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Abstract While mixed-integer linear programming and convex programming solvers have advanced
significantly over the past several decades, solution technologies for general mixed-integer nonlinear
programs (MINLPs) have yet to reach the same level of maturity. Various problem structures across
different application domains remain challenging to model and solve using modern global solvers,
primarily due to the lack of efficient parsers and convexification routines for their complex alge-
braic representations. In this paper, we introduce a novel graphical framework for globally solving
MINLPs based on decision diagrams (DDs), which enable the modeling of complex problem struc-
tures that are intractable for conventional solution techniques. We describe the core components
of this framework, including a graphical reformulation of MINLP constraints, convexification tech-
niques derived from the constructed graphs, efficient cutting plane methods to generate linear outer
approximations, and a spatial branch-and-bound scheme with convergence guarantees. In addition
to providing a global solution method for tackling challenging MINLPs, our framework addresses
a longstanding gap in the DD literature by developing a general-purpose DD-based approach for
solving general MINLPs. To demonstrate its capabilities, we apply our framework to solve instances
from one of the most difficult classes of unsolved test problems in the MINLP Library, which are
otherwise inadmissible for state-of-the-art global solvers.

Keywords Mixed-Integer Nonlinear Programs · Global Solver · Decision Diagrams · Cutting
Planes · Outer Approximation · Spatial Branch-and-Bound

1 Introduction

Optimization solvers play a crucial role in advancing mathematical optimization by bridging theo-
retical breakthroughs with computational power to solve real-world problems. While mixed-integer
linear programming and convex programming solvers have made significant strides over the past
few decades, solution techniques for general MINLPs still face substantial challenges. Some of these
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challenges arise from problem structures that fall outside the framework of current solvers, primarily
due to the absence of appropriate parsers for specific algebraic representations found in various ap-
plication domains. Examples include error functions in statistical models for portfolio optimization
and risk management applications, hyperbolic functions in learning models for compressor power
in artificial intelligence applications, cross-entropy functions in information theory and economet-
rics applications, and gamma functions in quantum mechanics applications; see Section 6 for a
detailed discussion for such applications. Even when problems fall within the modeling capabilities
of modern solvers, several classes with complex structures suffer from weak approximations and
poor solution performance. As a result, there remains an ongoing need to develop global solution
algorithms that mitigate such limitations of traditional techniques.

In this paper, we introduce a novel graphical framework to globally solve general MINLPs. The
basis of this framework is formed by DDs, where the underlying problems are formulated through
special-structured graphs. These graphs draw out data structures and variable interactions that
often remain latent in the classical algebraic representation of constraints. This intrinsic feature
enables DDs to model a broad array of functional forms, including nonconvex, nonsmooth, and even
black-box types, that are intractable by standard solution techniques. Numerous computational
studies suggest that DD-based algorithms can improve the solution time and quality compared to
the outcome of modern solvers. Despite the success of DDs in various application areas, they have
never been used to globally solve general MINLPs. As a result, the framework proposed in this
paper marks the first solution technology for general MINLPs based on DDs that departs from
traditional algebraic approaches to global optimization by capturing the graphical structure of the
formulation.

1.1 Related Work

MINLPs are considered one of the most challenging classes of optimization problems, as they in-
volve a combination of continuous and discrete variables along with nonlinear relationships in the
constraints and/or objective function [8, 40]. As a result, globally solving MINLP formulations can
be a daunting task, even for the most advanced optimization solvers. The prevalent framework to
solve these problems globally is the spatial branch-and-bound [59], which relies on successive bound-
reductions and convexification routines [7, 19]. The most common convexification routine is the
factorable decomposition, where complicated terms are decomposed into simpler components with
known convex relaxations [43, 38]. As the leading commercial global solver, BARON [52] employs
these strategies to handle a wide range of MINLP structures. At its core, BARON integrates range-
reduction methods with branch-and-bound techniques to guide the search towards a globally opti-
mal solution [48]. To accelerate the search process, cutting planes and range-contraction methods
have been proposed [50, 63]. Additional boosting techniques for special-structured problems in-
clude domain reduction for separable concave programs [58], consistency methods for mixed-binary
problems [25], envelope construction for bilinear terms [31, 24, 37], and decomposition strategies
for multilinear sets [5, 26, 42, 51]. The concept of convex extension has also been introduced to
achieve tighter relaxations for lower semi-continuous functions [61] and fractional programs [60].
As a common class of MINLPs, nonconvex quadratically-constrained quadratic programs have at-
tracted considerable research efforts, ranging from polyhedral approximations [55] to semi-definite
relaxations [4]. Open-source solvers such as SCIP [2] and COUENNE [6] utilize constraint program-
ming and polyhedral approximations, respectively, to globally solve MINLPs. Despite advancements
in these global solvers, there remains a lack of capable solvers for handling MINLPs with irregular
functional forms, such as hyperbolic trigonometric terms, as noted in [13].

