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Abstract. We present a new class of valid inequalities, called Solitary item inequality, which
is facet-defining for any 0/1 knapsack polytope. We prove that any facet-defining inequality of 0/1
knapsack polytope with nonnegative integral coefficients and right hand side 1 belongs to this class,
and hence, the set of facet-defining inequalities corresponding to strong covers of cardinality 2 is its
special case. Next, we provide a counterexample to show that Theorem 6.2 in [13], which claims to
provide the complete characterization of the convex hull of a special type of 0/1 knapsack set, called
a graphic knapsack set, is invalid. Furthermore, we define a subset of the graphic knapsack set, for
which the above theorem becomes valid. We also show that the convex hull of another subset of the
graphic knapsack set for which Theorem 6.2 in [13] is invalid, is completely characterized by Solitary
item inequalities, along with the trivial nonnegative inequalities.
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1. Introduction. A 0/1 knapsack problem is defined as follows. Given a set of
items N = {1, 2, · · · , n} with weights ai and profits pi ∀i ∈ N , select a subset of N
to pack in a knapsack of limited capacity b that maximizes the total profit. Corre-
sponding to a 0/1 knapsack problem, the knapsack set X is defined as X = {x ∈
Bn :

∑
i∈N aixi ⩽ b} and the knapsack polytope is represented by its convex hull

K = conv(X). Since a 0/1 knapsack problem is known to be NP-hard [6], a partial
characterization of K using a subset of its facets is of significant interest and has been
extensively studied in the literature. Cover inequalities are among the initial cate-
gories of valid inequalities forK, which under certain conditions become facet-defining
[1]. For cover inequalities that are not facet-defining for a given K, there are several
procedures to strengthen them, such as (sequential) up-lifting [1, 2, 8, 13], (sequential)
down-lifting [16] and simultaneous lifting [5, 14]. Weismantel proposed another class
of inequalities, called weight inequalities. He also provided a way to strengthen weight
inequalities using a reduction parameter and conditions under which the strengthened
inequalities, called weight reduction inequalities, become facet-defining [12]. Parberg
proposed another class of inequalities based the idea of (1,k) configurations [9], which
was generalized in [4].

Despite the difficulty of completely characterizing knapsack polytopes in general,
there is a stream of literature that provides complete characterization of special classes
of the knapsack polytope. A complete linear description of graphic knapsack polytope
[13], weakly super-increasing knapsack polytope [7], special-weight knapsack polytope
(where the weights of the items belong to a set containing only two elements) [11],
and sequential knapsack polytope [10] are well known. For a comprehensive review
on the knapsack polytope, we refer the reader to [6].

The rest of the paper is organized as follows: In section 2, we introduce a new class
of valid inequalities (VIs) for 0/1 knapsack polytopes and demonstrate that they are
always facet-defining. We also show that this class includes any facet-defining inequal-
ity of a 0/1 knapsack polytope with nonnegative integral coefficients and a right-hand
side of 1. This means that the set of facet-defining inequalities that correspond to
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strong covers of cardinality 2 is a special case of this class. In section 3, we introduce
a special class of 0/1 knapsack sets, referred to as graphic knapsack set, for which
[13] claims to provide the complete characterization of its convex hull. Specifically,
Theorem 6.2 in [13] states that the convex hull of a graphic knapsack set is given by
the set of all inequalities corresponding to strong covers of cardinality 2, along with
the trivial nonnegative inequalities. We provide a counterexample to show that this
set of inequalities may be insufficient in some cases. Further, we define a subset of the
graphic knapsack set, called 1-graphic knapsack set, for which the above theorem be-
comes valid. In subsection 3.1, we show that Solitary item inequalities, along with the
trivial nonnegative inequalities, are sufficient to completely characterize the convex
hull of another subset of graphic knapsack set (which we refer to as 2-graphic knapsack
set), for which Theorem 6.2 in [13] fails.

2. Solitary item inequality. For the rest of the paper, we consider the weights
of the items and the knapsack capacity to be a positive integer as otherwise the set can
be represented in similar fashion [6]. To ensure the full dimensionality of the convex
hull of the knapsack set, we assume that the weights of all the items are at most equal
to the knapsack capacity. We also assume that the items are sorted in the order of
non-decreasing weights. Under these assumptions, a 0/1 knapsack set is defined as
X = {x ∈ Bn :

∑
i∈N aixi ⩽ b, 0 < a1 ⩽ a2 ⩽ · · · ⩽ an ⩽ b, ai ∈ Z> ∀i ∈ N, b ∈ Z>}

and its polytope K = conv(X).

