝑗 ∈ 𝑆 and 𝑥1 𝑗 = 𝑥2 𝑗 = 0 ∀ 𝑗 ∈𝑉 \ 𝑆;

• . . .

• Subproblem 𝑓 : 𝑥𝑡 𝑗 = 0 for 𝑗 ∈ 𝑆 and 𝑥1 𝑗 = · · · = 𝑥 𝑓−1, 𝑗 = 0 ∀ 𝑗 ∈𝑉 \ 𝑆.

Garfinkel’s rule handles all edges within 𝑆, not just the 𝑓 edges from the subtour. Our proposed

disjunction is similar in spirit, but is tailored to symmetric or undirected TSP instances. Importantly,

by using the 2-factor relaxation, we avoid subtours of size two; these are known to plague approaches

that rely on the assignment relaxation (Bellmore and Nemhauser 1968, Balas and Toth 1983).

3. DFJ Complexity for Few SECs

Here, we consider the first question: What is the complexity of solving the DFJ model for just a

handful of SECs? We begin with the bad news.

3.1. Negative Results

We have already seen Theorem 1, which states that finding a minimum-weight 2-factor without

cycles of length at most four is NP-hard. This problem is defined on an undirected graph 𝐺 = (𝑉, 𝐸)
that may be missing some edges, i.e., with 𝐸 ⊊

(𝑉
2
)
. Meanwhile, the TSP is defined on a complete
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graph. So, simply by giving each missing edge from
(𝑉

2
)
\ 𝐸 an exorbitantly large weight, say∑

𝑒∈𝐸 |𝑐𝑒 |, we have the following observation.

Proposition 1. Solving the DFJ model is NP-hard, even when restricted to the polynomially many

subtour elimination constraints: 𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 for 3 ≤ |𝑆 | ≤ 4.

In fact, we can make a stronger statement. Hardness persists for 𝑛 subtour elimination constraints,

or even 𝑛0.0001 of them.

Theorem 2. For every constant 𝜀 > 0, solving the DFJ model is NP-hard, even when restricted to

𝑛𝜀 subtour elimination constraints of size three and four.

Proof. We may assume 𝜀 < 1. The reduction is from the DFJ model with SECs 𝑥(𝐸 (𝑆)) ≤ |𝑆 | −1

for 3 ≤ |𝑆 | ≤ 4. The number of such constraints is
(𝑛
3
)
+
(𝑛
4
)
≤ 𝑛4. The idea is to pad this instance with

a large cycle. Specifically, let ℎ = ⌈1/𝜀⌉ and add a cycle with zero cost edges over 𝑛4ℎ new vertices.

(If one desires the new instance to be a complete graph, then again give missing edges exorbitantly

large weights.) This new graph 𝐺′ = (𝑉 ′, 𝐸′) has a polynomial number of vertices 𝑛′ = 𝑛 + 𝑛4ℎ, and

we impose the previous SECs (over 𝑉 only) which number at most 𝑛4 and

𝑛4 = (𝑛4ℎ)1/ℎ ≤ (𝑛4ℎ)𝜀 ≤ (𝑛 + 𝑛4ℎ)𝜀 = (𝑛′)𝜀 .

To get a solution for 𝐺, solve the problem in 𝐺′ and discard the cycle over 𝑉 ′ \𝑉 . □

3.2. Positive Results

Now for the good news. We show that the DFJ formulation with a constant number of subtour

elimination constraints is polynomial-time solvable. The main idea is to reduce the problem to

a polynomial number of minimum-weight 2-factor problems. This is accomplished via a new

branching rule that is analogous to that of Garfinkel (1973)—but carefully crafted for the undirected

case—and a new paw-splitting gadget to enforce this disjunction.

3.2.1. Disjunction and branching rule First, consider the minimum-weight 2-factor problem

with one subtour elimination constraint 𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1. In light of the degree-two constraints,

this is equivalent to 𝑥(𝛿(𝑆)) ≥ 2, thus requiring two (or more) edges to cross the cut from 𝑆 to 𝑉 \ 𝑆.

The question then is: which node(s) from 𝑆 will neighbor 𝑉 \ 𝑆 in our 2-factor? This is not known a

priori, hence the reason to create subproblems.
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Figure 1 Expanded view of branching rule for 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}

subproblem 1

subproblem 2

subproblem 3

subproblem 4

𝑥(𝛿(𝑠1,𝑉 \ 𝑆)) ≥ 1𝑥(𝛿(𝑠1,𝑉 \ 𝑆)) ≤ 0

𝑥(𝛿(𝑠2,𝑉 \ 𝑆)) ≥ 1𝑥(𝛿(𝑠2,𝑉 \ 𝑆)) ≤ 0

𝑥(𝛿(𝑠3,𝑉 \ 𝑆)) ≥ 1𝑥(𝛿(𝑠3,𝑉 \ 𝑆)) ≤ 0

𝑥(𝛿(𝑠4,𝑉 \ 𝑆)) ≥ 1𝑥(𝛿(𝑠4,𝑉 \ 𝑆)) ≤ 0

One may be tempted to use an undirected version of Garfinkel’s rule, say, by selecting a vertex 𝑣 ∈ 𝑆
and branching on the disjunction 𝑥(𝛿(𝑣, 𝑆)) = 0 or 𝑥(𝛿(𝑣,𝑉 \𝑆)) = 0. However, the issue is that this is

not exhaustive for the undirected case; we may also have the third case 𝑥(𝛿(𝑣, 𝑆)) = 𝑥(𝛿(𝑣,𝑉 \𝑆)) = 1.

This would thus create three subproblems, leading to an algorithm with a branching factor of three

instead of two. Additionally, the third case, where 𝑥(𝛿(𝑣, 𝑆)) = 𝑥(𝛿(𝑣,𝑉 \ 𝑆)) = 1, cannot be enforced

simply by fixing select variables to zero (nor by removing edges).

This motivates our proposed disjunction and branching rule. Specifically, the disjunction is

𝑥(𝛿(𝑣,𝑉 \ 𝑆)) ≤ 0 or 𝑥(𝛿(𝑣,𝑉 \ 𝑆)) ≥ 1, (3)

which is indeed exhaustive and irredundant.

The “atomic” disjunction (3) is applied repeatedly to get the proposed branches for 𝑆 =

{𝑠1, 𝑠2, . . . , 𝑠 𝑓 }, creating |𝑆 | subproblems. Figure 1 illustrates the case |𝑆 | = 4. Note that the

bottom-left branch, where 𝑥(𝛿(𝑠𝑖,𝑉 \ 𝑆)) ≤ 0 for all 𝑖 ∈ [ 𝑓 ], violates the SEC and can be discarded.

Also, in any 2-factor, the number of edges crossing the cut from 𝑆 to 𝑉 \ 𝑆 will be even. So, if any

of the ≥ 1 inequalities are satisfied, then in fact we will have 𝑥(𝛿(𝑆)) ≥ 2. As a consequence, the

final subproblem (for 𝑠 𝑓 ) can actually impose 𝑥(𝛿(𝑠 𝑓 ,𝑉 \ 𝑆)) ≥ 2 or equivalently 𝑥(𝛿(𝑠 𝑓 , 𝑆)) = 0.
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For this reason, the final subproblem can sometimes be discarded. For example, if 𝑆 has just three

vertices, i.e., 𝑆 = {𝑠1, 𝑠2, 𝑠3}, then the subproblem for 𝑠3 will necessarily be infeasible. Similarly, if

we are interested only in TSP tours, then the final subproblem can also be discarded as any feasible

solution to this subproblem will necessarily have one or more subtours over {𝑠1, 𝑠2, . . . , 𝑠 𝑓−1}.
We remark that any 2-factor satisfying the subtour elimination constraint 𝑥(𝛿(𝑆)) ≥ 2 is feasible

for precisely one subproblem. This is a consequence of the fact that the disjunction is exhaustive

and irredundant. Specifically, suppose that 𝑠 𝑗 has the smallest index 𝑗 among the vertices from

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠 𝑓 } that neighbor 𝑉 \ 𝑆 in the 2-factor. Then, this 2-factor is feasible for subproblem

𝑗 . Meanwhile, it is infeasible for subsequent subproblems, because they are defined in part by the

constraint 𝑥(𝛿(𝑠 𝑗 ,𝑉 \ 𝑆)) ≤ 0, which our 2-factor violates. Finally, our 2-factor is infeasible for

earlier subproblems, because they are defined in part by constraints of the form 𝑥(𝛿(𝑠𝑖,𝑉 \ 𝑆)) ≥ 1

for 𝑖 < 𝑗 , but 𝑗 is the smallest index for which the 2-factor can satisfy such a constraint.