While the aforementioned approaches target MINLPs with general structures, a significant body
of literature focuses on a special class of MINLPs where the underlying functions are convex. For
these problems, the convexity property allows the design of an outer approximation scheme that can
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converge to an optimal solution without relying on spatial branch-and-bound techniques [27, 33, 45].
Outer approximation methods establish a refinement framework that recursively constructs and
solves mixed-integer linear approximations of the problem; see [15] for a survey on such methods.
Various solvers have been developed based on this framework, with BONMIN [14] being one of the
most well-known. A recent review of the computational performance of these solvers can be found in
[39]. However, when applied to nonconvex MINLPs, these solvers only provide local solutions with
no guarantee of global optimality. Other local solvers commonly used to solve continuous relaxations
of MINLPs include IPOPT [66], SNOTP [28], and KNITRO [17]. Most of these approaches use
interior-point methods to find a locally-optimal solution; see [64, 66]. In contrast to these outer
approximation and local solvers, our proposed solution method leverages outer approximation to
find global optimal solutions for nonconvex MINLPs.

The core structure of our solution methodology in this paper is formed by DDs. DDs were
introduced in [32] as an alternative modeling tool for certain classes of combinatorial problems.
Later, [3] proposed the concept of relaxed DDs to mitigate the exponential growth in DD size
when modeling large-scale discrete problems. Since then, significant efforts have been dedicated
to enhancing DD performance in discrete optimization problems; see [34] for a tutorial on DDs,
[11] for an introduction to DD modeling, and [18] for a recent survey. Thanks to their promising
performance, DDs have been applied across a wide range of application areas, including healthcare
[9], supply chain management [12], and transportation [54]. Other avenues of research in the DD
community include cutting plane theory [23, 65], multi-objective and Lagrangian optimization [10],
post-optimality analysis [57], sub-optimality and dominance detection [20], integrated search tree
[30], two-stage stochastic programs [41, 53], and sequence alignment [35]. The novel perspective
that DDs offer for modeling optimization problems has propelled DD-based solution methods into
the spotlight in recent years. In this paper, we extend DDs further by leveraging their unique
structural properties to develop a general-purpose global framework for solving complex MINLPs.

1.2 Contributions

Contributions to the MINLP literature. As discussed in Section 1.1, the global MINLP solution
methods are based mainly on the algebraic representation of the constraints. Nonconvex nonlinear
terms are typically decomposed into simpler forms and convexified individually, making these tech-
niques highly dependent on the specific algebraic form and properties of the functions involved.
For example, hyperbolic and trigonometric terms, which are common in applications ranging from
artificial intelligence to energy systems, are often inadmissible in leading global solvers like BARON
and SCIP due to the absence of suitable convexification routines for such structures.

In contrast, our DD-based framework offers significantly more flexibility with respect to the
functional forms of the problem. The graphical nature of DDs enables direct evaluation and ef-
ficient relaxation of the underlying terms without decomposition during DD construction. As a
result, our framework can be effectively applied to a wide range of MINLPs containing highly
nonlinear, nonconvex, nonsmooth, and even black-box functions—many of which are intractable or
poorly handled by modern global solvers. This paper presents a novel global solution method for
general MINLPs that is rooted in the graphical structure of the problem, rather than its algebraic
representation.

Contributions to the DD literature. Despite the successful application of DDs to various opti-
mization problems over the past two decades, two significant limitations in their applicability have
persisted: (i) DDs have primarily been applied to problems with special structures, and (ii) DDs
were originally limited to modeling discrete programs. These limitations, recognized in [11], have
posed a significant barrier to the universal adoption of DDs, highlighting the need for a general-
purpose DD technology to solve MINLPs. In [23], the authors addressed challenge (i) by introducing
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an outer approximation framework that tightens relaxations of integer nonlinear programs using
DDs. To tackle challenge (ii), [22] proposed a novel DD-based methodology that enhances dual
bounds for continuous programs. Subsequent works, including [53, 54], extended the scope of DDs
through a DD-based Benders decomposition approach, which enabled their application to mixed-
integer linear programs in energy systems and transportation.

While these efforts have expanded the applicability of DDs to new problem classes, they were
not designed to obtain global optimal solutions for general MINLPs, lacking key elements such as
algorithmic architectures and convergence mechanisms required for handling such broader problem
structures. In this paper, we address this gap by introducing a novel branch-and-cut framework that
leverages the structure of DDs at every stage of the solution process, from constructing efficient
relaxations, to generating cutting planes and outer approximations, to performing branch-and-
bound with convergence guarantees. As a result, this work establishes the first general-purpose
DD-based solution method for globally solving general MINLPs.

The remainder of this paper is organized as follows. In Section 1, we introduce the structure
of the MINLP under study and outline the main steps of our proposed solution framework. Sec-
tion 3 provides background on DDs and details the algorithms used to construct DDs for different
problem structures, representing relaxations of the MINLP. Additionally, we present strategies for
calculating bounds for DDs and analyze the runtime complexity of the algorithms. In Section 4,
we demonstrate how the constructed DDs can be used to generate linear outer approximations
for the MINLP via various cut-generation methods employed within a separation oracle. Section 5
introduces a spatial branch-and-bound scheme designed to refine these outer approximations, with
convergence guarantees to a global optimal solution for the MINLP. To evaluate the effectiveness of
the framework, we present computational experiments on benchmark MINLP instances in Section 7.
Concluding remarks are provided in Section 7.

