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1 Introduction
Many cities globally transition their bus fleet from traditional gasoline buses to a fully electric
fleet to meet sustainability goals (Sustainable Bus, 2024). While electric buses induce zero local
emissions, they face significant challenges such as longer charging times and a more limited driv-
ing range compared to their gasoline counterparts. These limitations make the transition highly
complex, requiring either a substantially increased number of electric buses, which is costly, or
intricate planning of the charging schedule to ensure sufficient battery capacity for all trips.

In this work, we focus on transit network planning that aims to transform gasoline bus fleets to
fully electric ones in cities that employ periodic schedules. Periodic schedules ensure buses run at
consistent intervals throughout the day, providing predictable and reliable service for passengers.
This regularity enhances passenger satisfaction by offering a dependable and easily understandable
timetable, reducing wait times and improving overall service quality. Such schedules are particu-
larly popular in many cities across Germany, Netherlands, and Switzerland, where they have been
successfully implemented in the public transportation systems.

Transit network planning is typically divided into five sequential steps: line planning, frequency
setting, timetabling, vehicle scheduling, and crew scheduling/rostering (Ceder & Wilson, 1986).
For periodic schedules, the line planning and frequency setting steps involve defining the layouts
and frequencies of the lines, while the final periodic timetable is completed in the timetabling step
by setting the departure times of the individual bus lines. In the vehicle scheduling step, vehicles
are assigned to the trips specified in the timetable. This step includes replacing gasoline buses with
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electric buses and determining the charging schedule. This planning problem is referred to as the
Electric Vehicle Scheduling Problem (EVSP) and studied excessively in scientific literature. In the
final step, bus drivers are assigned to the vehicle and trip pairs during crew scheduling/rostering.

In the context of electrification, it would be advantageous to redesign the entire planning
process and integrate the planning steps. But in Germany, the first two steps are heavily regulated
(cf. SWA, 2019; The Federal Office of Justice Germany, 2024). Consequently, bus operators are
generally reluctant to alter line layouts or frequencies. Personnel planning also involves complex
challenges with numerous regulatory constraints. Thus, personnel costs are typically estimated
at a flat rate, added to the vehicle and operational costs in the earlier planning steps. However,
bus operators might consider minor adjustments in the timetabling step, such as to line departure
times, if the benefits are substantial.

Against this background, our research aims to evaluate the potential benefits of an integrated
approach that allows for minor adjustments to an existing periodic timetable before solving the
underlying EVSP, which models the transition from a gasoline to an electric bus fleet. We begin
by reviewing the scientific literature on timetabling and vehicle scheduling and identifying the
research gap in Section 2. We then formally define the integrated planning problem and present
an iterative algorithmic framework in Section 3. Our method’s advantage lies in the use of indi-
vidual subroutines for the timetabling and EVSP steps, enhancing flexibility and adaptability to
various practical requirements. The subroutines for the timetabling and EVSP steps are detailed
in Sections 4 and 5, respectively. Finally, we address our research question in Section 6, where
we conduct a computational study based on realistic data from Aachen. Concluding remarks are
given in Section 7.

2 Literature Review
In this section, we recap the scientific literature on the timetabling and vehicle scheduling planning
steps. For periodic schedules, the timetabling step consists of finding departure times for each bus
line while ensuring transfers between lines, and the scheduling step assigns trips to buses such
that each trip can be served by the assigned bus. While these planning steps are usually solved
sequentially, we will also highlight some recent developments that attempt to solve both planning
problems in an integrated manner.

The planning problem of finding departure times for all lines with given frequencies that sat-
isfy all transfer constraints is often modeled as a Periodic Event Scheduling Problem (PESP).
Introduced by Serafini and Ukovich (1989), the PESP is often solved using one of the following
two MIP models derived from an event-auxiliary graph. The initial MIP model proposed by Ser-
afini and Ukovich (1989) directly plans the event times. However, as this formulation has a weak
LP relaxation, an alternative Cycle Basis formulation was developed (Liebchen & Möhring, 2007;
Liebchen & Peeters, 2009). This new formulation plans only the times between the events, taking
advantage of the periodic structure. In this way, the resulting formulation aggregates multiple
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symmetric solutions with different event times that are just shifted by a fixed time interval, result-
ing in an overall stronger formulation. There also exist multiple alternative solution approaches to
the PESP, including constraint programming (Gattermann et al., 2016; Großmann et al., 2012),
or modulo-simplex heuristics (Borndörfer et al., 2017; Goerigk & Schöbel, 2013).

Regarding vehicle scheduling, the EVSP originated from the classical Vehicle Scheduling Prob-
lem (VSP), which, given a fixed timetable, finds a feasible vehicle rotation, i.e., an assignment of
trips to gasoline buses. While the VSP with a single depot and bus type is solvable in polynomial
time, there exist multiple extensions of the VSP, considering multiple bus types and depots. Al-
though these are NP-hard problems, practical efficient exact MIP models (and heuristics) exist.
For a comprehensive overview of the topic, we refer to Bunte and Kliewer (2009).

The EVSP extends the VSP to electric buses with their inherent limited range and charging
requirements. Due to the capacity constraint, the EVSP is directly NP-hard even for a single
bus type and depot (Sassi & Oulamara, 2016). From a practical perspective, multiple additional
assumptions are often integrated into the EVSP, such as multiple bus types and depots, non-linear
(re-)charging curves (Olsen & Kliewer, 2020), detailed scheduling of the charging process itself
(Abdelwahed et al., 2020), or uncertainty (An, 2020; Li et al., 2021; Liu & Song, 2017; Shen et al.,
2023).

Janovec and Koháni (2019) formulate and solve the EVSP with a compact MIP model. Adler
and Mirchandani (2017) and Niekerk et al. (2017) propose a branch-and-price approach to solve
the EVSP for both linear and concave charging functions. In their models, they use a set covering
formulation to select a subset of feasible vehicle rotations to serve all trips. The vehicle rotations are
generated by a dynamically solved subproblem that can cope with various charging assumptions,
making their approach flexible. As their exact approach struggles to solve even medium-sized
instances, they extend it with heuristics to tackle larger instances. Li (2014) also develops a
branch-and-price algorithm, but assumes fast recharging or battery swapping for the recharging
process. Recently, De Vos et al. (2024) formulated a new branch-and-price model that considers
the limited capacity of charging stations and extend it with heuristics to solve larger instances.

Olsen et al. (2020) focus on repair heuristics that first compute an optimal solution for the
VSP, disregarding battery capacities, and then repair the vehicle rotations to be battery-feasible.
They conclude that the percentage of feasible vehicle rotations generated by their approach meets
the requirements for an initial implementation of electric buses in practice. Other MIP models
and heuristics extend the EVSP by the strategic decision of locating charging stations (Berthold
et al., 2017; Liu et al., 2021; Olsen & Kliewer, 2022; Rogge et al., 2018).