3.2.2. Gadget As we have seen, the subproblems are defined by disjunctions of the form:

𝑥(𝛿(𝑠,𝑉 \ 𝑆)) ≤ 0 or 𝑥(𝛿(𝑠,𝑉 \ 𝑆)) ≥ 1.

We propose graph operations whereby each subproblem can be solved as a minimum-weight 2-factor

problem. The 𝑥(𝛿(𝑠,𝑉 \ 𝑆)) ≤ 0 branch is easy—simply remove the edges 𝛿(𝑠,𝑉 \ 𝑆) in an operation

that we call edge deletion. For the 𝑥(𝛿(𝑠,𝑉 \ 𝑆)) ≥ 1 branch, we propose paw-splitting, which is

similar to node-splitting, but stitches the two sides together using a paw graph, as in Figure 2.

In paw-splitting, we introduce a triangle on three new vertices: 𝑣𝐿 , 𝑣𝑀 , 𝑣𝑅. Any edges originally

extending from 𝑆 \ {𝑣} to 𝑣 are rerouted to 𝑣𝐿 instead. Last, we add the edge {𝑣𝑅, 𝑣}. In total, this

adds three new vertices and four zero-cost edges.

Why does this gadget work? Consider a 2-factor in the new graph, which is forced to select

the two edges incident to 𝑣𝑀 . If the 2-factor also picks the edge {𝑣𝐿 , 𝑣𝑅} this makes a triangle on

the new vertices, forcing 𝑣 to pick its two neighbors from 𝑉 \ 𝑆. Otherwise, if edge {𝑣𝐿 , 𝑣𝑅} is

not selected, then the 2-factor selects edges along the path 𝑣𝐿-𝑣𝑀-𝑣𝑅-𝑣, forcing 𝑣 to pick its other

neighbor from 𝑉 \ 𝑆 and forcing 𝑣𝐿 to pick its other neighbor from 𝑆 \ {𝑣}. Hence, the gadget edge

{𝑣𝐿 , 𝑣𝑅} essentially captures the dichotomy 𝑥(𝛿(𝑣,𝑉 \ 𝑆)) = 1 or 𝑥(𝛿(𝑣,𝑉 \ 𝑆)) = 2.

Last, to recover a 2-factor for the original graph, simply take shortcuts through the new vertices

and discard any cycles that consist solely of new vertices, a process that we call short-cutting.

Observe that short-cutting preserves the cost of the 2-factor since only zero-cost edges are removed.
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Figure 2 A paw-splitting gadget to impose 𝑥(𝛿(𝑣,𝑉 \ 𝑆)) ≥ 1.

𝑣𝐿

𝑣𝑀

𝑣𝑅 𝑣

𝑉 \ 𝑆𝑆 \ {𝑣}

The reverse process also works. That is, given a 2-factor in the original graph, we can easily

generate a 2-factor in the new graph with the same cost by adding the appropriate (zero-cost) edges

from the paw-splitting gadget. That is, if the original 2-factor has 𝑣 neighboring two vertices of

𝑉 \ 𝑆, then simply add the triangle edges from the paw. Otherwise, replace the original edge {𝑣, 𝑠}
between 𝑣 and a vertex 𝑠 from 𝑆 \ {𝑣} by the three edges {𝑠, 𝑣𝐿} and {𝑣𝐿 , 𝑣𝑅} and {𝑣𝑅, 𝑣}.

3.2.3. Algorithm for given subtour constraints In what follows, we propose an algorithm to

solve the DFJ formulation for a handful of given subtour elimination constraints. In it, we (repeatedly)

apply the edge deletion and paw-splitting operations to create the subproblems. These subproblems

are all minimum-weight 2-factor problems, which are polynomial-time solvable. Moreover, the

operations either produce smaller instances (for edge deletion) or instances that are larger by only

three vertices and four edges (for paw-splitting).

More formally, consider the problem of finding a minimum-weight 2-factor of 𝐺 = (𝑉, 𝐸), with

respect to costs 𝑐, that satisfies SECs for given vertex subsets 𝑆1, 𝑆2, . . . , 𝑆𝑘 . We propose the following

recursive algorithm ralg. It should be initiated by calling it with the input graph 𝐺 and the original

collection S = {𝑆1, 𝑆2, . . . , 𝑆𝑘 }.

ralg(𝐺,S):

• if S = ∅, return the cost of a minimum-weight 2-factor of 𝐺 (or∞ if infeasible)

• select a vertex subset 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠 𝑓 } from the collection S
• from 𝐺, create the edge-weighted graphs 𝐺1, 𝐺2, . . . , 𝐺 𝑓 using the paw-splitting and edge

deletion operations (Section 3.2.2) for the minimum-weight 2-factor subproblems from Section 3.2.1
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• return min{ralg(𝐺 𝑗 ,S \ {𝑆}) | 1 ≤ 𝑗 ≤ 𝑓 }

As previously remarked, the last subproblem 𝐺 𝑓 does not need the paw-splitting gadget, as we

can simply remove the edges between 𝑠 𝑓 and the rest of 𝑆.

Theorem 3. The algorithm ralg is correct and solves |𝑆1 | |𝑆2 | · · · |𝑆𝑘 | minimum-weight 2-factor

problems, each having at most 𝑛 + 3𝑘 vertices and 𝑚 + 4𝑘 edges.

Proof. First, we consider the number of minimum-weight 2-factor problems. By the recursive

nature of the algorithm, the bottom of the search tree has |𝑆1 | |𝑆2 | · · · |𝑆𝑘 | leaf nodes in which a

minimum-weight 2-factor problem is solved (whenS = ∅). The depth is 𝑘 , and each level corresponds

to another edge deletion or paw-splitting operation, adding at most 3 vertices and 4 edges, so the

leaf nodes of the tree have subproblems with at most 3𝑘 additional vertices and 4𝑘 additional edges.

For the correctness, consider the optimal objective value 𝑧∗ and the objective value returned

by the algorithm 𝑧alg. Observe that the algorithm returns the “best” weight of a minimum-weight

2-factor across all the |𝑆1 | |𝑆2 | · · · |𝑆𝑘 | subproblems. With the short-cutting process, we can find a

2-factor for the original graph 𝐺 of the same cost. The short-cut solution also satisfies all SECs for

the sets 𝑆1, 𝑆2, . . . , 𝑆𝑘 by the subproblem definitions, which require at least one edge to cross the cut

from 𝑆 𝑗 to its complement (and an even number of edges must cross in any 2-factor). This shows

that 𝑧∗ ≤ 𝑧alg. For the reverse inequality, consider an optimal solution to the original problem. By

the subproblem definition and the fact that the disjunction is exhaustive, we can perform the reverse

process of short-cutting to obtain a solution for one of the subproblems that has the same objective

value, and thus the algorithm can return no worse, i.e., 𝑧alg ≤ 𝑧∗. □

If the number 𝑘 of SECs is a constant, then we have a polynomial number 𝑂 (𝑛𝑘 ) of minimum-

weight 2-factor problems, and each of them is defined on a graph with 𝑛+𝑂 (1) vertices and 𝑚+𝑂 (1)
edges. This gives the following corollary.

Corollary 1. The DFJ formulation can be solved in polynomial time when the number of subtour

elimination constraints is constant.

We remark that the number of minimum-weight 2-factor problems in Theorem 3 can be reduced

from
∏𝑘

𝑗=1 |𝑆 𝑗 | to
∏𝑘

𝑗=1( |𝑆 𝑗 | − 1) when the subsets 𝑆1, 𝑆2, . . . , 𝑆𝑘 have size three. The reason, as

noted in Section 3.2.1, is that the third subproblem is infeasible. This gives the following corollary.