Notation. We denote the vectors by bold letters. For any k ∈ N, we define [k] = {1, 2, . . . , k}. Given
a vector x ∈ Rn, we refer to a sub-vector of vcx that includes variables with indices in J ⊆ [n]
as xJ . We use calligraphic font to describe sets. Given a set P ⊆ {(x,y) ∈ Rn+m}, we refer to
the convex hull of P by conv(P). We denote by projx(P) the projection of P onto the space of
x variables. For a nested sequence {Pj} of sets Pj ⊆ Rn for j ∈ N, we denote by {Pj} ↘ P the
fact that this sequence converges (in the Hausdorff sense) to a set P ⊆ Rn. Given a closed interval
D ⊆ R, we refer to its lower and upper bound as D↓ and D↑, respectively. To distinguish notation,
we will represent the elements of a DD using ‘typewriter’ font. In particular, we define a DD as
D = (U, A, l(.)). In this definition, the nodes of the DD are represented by u ∈ U with state value
s(u), and the arcs of DD are denoted by a ∈ A with label l(a). We refer to the tail and the head
nodes of an arc a ∈ A as t(a) and h(a), respectively.

2 Problem Definition

Consider the MINLP

ζ∗ = max cᵀx (2.1a)

s.t. gk(x) ≤ bk, ∀k ∈ K (2.1b)

xi ∈ Di, ∀i ∈ I ∪ C (2.1c)

where gk(x) :
∏
i∈I∪C Di → R for k ∈ K is a general mixed-integer nonlinear function that is well-

defined and bounded over the domain of variables described in (2.1c). In the above model, I and C

are the index sets for integer and continuous variables, respectively. Further, Di := [Di ↓,Di ↑] ∩ Z
represents the bounded domain for integer variable xi with i ∈ I, and Di := [Di ↓,Di ↑] represents
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the bounded domain interval for continuous variable xi for i ∈ C. This definition implies that for
i ∈ I, Di ↓,Di ↑∈ Z. Define the feasible region of constraint k ∈ K over the variables’ domain as

Gk =

{
x ∈

∏
i∈I∪C

Di

∣∣∣∣∣ gk(x) ≤ bk

}
. (2.2)

We outline the main steps of our solution method for globally solving (2.1a)–(2.1c) in Al-
gorithm 1. Following this, we offer a high-level overview of the most critical components of the
algorithm. Commonly used elements in global solvers, along with algorithmic settings, are not
detailed here as they are thoroughly covered in the relevant literature; see Section 1 for examples.

This method utilizes a branch-and-bound (B&B) tree, where each node represents a specific
restriction of the feasible region of (2.1a)–(2.1c) induced by partitioning the variable domains. The
first node (root) of the B&B tree is created in line 1, where the original variable domains Di for
i ∈ [n] are considered. In line 2, the function Stop Flag checks whether a stopping criterion has been
met, signaling the termination of the algorithm. These criteria might include factors such as a time
limit, iteration count, remaining optimality gap, number of open nodes in the B&B tree, and more.
If the stopping criteria are not met, the algorithm continues in line 3 by selecting the next open
node in the B&B tree for processing. This node can be chosen using any well-known strategy, such
as depth-first, breadth-first, or best-bound. Each node in the B&B tree is associated with a linear
programming (LP) relaxation, LP , of the problem, defined by the variable domains corresponding
to that node, along with any linear inequalities inherited from its parent node, if applicable. This LP
model is solved in line 4 to obtain an optimal solution x∗. If the problem is infeasible or unbounded,
the primal bound ζ or the dual bound ζ will be updated accordingly in line 9. Subsequently, for each
constraint k ∈ K, the loop in lines 5–8 is executed. First, it is checked whether the current solution
x∗ satisfies the constraint (2.1b) for the current k. If it does not, the oracle Construct DD is called
to build a DD that represents the solutions (or a relaxation of the solutions) to Gk. Next, a linear
outer approximation for the solutions of the constructed DD associated with Gk is generated by
calling the oracle Outer Approx to separate point x∗ from conv(Gk). The constraints obtained from
this outer approximation are then added to LP . Once these steps are completed for all constraints
k ∈ K, the augmented LP model LP is resolved. Depending on the optimal value obtained from
this model, the bounds ζ and ζ are updated accordingly. In line 10, the function Prune Node checks
whether the current node can be pruned. The pruning rules applied in this function may include
standard rules such as pruning by feasibility, pruning by infeasibility, and pruning by bound, as well
as more advanced rules like pruning due to inconsistency [44]. If the node is not pruned, the oracle
Branch is called to perform the branching operation. This operation includes identifying a variable
to branch on and determining the branching value, which may utilize any well-known techniques
such as most fractional rule, strong branching, and pseudocost branching; see [16, 44]. Following
the branching operation, two new child nodes are created and added to the B&B tree. The bounds
of the selected variable are updated for each node based on the branching value. Once this step is
completed, the recursive steps of the algorithm are repeated until the stopping criteria in line 2 are
met. At this point, the algorithm terminates and returns the calculated primal and dual bounds,
which can be used to calculate the remaining optimality gap achieved by the algorithm.