Definition 2.1 (Type 1 solitary item). Given a 0/1 knapsack set X, we define
k ∈ N as a Type 1 solitary item if 2ak ⩽ b+ 1.

Definition 2.2 (Type 2 solitary item). Given a 0/1 knapsack set X and a0 = 0,
we define k ∈ N as a Type 2 solitary item if: (i) 2ak > b+ 1; (ii) ak−1 + ak ⩽ b.

Proposition 2.3. If k ∈ N is a Type 1 solitary item, then m ∈ N : m ⩽ k − 1
is also a Type 1 solitary item.

Proof. Since k ∈ N is a Type 1 solitary item, 2ak ⩽ b+1, which implies 2am ⩽ b+1
(since am ⩽ ak ∀m ∈ N : m ⩽ k − 1).

Proposition 2.4. If k ∈ N is not a Type 1 solitary item, then there is no Type
1 solitary item m ∈ N : m ⩾ k + 1.

Proof. Since k ∈ N is not a Type 1 solitary item, 2ak > b + 1, which implies
2am > b+ 1 (since am ⩾ ak ∀m ∈ N : m ⩾ k + 1).

Proposition 2.5. If k ∈ N is a Type 2 solitary item, then m ∈ N : m ⩽ k − 1
is a Type 1 solitary item.

Proof. Since k ∈ N is a Type 2 solitary item, ak + ak−1 ⩽ b, which implies
2ak−1 ⩽ ak+ak−1 ⩽ b < b+1. Therefore, item k−1 is a Type 1 solitary item. Further,
using Proposition 2.3, item k− 1 is a Type 1 solitary item implies m ∈ N : m ⩽ k− 2
is also a Type 1 solitary item.

Proposition 2.6. ∃ at most one Type 2 solitary item.

Proof. Let item k ∈ N be a Type 2 solitary item. From Proposition 2.5, m ∈ N :
m ⩽ k−1 is a Type 1 solitary item, which implies that they cannot be Type 2 solitary
item. Furthermore, since k ∈ N is a Type 2 solitary item, 2ak > b+ 1, which implies
am + am−1 > b+ 1 ∀m ∈ N : m ⩾ k + 1. Therefore, m ∈ N : m ⩾ k + 1 cannot be a
Type 2 solitary item.

Proposition 2.7. If k ∈ N is a Type 2 solitary item, then there is no Type 1
solitary item m ∈ N : m ⩾ k + 1.
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Proof. The proof follows directly from Proposition 2.4.

Definition 2.8 (Solitary item inequality). Given a Type 1 solitary item or a Type
2 solitary item k ∈ N , we define a Solitary item inequality as:

(2.1) xk +
∑

j∈N\{k}:aj⩾b−ak+1

xj ⩽ 1

Proposition 2.9. A Solitary item inequality (2.1) is valid for K = conv(X).

Proof. We show that (2.1) is facet-defining for K = conv(X) when k in (2.1) is:
(i) a Type 1 solitary item; (ii) a Type 2 solitary item.

(i) Let k ∈ N is a Type 1 solitary item. Consider the set N ′ := {j ∈ N \ {k} :
aj ⩾ b− ak + 1}. Then, it is easy to see the following:
(a) xk + xj ⩽ 1 ∀j ∈ N ′ since aj ⩾ b− ak + 1, which implies ak + aj > b.
(b) xi+xj ⩽ 1 ∀i, j ∈ N ′ : i ̸= j since ai+aj ⩾ 2(b−ak+1) = 2b+2−2ak ⩾

b+ 1 > b.
(a) and (b) above together imply (2.1).

(ii) Let k ∈ N is a Type 2 solitary item. Consider the set Ñ := {j ∈ N \ {k} :
aj ⩾ b− ak + 1}. Then, it is easy to see the following:

(a) xk + xj ⩽ 1 ∀j ∈ Ñ since aj ⩾ b− ak + 1, which implies ak + aj > b.
(b) Since item k is a Type 2 solitary item, ak + ak−1 ⩽ b, which implies

k − 1 /∈ Ñ . This also implies that m ∈ N : m ⩽ k − 2 /∈ Ñ . From
Proposition 2.6, we know that ak + ak+1 > b, which implies k + 1 ∈ Ñ ,

which in turn implies m ∈ N : m ⩾ k + 2 ∈ Ñ . Therefore, Ñ =
{k + 1, k + 2, · · · , n}, which implies xi + xj ⩽ 1 ∀i, j ∈ Ñ : i ̸= j since
ai + aj ⩾ 2ak > b+ 1.