Corollary 2. The minimum-weight triangle-free 2-factor problem can be solved in time 2𝑡 poly(𝑛)
where 𝑡 is the number of triangles.



Vercesi and Buchanan: The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints
13

As previously mentioned, it is a longstanding open question to determine whether the minimum-

weight triangle-free 2-factor problem is polynomial or NP-hard (Vornberger 1980). Our result shows

polynomiality when the number of triangles is 𝑂 (log𝑛), but the general case remains open.

4. Minimum Number of SECs

In this section, we consider the second question: What is the minimum number of subtour elimination

constraints needed to prove the optimality of a tour? How to find them?

4.1. Negative Results

Again, we begin with some bad news. We show that a very simple class of instances requires more

than just a handful of SECs.

Proposition 2. Some classes of instances require Ω(𝑛) subtour elimination constraints to prove

optimality of a TSP tour. For example, Euclidean instances with 𝑛 ≥ 6 vertices on a line at

𝑥, 𝑦-coordinates (1,0), (2,0), . . . , (𝑛,0) require 𝑛− 5 subtour elimination constraints.

Proof. For each 𝑖 ∈ [𝑛], let 𝑖 be the vertex at (𝑖,0). An optimal tour is 1-2-3-· · · -𝑛-1 of cost

2(𝑛− 1). First, we show that 𝑛− 5 SECs suffice. Specifically, we use the sets 𝑆1, 𝑆2, . . . , 𝑆𝑛−5, where

𝑆 𝑗 = {1,2, . . . , 𝑗 + 2}, i.e., 𝑆 𝑗 = [ 𝑗 + 2]. We argue that any 2-factor satisfying these SECs has cost at

least 2(𝑛− 1). For each cycle 𝐶 of the 2-factor, denote by

𝑙 (𝐶) = min{𝑖 ∈ [𝑛] : 𝑖 ∈𝑉 (𝐶)} and

𝑢(𝐶) = max{𝑖 ∈ [𝑛] : 𝑖 ∈𝑉 (𝐶)}

its minimum and maximum element, respectively. Observe that the weight of cycle 𝐶 is at least

2(𝑢(𝐶) − 𝑙 (𝐶)). We number (a subset of) the 2-factor cycles as follows.

1. Let 𝐶1 be the cycle containing vertex 1.

2. for 𝑡 = 1,2, . . . do

• if 𝑢(𝐶𝑡) = 𝑛, then return the cycles 𝐶1,𝐶2, . . . ,𝐶𝑡

• Among cycles that have a vertex in the set {1,2, . . . , 𝑢(𝐶𝑡)}, let 𝐶𝑡+1 be the one with

largest maximum element
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In the following, we prove that the procedure successfully terminates and that the (disjoint) cycles

𝐶1,𝐶2, . . . ,𝐶𝑡 from the 2-factor that it finds have a combined weight at least 2(𝑛− 1), in which case

the 2-factor’s weight can be no less.

First, suppose that the first cycle 𝐶1 has 𝑢(𝐶1) = 𝑛. Then, the procedure returns just this cycle,

and its weight is at least 2(𝑢(𝐶1) − 𝑙 (𝐶1) = 2(𝑛− 1), as desired.

Second, suppose that 𝑢(𝐶1) ∈ {𝑛−2, 𝑛−1}. Then, the weight of 𝐶1 is at least 2(𝑢(𝐶1) − 𝑙 (𝐶1)) ≥
2((𝑛− 2) − 1). Meanwhile, the cycle that contains vertex 𝑛 must have at least two other vertices, and

one or both of them must belong to the set {1,2, . . . , 𝑢(𝐶1)}, in which case the procedure calls this

cycle 𝐶2. As cycle 𝐶2 cannot touch the vertex 𝑢(𝐶1) from the first cycle, 𝐶2 in fact contains a vertex

from {1,2, . . . , 𝑢(𝐶1) − 1}, in which 𝐶2’s weight is at least 6. So, the combined weight of cycles 𝐶1

and 𝐶2 is at least 2((𝑛− 2) − 1) + 6 = 2𝑛, in fact greater than the weight of our optimal tour.

In the third and final case, suppose that 𝑢(𝐶1) ≤ 𝑛− 3. In this case, we claim that the procedure

successfully returns cycles 𝐶1,𝐶2, . . . ,𝐶𝑡 and that the inequality 𝑙 (𝐶 𝑗+1) < 𝑢(𝐶 𝑗 ) holds for each

𝑗 = 1,2, . . . , 𝑡 − 1. The key idea lies in the procedure’s last line. By the SECs for 𝑆1, 𝑆2, . . . , 𝑆𝑛−5,

there must be at least two edges crossing the cut from 𝑆 = {1,2, . . . , 𝑢(𝐶 𝑗 )} to its complement,

meaning that the 2-factor must have a cycle with one vertex in 𝑆 and another in 𝑉 \ 𝑆. This shows

𝑙 (𝐶 𝑗+1) < 𝑢(𝐶 𝑗 ) < 𝑢(𝐶 𝑗+1), implying that such a cycle exists and that each iteration makes progress

towards the termination criterion 𝑢(𝐶𝑡) = 𝑛, so the procedure is finite. We also have 𝑙 (𝐶1) = 1 by

line 1. Thus, the cycles 𝐶1,𝐶2, . . . ,𝐶𝑡 have weight

𝑡∑︁
𝑗=1

𝑤(𝐶 𝑗 )

≥
𝑡∑︁
𝑗=1

2(𝑢(𝐶 𝑗 ) − 𝑙 (𝐶 𝑗 ))

= 2 ©­«𝑢(𝐶𝑡) − 𝑙 (𝐶1) +
𝑡−1∑︁
𝑗=1
(𝑢(𝐶 𝑗 ) − 𝑙 (𝐶 𝑗+1))ª®¬

≥ 2(𝑢(𝐶𝑡) − 𝑙 (𝐶1)) = 2(𝑛− 1).

Last, we show that at least 𝑛 − 5 constraints are necessary. Consider the sets 𝑆1, 𝑆2, . . . , 𝑆𝑛−5

from before. We claim that for 𝑗 ∈ [𝑛− 5] the SEC for either 𝑆 𝑗 or its complement 𝑆 𝑗 =𝑉 \ 𝑆 𝑗 is

necessary. Indeed, if neither is imposed, then the 2-factor consisting of two cycles 1-2-· · · -( 𝑗 + 2)-1
and ( 𝑗 + 3)-( 𝑗 + 4)-· · · -𝑛-( 𝑗 + 3) is feasible with cost 2(𝑛− 2), less than the TSP cost 2(𝑛− 1). □
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4.2. Positive Results

Now for the good news. In the following, we provide an algorithm to determine the minimum

number of subtour elimination constraints needed to prove the optimality of a TSP tour. In every

iteration, we solve the DFJ formulation for a subset S of SECs. If the returned objective value is

less than the cost TSP(𝐺) of our optimal TSP tour, then we add a cut of the form 𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1.

There are many such cuts. Which should we choose? The following lemma tells us precisely which

ones will cut off the present 2-factor.

Lemma 1 (SECs cutting off a 2-factor). Suppose that 𝑥∗ is a 2-factor made up of cycles over vertex

sets 𝑉1,𝑉2, . . . ,𝑉𝑡 . Then, 𝑥∗ violates the subtour elimination constraint 𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 if and only

if 𝑆 can be written as the union 𝑆 =∪ 𝑗∈𝐽𝑉 𝑗 for some index set 𝐽 ⊆ [𝑡] with 0 < |𝐽 | < 𝑡.

Proof. (⇐) Suppose 𝑆 =∪ 𝑗∈𝐽𝑉 𝑗 for some 𝐽 ⊆ [𝑡] with 0 < |𝐽 | < 𝑡. Then,

𝑥∗(𝐸 (𝑆)) ≥
∑︁
𝑗∈𝐽

𝑥∗(𝐸 (𝑉 𝑗 )) =
∑︁
𝑗∈𝐽
|𝑉 𝑗 | = |𝑆 |.