Focusing on integrated approaches, the combined problem of designing a non-periodic timetable
and VSP has already been extensively researched in the literature (Carosi et al., 2019; Desfontaines
& Desaulniers, 2018; Ibarra-Rojas et al., 2014; Laporte et al., 2017). Van Lieshout and Bouman
(2018) study the problem from a theoretical side and provide complexity results for the problem of
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estimating the cost of a vehicle schedule for a given timetable. Xu et al. (2023) extend these works
to an electric bus fleet. They develop a MIP model and extend it with a Lagrangian relaxation
heuristic to solve instances of larger size. However, the assumption of a periodic timetable brings
challenges distinct from the non-periodic schedules assumed there. While in non-periodic timeta-
bles, the departure time of individual trips can be adjusted to better fit the underlying EVSP, only
the departure times of whole lines, but no individual trips, can be adjusted in periodic timetables.

To the best of our knowledge, only Van Lieshout (2021) combine periodic timetabling with
the VSP. They study the structural properties of the solution space and develop an efficient
MIP formulation for the integrated problem. However, their model relies on specific structural
properties of the solution space resulting from the VSP and cannot easily be extended to the
EVSP. Furthermore, the discussed literature models focus on planning the timetable and vehicle
rotation from scratch, while we assume that an existing periodic timetable is already given, and
only slight modifications are allowed before the EVSP is solved.

Therefore, our contribution to the scientific literature is the development of an iterative ap-
proach that solves the integrated periodic timetabling and EVSP constrained to an existing periodic
timetable that may only be slightly modified. The presented approach uses modular subroutines
for solving both the PESP and EVSP, making our model very flexible and easy to implement. The
modular parts can be replaced to fit current needs and therefore be easily adjusted to consider
new constraints.

While we allow for arbitrary EVSP as a subroutine, we also make a direct contribution to the
EVSP literature. We link the EVSP with the Bin Packing with Conflicts (BPwC), a theoretical
optimization problem closely related to the basic EVSP without recharging (Huang et al., 2023;
Jansen & Öhring, 1997). We not only show that the existing approximation ratios from BPwC can
be directly transferred to a specified EVSP variant, but also extend these results by presenting new
approximation ratios for the EVSP with linear recharging. To the best of our knowledge, we are the
first to provide approximation bounds for a variant of the EVSP with recharging. Additionally,
our theoretical results offer general insights into the quality of repair heuristics that first solve
vehicle scheduling without battery restrictions to optimality and then repair the solution to make
it battery-feasible.

We evaluate the proposed model and developed EVSP algorithms within a computational study.
We provide insights into the computational performance of the proposed algorithms and address
our main research question by measuring the potential gains from the option of slightly adjusting
the timetable to better fit the new electric bus fleet schedule using realistic data from the Aachen
bus network.

3 Problem Setting and Iterative Solution Approach
We consider the following problem setting with an given periodic timetable S with a cycle time T

for the current gasoline bus fleet. The timetable consists of a set of bus lines L. Each line l ∈ L
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operates in a time interval [dl, el], i.e., the first trip starts at dl and the last trip at el. The line is
periodically operated with frequency fl, resulting in a headway hl = T/fl.

We now want to transform our bus fleet to a fully electric one. To support this transformation,
we are allowed to shift the start time dl of operations of a bus line l by a small amount. Due to
the periodic timetable, this induces a shift in starting times of all trips of the respective bus line,
e.g., a shift in 5 minutes will results in all trips of this bus line starting 5 minutes later. For each
bus line l, we define PTPl as the set of all feasible starting times that would be acceptable by the
operator.

Our objective is to select the bus line start times s′ = (s′
1, . . . , s′

n), that result in the cost-
minimal timetable, where n is the number of bus lines and s′

l ∈ PTPl. To this end, we propose an
iterative, Benders-like procedure presented in Figure 1. The core of our approach consists of the
Timetabling Master Problem and EVSP Subproblem blocks that correspond to solving the PESP
and EVSP, respectively. While we present exemplary implementations of these blocks in Sections
4 and 5, which are used for our case study later, we highlight here that especially the EVSP
subroutines can be solved with any EVSP algorithms. This makes our procedure easily adjustable
to varying constraints and runtime requirements from practice.

Timetabling Master Problem

Feasible?

No

Add new feasibility cut

EVSP Subproblem
Construct trip set 

from timetable

Add new 
optimality cut

YesCost 
Estimation 
Correct?

Stop

No

Yes

Start

Figure 1: Iterative Approach for the integrated timetabling and vehicle scheduling problem.

The task of the Timetabling Master Problem is to find a good guess for a timetable by selecting
start times s′ = (s′

1, . . . , s′
n). As a timetable is subject to some (complex) transfer constraints,

not all combinations of feasible starting times result in a feasible timetable. Hence, we define AS

as the set of all feasible timetables. If the guessed start times are infeasible, i.e., s′ /∈ AS, we
add what we call a feasibility cut which ensures that s′ can no longer be selected. Otherwise, the
Timetabling Master Problem assigns a cost estimation to the found feasible timetable, computes
the set of trips T that must be executed to operate this timetable, and passes it to the EVSP
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subroutine.
The EVSP Subproblem finds the assignment of electric vehicles to the trips in T and computes

the cost of the resulting schedule. Afterwards, we compare the found cost with the estimation made
by the Timetabling Master Problem. If the estimation is wrong, i.e., if the estimated costs were too
low, we add an optimality cut ensuring that the schedule is assigned the correct cost. Otherwise,
we terminate and have found an optimal timetable if the solution to the EVSP Subproblems are
optimal.

The main design challenge of our iterative procedure is that the guessed costs have to be a lower
bound on the real cost of a timetable. Therefore, the added optimality cuts can be interpreted as
an iterative improvement on the lower bound, and the Timetabling Master Problem as a heuristic
search for good timetable candidates. Next, we present how we implement the Timetabling Master
Problem for our case study.