(a) and (b) above together imply (2.1).

Example 2.10. Consider a 0/1 knapsack set X = {x ∈ B5 : 4x1 + 6x2 + 8x3 +
9x4 + 10x5 ⩽ 14}. Following are the Solitary item inequalities for K = conv(X).

• Corresponding to the Type 1 solitary item 1 (since 2a1 = 8 < b+1 = 14+1 =
15), the Solitary item inequality is x1 ⩽ 1.

• Corresponding to the Type 1 solitary item 2 (since 2a2 = 12 < b + 1 = 15),
the Solitary item inequality is x2 + x4 + x5 ⩽ 1.

• Corresponding to the Type 2 solitary item 3 (since 2a3 = 16 > b + 1 = 15,
and a2 + a3 = 14 = b), the Solitary item inequality is x3 + x4 + x5 ⩽ 1.

Proposition 2.11. A Solitary item inequality (2.1) is facet-defining for K =
conv(X).

Proof. We show that (2.1) is facet-defining for K = conv(X) when k in (2.1) is:
(i) a Type 1 solitary item; (ii) a Type 2 solitary item.

(i) Let k ∈ N is a Type 1 solitary item. Consider the set N ′ := {j ∈ N \ {k} :
aj ⩾ b − ak + 1}. We have already shown in Proposition 2.9 that a Solitary
item inequality (2.1) is valid for K = conv(X). Let ei denote the ith unit
vector in Rn. Now, consider the following points:

• ei ∀ i ∈ {k} ∪ N ′: clearly, these points are feasible for X and satisfy
(2.1) at equality.

• ek + ej ∀j ∈ N \ ({k} ∪ N ′): these points are also feasible for X (as
ak + aj ⩽ b ∀j ∈ N \ ({k} ∪N ′)) and satisfy (2.1) at equality.
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Hence, the above |N | points lie on the face F := {x ∈ conv(X) : xk +∑
j∈N\{k}:aj⩾b−ak+1 xj = 1}. It is easy to show that all these points are

affinely independent; hence, F is of dimension |N |−1. So, a Solitary item in-
equality (2.1) corresponding to a Type 1 solitary item k ∈ N is facet-defining
for K = conv(X).

(ii) Let k ∈ N is a Type 2 solitary item. Consider the set Ñ := {j ∈ N \ {k} :
aj ⩾ b−ak+1}, which is equal to {k + 1, k + 2, · · · , n} as shown in the proof
of Proposition 2.9. We have already shown that in Proposition 2.9, a Solitary
item inequality (2.1) is valid for K = conv(X). Let ei denote the ith unit
vector in Rn. Now, consider the following points:

• ei ∀ i ∈ {k}∪ Ñ : clearly, these points are feasible for X and satisfy (2.1)
at equality.

• ek + ej ∀j ∈ N \ ({k} ∪ Ñ): these points are also feasible for X (as

ak+aj ⩽ ak+ak−1 ⩽ b ∀j ∈ N \({k}∪Ñ)) and satisfy (2.1) at equality.
Hence, the above |N | points lie on the face F := {x ∈ conv(X) : xk +∑

j∈N\{k}:aj⩾b−ak+1 xj = 1}. It is easy to show that all these points are

affinely independent; hence, F is of dimension |N |−1. So, a Solitary item in-
equality (2.1) corresponding to a Type 2 solitary item k ∈ N is facet-defining
for K = conv(X).

Example 2.12 (Continued). For Example 2.10, all the Solitary item inequali-
ties identified above are facet-defining.

Proposition 2.13. Given πi ∈ Z⩾ ∀i ∈ N ∪ {0}, if
∑

i∈N πixi ⩽ π0 is a facet-
defining inequality for K = conv(X), then πi ⩽ π0 ∀i ∈ N .

Proof. We prove this by contradiction. For this, let ∃j ∈ N : πj > π0 such that

(2.2)
∑

i∈N\{j}

πixi + πjxj ⩽ π0

is facet-defining for K = conv(X). Clearly, xj = 0 for (2.2) to be valid for conv(X).
Hence, (2.2) can define a face of conv(X) of dimension at most |N |−2 and, therefore,
cannot be facet-defining. This proves that given πi ∈ Z⩾ ∀i ∈ N∪{0}, if

∑
i∈N πixi ⩽

π0 is a facet-defining inequality for K = conv(X), then πi ⩽ π0 ∀i ∈ N .