(⇒) Suppose that 𝑥∗ violates the SEC 𝑥(𝐸 (𝑆)) ≤ |𝑆 | −1, implying under the degree-two constraints

that 𝑥∗(𝐸 (𝑆)) = |𝑆 | or equivalently 𝑥∗(𝛿(𝑆)) = 0. Consider a vertex set𝑉 𝑗 with 𝑗 ∈ [𝑡]. By assumption,

the 2-factor selects a cycle 𝑣1-𝑣2-𝑣3-· · · -𝑣1 in 𝑉 𝑗 , and none of the selected edges {𝑣𝑖, 𝑣𝑖+1} can cross

the cut 𝛿(𝑆) by 𝑥∗(𝛿(𝑆)) = 0. So, if 𝑣1 belongs to 𝑆, then so do the other vertices from 𝑉 𝑗 , and we

put 𝑗 in 𝐽. Likewise, if 𝑣1 does not belong to 𝑆, then neither do the other vertices from 𝑉 𝑗 , and we do

not put 𝑗 in 𝐽. This gives an index set 𝐽 for which 𝑆 =∪ 𝑗∈𝐽𝑉 𝑗 . Moreover, we cannot have |𝐽 | = 0 or

|𝐽 | = 𝑡, because this would imply 𝑆 = ∅ or 𝑆 =𝑉 , which do not give valid SECs, so 0 < |𝐽 | < 𝑡. □

As an easy consequence of Lemma 1, we have the following theorem. Note that by convention

TSP(𝐺) is defined to be infinite when it is infeasible, e.g., when 𝐺 has fewer than three vertices.

Theorem 4 (Characterizing sufficient set families). Let S ⊆ P′(𝑉) be a set family. Then,

DFJ(𝐺,S) = TSP(𝐺) if and only if for every partition 𝑉1,𝑉2, . . . ,𝑉𝑘 of 𝑉 with
∑𝑘

𝑗=1 TSP(𝐺 [𝑉 𝑗 ]) <
TSP(𝐺) there is an index set 𝐽 ⊂ [𝑘] with 0 < |𝐽 | < 𝑘 such that 𝑆 :=∪ 𝑗∈𝐽𝑉 𝑗 belongs to S.

By Lemma 1, if the current 2-factor has 𝑡 cycles, then there are 2𝑡 − 2 subtour elimination

constraints to choose from. We can halve this quantity by observing that, for 2-factors, the constraint

𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 for 𝑆 is equivalent to that for its complement 𝑆 =𝑉 \ 𝑆, so it suffices to consider
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just one of them. Accordingly, the number of possible constraints can be reduced to 2𝑡−1 − 1. We

accomplish this by restricting ourselves to index sets 𝐽 for which 𝑆 =∪ 𝑗∈𝐽𝑉 𝑗 has size 0 < |𝑆 | < |𝑉 |/2
(or |𝑆 | = |𝑉 |/2 and 𝑆 contains an arbitrary vertex, say, vertex 1).

This leads to our second algorithm, called ialg. As written, it returns the minimum number

𝑘∗ = |S| of necessary SECs, but it could just as easily return the set family S itself. It starts with

zero SECs, i.e., S = {}, and branches over the disjunction from Lemma 1. The search proceeds in a

breadth-first manner, which we accomplish by storing the subproblems in a queue 𝑄.

ialg():
• create an empty queue 𝑄 and then 𝑄.enqueue({})
• while 𝑄 is not empty

1. S←𝑄.dequeue()
2. compute a solution to DFJ(𝐺,S)
3. if DFJ(𝐺,S) = TSP(𝐺), then return |S|
4. find the vertex sets 𝑉1,𝑉2, . . . ,𝑉𝑡 of the DFJ solution over S
5. for 𝐽 ⊆ [𝑡] do

— 𝑆←∪ 𝑗∈𝐽𝑉 𝑗

— if 0 < |𝑆 | < |𝑉 |/2 or (|𝑆 | = |𝑉 |/2 and 1 ∈ 𝑆) then 𝑄.enqueue(S ∪ {𝑆})

We remark that the objective DFJ(𝐺,S) in line 3 is at most TSP(𝐺) because the SECs added

in line 1 are all valid for TSP. If DFJ(𝐺,S) is strictly less than TSP(𝐺), then the 2-factor cannot

be a TSP tour, and hence consists of cycles over multiple vertex sets 𝑉1,𝑉2, . . . ,𝑉𝑡 . This 2-factor

must be excluded, and the only SECs that would do the trick take the form 𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 with

𝑆 =∪ 𝑗∈𝐽𝑉 𝑗 , by Lemma 1, hence the branching under line 5. This disjunction is key to the correctness.

Otherwise, if DFJ(𝐺,S) equals TSP(𝐺), then the selected SECs suffice to prove the optimality of

our TSP tour. Moreover, the number |S| is minimum by the algorithm’s queue implementation,

recognizing that nodes at depth 𝑑 involve 𝑑 SECs.

Theorem 5. The algorithm ialg correctly determines the minimum number 𝑘∗ of subtour elimina-

tion constraints needed to prove the optimality of a given TSP tour. If 𝑘∗ is a constant, then it can be

implemented to run in time 2𝑏𝑘∗ poly(𝑛) where 𝑏 is the most components encountered in line 4.

Proof. The algorithm is correct by the disjunction proven in Lemma 1. Next, suppose that

𝑘∗ is a constant. The branching factor is less than 2𝑡 ≤ 2𝑏. So, at depth 𝑘∗, we have at most
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2𝑏𝑘∗ DFJ subproblems. Then, by Theorem 3, these DFJ problems can be solved as at most 𝑛𝑘∗

minimum-weight 2-factor problems, each having at most 𝑛 + 3𝑘∗ vertices and 𝑚 + 4𝑘∗ edges. Thus,

each DFJ subproblem can be solved in time polynomial in 𝑛. □

Corollary 3. If 𝑘∗ is a constant and 𝑏 =𝑂 (log𝑛), then the running time of ialg is polynomial.

It may be that the solution to line 2 is not a TSP tour even when the objective equals TSP(𝐺).
In this case, we have alternative optima, with one of them being our TSP tour. This is acceptable

because our stated task was to prove the optimality of a given tour, and not to produce it. The next

section considers the alternative question where the SECs must produce a tour.

4.2.1. On a different question What would happen if we posed the question differently? What

if we sought the minimum number of SECs that necessarily produces a tour? Although this could

be an interesting task for future work, one should not ignore the fact that essentially all SECs are

necessary when the edges have the same cost. Indeed, this observation is what prompted us to phrase

the question in terms of proving the optimality of a tour rather than producing it.

Remark 1. Consider a TSP instance with 𝑛 ≥ 5 vertices in which all edges have the same cost.

The number of subtour elimination constraints needed to necessarily produce a TSP tour is

2𝑛−1 −
(𝑛
2
)
− 𝑛− 1 =Θ(2𝑛), but zero suffice to prove optimality.

Proof. For every 𝑆 ⊆ 𝑉 with 2 < |𝑆 | < 𝑛 − 2, we must impose the SEC for either 𝑆 or its

complement 𝑆 =𝑉 \ 𝑆, because a cycle over 𝑆 and a cycle over 𝑆 will satisfy all other SECs and have

minimum weight. The number of vertex subsets 𝑆 ⊆ 𝑉 that satisfy 2 < |𝑆 | < 𝑛−2 is 2𝑛−2−2𝑛−2
(𝑛
2
)
.

Halving this gives the result. □

4.2.2. Simpler approaches that do not work The algorithm ialg is slow, in part, because it

creates a branch for every subset of subtours (or half of them, anyway). Is this really necessary?