4 Timetabling Master Problem
We model the Timetabling Master Problem as a MIP with two types of decision variables β and
γli. The binary decisions γli represent whether line l starts at time i ∈ PTPl, and β captures the
costs of the vehicle rotation for the selected timetable. For a timetable S ∈ AS and line l ∈ L, we
denote the times il,S ∈ PTPl as the starting time of line l in schedule S. The MIP formulation
can then be expressed as follows:

min β (1a)

s.t.
∑

i∈P T Pl

γli = 1 ∀l ∈ L (1b)

γl1i1 + γl2i2 ≤ 1 if ((l1, i1),(l2, i2)) ∈ TP (1c)

β ≥ β(S)−
∑
l∈L

MS
l · (1− γlil,S

) ∀S ∈ AS (1d)

γli ∈ {0; 1} ∀l ∈ L,i ∈ PTPl (1e)

β ≥ 0 (1f)

The objective (1a) is to minimize the cost of the selected timetable. Constraints (1b) ensure
that exactly one starting time is selected for each bus line. Constraints (1c) represent the feasibility
constraints. In this framework, a timetable violation, specifically a transfer constraint violation, is
assumed to occur if a line l1 starts at i1 and a second line l2 starts at i2. For all such violating pairs
TP , the MIP is instructed not to select the violating combination of line start times. Constraints
(1d) are the optimality constraints. These constraints ensure that for each feasible schedule S ∈
AS, the cost of the timetable corresponds to the optimal cost derived from the EVSP subproblem,
β(S). However, if the starting time of a bus line l ∈ L is selected to be different from that in S, it
is possible to save up to MS

l cost units with the new schedule.
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One type of feasible but undesired solution for Model (1) occurs when all bus lines are shifted
by the same interval, such as the entire original schedule being shifted by a fixed time. To avoid
these unnecessary solutions, we include the following symmetry-breaking constraints in our model

∑
l∈L

γlil,S
≤ |L| − 1

for all schedules S that are simply the original schedule shifted by a fixed time frame. Since each
line has a unique starting time in schedule S, the above constraint ensures that such a schedule
cannot be selected by model (1).

Both feasibility and optimality cuts are based on certain assumptions that warrant discussion.
For feasibility cuts, we opted for a rule-based approach where a rule-based method is used to check
for violated transfer constraints after a timetable is fixed. This approach is simpler to implement in
practice than directly integrating the PESP into the above MIP. Additionally, it offers flexibility to
adjust to various additional requirements that may arise in practice. For instance, if some transfer
constraints are defined over a triple rather than a pair of bus lines, the rule-based method and
the constraints (1c) can be easily adapted to this setting, whereas modifying an integrated model
would pose significant challenges.

For optimality cuts, the presented cuts are independent of the EVSP solver used. This inde-
pendence allows for easy adjustments to the underlying modeling constraints, such as recharging
assumptions, without the need to overhaul the framework itself. Furthermore, the constraints par-
tition the overall cost of a schedule β(S) into components associated with each bus line’s starting
time (γli). As a result, these cuts facilitate a smart enumeration process. Instead of enumerating
all feasible schedules, the search direction is guided towards bus lines that significantly impact the
overall cost. Additionally, by integrating our iterative framework into a MIP, we obtain the classic
benefits of a primal-dual bound, i.e., an optimality gap, at each iteration step.

Note that the quality of the found solution of Model (1) directly depends on the employed EVSP
solver. If we solve the EVSP to optimality, i.e., if β(S) is the cost of the optimal vehicle schedule
for schedule S, then the found solution is also optimal. Additionally, any bound on the quality
of β(S) directly transfers to that of the integrated problem. If the EVSP is solved heuristically,
Model (1) also becomes a heuristic, without providing any indication of the quality of the found
solution. This motivates us to focus on approximation algorithms that provide a trade-off between
runtime and solution quality for the EVSP in the next section.

5 EVSP Subproblem
In this section, we focus on our implementation of an EVSP solver. Because the EVSP is an
NP-hard optimization problem (Sassi & Oulamara, 2016) that we have to solve in every iteration
of the Timetabling Master Problem, we focus on heuristics. We recap some of the basic heuristics
from the literature and provide theoretical insights into the quality of the found solutions.
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In the following, we focus on a very basic version of the EVSP that includes many simplifying
assumptions, such as a homogeneous bus fleet and a linear charging curve. While all the presented
algorithms can easily be adjusted to model more complex problem settings, our theoretical re-
sults—especially the found approximation ratios—depend on these assumptions. As the presented
basic setting is a special case of many problem variants with more complex assumptions, we provide
general insights into the performance of the discussed heuristics for various EVSP variants.

5.1 Problem Setting
The EVSP is formally defined as follows: Given a set of trips T , where each trip t has a start
time dt, end time at and energy requirement et, the problem consists of finding a feasible vehicle
rotation, i.e., assignment of trips to electric buses. As the primary cost driver is the acquisition of
additional buses, our objective is to minimize the number of electric buses utilized. We represent
each electric bus b by the set of trips assigned to it, i.e., b ⊆ T . We call a bus feasible if the
temporal constraints are satisfied, i.e., no two trips in the bus take place at the same time. Thus,
we can represent a vehicle rotation by a set of buses B, and finding a feasible vehicle rotation for
all trips is then equivalent to finding a partition of T into electric buses. Each bus has a battery
capacity of D ∈ R and recharges linearly with a rate r. In some settings, the buses can recharge
between two trips. This is called opportunity recharging. The current battery of bus b at time
point τ ≤ T is denoted by eb (τ). All buses start fully charged with eb (0) = D. If a bus b serves
a trip t, for each time point during the trip’s execution τ ∈ [dt, at], the current battery capacity is
given by

eb (τ) = eb (dt)− et ·
(

τ − dt

at − dt

)
.

If opportunity recharging between the end of a trip at and a time point τ ≥ at is possible, the
battery capacity is given by

eb (τ) = eb (at) + r · (τ − at) .

For our theoretical analysis later, we also make the following assumptions. We assume that all
trip are round trips starting and ending at the same bus hub, which has enough charging capacity
for all buses. Charging is either performed over night, or as opportunity charging between the
trips. The trip’s times already include the required changeover times, allowing any time window
between two trips to be entirely spent with charging. Additionally, we assume that the charging
speed of the battery is at least as fast as the battery consumption through driving. In other words,
the time required for a full charge does not exceed the operational time of a bus. Given current
advancements in charging technology and the efficiency of electric buses, this assumption holds
true for most practical scenarios.
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5.2 EVSP without opportunity recharging
The EVSP without recharging consists of finding a feasible vehicle rotation for a given set of trips
T . Here, a vehicle rotation is feasible if for each electric bus, the culminated energy consumption
over all trips does not exceed the battery capacity. Thus, no recharging between trips is allowed.
This constraint is similar to a Bin Packing Problem, where items are packed into as few bins of fixed
size as possible. Actually, there is a variant of the Bin Packing Problem, the so-called Bin Packing
with Conflicts (BPwC), which can be directly transformed into the EVSP without recharging. In
the following, we will introduce the problem and discuss its connection to the EVSP.

The general bin packing problem asks, given a set of items with sizes and a bin capacity, how
many bins are necessary to fit all items. A set of items fits in the same bin, if the sum of the
sizes of these items is smaller or equal to the bin capacity. The BPwC extends the bin packing
problem to additional constraints ensuring that certain pairs of items are not allowed in the same
bin. Thus, in the BPwC, there is an additional conflict graph given with items as vertices and arcs
marking pairs of items, which may not be put in the same bin. The items in the same bin have to
be an independent set in the conflict graph.