Corollary 2.14. Given πi ∈ Z⩾ ∀i ∈ N , if
∑

i∈N πixi ⩽ 1 is a facet-defining
inequality for K = conv(X), then πi ∈ {0, 1} ∀i ∈ N .

Proof. The proof immediately follows from Proposition 2.13.

Theorem 2.15. Given πi ∈ Z⩾ ∀i ∈ N , any facet-defining inequality for K that
is of the form

∑
i∈N πixi ⩽ 1 is a Solitary item inequality.

Proof. From Corollary 2.14, we know that any facet-defining inequality of K given
by

∑
i∈N πixi ⩽ 1, where πi ∈ Z⩾ ∀i ∈ N , can be expressed as

∑
i∈S⊆N xi ⩽ 1

(since πi ∈ {0, 1} ∀i ∈ N). We need to show that the facet-defining inequality∑
i∈S⊆N xi ⩽ 1 must be a Solitary item inequality, which we prove by contradiction.

For this, assume that ∃ a facet-defining inequality
∑

i∈S⊆N xi ⩽ 1, which is not a
Solitary item inequality. Since the inequality is associated neither with a Type 1
solitary item nor with a Type 2 solitary item, the following conditions hold ∀i ∈ S:

(i) 2ai > b+ 1
(ii) ai + ai−1 > b
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Now, let l := min{argminj∈Saj}, i.e., it is the lowest index among the items with the
lowest weight in the set S. For l, we make the following claims:

Claim 2.16. l ̸= 1.

Proof. This is true since condition (ii) above gets violated for l = 1 as a0 = 0 by
assumption.

Claim 2.17. l ̸= i ∀i ∈ N \ {1}.

Proof. We prove this by contradiction. For this, suppose l ∈ N \ {1}. Then,
al−1 + ai ⩾ al−1 + al > b ∀i ∈ S (from condition (ii) above). This implies xl−1 +∑

i∈S xi ⩽ 1, which contradicts the fact that l = min{argminj∈S{aj}}.

From Claims 2.16 and 2.17, we conclude that S = ∅, which implies that
∑

i∈S⊆N xi ⩽
1 reduces to 0 ⩽ 1, which cannot be a facet-defining inequality. This contradicts our
assumption that the inequality

∑
i∈S⊆N xi ⩽ 1, which is not a Solitary item inequality,

is facet-defining. Hence, any facet defining inequality of the form
∑

i∈N πixi ⩽ 1 where
πi ∈ Z⩾ ∀i ∈ N for K must be a Solitary item inequality.

Corollary 2.18. Any inequality corresponding to a strong cover (or possibly an
extension of strong cover) of cardinality 2 that is facet-defining for K is a Solitary
item inequality.

Proof. This follows immediately from Theorem 2.15.

In the next section, we introduce the graphic knapsack set, for which Theorem 6.2
in [13] claims to provide the complete characterization of its convex hull. We provide
a counterexample to show that the set of inequalities described in the Theorem 6.2
in [13] may be insufficient in some cases. We also define 1-graphic knapsack set, for
which the above theorem becomes valid. Furthermore, we show that Solitary item
inequalities, along with the trivial nonnegative inequalities, are sufficient to completely
characterize the convex hull of the 2-graphic knapsack set, for which Theorem 6.2 in
[13] fails.

3. Graphic knapsack set.

Definition 3.1 (Graphic Knapsack). X is called graphic1 [13] if there exists
t ∈ {1, 2, · · · , n− 1} for which the following conditions hold:

(i) at + at+1 > b,
(ii)

∑t
i=1 ai ⩽ b

Theorem 6.2 in [13] claims that the set of all inequalities corresponding to (extended)
strong covers of cardinality 2, along with the trivial nonnegative inequalities, is suffi-
cient to define the convex hull of the graphic knapsack set. We provide a counterex-
ample to show that this set might be insufficient.

Example 3.2. Consider a 0/1 knapsack set X = {x ∈ B5 : 1x1 + 1x2 + 2x3 +
4x4 + 4x5 ⩽ 5}.
Here, X is graphic since for t = 3: (i) at + at+1 = 2 + 4 = 6 > 5 = b; (ii)

∑t
i=1 ai =

1 + 1 + 2 = 4 < 5 = b. The complete convex hull of X, as obtained from PORTA [3],
is shown in Table 1.