As noted in the description of Algorithm 1, three key oracles, namely Construct DD, Outer Approx,
and Branch, constitute the backbone of our solution framework. The following three sections are
dedicated to explaining these oracles in detail.

3 DD Construction

In this section, we discuss the oracle Construct DD in Algorithm 1 by outlining the steps involved
in constructing DDs that represent relaxations of the set Gk for k ∈ K. To simplify notation, we
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Algorithm 1: A high-level structure of the graphical global optimization framework

Data: MINLP of the form (2.1a)–(2.1c)
Result: A lower bound ζ and upper bound ζ for ζ∗

1 create the root node of the B&B tree that includes the original domain of variables
2 while Stop Flag = False do

3 select an open node in the B&B tree
4 solve an initial LP relaxation LP of the problem at this node to obtain an optimal

solution x∗

5 forall k ∈ K do

6 if g(x∗) > bk then

7 call Construct DD to construct a DD respreseting Gk

8 call Outer Approx to create a linear outer approximation of conv(Gk) based on
its associated DD and add it to LP

9 solve LP to update ζ and ζ, if possible

10 if Prune Node = True then

11 prune the current node in the B&B tree

12 else

13 call Branch to perform branching and create children nodes to be added to the B&B
tree

will omit the index k whenever the results apply to any constraint, regardless of its specific index.
We begin with a brief background on using DDs for optimization in Section 3.1. In Section 3.2,
we present methods for constructing DDs when the functions in Gk are separable. The techniques
for constructing DDs for general non-separable functions are discussed in Section 3.3. Section 3.4
includes algorithms for merging nodes at layers of a DD to obtain relaxed DDs of a desired size.
In Section 3.5, we introduce a strategy for calculating state values for the nodes at the DD layers
to ensure that the resulting DDs provide a valid relaxation for the underlying set. Taking all these
components into account, we present the time complexity results for the proposed DD construction
algorithms in Section 3.6. In the remainder of this paper, we assume, without loss of generality, a
variable ordering in I ∪ C corresponding to the layers of the DD, denoted by [n] = {1, . . . , n}.

3.1 Background on DDs

In this section, we present basic definitions and results relevant to our DD analysis. A DD D is a
directed acyclic graph denoted by the triple (U, A, l(.)) where U is a node set, A is an arc set, and
l : A → R is an arc label mapping for the graph components. This DD is composed of n ∈ N arc
layers A1, A2, . . . , An, and n+1 node layers U1, U2, . . . , Un+1. The node layers U1 and Un+1 contain the
root r and the terminal t, respectively. In any arc layer j ∈ [n], an arc a ∈ Aj is directed from the
tail node t(a) ∈ Uj to the head node h(a) ∈ Uj+1. The width of D is defined as the maximum number
of nodes at any node layer Uj . DDs have been traditionally used to model a bounded integer set
P ⊆ Zn such that each r-t arc-sequence (path) of the form (a1, . . . , an) ∈ A1 × . . . × An encodes
a point x ∈ P where l(aj) = xj for j ∈ [n], that is x is an n-dimensional point in P whose j-th
coordinate is equal to the label value l(aj) of the arc aj . For such a DD, we have P = Sol(D), where
Sol(D) represents the set of all r-t paths.

As outlined above, DDs have traditionally been employed to model and solve discrete optimiza-
tion problems. For instance, they have been extensively used to address combinatorial problems
with special structures, such as stable set, set covering, and matching; see [11]. Recently, through



A graphical global solver for MINLPs 7

a series of works [22, 53, 54], the application of DD-based optimization has been extended to
mixed-integer programs. This extension has enabled applications in new domains, ranging from
energy systems to transportation, involving a combination of discrete and continuous variables. In
this paper, we unify and expand upon the methods developed in these works, creating a general-
purpose global solution framework for MINLPs, which integrates all essential components, from
convexification to spatial branch-and-bound techniques.

The following result presents a technique known as arc reduction, which reduces the size of a
decision diagram (DD) while preserving the convex hull of its solution set. Originally introduced
in [22] for modeling continuous sets using DDs, this technique is extended here to handle mixed-
integer sets that involve both discrete and continuous variables. Consider the following definitions
for a DD D = (U, A, l(.)). For each pair (u, v) of connected nodes of D with u ∈ Ui and v ∈ Ui+1

for some i ∈ [n], define lmax(u, v) to be the maximum label of all arcs connecting u and v, i.e.,
lmax(u, v) = max{l(a) | a ∈ A, t(a) = u, h(a) = v}. Similarly, define lmin(u, v) = min{l(a) | a ∈
A, t(a) = u, h(a) = v} to be the minimum label of all arcs connecting u and v.