For the special case of the BPwC where the conflict graph is colorable in polynomial time,
Jansen and Öhring (1997) introduced a new heuristic. Since the EVSP is part of this special
case, we briefly review their proposed heuristic. BPwC is a combination of two well-researched
combinatorial problems, the graph coloring problem on the conflict graph and the bin packing
problem. The authors propose to solve these two problems sequentially, by first computing a
coloring on the conflict graph and then solving the Bin Packing Problem on each color class
separately. Since there can be no conflicts between items of the same color class, we only have to
solve instances of the regular Bin Packing problem without conflict for each color class. However,
since this problem is still NP-hard, the authors test multiple, well-known heuristics for Bin Packing.

Jansen and Öhring (1997) showed that the proposed heuristic is an approximation algorithm.
Approximations algorithms are heuristics that also provide a quality measure on the found solution
called the approximation ratio. The approximation ratio of an algorithm is a measure of how close
the solution provided by the algorithm is to the optimal solution. Specifically, for an optimization
problem, the approximation ratio R is defined as the maximum ratio between the cost of the
solution found by the algorithm and the cost of the optimal solution taken over all possible instances
of the problem. Formally, for a minimization problem, it is given by R = max

I

(
A(I)

OP T (I)

)
, where

A(I) is the cost of the solution produced by the algorithm for instance I, and OPT (I) is the cost
of the optimal solution for instance I. An algorithm with an approximation ratio close to 1 is
considered to provide solutions that are close to optimal.

Depending on the Bin Packing heuristics used, the authors showed an approximation ratio
of 3 for the NextFit Heuristic, 2.7 for the FirstFit Heuristic and 2.5 for the FirstFitDecreasing
Heuristic.
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There is a direct transformation from BPwC to the EVSP without recharging. We can associate
the items with trips and the bins with electric buses. Then, the size of the items become the energy
consumption of the trips, and the bin size is equal to the battery capacity. Finally, the temporal
constraints can be expressed through the conflict graph. Each trip is then associated with a vertex
in the conflict graph, and there is an edge between two trips if the two trips take place at the
same time. Then, a bus b satisfies the temporal constraints, if and only if there are no arcs in the
conflict graph between trips in b.

Finding the optimal coloring for the transformed EVSP instance is equivalent to solving the
VSP. Because the conflict graph does not contain any battery constraints, the VSP boils down to
finding a partition of the vertices of the conflict graphs (i.e. trips) such that no two vertices in the
same partition are adjacent to each other, i.e. the trips can be assigned to the same bus. Since the
conflict graph represents the temporal constraints, it is an interval graph and the VSP problem
can be solved in polynomial time within our setting and thus,the coloring problem on the conflict
graph is solvable in polynomial time despite the fact that the coloring problem on arbitrary graphs
is NP-hard. Thus, we can apply the approximation algorithm proposed by Jansen and Öhring
(1997) for the special case where the conflict graph is colorable in polynomial time for the EVSP
without opportunity recharging.

5.3 EVSP with opportunity recharging
In this section, we extend the previous approximation results to the EVSP with opportunity
recharging. To this end, we recap two basic heuristics often used for EVSP, link them to Bin
Packing problem variants, and provide theoretical insights into their solution quality.

We start with an adaptation of the classical First Fit (FF) Heuristic presented in Algorithm
1. Given an ordering of the trips (line 3), the algorithm selects the trips according to this order
and places them in the first available bus while respecting all underlying feasibility constraints
(line 6-7) Due to its simplicity, this heuristic has often been applied to find some (initial) vehicle
rotation, e.g., in Adler and Mirchandani (2017) and Dirks et al. (2022).

One advantage of this heuristic is that the point of checking bi ∪ {ti} for feasibility in line 6
is left undefined. The heuristic can be adapted to different assumptions by changing this testing
procedure accordingly. In the case of the EVSP with opportunity recharging, we only need to
ensure that each trip in bi ∪ {ti} is battery feasible and does not co-occur as an already assigned
trip.

The quality of the solution produced by Algorithm 1 strongly depends on the chosen ordering.
Assuming we know the optimal solution to the EVSP, we can choose an ordering based on this
optimal solution that groups the trips within a single bus together. Using this ordering, our First
Fit (FF) Heuristic would not use more buses than in the optimal solution; hence, solving the
problem to optimality. Conversely, finding such an ordering that ensures optimality is NP-hard.
Hence, simple orderings based on start time or energy consumption of the trips are common.
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Algorithm 1 First Fit (FF) Heuristic for EVSP
1: Input: A list of trips, each with a starting time, end time and energy consumption, ordering

on trips <t

2: Output: Assignment of trips to electric buses B

3: t1, . . . ,tn ← Sort all trips according to <t

4: Initialize b1 = {}, k = 2 and the ordered list B = [b1], containing one electric bus with no
assigned trips

5: for i = 1, . . . ,n do
6: find the smallest j ∈ {1, . . . ,k} such that bj ∪ {ti} is feasible
7: bj ← bj ∪ {ti}
8: if no feasible insertion was found then
9: Add a new empty electric bus bk to B.

10: k ← k + 1
11: end if
12: goto line 6
13: end for

Instead of considering all the feasibility requirements at once, a commonly used approach is
to first solve the VSP and then apply a repair step that makes the found schedule feasible for
electric buses (Olsen et al., 2020). While this approach enables us to employ efficient existing VSP
solvers in the first step, the found VSP solution limits the flexibility of the subsequent repair step,
resulting in potentially poor solution quality.

We study these types of heuristics that first solve the VSP and then repair the solution in
detail. Algorithm 2 shows our First Fit Coloring (FFC) Heuristic that first solves the VSP and
then applies the FF Heuristic on the vehicle rotation of each bus independently to make the
schedule feasible for electric buses. Hence, it follows the same idea as the heuristic from Jansen
and Öhring (1997) by first partitioning the trips into color classes by solving the VSP, and ensuring
that battery capacities are respected within each color class.

We proceed by proving approximation bounds for the FFC Heuristic. We then show that the
found approximation ratio is tight for all Heuristics using this approach, i.e., any algorithm that
first solves the VSP and then operates on the found vehicle rotations independently cannot achieve
a better approximation ratio than Algorithm 2.

Our approach to proving the approximation ratio of Algorithm 2 consists of bounding the
maximum number of buses required to replace a single gasoline bus. To obtain this bound, we
begin by making a structural observation about the partial solutions Bg for one gasoline bus g:
for each pair of electric buses in the partial solution and at each point in time, the sum of their
batteries is at least the battery capacity.