1Please note that our notation assumes that the items are sorted in a nondecreasing order of
their weights, which is consistent with the recent literature on knapsack problems [for example, see
6]. This is in contrast to the notation used in [13], which assumes that the items are sorted in a
noninecreasing order of their weights.
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Table 1
Facets of Example 3.2 generated from PORTA

Sl. No. Facets of Example 3.2 Remark
1 x1 ⩾ 0 Trivial
2 x2 ⩾ 0 Trivial
3 x3 ⩾ 0 Trivial
4 x4 ⩾ 0 Trivial
5 x5 ⩾ 0 Trivial
6 x1 ⩽ 1 Not a cover inequality
7 x2 ⩽ 1 Not a cover inequality
8 x3 + x4 + x5 ⩽ 1 Cardinality 2 strong cover ({3,4}) inequality
9 x1 + x2 + x4 + x5 ⩽ 2 Not a cardinality 2 strong cover inequality

Clearly, the facet-defining inequalities 6, 7, and 9 do not correspond to any cover
(strong or otherwise) of cardinality 2. This example highlights the invalidity of the
claim in Theorem 6.2 in [13]. The flaw in its proof lies in the following claims:

• Any strong cover of a graphic knapsack set is of cardinality 2.
• ∀i ∈ {1, 2, · · · , t},∃j ∈ {t + 1, t + 2, · · · , n} such that (i, j) forms a strong

cover2.
Clearly, the above claims are not valid in our example since {1,2,4} is a strong cover
of cardinality 3, and there exists no item that can form a strong cover either with item
1 or with item 2.

Next, we provide a subset of graphic knapsack set, which we refer to as 1-graphic,
for which the theorem becomes valid.

Definition 3.3 (1-graphic Knapsack). X is called 1-graphic if there exists t ∈
{1, 2, · · · , n− 1} for which the following conditions hold:

(i) a1 + at+1 > b,
(ii)

∑t
i=1 ai ⩽ b

Proposition 3.4. The set of all inequalities corresponding to strong covers of
cardinality 2, along with the trivial nonnegative inequalities, is sufficient to charac-
terize the convex hull of 1-graphic knapsack set completely.

Proof. Consider the following partition of the set of items N corresponding to a
1-graphic knapsack set: N1 := {1, · · · , t};N2 := {t+1, · · · , n}. Any minimal cover of
a 1-graphic knapsack set is of cardinality 2 since:

(a) aj1 + aj2 > b ∀j1 ∈ N2, j2 ∈ N2, j1 ̸= j2 (follows directly from condition (i) of
Definition 3.3)

(b) ai + aj > b ∀i ∈ N1, j ∈ N2 (condition (i) of Definition 3.3)
(c)

∑
i∈N1

ai ⩽ b (condition (ii) of Definition 3.3)
Hence, any strong cover of a 1-graphic knapsack set is of cardinality 2 (since a strong
cover is necessarily a minimal cover). The rest of the proof is the same as for Theorem
6.2 in [13].

Remark 3.5. Solitary item inequalities, along with the trivial nonnegative inequal-
ities, are sufficient to characterize the convex hull of 1-graphic knapsack set (due to
Corollary 2.18).

In the next subsection, we introduce the 2-graphic knapsack set and show that its con-

2Please note that we have rephrased the statement to make it consistent with our notation.
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vex hull is also completely characterized by Solitary item inequalities, along with the
trivial nonnegative inequalities. Further, we also show that any 1-graphic knapsack
set is also a 2-graphic knapsack set. Hence, our complete characterization of a 2-
graphic knapsack set also characterizes the convex hull of a 1-graphic knapsack set.

3.1. Convex hull of a 2-graphic knapsack set.

Definition 3.6 (2-graphic Knapsack). X is called 2-graphic if there exists t ∈
{1, 2, · · · , n− 1} for which the following conditions hold:

(i) a2 + at+1 > b,
(ii)

∑t
i=1 ai ⩽ b

In the rest of the paper, we denote a 2-graphic knapsack set X and its convex hull as
X̃ and K̃, respectively.

Remark 3.7. Any 1-graphic knapsack set is also a 2-graphic knapsack set since
a1 + at+1 > b =⇒ a2 + at+1 > b.