Would it suffice to consider just one subtour constraint? Perhaps for a smallest subtour? Here, we

show that simple heuristics like this can fail miserably. For concreteness, we propose the following

approach that we call the single SEC heuristic().

single SEC heuristic():
• S← {}
• while True

1. compute a solution to DFJ(𝐺,S)
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2. if DFJ(𝐺,S) = TSP(𝐺), then return |S|

3. find the vertex sets 𝑉1,𝑉2, . . . ,𝑉𝑡 of the DFJ solution over S

4. S←S ∪ {𝑆} where 𝑆 is one of 𝑉1,𝑉2, . . . ,𝑉𝑡

Proposition 3. For some classes of instances, just one subtour elimination constraint is required

to prove optimality of a TSP tour, but the single SEC heuristic() may add Ω(2𝑛) SECs. For

example, this is true for Euclidean instances with 3 points located at the 𝑥, 𝑦-coordinate (0,0) and

𝑛− 3 points at (1,0).

Proof. For each integer 𝑛 for which 𝑞 := (𝑛 − 3)/2 ≥ 7 is odd, we construct such an instance.

Let the vertex set be 𝑉 =𝑉0 ∪𝑉1 where 𝑉0 = {1,2,3} are the vertices at (0,0) and 𝑉1 = {4,5, . . . , 𝑛}

are the vertices at (1,0). An optimal tour is 1-2-3-· · · -𝑛-1 of weight 2, and the single SEC

𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 for 𝑆 = 𝑉0 suffices. Now, consider a cycle 𝐶0 over 𝑉0. For every 𝑆 ⊆ 𝑉1 with

2 < |𝑆 | < |𝑉1 |/2 = (𝑛− 3)/2 = 𝑞, consider a cycle 𝐶1 over 𝑆 and a cycle 𝐶2 over 𝑉1 \ 𝑆. Any 2-factor

(𝐶0,𝐶1,𝐶2) constructed in this way has zero weight. If single SEC heuristic encountered them

(in any arbitrary sequence), it would add a SEC for each 𝑆. The number of them is (22𝑞 −2−2(2𝑞) −

2
(2𝑞

2
)
)/2 =Ω(22𝑞) =Ω(22(𝑛−3)/2) =Ω(2𝑛). □

Next, we consider a variant of the single SEC heuristic in which the vertex subset 𝑆 in

line 4 is always taken as a smallest vertex set among 𝑉1,𝑉2, . . . ,𝑉𝑡 . We call this variant the

smallest SEC heuristic().

Proposition 4. For some classes of instances, just one subtour elimination constraint is required

to prove optimality of a TSP tour, but the smallest SEC heuristic() may add Ω(22𝑛/3) =

Ω(1.5874𝑛) SECs. For example, this is true for Euclidean instances with 𝑞 points located at the

𝑥, 𝑦-coordinate (0,0) and 2𝑞 points at (1,0).

Proof. For each odd 𝑞 ≥ 7, we construct such an instance. Let the vertex set be 𝑉 = 𝑉0 ∪𝑉1

where 𝑉0 = {1,2, . . . , 𝑞} are the vertices at (0,0) and 𝑉1 = {𝑞 + 1, 𝑞 + 2, . . . ,3𝑞} are the vertices at

(0,1). An optimal tour is 1-2-3-· · · -n-1 of weight 2, and the single SEC 𝑥(𝐸 (𝑆)) ≤ |𝑆 | −1 for 𝑆 =𝑉0

suffices. Now, consider a cycle 𝐶0 over 𝑉0. For every 𝑆 ⊆ 𝑉1 with 2 < |𝑆 | < |𝑉1 |/2 = 𝑞, consider a

cycle 𝐶1 over 𝑆 and a cycle 𝐶2 over 𝑉1 \ 𝑆. Any 2-factor (𝐶0,𝐶1,𝐶2) constructed in this way has

zero weight. If smallest SEC heuristic encountered them (in any arbitrary sequence), it would

add a SEC for each 𝑆. The number of them is (22𝑞 − 2− 2(2𝑞) − 2
(2𝑞

2
)
)/2 =Ω(22𝑛/3). □
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4.2.3. Implementation tweaks When implementing ialg, we make a few tweaks. First, we

observe that the MIP solver Gurobi (2023) can solve the DFJ(𝐺,S) subproblems quite quickly

in practice. So, for implementation simplicity, we use it rather than the ralg() algorithm (which

would also require a minimum-weight 2-factor subroutine). Second, we observe that the number of

subproblems solved by ialg is 2𝑏𝑘∗ , which grows exponentially in 𝑏 and 𝑘∗. While the value 𝑘∗

depends on the TSP instance and cannot be changed, the value 𝑏 is somewhat malleable.

Specifically, consider a vertex partition 𝑉1,𝑉2, . . . ,𝑉𝑡 in line 4. The reason we branch in line 5 is

because the associated 2-factor has cost less than TSP(𝐺), and so we must cut it off. What would be

great is an alternative 2-factor over vertex sets 𝑉 ′1,𝑉
′
2, . . . ,𝑉

′
𝑡′ that also has cost less than TSP(𝐺)

and that has fewer components, i.e., with 𝑡′ < 𝑡. If we could find such a 2-factor, we could branch on

it instead and create fewer subproblems. Moreover, if the vertex sets 𝑉 ′1,𝑉
′
2, . . . ,𝑉

′
𝑡′ were somehow

obtained by merging parts of 𝑉1,𝑉2, . . . ,𝑉𝑡 together, then branching on the former would also cut

off the latter (see Lemma 1). In this sense, it would be a stronger disjunction. Ideally, we reduce

𝑉1,𝑉2, . . . ,𝑉𝑡 down to just two parts 𝑉 ′1,𝑉
′
2, in which case line 5 creates only one subproblem(!).

The question then becomes, how should we go about merging parts together? In our implementation,

we simply try all possibilities, starting with all ways to throw the vertex subsets 𝑉1,𝑉2, . . . ,𝑉𝑡 into

two parts 𝑉 ′1,𝑉
′
2, then into three parts 𝑉 ′1,𝑉

′
2,𝑉
′
3, etc, until we find a satisfactory alternative partition

(possibly resorting to the original one). By satisfactory, we mean that it satisfies the condition from

Theorem 4, i.e., that the partition 𝑉 ′1,𝑉
′
2, . . . ,𝑉

′
𝑡′ has

𝑡′∑︁
𝑗=1

TSP(𝐺 [𝑉 ′𝑗 ]) < TSP(𝐺). (4)

Ultimately, trying all possibilities like this is not too costly because the 2-factors that solve DFJ(𝐺,S)
already tend to have few components.

For speed reasons, we do not compute the values TSP(𝐺 [𝑉 ′
𝑗
]) exactly; a heuristic will do.

Initial experiments with polynomial-time heuristics such as that of Christofides (1976) did not

perform well enough in terms of solution quality for our use case, so we use the well-known LKH

heuristic (Helsgaun 2000, 2009, Tinós et al. 2018, Taillard and Helsgaun 2019) via the elkai

Python wrapper (Dimitrovski 2023). This and other local search heuristics generally do not run in

polynomial time (Papadimitriou and Steiglitz 1977, Papadimitriou 1992), but can be very fast in
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practice (Bentley 1992, Johnson and McGeoch 2007). For each 𝐽 ⊆ [𝑡] with 0 < |𝐽 | < 𝑡, we cache

the heuristic estimate of TSP(𝐺 [𝑆]) for 𝑆 =∪ 𝑗∈𝐽𝑉 𝑗 , allowing us to instantly check condition (4).

Additionally, we try to initialize the approach in a smart way. In the pseudocode, we simply

initialize the queue 𝑄 with a single subproblem for the empty set family S = {}. Meanwhile, in our

implementation, we (try to) initialize it with a non-empty set family of “required” SECs. Namely, we

take our optimal TSP tour and remove two of its edges, thus creating two paths. We stitch each path’s

endpoints 𝑢 and 𝑣 together with the edge {𝑢, 𝑣} to create a 2-factor consisting of two cycles 𝐶1 and

𝐶2. If this 2-factor has cost less than TSP(𝐺), then the SEC for either 𝑆 =𝑉 (𝐶1) or 𝑆 =𝑉 (𝐶2) is

required, and these SECs are equivalent, and so we can add the smaller one to the root subproblem’s

set family S. We repeat this procedure for all pairs of edges from the TSP tour whose removal gives

two paths with at least two edges (since a path with fewer than two edges cannot be stitched back

together to make a 2-factor). This smart initialization takes polynomial time for a given TSP tour.