Lemma 1. Let T be a set of trips, g ⊆ T a gasoline bus and b1, b2 ⊆ g with b1∪ b2 ⊆ g, b1∩ b2 = ∅
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Algorithm 2 First Fit Coloring (FFC) Heuristic
1: Input: A list of trips T , each with a starting time, end time and energy consumption, ordering

on trips <t

2: Output: Assignment of trips to electric buses B.

3: Compute a solution G to the VSP with gasoline buses.

4: for each color gasoline bus g ∈ G do
5: Apply the First Fit Heuristic in Algorithm 1 using <t to solve the EVSP, obtaining a

feasible vehicle rotation Bg for the current gasoline bus.
6: B = B ∪ Bg

7: end for

be two battery-feasible electric buses serving trips in g. Then, at each point in time τ , the sum of
the batteries eb1 (τ) + eb2 (τ) ≥ D.

Proof. Since all trips can be serviced by one gasoline bus, at each point in time there is at most one
trip that needs to be served. Thus, at most one electric bus is driving at any point in time τ and
the other electric bus is either charging or already fully charged. If one bus is fully charged, the
assumption trivially holds. Let t be the trip in g with latest start time and dt ≤ τ . Since we assume
that charging a battery is at least as fast as discharging through driving, the sum over the battery
capacities does not get lower if only one bus charges. Thus, eb1 (τ) + eb2 (τ) ≥ eb1 (dt) + eb2 (dt). It
only remains to be shown that the assumption holds for the beginning of each trip t ∈ g. We show
this by induction over the number of trips n = |g|. The assumption holds trivially for n = 1. For
n ≥ 2, let tn ∈ g be the last trip. By induction, we know that the assumption holds for g \ {tn}.
Additionally, it obviously holds

eb1 (dtn) + eb2 (dtn) ≥ eb1 (
dtn−1

)
+ etn−1 + eb2 (

dtn−1

)
− etn−1 ≥ D

Thus, the assumption holds for the beginning of each trip. This concludes the proof.

This Lemma already yields an approximation ratio for instances with large battery capacities,
where all trips have an energy requirement of at most half the battery capacity.

Corollary 1. If each trip t satisfies et ≤ D
2 , then the FFC Heuristic is a 2-approximation.

Proof. Since the sum of the current battery of two electric buses is always at least the battery
capacity, one of the two buses has at least half the battery capacity. Thus, trips smaller than half
the battery capacity can always be inserted in one of two electric buses. Thus, the partial solution
for each gasoline bus consists of two electric buses. Since the optimal solution of the VSP is also
a lower bound on the optimal solution of the EVSP, the solution computed by the heuristic takes
at most double the number of buses compared to the optimal solution.
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For small battery capacities, we obtain a worse approximation ratio.

Theorem 1. The FFC Heuristic with items sorted by starting time is a 3-approximation.

Proof. Let g = {t1, . . . ,tn} ∈ G be a gasoline bus from the optimal solution of the VSP with the
trips sorted by starting time. We show by induction over the number of trips n that in the result
computed by the heuristic, each gasoline bus is replaced by at most three electric buses and at the
end time of each trip at, one of the three electric buses is fully charged. For n ≤ 2, the assumption
obviously holds. For n > 2, the trip tn would be inserted last by the Heuristic. By induction,
we know that the assumption holds for g \ {tn}. Thus, applying the heuristic to the set of trips
g \ {tn} computes (at most) three electric buses b1, b2, b3 ⊆ g. Additionally, at the end of trip tn−1

(resp. at the beginning of trip tn), at least one of the three buses is fully charged. Thus, tn can be
inserted in that bus. It only remains to be shown that at the end of trip tn, one bus is again fully
charged. If there is a bus which is fully charged at the end of tn−1 and tn is not inserted in this
bus, this holds trivially. Thus, we now look at the case of tn being inserted in the only bus which
is fully charged. Here, we have to differentiate between two cases.

Case 1: b2 or b3 are fully charged and tn is inserted in that bus. Since the Heuristic always
inserts the trip in the first bus where the trip fits, this can only be the case if tn does not fit into
b1. Thus, at the beginning of tn, bus b1 has battery capacity eb1 (dtn) < etn . With Lemma 1, we
get that both buses b2 and b3 must have battery ebj (dtn) > D − etn for j ∈ {2,3}. Since only one
of them serves trip tn, the other bus charges at least etn during the trip and is fully charged by
the end of it.

Case 2: b1 is the only fully charged bus. This can only be the case if tn−1 did not fit into b1,
else it would be inserted into b1, and b1 could not be the only fully charged bus. We can now use
the same argumentation as in case 1 to show that either b2 or b3 have to be fully charged by the
end of trip tn−1, which contradicts the assumption that b1 is the only fully charged bus.

Thus, g can be serviced by three electric buses. Since the number of gasoline buses required
for the schedule is an upper bound on the number of electric buses required, this concludes the
proof.

Both bounds carry over to the Integrated Timetabling Approach.

Corollary 2. For the Integrated Timetabling Approach, the solution found by Model (1) when
using FFC to solve the EVSP subproblem is at least a 3-approximation. If each trip t satisfies
et ≤ D

2 , the solution is at least a 2-approximation.

For Algorithm 1, we discussed that the quality of the found solution is strongly dependent on
the chosen ordering. This is not the case for Algorithm 2. In contrary, the approximation ratio is
independent of the selected algorithms for the repair step, showing that the VSP is in general to
restrictive to build upon.
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Theorem 2. A heuristic for the EVSP which first solves the VSP optimally and then solves the
EVSP on each gasoline bus separately cannot be better than a 3-approximation.

Proof. Let n ≥ 2, ε > 0 small, and the battery capacity D = 1. Furthermore, the buses charge at
a rate of 1 per hour and require one battery of D = 1 to drive an hour. The time horizon is n+1

2

hours.
We begin by looking at a small instance with only three trips t1, t2 and t3. The trips start

right after each other in that order and have energy requirement et1 = 1, et2 = 1
2 and et3 = 1

2 + ε

respectively. This instance could be served by one gasoline bus; however, even in an optimal
solution, three electric buses are required. The first two trips and do not fit in the same bus and
require two buses. At the end of the second trip, both buses have battery capacity 1

2 , thus the third
trip fits in neither of the two buses and requires a third bus. We now present an instance of the
EVSP, where the optimal solution to the VSP computed in the heuristic requires n gasoline buses
which each include three trips of the form introduced above. We identify one trip ti = (di, ai, ei)
by its starting time di, end time ai and energy requirement ei. Then, let the set of all trips be
given by