Theorem 3.8. The system of inequalities

xi ⩾ 0, ∀ i ∈ N,(3.1)

xi +
∑

j∈N\{i}:aj⩾b−ai+1

xj ⩽ 1 ∀i = 1, 2, · · · , t(3.2)

is sufficient to describe the convex hull of a 2-graphic knapsack set.

Proof. The proof is based on the following Claims 3.9 and 3.10:

Claim 3.9. All the strong covers for X̃ are of cardinality 2.

Proof. The proof is similar to the proof of Proposition 3.4 if we consider the two
disjoint subsets N1 := {2, · · · , t};N2 := {t+ 1, · · · , n}.
This claim suggests that all the nontrivial facet-defining inequalities should be of the
form

∑
i∈N πixi ⩽ 1, where πi ∈ {0, 1} ∀i ∈ N [13]. Hence, all the Solitary item in-

equalities along with the trivial non-negative inequalities, are sufficient to characterize
the complete convex hull of a 2-graphic knapsack set. Next we show that only the set
of Solitary item inequalities described in Theorem 3.8, along with the trivial nonneg-
ative inequalities, are sufficient to describe the convex hull of a 2-graphic knapsack
set depending on the next claim.

Claim 3.10. Item t satisfying conditions (i) and (ii) in Definition 3.6 is either a
Type 1 solitary item or a Type 2 solitary item.

Proof. We prove this by contradiction. For this, assume that item t is neither a
Type 1 solitary item nor a Type 2 solitary item, which implies the following conditions:

(a) 2at > b+ 1
(b) at + at−1 > b

Condition (b) above contradicts condition (ii) in Definition 3.6. This completes the
proof of the claim.

Next, we identify all the Solitary item inequalities separately for the two mutually
exclusive and exhaustive Cases 3.11 and 3.12.

Case 3.11. Item t is a Type 2 solitary item.
If t is a Type 2 solitary item, then:

• i ∈ N : i ⩽ t− 1 is a Type 1 solitary item (from Proposition 2.5)
• i ∈ N : i ⩾ t + 1 is neither a Type 1 solitary item nor a Type 2 solitary
item (from Propositions 2.6 and 2.7)
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Hence, all the facet-defining Solitary item inequalities for K̃ are given by

xi +
∑

j∈N\{i}:aj⩾b−ai+1

xj ⩽ 1 ∀i = 1, 2, · · · , t.

Case 3.12. Item t is a Type 1 solitary item.
Below, we first identify all the items that can be either Type 1 solitary item or Type
2 solitary item, followed by the Solitary item inequalities defined by them. If t is a
Type 2 solitary item, then:

• i ∈ N : i ⩽ t− 1 is a Type 1 solitary item (from Proposition 2.3).
• i ∈ N : i ⩾ t + 1 can never be a Type 2 solitary item since at + at+1 >
b =⇒ ai−1 + ai > b. Now we consider the following two subcases under
which i ∈ N : i ⩾ t+ 1: (i) can never be a Type 1 solitary item; (ii) may be
a Type 1 solitary item.
(i) If at+1 > at, then i ∈ N : i ⩾ t + 1 can never be a Type 1 solitary

item since for any graphic knapsack set, we have at+1 + at > b, which
implies 2at+1 > b + 1 =⇒ 2ai > b + 1 (since i ⩾ t + 1). Hence, there
are no Solitary item inequalities defined by items i ∈ N : i ⩾ t+1 when
at+1 > at. Therefore, all the facet-defining Solitary item inequalities for

K̃ are given by

xi +
∑

j∈N\{i}:aj⩾b−ai+1

xj ⩽ 1 ∀i = 1, 2, · · · , t

(ii) If at+1 = at, then let us assume that item t + 1 is a Type 1 solitary

item (otherwise, all the facet-defining Solitary item inequalities for K̃
are given by xi +

∑
j∈N\{i}:aj⩾b−ai+1 xj ⩽ 1 ∀i = 1, 2, · · · , t, as shown

in (i) above). In that case, the following conditions hold:
(a) 2at ⩽ b+ 1 (since t is a Type 1 solitary item)
(b) 2at+1 ⩽ b+ 1 (since t+ 1 is a Type 1 solitary item)
(a) and (b) together imply at+at+1 ⩽ b+1. However, at+at+1 ⩾ b+1
(true for any graphic knapsack set). Also, at = at+1 (by assumption).
These three conditions can simultaneously hold only if at = at+1 = ⌈b/2⌉
and b is odd. Further, since X̃ is 2-graphic, a2 + at+1 ⩾ b+1 (condition
(i) in Definition 3.6) and