The pseudocode uses a queue so that subproblems are processed in a breadth-first manner. In

our implementation, we instead use a priority queue where a parent node with set family S gives a

priority score of 𝑀 |S| +DFJ(𝐺,S) to each of its children, where 𝑀 is a sufficiently large value

such as
∑

𝑒∈𝐸 𝑐𝑒. This ensures that the subproblems are still processed in a breadth-first manner but

prioritizes subproblems whose parent had largest cost, i.e., closest to the target cost TSP(𝐺).
Finally, we store every vertex partition that ialg branches on. This is for two reasons. First, we

may be able to re-use the same vertex partition in different parts of the search tree. So, rather than

computing one from scratch, we first check if any of the vertex partitions from the “partition pool”

will suffice, analogous to how MIP solvers store a cut pool. Second, the partition pool can be used to

certify the value 𝑘∗ at the algorithm’s termination, as we will see next.

4.2.4. Certifying optimality Here, we provide an independent way to certify that the output of

ialg is optimal. Recall that we seek a set family S that solves

𝑘∗ = min |S|

s.t. DFJ(𝐺,S) = TSP(𝐺)

S ⊆ P′(𝑉).

When ialg terminates, we should have such a set family S. To check 𝑘∗ ≤ |S|, we can confirm that

S is feasible for the above problem, i.e., compute DFJ(𝐺,S) and check that it equals TSP(𝐺). But



Vercesi and Buchanan: The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints
21

how can we check that the reverse inequality 𝑘∗ ≥ |S|? For this, recall Theorem 4, which says that

DFJ(𝐺,S) = TSP(𝐺) if and only if for every vertex partition𝑉1,𝑉2, . . . ,𝑉𝑘 with
∑𝑘

𝑗=1 TSP(𝐺 [𝑉 𝑗 ]) <
TSP(𝐺) there is an index set 𝐽 ⊂ [𝑘] with 0 < |𝐽 | < 𝑘 such that 𝑆 := ∪ 𝑗∈𝐽𝑉 𝑗 belongs to S. This

theorem allows us to rewrite the 𝑘∗ problem above as an integer program with exponentially many

variables and exponentially many constraints. Namely, for every set 𝑆 ∈ P′(𝑉), we introduce a

binary variable 𝑦𝑆 indicating whether 𝑆 is included in our set family S.

min
∑︁

𝑆∈P′ (𝑉)
𝑦𝑆 (5a)∑︁

𝑆∈𝑈 (𝑉1,𝑉2,...,𝑉𝑘)
𝑦𝑆 ≥ 1 ∀(𝑉1,𝑉2, . . . ,𝑉𝑘 ) ∈ Π< (𝑉) (5b)

𝑦𝑆 ∈ {0,1} ∀𝑆 ∈ P′(𝑉). (5c)

The objective (5a) minimizes the number of sets 𝑆 in set family S. Denote by Π< (𝑉) the collection

of all partitions (𝑉1,𝑉2, . . . ,𝑉𝑘 ) of𝑉 that have
∑𝑘

𝑗=1 TSP(𝐺 [𝑉 𝑗 ]) < TSP(𝐺). (This implies that each

part 𝑉 𝑗 has at least three nodes, since otherwise TSP(𝐺 [𝑉 𝑗 ]) is defined to be infinite.) For each such

partition, we write a cover constraint (5b). Here the sum is taken over all sets 𝑆 ∈𝑈 (𝑉1,𝑉2, . . . ,𝑉𝑘 )
whose SEC would cut off the partition, where 𝑈 (𝑉1,𝑉2, . . . ,𝑉𝑘 ) is the collection {∪ 𝑗∈𝐽𝑉 𝑗 | 𝐽 ⊂
[𝑘], 0 < |𝐽 | < 𝑘} of sets obtained by unioning parts of the partition (avoiding ∅ and 𝑉).

Clearly, if we optimize model (5) over only a subset of the constraints (5b), then this is a relaxation

and its objective can be no larger than 𝑘∗. In particular, if we impose constraints (5b) only for the

the partitions that ialg branched on, then the associated objective value 𝑘′ of the relaxed model (5)

satisfies 𝑘′ ≤ 𝑘∗. And, indeed the set family S from ialg has |S| = 𝑘′, certifying that |S| ≤ 𝑘∗.

This provides an alternative way to view ialg. Essentially, it is solving the exponentially large

integer program (5) with a lazy version of branch-and-price. The ialg algorithm repeatedly

identifies a violated constraint (5b) for some vertex partition (𝑉1,𝑉2, . . . ,𝑉𝑘 ) ∈ Π< (𝑉), introduces

the associated 𝑦𝑆 variables, and then creates a separate branch for each variable, fixing it to one. This

disjunction is different than those used by most branch-and-price algorithms, but is useful for our

purposes as the child nodes are each closer (by one unit) to achieving the optimal objective value 𝑘∗.

5. Computational Experiments

In our experiments, we seek to answer several questions: (i) How many SECs are needed for famous

instances from TSPLIB, like dantzig42? (ii) Is it true that very challenging instances, such as
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Table 1 Results for TSPLIB instances (< 100 vertices) in 3600s time limit (TL).

Minimalization No Minimalization
Instance 𝑛 #SECs 𝑏′ time(s) #nodes 𝑏 time(s) #nodes

burma14 14 2 2 0.00 1 2 0.00 1
ulysses16 16 4 2 0.00 1 2 0.00 1
gr17 17 5 2 0.10 5 4 0.25 187
gr21 21 0 0 0.01 1 0 0.06 1
ulysses22 22 5 2 0.04 2 2 0.01 2
gr24 24 1 2 0.05 2 4 0.02 5
fri26 26 4 4 1.23 6 5 0.08 18
bayg29 29 4 2 0.05 4 3 0.06 10
bays29 29 5 3 0.13 5 3 0.03 5
dantzig42 42 4 2 0.08 3 2 0.09 3
swiss42 42 3 3 1.35 4 10 28.75 2802
att48 48 10 3 1.72 6 6 20.38 2034
gr48 48 11 3 3.12 11 5 732.42 39790
hk48 48 8 2 1.44 8 7 269.27 46644
eil51 51 2 2 0.95 3 4 0.16 7
berlin52 52 2 2 0.43 2 6 0.16 18
brazil58 58 11 6 985.41 131 TL TL TL
st70 70 12 6 81.89 8 TL TL TL
eil76 76 2 2 1.05 3 3 0.28 7
pr76 76 TL TL TL TL TL TL TL
gr96 96 20 5 299.24 74 TL TL TL
rat99 99 7 4 61.59 65 7 655.88 18704

those from HardTSPLIB, require more SECs? (iii) How well does the ialg algorithm perform

in practice, and do the implementation tweaks from Section 4.2.3 have a significant impact? (iv)

For randomly generated instances, how does the number of necessary SECs grow with 𝑛? After

answering these questions, we end with a conjecture, presenting a family of instances that appear to

require a quadratic number of SECs to prove optimality.

All experiments are conducted on a Linux computer with twenty 13th Gen Intel i5 CPUs (5GHz)

and 30GB of RAM. Our code is written in Python 3.10.4. MIPs are solved with Gurobi (2023).

5.1. TSPLIB

TSPLIB is a well-known library of TSP instances commonly used for benchmarking (Reinelt 1991).

We tested the ialg algorithm on instances from TSPLIB, motivated both by curiosity and by a

desire to evaluate the algorithm’s performance.

Table 1 gives results for TSPLIB instances with fewer than 100 vertices. (Beyond this size, our

machine often fails to solve in one hour.) We find that many well-known instances require only a

handful of SECs. This includes the original 49-city instance from Dantzig, Fulkerson, and Johnson,
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Figure 3 A minimum collection of four SECs for the 49-city instance from Dantzig, Fulkerson, and Johnson. The two sets

provided by the smart initialization are represented with dashed lines.
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which requires four SECs, as shown in Figure 3. (Note that the DFJ instance originally had 49 cities

but was simplified by DFJ to 42.). Instances of this size or smaller require at most five SECs, and

gr21 requires none. Larger instances typically require more, including gr96 which requires 20

SECs. However, eil51, berlin52, and eil76 only need two SECs.