Sj = {tj
1 = (j

2 , 1 + j

2 , 1), tj
2 = (1 + j

2 , 1 + j + 1
2 ,

1
2),

tj
3 = (j + 1

2 ,
j + 2

2 + ε,
1
2 + ε)}

S∗
j = {(k, k + 1

2 ,
1
2) : k ∈ {

⌈
j + 2

2 + ε
⌉

, . . . ,
⌊

n

2 + 2
⌋
}}

S =
n⋃

j=1
Sj ∪ S∗

j

The trips in Sj are the three special trips requiring three buses. The trips in S∗
j are dummy trips

to ensure that for each pair j ̸= j′, the trips from Sj and the trips from Sj′ are not all served by the
same gasoline bus. Both the solution using gasoline buses and the optimal solution using electric
buses are visualized in Figure 2 for even n. Each trip is visualized by a colored rectangle with
their position on the x-axis marking start and end times. Each row represent a bus. Trips from tj

1

are drawn in blue, tj
2 in green, tj

3 in violet, and all trips from S∗
j in yellow. The upper half of the

Figure shows a solution of the VSP using gasoline buses. The lower half shows an optimal solution
of the EVSP using electric buses. In this instance, an optimal solution with gasoline buses would
require at least n buses since there are n yellow trips of the form (n

2 + 2, n+1
2 + 2, 1

2) ∈ S∗
j for each

j ∈ {1, . . . ,n}. Then, an optimal solution using gasoline buses is given by each bus gj serving all
trips Sj ∪ S∗

j for each j ∈ {1, . . . ,n}.
The optimal solution of the EVSP using the trips of the gasoline bus gj requires 3 electric

buses due to the trips in Sj. Thus, each Heuristic which separates the gasoline buses requires at
least 3 electric buses for each coloring class and thus returns a solution with at least 3n electric
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Figure 2: Visualization of the solutions for the VSP and EVSP for even values of n

buses. However, an optimal solution with electric buses only requires n + 3 electric buses. Then,
a solution with n + 3 electric buses is given by:

bi = {ti
1, ti+1

3 } ∪ S∗
i+1 i = 1, . . . ,n− 1

bn = {t1
3} ∪ S∗

1

bn+1 = {tn
1}

bn+2 = {t2j
2 : j = 1, . . . ,

n

2}

bn+3 = {t2j−1
2 : j = 1, . . . ,

n

2}

Thus, the Heuristic is at best a 3-approximation for large values of n.

Algorithm 3 First Fit ordered by Coloring (FFobC) Heuristic
1: Input: A list of trips T , each with a starting time, end time and energy consumption, ordering

on gasoline buses <G, ordering on trips <t

2: Output: Assignment of trips to electric buses B.

3: Compute a solution G = [g1, . . . ,gk] to the VSP with gasoline buses ordered using <G

4: Sort the trips in each bus gi = [ti,1, ti,2, . . . ,ti,|gi|] according to <t

5: B ← First Fit Heuristic with ordering according to ordered list g1 ∪ g2 ∪ · · · ∪ gk

Theorem 2 clearly shows that heuristics based on first solving the VSP and then repairing the
found vehicle rotations are prone to getting stuck in bad local optima after the VSP step. To
escape such local optima, we propose combining these iterative heuristics with the global approach
of the FF Heuristic. Algorithm 3 presents our combined First Fit ordered by Coloring (FFobC)
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Heuristic, which is a combination of the FF and FFC Heuristics. We first solve the VSP, but then
use this solution to derive an ordering for the FF Heuristic from the found VSP solution. While it
is evident that FFobC will always be at least as good as the FFC Heuristic, it also has the chance
of escaping bad local optima. Looking at the counter-example from Theorem 2, the new heuristic
would return an optimal solution to this instance. Also, the theoretical results from Corollary 1
and Theorem 1 hold for FFobC Heuristic. It is an open question whether a better approximation
ratio can be shown.

6 Case Study
We present a computational study to demonstrate the quality and effectiveness of our Integrated
Timetabling and Vehicle Scheduling approach. To this end, we used an instance based on real live
data from the bus network of the city of Aachen, Germany. The experiments were carried out
using a Intel(R) Core(TM) i5-8265U CPU@1.60GHz and 4 physical cores. The algorithms were
implemented using Java 21.0.1 and GUROBI 10.0.3 with Windows 10 as operating system.

6.1 Problem Instance and Parameters
The city of Aachen, located in western Germany with approximately 250,000 inhabitants, operates
a comprehensive public transport system that relies solely on bus services, which is typical for mid-
sized cities in Germany.

The bus network of Aachen is structured around a central hub known as the "Bushof". The
Bushof serves as the primary interchange point where most of the bus lines converge, facilitating
easy transfers between different lines. This central hub model is designed to optimise connectivity
and minimise transfer times for passengers traveling across various parts of the city, and can be
found in several cities across Germany.

Our instance includes 8 bus lines with a total of 347 trips and about 280 hours total driving
time, which could be served by 19 gasoline buses. All data was taken from the public timetable
information of the AVV. Four of the lines have a headway of 15 minutes, two have a headway of 30
minutes and the remaining two have a headway of one hour. The first trip starts at 5am and the
last trip ends just before 1am the next day, resulting in an operational time window of 20 hours.
We slightly adapted the trips to fit our assumption of having only round-trips starting from the
same depot by merging two back and forth trips into one round-trip. Considering that the start
times match perfectly, this is also implemented in practice. For transfer constraints, we define that
if a line l2 departs within a 5 to 15-minutes window after the arrival of line l1, passengers commonly
transfer from line l1 to line l2. Therefore, in any feasible schedule, l2 must depart within this time
window relative to the arrival of l1. The complete list of bus lines and transfer constraints used
can be found in A.

The electric buses currently in use in Aachen have a battery capacity of 292kW and a range of
150-200km (electrive, 2021). Since our formulation expresses battery capacity in terms of maximum
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driving time, we conservatively estimate a driving time of 3h by using the speed limit of 50km/h in
German cities. To assess the impact of larger battery capacities, we conducted experiments with
driving times of 3h, 7h and 16h. The charging stations currently available in Aachen are used for
over-night charging and supply approximately 75kWh. For opportunity charging between trips,
we assume the presence of fast-charging stations, which charge a 300kW battery to full capacity
in 3 hours. Additionally, we conducted some tests for the case without opportunity recharging
between trips.

For the integrated timetabling approach, we allow a shift in starting times of up to 10 minutes.
We discretize the operational time window into 5-minute intervals. Thus, we permit time shifts of
5 or 10 minutes in either direction for each line. Finally, we set MS

l to the number of buses that
serve trips from line l in the heuristic solution of the EVSP for schedule S.

To solve the EVSP subproblem, we tested the three heuristics from Section 5: the (regular)
First Fit (FF) heuristic 1, the First Fit Coloring (FFC) heuristic 2, and the First Fit ordered by
Coloring (FFobC) heuristic 3. For each heuristic, we tested ordering the trips by start time, which
is denoted by _start, as well as sorting the trips by energy consumption, which is denoted by
_energy, leaving us with a total of 6 heuristics.