Proposition 3.1 Consider a DD D = (U, A, l(.)). Let D̄ = (Ū, Ā, l̄(.)) be a DD obtained from D by

removing every arc a ∈ A such that lmin(t(a), h(a)) < l(a) < lmax(t(a), h(a)). Then, conv(Sol(D̄)) =
conv(Sol(D)).

Proof We prove the result by showing conv(Sol(D̄)) ⊆ conv(Sol(D)) and conv(Sol(D̄)) ⊇ conv(Sol(D)).
The forward inclusion is straightforward as the arcs in D̄ are a subset of the arcs in D by definition,
which implies that the root-terminal paths in D̄ are a subset of the root-terminal paths in D.
Therefore, Sol(D̄) ⊆ Sol(D), which yields conv(Sol(D̄)) ⊆ conv(Sol(D)).

For the reverse inclusion, consider a point x ∈ conv(Sol(D)). It follows that there exists a
collection of r-t paths of the form Pj = (aj1, . . . , a

j
n) of D for j ∈ [p] for some p ∈ N, each encoding

a point xj = (l(aj1), . . . , l(ajn)), such that x =
∑p
j=1 λjx

j with
∑p
j=1 λj = 1 and λj ≥ 0 for all

j ∈ [p]. Next, construct the sets Sj for each j ∈ [p] that consists of points x̂j,k ∈ Rn for k ∈ [qj ]

for some qj ∈ N such that x̂j,ki ∈
{
lmin(t(aji ), h(aji )), l

max(t(aji ), h(aji ))
}

for each i ∈ [n]. There are

a maximum of 2n such points. Each such point x̂j,k corresponds to an r̄-t̄ path of D̄ because all of
its arcs are maintained for this DD by construction, implying that x̂j,k ∈ Sol(D̄). As a result, we
can write xj =

∑qj
k=1 µ

j,kx̂j,k for some µ such that
∑qj
k=1 µ

j,k = 1 and µj,k ≥ 0 for all k ∈ [qj ].

Using this relation for all j ∈ [p], we can write x =
∑p
j=1 λjx

j =
∑p
j=1 λj(

∑qj
k=1 µ

j,kx̂j,k) where

x̂j,k ∈ Sol(D̄) for each j ∈ [p] and k ∈ [qj ] with λjµ
j,k ≥ 0 and

∑p
j=1

∑qj
k=1 λjµ

j,k = 1. Therefore,
x ∈ conv(Sol(D̄)). ut

Proposition 3.1 suggests that when multiple parallel arcs exist between two nodes in a DD, we
can retain only the arcs with the minimum and maximum label values, removing all others. This
operation preserves the convex hull of the DD’s solution set. For the remainder of this paper, we
will assume that this technique is applied wherever applicable.

3.2 Relaxed DD for Separable Constraints

In this section, we outline the steps for constructing a DD that represents a relaxation of the
constraint set G =

{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

where the underlying function g(x) is separable, i.e.,
g(x) =

∑n
i=1 gi(xi). These results unify the methods developed in [23] for discrete problems and

[22] for continuous problems, extending them to represent the mixed-integer case for a general
MINLP. The first procedure for constructing such DDs is provided in Algorithm 2, which is shown
in Proposition 3.2 to yield a relaxation for the convex hull of the considered set. In this algorithm, we
define Li, for each i ∈ [n], to be the index set for sub-domain partitions Dji := [Dji ↓,D

j
i ↑] for j ∈ Li,
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which collectively span the entire domain of variable xi, i.e.,
⋃
j∈Li D

j
i = Di. If xi is integer, a sub-

domain partition Dji may consist of integral numbers within an interval, i.e., Dji := [Dji ↓,D
j
i ↑]∩Z.

We illustrate the steps of the algorithm in Example 3.1.

Algorithm 2: Relaxed DD for a separable constraint

Data: Set G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

where g(x) =
∑n
i=1 gi(xi) is separable, and the

sub-domain partitions Dji for j ∈ Li and i ∈ [n]
Result: A DD D

1 create the root node r in the node layer U1 with state value s(r) = 0
2 create the terminal node t in the node layer Un+1

3 forall i ∈ [n− 1], u ∈ Ui, j ∈ Li do

4 calculate ξ = s(u) + η where η ≤ gi(xi) for all xi ∈ Dji
5 create a node v with state value s(v) = ξ (if it does not already exist) in the node layer

Ui+1

6 add two arcs from u to v with label values Dji ↓ and Dji ↑
7 forall u ∈ Un, j ∈ Ln do

8 calculate ξ∗ = s(u) + η where η ≤ gn(xn) for all xn ∈ Djn
9 if ξ∗ ≤ b then

10 add two arcs from u to the terminal node t with label values Djn ↓ and Djn ↑

Proposition 3.2 Consider G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

, where b ∈ R, and g(x) =
∑n
i=1 gi(xi) is

separable. Let D be the DD constructed via Algorithm 2 for some sub-domain partitions Dji with j ∈ Li
for i ∈ [n]. Then, conv(G) ⊆ conv(Sol(D)).