Table 1 also summarizes the performance of the ialg algorithm, with and without the implemen-

tation tweak “minimalization” that strengthens the disjunction by reducing the partition size (i.e.,

number of components of each 2-factor). Without this tweak, the algorithm encounters 2-factors

with up to 𝑏 components, with 𝑏 typically being in the single digits, although growing to 𝑏 = 10 for

swiss42. Meanwhile, with this tweak, the number of components is at most 𝑏′, e.g., reducing to

𝑏′ = 3 for swiss42. For more than half of the instances (12/22), 𝑏′ is two or smaller. In this case,

each subproblem creates at most one child node, causing the search tree to have linear size (in 𝑘∗).

Further, 82% of the instances (18/22) have 𝑏′ ≤ 4, and 77% (17/22) are solved in ten nodes or less.

In total, 95% of the instances (21/22) are solved with the minimalization tweak, while 82% (18/22)

are solved without it. The running times also favor minimalization, sometimes by two orders of

magnitude. For example, see gr48 (3.12s vs 732.42s) and hk48 (1.44s vs 269.27s). We conclude

that the minimalization tweak is quite helpful in practice.



Vercesi and Buchanan: The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints
24

Next we evaluate smart initialization, which is where we take an optimal TSP tour, drop two

edges, and add back two others in an attempt to find a 2-factor (with two components) whose cost is

less than TSP(𝐺). This allows to quickly identify a collection of required SECs, and is analogous to

adding cutting planes at the root node in a branch-and-cut algorithm.

To illustrate, we consider dantzig42 for historical reasons and brazil58 because it is “hardest”

among the solved instances. For dantzig42, we find two initial SECs, shown with dashed lines in

Figure 3. After adding these two SECs, the next two 2-factors that the ialg algorithm encounters

have just two components, in which case minimalization is not needed. This is why the time without

minimalization is faster (by a split second) in Table 1.

For brazil58, we find four initial SECs. After adding them, the next 2-factor that the ialg

algorithm encounters has 𝑡 = 14 components. Without minimalization, this creates 2𝑡−1 − 1 = 8191

child nodes. With minimalization, these 14 components can be merged into 𝑡′ = 2 components,

leading to just 2𝑡′−1 − 1 = 1 child node. (This is one reason why brazil58 is unsolved in Table 1 if

minimalization is not used.) Now, suppose that minimalization is used, but that the smart initialization

is either turned on or off. In the former case, ialg solves in 131 nodes after 1310.93s. In the latter

case, it solves in 500 nodes after 1347.53s. This shows that the smart initialization can have a positive

impact on the size of the search tree and the total running time, although less than minimalization.

5.2. HardTSPLIB

Recently, Vercesi et al. (2023) introduced HardTSPLIB, featuring 41 small metric TSP instances that

pose significant runtime challenges for the state-of-the-art solver Concorde. HardTSPLIB includes

two types of instances: (i) those derived by “increasing the difficulty” of TSPLIB instances, and

(ii) those created by “increasing the difficulty” of randomly generated instances. We ask, is there a

substantial difference between the “usual” and “hard” versions of these instances in terms of the

number of SECs required? For simplicity, we consider only the ialg algorithm with all proposed

implementation tweaks, including minimalization and smart initialization.

Table 2 provides results for the first type of HardTSPLIB instances. We see that they require many

more SECs than their TSPLIB counterparts, sometimes by two orders of magnitude. Further, ialg is

considerably slower on them, which is why we give results only for the three smallest instances. This

suggests that these instances are “hard” in more than one way; they are hard not just for Concorde.

Next, we turn to HardTSPLIB instances of the second type, which were randomly generated and

then adjusted to have a large integrality gap. Table 3 gives results. To our astonishment, all instances
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Table 2 TSPLIB vs HardTSPLIB

Instance TSPLIB HardTSPLIB
#SECs 𝑏′ runtime B&B nodes #SECs 𝑏′ runtime B&B nodes

gr24 1 2 0.06 2 63 2 6.56 55
bayg29 4 2 0.05 4 134 2 119.70 133
bays29 5 3 0.15 5 125 2 54.73 113

Table 3 Results for the HardTSPLIB instances derived from randomly generated instances.

Instance #SECs 𝑏′ time(s) #nodes Instance #SECs 𝑏′ time(s) #nodes

Random 10 nodes 7 2 0.02 6 Random 20 nodes 50 2 3.36 39
Random 10 nodes 6 2 0.01 5 Random 20 nodes 42 2 2.29 37
Random 10 nodes 7 2 0.01 5 Random 25 nodes 84 2 19.30 74
Random 10 nodes 7 2 0.02 5 Random 25 nodes 84 2 24.25 74
Random 11 nodes 8 2 0.04 8 Random 25 nodes 76 2 16.43 64
Random 12 nodes 13 2 0.13 12 Random 30 nodes 135 2 100.36 126
Random 14 nodes 19 2 0.25 19 Random 30 nodes 235 2 1625.91 221
Random 15 nodes 22 2 0.38 18 Random 30 nodes 160 2 280.27 139
Random 15 nodes 21 2 0.38 18 Random 33 nodes 171 2 263.79 157
Random 15 nodes 27 2 0.64 22 Random 35 nodes 167 2 827.20 151
Random 16 nodes 26 2 0.46 22 Random 35 nodes 197 2 2807.76 188
Random 20 nodes 56 2 4.82 47 Random 35 nodes TL TL TL TL
Random 20 nodes 54 2 4.41 51

have 𝑏′ = 2, meaning that every 2-factor encountered by the algorithm could be reduced to just

two components. Again, this implies that the number of search nodes of the ialg algorithm will

be linear in 𝑘∗. Without this property, it is unlikely that ialg would terminate successfully on the

largest instances (with just 35 vertices) that require nearly 200 SECs. Compare this to the larger

real-life instance dantzig42, which required only 4 SECs.

5.3. Randomly Generated Instances

We consider three classes of randomly generated instances. The first two have edge costs drawn at

random, either from a uniform or exponential distribution. The third randomly places points in a

square and uses Euclidean distances. For numerical reasons, we round costs to the nearest integer.

The first two classes are motivated by the work of Osorio and Pinto (2003) who claim that costs

drawn from the uniform distribution lead to easier instances than from the exponential distribution.

The way they measure difficulty is by the number of branch-and-bound nodes needed to prove

optimality. The greater such number, the harder the instance. We sampled costs for instances with

𝑛 ∈ {10,20, . . . ,100} vertices. For the uniform distribution, we sample costs between 0 and 1000

and round to the nearest integer. For the exponential distribution, we set 𝜆 = 1
999 , as suggested by
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Osorio and Pinto to allow a higher probability of sampling numbers between 0 and 1000, and then

round to the nearest integer. For each 𝑛, we sample 100 instances.

Results for the first two classes are given in Figure 4. For each each 𝑛, we give a boxplot showing

the number of SECs required across the 100 samples. We observe that roughly 50% of the instances

require 0 or 1 SEC, roughly 75% require at most two SECs, and no cases require more than 11 SECs.

All in all, it seems that both of these classes are quite easy.

Figure 4 Results for randomly generated instances whose edge costs are drawn from the uniform and exponential distributions.
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Finally, in the third class, we randomly place 𝑛 points in the unit square and use Euclidean

distances. To get a diverse set of edge costs, we multiply the distances by 1000 and round to the

nearest integer. We find that computing the minimum number of SECs for these instances is much

harder than before, so we sample 100 instances for each 𝑛 ∈ {10,15, . . . ,50}.

Figure 5 Results for randomly generated Euclidean instances in the unit square.
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Figure 5 gives results. We observe that the number of SECs grows more quickly than before,

already reaching a median of 7 SECs when 𝑛 = 45, whereas only the outliers for the other two classes
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required this many—even when 𝑛 = 100. We also see some 𝑛 = 45 instances that require up to 19

SECs, while others require only one. Figure 6 shows one instance at each of these extremes.