∑t
i=1 ai ⩽ b (condition (ii) in Definition 3.6),

which together imply t = 2. Hence, i = 3 is also a Type 1 solitary
item (since by assumption, at+1 = at). Therefore, the Solitary item
inequalities defined by i = 2, 3 are given by

x2 +
∑

j∈N\{2}:aj⩾b−a2+1

xj ⩽ 1

x3 +
∑

j∈N\{3}:aj⩾b−a3+1

xj ⩽ 1

Clearly, these two inequalities are identical since a2 = a3.
Similarly, it can be easily shown that if a2 = a2+m = ⌈b/2⌉, where
1 ⩽ m ⩽ n − 2 and b is odd, then i ∈ N : 2 ⩽ i ⩽ 2 + m is a Type 1
solitary item. Therefore,

xi +
∑

j∈N\{i}:aj⩾b−ai+1

xj ⩽ 1 ∀i ∈ {2, 3, · · · , 2 +m}
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Clearly, all the above inequalities corresponding to i ∈ {2, 3, · · · , 2+m}
are identical since a2 = a3 = · · · = a2+m. Hence, all the facet-defining

Solitary item inequalities for K̃ are given by

xi +
∑

j∈N\{i}:aj⩾b−ai+1

xj ⩽ 1 ∀i = 1, 2 = t

(i = 1 is also included since i = 1 is already shown above to be a Type
1 solitary item).

The system of Solitary item inequalities can be rewritten in the following form:

x1 +
∑
j∈S1

xj ⩽ 1

x2 +
∑
j∈S2

xj ⩽ 1

x3 +
∑
j∈S3

xj ⩽ 1

· · ·

xt−2 +
∑

j∈St−2

xj ⩽ 1

xt−1 +
∑

j∈St−1

xj ⩽ 1

xt +
∑
j∈St

xj ⩽ 1

where Si := {j ∈ N \ {i} : aj ⩾ b− ai + 1}. It is obvious that S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆
St−1 ⊆ St = {t+ 1, t+ 2, · · · , n}.

Clearly, the above set of inequalities can be expressed as (I,A)x ⩽ e, where
e ∈ Rt is the vector of all ones. After subtracting row l of A from row l + 1 of A,
∀ l = 1, 2, · · · , t − 1, we can easily show that A is totally unimodular (since after
the row operations, A contains at most one 1 in every column). Hence (I,A) is also
totally unimodular [15], which completes the proof.

Table 2
Facets of Example 3.13 generated from PORTA

Sl. No. Facets of Example 3.13 Type
1 x1 ⩾ 0 (3.1) in Theorem 3.8 for i = {1}
2 x2 ⩾ 0 (3.1) in Theorem 3.8 for i = {2}
3 x3 ⩾ 0 (3.1) in Theorem 3.8 for i = {3}
4 x4 ⩾ 0 (3.1) in Theorem 3.8 for i = {4}
5 x5 ⩾ 0 (3.1) in Theorem 3.8 for i = {5}
6 x1 ⩽ 1 (3.2) in Theorem 3.8 for i = {1}
7 x2 + x4 + x5 ⩽ 1 (3.2) in Theorem 3.8 for i = {2}
8 x3 + x4 + x5 ⩽ 1 (3.2) in Theorem 3.8 for i = {3}

Example 3.13. Consider a 0/1 knapsack set X = {x ∈ B5 : 8x1 +15x2 +18x3 +
37x4 + 40x5 ⩽ 48}.
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Here, X is 2-graphic since for t = 3: (i) a2 + at+1 = 15 + 37 = 52 > b = 48; (ii)∑t
i=1 ai = 8 + 15 + 18 = 41 < b = 48. The complete convex hull of X is shown in

Table 2.

Remark 3.14. Theorem 6.2 in [13] is insufficient to completely characterize the
convex hull of 2-graphic knapsack set in Example 3.13 since (1,i) is not a strong cover
for any i ∈ N \ {1}.

Remark 3.15. Solitary item inequalities with the nonnegative trivial inequalities
(i.e., the set of inequalities described in Theorem 3.8) are also sufficient to define the
convex hull of a 1-graphic knapsack set (follows from Remark 3.7).
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