Proof It suffices to show that G ⊆ conv(Sol(D)) because the convex hull of a set is the smallest
convex set that contains it. Pick x̄ ∈ G. It follows from the definition of G that

∑n
i=1 gi(x̄i) ≤ b. For

each i ∈ [n], let j∗i be the index of a sub-domain partition Dj
∗
i
i in Li such that x̄i ∈ D

j∗i
i . This index

exists because x̄i ∈ Di =
⋃
j∈Li D

j
i , where the inclusion follows from the fact that x̄ ∈ G, and the

equality follows from the definition of sub-domain partitions.

Next, we show that D includes a node sequence {u1, u2, . . . , un+1}, where ui ∈ Ui for i ∈ [n+ 1],

such that each node ui is connected to ui+1 via two arcs with labels Dj
∗
i
i ↓ and Dj

∗
i
i ↑ for each

i ∈ [n]. We prove the result using induction on the node layer index k ∈ [n] in the node sequence
{u1, u2, . . . , un+1}. The induction base k = 1 follows from line 1 of Algorithm 2 as the root node
r can be considered as u1. For the inductive hypothesis, assume that there exists a node sequence
{u1, u2, . . . , uk} of D with ut ∈ Ut for t ∈ [k] such that each node ui is connected to ui+1 via two arcs

with labels Dj
∗
i
i ↓ and Dj

∗
i
i ↑ for each i ∈ [k − 1]. For the inductive step, we show that there exists a

node sequence {u1, u2, . . . , uk+1} of D with ut ∈ Ut for t ∈ [k+ 1] such that each node ui is connected

to ui+1 via two arcs with labels Dj
∗
i
i ↓ and Dj

∗
i
i ↑ for each i ∈ [k]. We consider two cases.

For the first case, assume that k ≤ n− 1. Then, the for-loop in lines 3–6 of Algorithm 2 imply
that node uk is connected to another node in the node layer Uk+1, which can be considered as uk+1,

via two arcs with labels Dj
∗
k

k ↓ and Dj
∗
k

k ↑ as the conditions of the for-loop are satisfied as follows:
k ∈ [n− 1] due to the assumption of the first case, uk ∈ Uk because of the inductive hypothesis, and
j∗k ∈ Lk by construction.

For the second case, assume that k = n. It follows from lines 1–6 of Algorithm 2 that the state
value of node ui+1 for i ∈ [k−1] is calculated as s(ui+1) = s(ui)+ηi where s(u1) = 0 because of line
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1 of the algorithm, and where ηi is a lower bound for function gi(xi) over the sub-domain partition

Dj
∗
i
i according to lines 4-5 of the algorithm, i.e., ηi ≤ gi(x̄i) as x̄i ∈ D

j∗i
i . As a result, we have

s(uk) =
∑k−1
i=1 ηi ≤

∑k−1
i=1 gi(x̄i). Now consider lines 7-10 of the for-loop in Algorithm 2 for uk ∈ Uk

and j∗k ∈ Lk. We compute ξ∗ = s(uk) + ηk, where ηk is a lower bound for function gi(xi) over the

sub-domain partition Dj
∗
k

k . Using a similar argument to that above, we conclude that ηk ≤ gk(x̄k).

Combining this result with that derived for s(uk), we obtain that ξ∗ =
∑k
i=1 ηi ≤

∑k
i=1 gi(x̄i) ≤ b,

where the last inequality follows from the fact that x̄ ∈ G. Therefore, lines 9–10 of Algorithm 2

imply that two arcs with label values Dj
∗
k

k ↓ and Dj
∗
k

k ↑ connect node uk to the terminal node t which
can be considered as uk+1, completing the desired node sequence.

Now consider the collection of points x̃κ for κ ∈ [2n] encoded by all paths composed of the

above-mentioned pairs of arcs with labels Dj
∗
i
i ↓ and Dj

∗
i
i ↑ between each two consecutive nodes ui

and ui+1 in the sequence {u1, u2, . . . , un+1}. Therefore, x̃κ ∈ Sol(D) for κ ∈ [2n]. It is clear that

these points form the vertices of an n-dimensional hyper-rectangle defined by
∏n
i=1[Dj

∗
i
i ↓,D

j∗i
i ↑]. It

follows from construction of the DD that x̄ ∈
∏n
i=1[Dj

∗
i
i ↓,D

j∗i
i ↑], i.e., x̄ is a point inside the above

hyper-rectangle. As a result, x̄ can be represented as a convex combination of the vertices x̃κ for
κ ∈ [2n] of the hyper-rectangle, yielding x̄ ∈ conv(Sol(D)).

ut

Example 3.1 Consider a nonconvex MINLP set G =
{
x ∈

∏3
i=1Di

∣∣∣ tanh(x1) + x2e
−x2 + ||x3||0 ≤ 1

}
where D1 = D2 = D3 = [0, 2], and ||x3||0 = 0 if x3 = 0 and ||x3||0 = 1 otherwise. Following the
definition of sets studied in this section, we have g(x) = g1(x1) + g2(x2) + g3(x3) where g1(x1) =
tanh(x1), g2(x2) = x2e

−x2 , and g3(x3) = ||x3||0.