Figure 6 Two instances sampled from the unit square. The left instance needs just one SEC, while the right needs 19 SECs.
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5.4. Rectilinear 3-Dimensional Instances

Previously, we have seen a class of TSP instances on 𝑛 vertices that require a linear number Θ(𝑛) of

SECs (see Proposition 2) and several instaces requiring many SECs (see Tables 2 and 3). Here, we

consider a class of instances that seem to require a quadratic number Θ(𝑛2) of SECs.

Specifically, Zhong (2021b) proposes the Rectilinear 3-Dimensional instances, positioning 𝑛 points

on 3 parallel lines in R3, forming a prism in three-dimensional space. Following their notation, the

coordinates of the vertices are given by 𝑋𝑠 =
(
0,0, 𝑠

𝑖+1
)
, 𝑠 ∈ {0, . . . , 𝑖+1},𝑌𝑠 =

(
1
𝑖+1 +

1
𝑗+1 ,0,

𝑠
𝑗+1

)
, 𝑠 ∈

{0, . . . , 𝑗 + 1} and 𝑍𝑠 =

(
1
𝑖+1 ,

1
𝑘+1 ,

𝑠
𝑘+1

)
, 𝑠 ∈ {0, . . . , 𝑘 + 1}, where 𝑋0, 𝑌0, and 𝑍0 form the base of the

prism. The positions of the 𝑛 points depend on three parameters: 𝑖, 𝑗 , 𝑘 , such that 𝑛 = 𝑖 + 𝑗 + 𝑘 + 6,

and the rectilinear distance between points is used. Figure 7 shows an example for 𝑛 = 13.

Figure 7 An example of rectilinear 3-dimensional instance, with 𝑛 = 13 and hence 𝑖 = 2, 𝑗 = 1, 𝑘 = 4
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Zhong shows that certain choices of 𝑖, 𝑗 , 𝑘 make these instances hard to solve for Concorde. Here,

we try to tune these parameters in an attempt to find instances that require Θ(𝑛2) SECs. In the case

where 𝑛 ≡ 1 (mod 3), we set the parameters as follows:

𝑖 =
𝑛− 1

3
− 2 𝑗 = 𝑖 − 1 𝑘 = 𝑖 + 2.

For convenience, we relabel the vertices into three groups, one for each parallel line:

𝑉1 = {0,1, . . . , 𝑖 + 1}

𝑉2 = {𝑖 + 2, 𝑖 + 3, . . . ,2𝑖 + 2}

𝑉3 = {2𝑖 + 3,2𝑖 + 4, . . . , 𝑛− 1}.

For such instances, we have found that the smallest collection of SECs needed to prove optimality

often has the following chain structure: For each group of nodes 𝑉 𝑗 , we have all the chains of length

𝑘 , for 𝑘 ∈ {3, . . . , |𝑉 𝑗 |}. Empirically, this holds for 𝑛 ∈ {13,19,22,25,28,31,34}, although not for

𝑛 = 16. For 𝑛 ≥ 37, the ialg computation is too demanding; this is not surprising given that the

Rectilinear 3-dimensional instances are arguably the hardest metric TSP instances in the literature.

Example. For 𝑛 = 13, we have 𝑖 = 2, and the three groups are:

𝑉1 = {0,1,2,3}

𝑉2 = {4,5,6}

𝑉3 = {7,8,9,10,11,12}.



Vercesi and Buchanan: The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints
29

In this case, the SECs we add are 𝑥(𝐸 (𝑆)) ≤ |𝑆 | − 1 for 𝑆 being:

{0,1,2}, {1,2,3}, {0,1,2,3},

{4,5,6},

{7,8,9}, {8,9,10}, {9,10,11}, {10,11,12},

{7,8,9,10}, {8,9,10,11}, {9,10,11,12},

{7,8,9,10,11}, {8,9,10,11,12},

{7,8,9,10,11,12}. □

Generally, the number of chain SECs can be computed as:

𝑖∑︁
𝑡=1

𝑡 +
𝑖−1∑︁
𝑡=1

𝑡 +
𝑖+2∑︁
𝑡=1

𝑡 =
3𝑖2 + 5𝑖 + 6

2
,

which grows quadratically in 𝑛. Proving whether these instances truly require a quadratic number of

SECs is an interesting question for future work.

6. Conclusion

This paper is motivated by the empirical observation that few subtour elimination constraints (SECs)

are needed to solve the DFJ model in practice. In the extreme case where no SECs are necessary,

TSP is solvable in time 𝑂 (𝑛3) as a minimum-weight 2-factor problem. This prompted two questions.

First, we ask: What is the complexity of optimizing over the DFJ model when just 𝑘 SECs are

imposed? We find that if 𝑘 = 𝑂 (1) is a constant, then the problem is polynomial-time solvable,

which we prove with help from a new paw-splitting gadget that effectively imposes the constraint

𝑥(𝛿(𝑣,𝑉 \ 𝑆)) ≥ 1. However, for any fixed constant 𝜀 > 0, the problem is NP-hard for 𝑘 = 𝑛𝜀 SECs,

even when they are written for vertex subsets of size three and four.

Second, we ask: What is the minimum number of SECs needed to prove the optimality of a TSP

tour, and how should they be found? We show that straightforward approaches, such as repeatedly

adding a violated SEC for a single (smallest) subtour, do not work. For some classes of instances,

this simple approach adds essentially all SECs even though one SEC would suffice. Our proposed

algorithm, which is exact, instead branches over subsets of subtours and runs in time 2𝑏𝑘∗ poly(𝑛) if
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the minimum number 𝑘∗ of SECs is a constant, where 𝑏 is the (maximum) number of components

or subtours in the 2-factors encountered by the algorithm. Consequently, if 𝑏 = 𝑂 (log𝑛), then

the algorithm is polynomial. To achieve this worst-case running time, we use as a subroutine the

proposed algorithm for Question 1. However, for better practical performance, this subroutine is

replaced by a MIP solver. Further, a “subtour merging” procedure is used to generate stronger

disjunctions, ultimately reducing the algorithm’s branching factor from 𝑏 to 𝑏′.

We test this approach on familiar (classes of) TSP instances, such as the original instance

considered by Dantzig, Fulkerson, and Johnson, finding the minimum number of SECs that would

suffice for them. We find that more than half of TSPLIB instances have 𝑏′ ≤ 2, meaning that our ialg

algorithm visits a linear number (≤ 𝑘∗ + 1) of search nodes. We observe that randomly generated

Euclidean instances require more SECs than those in which costs are drawn randomly from either an

exponential or uniform distribution. Additionally, instances from HardTSPLIB require substantially

more SECs than those from TSPLIB, analogous to how solvers like Concorde that are fast on

TSPLIB are challenged by HardTSPLIB.

Future work may consider the following additional questions. Is the problem of optimizing over

the DFJ model with 𝑘 SECs fixed-parameter tractable (FPT) with respect to 𝑘? For example, can

it be solved in time 2𝑘 poly(𝑛)? How many SECs are necessary in the worst-case to prove the

optimality of a tour? Can one construct a class of instances that requires 𝑘∗ = 2Ω(𝑛) many SECs? (As

an aside, Kaibel and Weltge (2015) show that any TSP formulation in the original space of variables

requires 2Ω(𝑛) constraints to get a correct formulation, although this does not answer our question.)

Do the rectilinear 3-dimensional instances of Zhong (2021b) indeed require 𝑘∗ =Ω(𝑛2) SECs? Is

computing 𝑘∗ complete for the second level of the polynomial hierarchy? For randomly generated

Euclidean instances in the unit square, how is 𝑘∗ expected to grow in terms of 𝑛?
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Research Group on Combinatorial Optimization, Budapest, Hungary.

Burkard RE, Deineko VG, van Dal R, van der Veen JA, Woeginger GJ (1998) Well-solvable special cases of the traveling

salesman problem: a survey. SIAM Review 40(3):496–546.

Christofides N (1976) Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report,

Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
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