For each heuristic, the Integrated Timetabling Approach computed a solution in under two
minutes. There were no significant differences in computation time between the heuristics or
across different battery capacities. In each computation, the EVSP was solved up to 6,000 times,
which is a substantial improvement over simple enumeration of all shifted time tables, which would
require solving the EVSP for up to 390,000 different schedules ignoring transfer constraints.

6.2 Results without opportunity recharging
We begin by examining the results allowing only overnight charging. While solving this instance,
we track all the computed timetables and report our results in the interval form shown in Figure 3.
The range indicated for each heuristic represents the range of EVSP solutions computed during all

Range of
solutions
during

iterations

Worst Solution

Initial Solution
Best Solution

Figure 3: Legend Solution Presentation

iterations, while the marked solution indicates the solution obtained from applying the heuristic
to the initial schedule currently used in Aachen. The lower bound of the interval is the final result.
A large interval suggests significant potential gains from shifting the start times if a suboptimal
initial schedule is currently used. The gap between the lower bound of the interval and the initial
solution reflects the improvement from the current schedule through the integrated timetabling
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approach.
Figure 4 shows the results for all battery capacities and heuristics without opportunity recharg-

ing between trips. The results are presented for the different battery capacities. Additionally, the
dashed blue line in each graph represents a lower bound on the number of electric buses. In the
schedule, trips with a total driving time of ≈ 280 hours have to be served. Thus, even if the trips
match perfectly, a schedule requires at least 94 buses with battery capacities of 3h, 40 buses with
battery capacities if 7h or 18 buses with battery capacities of 16h. The lower bound for 16h battery
capacities can be raised to 19 buses because the initial schedule can be served by 19 gasoline buses.
The number of gasoline buses is also optimal under time shifts, thus, 19 is also a lower bound on
the number of electric buses needed.
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Figure 4: start solution and gap between worst and best computed solution to the Integrated Timetabling and
Vehicle Scheduling Problem over all iterations, instances without recharging

As can be seen, FF_energy shows no improvement through the integrated approach and com-
puted the same result in each iteration. This may be due to the fact that the ordering of the trips
is not affected by shifts in start times. In contrast, all other heuristics either partially sort by start
times or are influenced by the gasoline bus plan, which inherently depends on start times. These
results highlight the previously discussed high dependency of the selected ordering for the solution
quality.

The results show that FFobC generally provides the best results, which confirms our expec-
tations from the theoretical analysis. The only exception to this is FF_start, which computes a
solution requiring one less electric bus for the instances with 16h battery capacity. Compared to
FFC, especially for instances with medium and large batteries, the worst solutions computed by
FFobC are still better than the best solution computed by FFC. Furthermore, the best solutions
computed by FFobC are not far from the lower bounds. Since it is not likely that these lower
bounds can be reached for small and medium batteries, this indicates that the computed solutions
are close to optimal with an optimality gap of at most 10% on all three instances. The range of



Stadnichuk, Walther: Integrated Optimization of Timetabling and Electric Vehicle Scheduling 19

solutions during the iterations is small, especially for medium and large battery capacities, which
implies less room for improvement when using the integrated approach. Additionally, we note that
sorting by start time or energy consumption does not have a large effect on the results, the only
difference being one electric bus. This may be caused by the ordering in the FFobC primarily
depending on the gasoline schedule and only secondarily on the start time or energy consumption.

Upon examining the solutions returned by FFC, we observe that it includes many buses with
large shares of their battery capacity left unused. This shows that because the VSP solution
ignores battery restrictions, the found vehicle rotations cannot easily be executed by a subfleet of
electric buses, resulting in the heuristic getting stuck in bad local optima. In contrast, FFobC can
escape these parts of the solution space by reassigning buses between the given vehicle rotations
from the VSP solution, which explains the difference in solution quality between the two heuristics.
Additionally, it is noteworthy that there is a significant difference between the two sorting methods
for the instance with small battery capacity. Here, sorting by energy performs much worse than
sorting by start time. This is surprising because sorting by decreasing size is usually a good
heuristic for Bin Packing. This discrepancy may be due to large trips blocking buses, which are
better distributed when sorting by start time.

Finally, FF_start is overall slightly worse than FFobC for small and medium batteries and
slightly better for large batteries, where it reaches the lower bound and computes an optimal
solution. Notably, the range of solutions becomes larger with increasing battery capacity. This
may be because the instance resembles a coloring problem more than a bin-packing problem,
especially for medium to large battery capacities. When comparing the two sorting methods,
sorting by start time appears to be slightly more effective than sorting by energy consumption
across all heuristics.

6.3 Results with opportunity recharging
Next, we examine the influence of opportunity recharging between trips on the integrated approach.
In Figure 5, we see the results for the case that recharging between trips is allowed. In addition
to the lower bounds of 19 gasoline buses represented by the dashed, blue lines, the dotted, green
lines represent upper bounds for the FFC and FFobC heuristics gained from the approximation
ratios proven in Section 5. There, we showed that the heuristics require at most 3 electric buses
for each gasoline bus (or 2 electric buses if the battery capacity is larger than double the longest
trip). The longest trip in the instance takes 130 minutes. Thus, for 7 and 16 hour batteries, we
get an upper bound of 38 electric buses for the initial and optimal solutions by Corollary 1. For
battery capacities of 3h, we get an upper bound of 57 buses by Theorem 1.

As can be seen, incorporating opportunity recharging between trips returns results that are gen-
erally similar to those observed without recharging. In particular, the performance of the heuristics
relative to each other is similar to the previous section, with FFobC yielding the best results. How-
ever, for FF_energy with small and medium batteries, we observe a slight improvement through
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Figure 5: start solution and gap between worst and best computed solution to the Integrated Timetabling and
Vehicle Scheduling Problem over all iterations, instances with opportunity recharging

integrated timetabling. Notably, FFC_energy performs better on the instance with a small bat-
tery compared to the instance without recharging. The option to recharge likely compensates for
scheduling errors made early in the timetable. For battery capacities of 16h, we also note that
the best solutions computed by the FFobC and FF heuristics did not change. For FF_start, this
is due to the fact that the best solution in the instance without opportunity recharging already
reached the lower bound of 19 gasoline buses. Thus, no better solution is possible. For the other
heuristics, this indicates that adding opportunity recharging is not very effective for buses with
large battery capacities.

On instances with small and medium battery, the best solution of all heuristics still needs
25% more electric buses than the lower bound given by the number of gasoline buses required.
However, this does not necessarily indicate bad performance of the heuristics but rather reflects
on the quality of the lower bound on instances with smaller batteries. For large battery capacities,
the lower bound is again reached by FF_start even in the initial solution. This suggests that with
a battery capacity of 16 hours and opportunity recharging, the operational differences between
electric and gasoline buses become negligible. This also explains the lack of improvement over the
initial schedule in this case, as it was already optimized for gasoline buses.