To obtain a DD relaxation for this set, we apply Algorithm 2 with sub-domain partitions
D1
i = [0, 1] and D2

i = [1, 2] for all i = 1, 2, 3. Following the steps of the algorithm, we obtain the DD
D1 shown in Figure 3.1, where the number next to each arc represents the arc label, and the number
inside each node shows the state value of that node. To illustrate the state value computation of
these terms, consider the node with state value 0.76 at node layer 2, which we refer to as u ∈ U2 with
s(u) = 0.76. In line 4 of the algorithm, a lower bound η for g2(x2) is calculated over the sub-domain
partitions x2 ∈ D1

2 and x2 ∈ D2
2. It is easy to verify that η1 = 0 is a valid lower bound for g2(x2)

over the former domain, and η2 = 0.27 ≤ g2(2) is a valid lower bound for g2(x2) over the latter
domain. Therefore, according to line 5 and 6 of the algorithm, we create a node with state value
ξ = s(u) + η1 = 0.76 in layer 3, which is connected to u via two arcs with labels 0 and 1. Similarly,
we create a node with state value ξ = s(u) + η2 = 1.03 in layer 3, which is connected to u via two
arcs with labels 1 and 2.

Now consider the node with state value 0 at node layer 3, which we refer to as v ∈ U3 with
s(v) = 0. In line 8 of Algorithm 2, a lower bound η for g3(x3) is calculated over the sub-domain
partitions x3 ∈ D1

3 and x3 ∈ D2
3. For the former domain, we set η = 0, which is a valid lower bound

for g3(x3), yielding ξ∗ = s(v) + η = 0. This satisfies the condition ξ∗ ≤ 1 in line 9 of the algorithm.
Thus, two arcs with labels 0 and 1 are created to connect v to the terminal node. Similarly, we
select η = 1 to be a valid lower bound for g3(x3) over x3 ∈ D2

3, which yields ξ∗ = s(v) + η = 1. This
satisfies the condition ξ∗ ≤ 1 in line 9 of the algorithm, leading to creation of two arcs with labels
1 and 2 to connect v to the terminal node. Since the arcs with label value 1 are the middle arcs
among those between v and t, we can use the result of Proposition 3.1 to remove them from the
DD as illustrated in Figure 3.1a.

Because there is a node at layer 3 that is not connected to the terminal node, we can reduce
the size of the DD by removing that node and its incoming arcs as they do not lead to a feasible
path, which yields the so-called reduced DD in Figure 3.1b. It is easy to verify that the convex hull
of the solutions of D1 is equal to the convex hull of the union of hyper-rectangles {[0, 1] × [0, 1] ×
[0, 2], [0, 1]× [1, 2]× [0, 1], [1, 2]× [0, 1]× [0, 1]}. This yields the polyhedral convex hull conv(Sol(D1)) =
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{
(x1, x2, x3) ∈ [0, 2]3

∣∣x1 + x2 + x3 ≤ 4, x1 + x2 ≤ 3, x1 + x3 ≤ 3, x2 + x3 ≤ 3
}

. This set provides a

relaxation for the convex hull of the original set G with strict inclusion, i.e., conv(G) ⊂ conv(Sol(D1)).
�

(a) Original DD representation (b) Reduced DD representation

Fig. 3.1: Relaxed DD for the set in Example 3.1.

According to Algorithm 2, the number of nodes at layer k + 1 for k ∈ [n − 1] of the DD
obtained from this algorithm is bounded by |Uk||Lk|, where |Uk| is the number of nodes at layer
k, and Lk is the number of sub-domain partitions for variable xk. As a result, the size of this DD
grows exponentially as the number of layers increases. To control this growth rate, we can use two
approaches as outlined below.

The first approach involves controlling the size of the DD by adjusting the number of sub-
domain partitions for variables at certain layers. For instance, assume that there is an imposed
width limit of ω at layer k+1, for some k ∈ [n] in the DD. To satisfy this width limit at layer k+1,
we can set the number of sub-domain partitions at layer k to be no greater than ω

|Uk| , ensuring that

the number of nodes at layer k + 1 does not exceed ω.

The second approach to controlling the size of the DD involves creating a “relaxed DD” by
merging nodes at layers where the size exceeds the width limit ω. In this process, multiple nodes in
a layer are merged into a single node in such a way that all feasible paths of the original DD are
preserved. This merging process consists of creating a new node that replaces the merged nodes
while inheriting their incoming arcs; see Section 3.4 for detailed steps. For the DDs constructed
using Algorithm 2, setting the state value of the new node as the minimum of state values of the
merged nodes ensures that all feasible paths of the original DD are preserved, as shown next.