Finally, we note that the upper bounds computed from the approximation ratio is not tight for
the FFobC heuristics and can probably be improved. For the FFC heuristics, the upper bound is
nearly reached by the initial solution with battery capacities of 7h, which shows that the bound
is tight even in applications with medium battery capacities for the FFC heuristics. In these
computations, the upper bound is broken by some solutions during the iterations. The upper
bound only holds for schedules that can be served by 19 gasoline buses. This is not necessarily the
case for all schedules computed during the iterations, thus, the worst solution computed needing
more than 38 electric buses does not invalidate the approximation ratio.
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Figure 6: Best Solutions to the Integrated Timetabling and Vehicle Scheduling Problem with opportunity
recharging

To further investigate the influence of the battery capacity on the solution, we computed the
solution ranges for all battery capacities from 3h to 17h exemplary for FFC_start, FFobC_start
and FF_start with opportunity recharging. The lower bound of 19 gasoline buses is again depicted
as a dashed, blue line, and the corresponding upper bound as a dotted, green line.

Comparing the three heuristics, we can see that FFC_start returns the worst results across
all battery capacities and nearly reaches the upper bound given by the approximation ratio for
battery capacities of 5h and 6h. This shows that the approximation ratio found in Corollary 1
is nearly tight on this instance for FFobC_start. The other two heuristics perform better, with
FFobC_start performing best for small and medium battery capacities and FF_start performing
best on instances with large battery capacities of at least 13h. Specifically, the lower bound of 19
buses is reached for battery capacities of 14h when using FF_start, which is earlier than the other
two heuristics that only reach the lower bound for battery capacities of 17h. This confirms our
previous results.

Furthermore, for FFC_start, the number of buses barely changes for small batteries of up to
9h and then reduces fast until reaching the lower bound with a battery capacity of 17h. The
opposite holds for FFobC_start, where the reduction in the number of electric buses needed is
faster for small batteries and slows down for battery capacities greater than 12h. This is due to
FFobC_start being more flexible and spreading trips from one electric bus across all other buses
when increasing the battery capacity. This is not possible for FFC_start, where the color classes
are solved separately with up to 3 electric buses each and trips can only be shifted between these
3 buses when increasing the battery capacity.

Finally, we note that since the lower bound is first reached by FF_start for battery capacities
of 14h, using buses with capacities larger than 14h when opportunity recharging is possible is un-
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necessary in this instance. In additional experiments where opportunity recharging is not possible,
all heuristics returned at least 20 electric buses for battery capacities of 15h. Thus, in this case,
using battery capacities of up to 16h can be beneficial.

6.4 Managerial Insights
Finally, we look at the potential savings by implementing the changes suggested in this study.
The spider plot in Figure 7 provides a visual representation of the improvements achieved by
our proposed changes: Opportunity recharging, using larger batteries and integrated timetabling.
Additionally, the plot shows the influence of combining these changes. All heuristics show very

IT &
Recharging

Recharging

Recharging &
Larger Battery

Larger
Battery

IT&
Larger Battery

Integrated
Timetabling

[IT]

20%
40%

60%
80%

Figure 7: Improvements through opportunity recharging, larger battery capacity and Integrated Timetabling for
FFC_start

similar behavior in this context, thus, we exemplarily show the results of FFC_start. The plot
shows the percentages of electric buses saved for each of the proposed changes. As a basis for the
comparisons, we used the initial solution without opportunity recharging between trips and 3h
battery capacity.

Using buses with larger batteries has the largest impact, followed by opportunity recharging
that still achieves saves around 60% of electric buses compared to our comparison scenario. In-
tegrated timetabling archives the lowest overall savings of only up to 15%. However, integrated
timetabling is also the easiest to implement option. While both recharging and buses with larger
battery capacity involve significant initial investments into the fleet and infrastructure, adjusting
the timetable can be implemented faster and does not require any additional direct investments.
Therefore, integrated timetabling can be used as an intermediate solution that enables the (partial)
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electrification of a larger part of the fleet at an earlier stage. Combining the integrated approach
with either larger battery capacities or opportunity recharging results in slight improvements, rein-
forcing the potential of our integrated timetabling strategy as an economical and efficient solution
for enhancing the scheduling of electric buses.

7 Conclusion
In this study, we introduce a novel integrated timetabling approach that facilitates minor adjust-
ments to existing periodic timetables to better implement the transition from gasoline buses to
electric buses. We employ an iterative framework that incorporates optimality cuts derived from
EVSP solutions into a Timetabling Master MIP model. To effectively address the EVSP, we study
three heuristics. The first heuristic is an adaptation of the classical First Fit heuristic for the Bin
Packing Problem tailored to the EVSP. The second heuristic involves initially solving the VSP and
then repairing the solution. The third heuristic combines the ideas of the previous two. We study
the theoretical properties of the discussed heuristics, showing that the second and third heuristic
provides an approximation guarantee of at most 3. We also provide general insights into iterative
heuristics that first solve the VSP and then adjust the found vehicle rotations to be executed by
electric buses, showing that there are instances for which no such algorithm can be better than
selecting 3 times more electric buses than the optimal solution.

We validate our approach through a case study conducted on the public transportation system
in Aachen, Germany. The results confirm our theoretical insights and show worse computational
performance of the repair heuristic compared to the other heuristics. We also derive managerial
insights based on our analysis.

Future research directions are manifold. One promising approach is the development of an
integrated approach for the EVSP. For the integrated timetabling and EVSP, expanding the case
study to relax some of the assumptions made in this research would provide a more comprehen-
sive understanding of the problem. Specifically, future studies could examine heterogeneous bus
fleets with different types of electric buses, incorporating non-linear charging profiles, uncertainties
such as variable energy consumption due to traffic conditions or weather, and incorporating the
costs associated with developing and maintaining charging infrastructure. Finally, applying the
developed methodologies and models to case studies in other cities would be valuable.
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A Lines used for the Case Study
Table 8 shows a list of all lines used in our case study together with the starting times of the first
and last trip as well as the headway and trip-length in minutes. Using these departure and arrival

Line Start Time End Time Headway (min) Trip-length (min)
3A 05:27 00:42 15 40
3B 05:00 00:15 15 37
13A 07:01 19:31 15 24
13B 06:57 18:57 15 30
14 06:11 23:11 30 95
16 06:02 20:02 60 111
24 7:30 21:00 30 60
46 6:32 20:32 60 130

Figure 8: List of all lines used in our case study

times, we set three transfer constraints: from line 14 to line 24, from line 16 to line 24 and from
line 24 to line 14 as described in Section 6. Since the lines 3A, 3B, 13A and 13B have a trip every
15 minutes, transfer constraints for them would be redundant.
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