Proposition 3.3 Consider G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

where g(x) =
∑n
i=1 gi(xi) is separable. Let

D = (U, A, l(.)) be a DD constructed via Algorithm 2 for sub-domain partitions Dji with j ∈ Li for i ∈ [n].
Similarly, let D̄ = (Ū, Ā, l̄(.)) be the DD constructed via Algorithm 2 for the same sub-domain partitions

and the same lower bound calculation rules for computing state values of DD nodes with the following

additional operation. At a certain layer k ∈ [n−1], a collection of nodes {vp1 , vp2 , . . . , vpt} at node layer
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k + 1, for some t ∈ N, are merged into a node ṽ with state value s(ṽ) = minj=1,...,t{s(vpj )}. Then,

Sol(D) ⊆ Sol(D̄).

Proof Consider a solution x̂ ∈ Sol(D) encoded by the arc sequence {a1, a2, . . . , an} of D, i.e., x̂i = l(ai)
for i ∈ [n]. We show that x̂ ∈ Sol(D̄), i.e., there exists an arc sequence {ā1, ā2, . . . , ān} in D̄ such that
l̄(āi) = l(ai) for i ∈ [n]. Let ui and ūi be the tail nodes of arcs ai and āi in D and D̄, respectively.
We consider two cases.

For the first case, assume that uk+1 /∈ {vp1 , vp2 , . . . , vpt}. Then, it is easy to verify that there
exists an arc sequence {ā1, ā2, . . . , ān} in D̄ such that l̄(āi) = l(ai) for i ∈ [n], because the steps of
Algorithm 2 executed to create this arc sequence is precisely the same as those executed to create
arcs in {a1, a2, . . . , an} of D by definition.

For the second case, assume that uk+1 ∈ {vp1 , vp2 , . . . , vpt}. For each i ∈ [n], it follows from
lines 6 and 10 of Algorithm 2 that arc ai of D is created with the label value equal to the lower

bound Dj
∗
i
i ↓ or upper bound Dj

∗
i
i ↑ of the sub-domain partition Dj

∗
i
i for some j∗i ∈ Li. Further,

according to lines 4–5 of Algorithm 2, the state value of the node ui+1, for i ∈ [n− 1], is calculated

as s(ui+1) = s(ui) + ηi with ηi ≤ gi(xi) for all xi ∈ D
j∗i
i . In this relation, we set s(u1) = 0,

which represents the state value of the root node r as the tail node of arc a1. Using this relation
recursively combined with line 8 of Algorithm 2, we obtain that ξ∗ =

∑n
i=1 ηi, where ηn ≤ gn(xn)

for all xn ∈ Dj
∗
n
n . Since arc an is in the considered arc sequence, we must have that ξ∗ ≤ b due to

line 9 of Algorithm 2.

Next, we identify the arcs in the sequence {ā1, ā2, . . . , ān} as follows. Starting from the root node
r̄ of D̄, for each i ∈ [n−1], we select āi to be the arc that represents the lower or upper bound value of

Dj
∗
i
i that matches the one represented by ai. Such arcs exist because the sub-domain partitions are

the same for D and D̄ by assumption. We compute the state values for the tail nodes of these arcs. It
follows from the assumption that, η̄i = ηi for each i ∈ [n], where η̄i is the lower bound for gi(xi) over

the sub-domain partition Dj
∗
i
i since the same rule for computing a lower bound of functions over each

sub-domain partition is used for both D and D̄. Further, Algorithm 2 implies that s(ūi+1) = s(ūi)+η̄i
for each i ∈ [k−1]. Using the previous argument together with the fact that s(ū1) = 0 due to line 1
of the algorithm, we obtain that s(ūk) = s(uk). Due to the additional merging operation employed
at layer k of D̄, we have s(ūk+1) = s(ṽk+1) ≤ s(uk+1) = s(uk) + ηk = s(ūk) + η̄k, where the
first equality holds because the tail node ūk+1 of arc āk+1 is the merged node by assumption of
this case, the inequality follows from the state value calculation imposed by the merging rule, the
second equality holds because of recursive formulation that was previously shown, and the last
equality follows from the facts that s(ūk) = s(uk) and η̄k = ηk as demonstrated above. Using this
relation along with the recursive formula s(ūi+1) = s(ūi) + η̄i for i = {k, k+ 1, . . . , n−1}, we obtain
s(ūn) ≤

∑n−1
i=1 η̄i. Therefore, it follows from line 8 of Algorithm 2 that ξ̄∗ ≤

∑n
i=1 η̄i =

∑n
i=1 ηi ≤ b,

where ξ̄∗ is an equivalent term to ξ∗ used for D̄, the equality follows from the fact that η̄i = ηi
for i ∈ [n] as derived above, and the last inequality holds because x̂ ∈ Sol(D). We conclude that
the condition in line 9 of Algorithm 2 is satisfied, implying that two arcs with labels equal to the

bounds in Dj
∗
n
n are created to connect ūn to the terminal node t̄ of D̄. Choosing ān to be the arc

with l̄(ān) = l(an), we complete the desired arc sequence.
ut

Using the result of Proposition 3.3, we can control the size of a relaxed DD by merging multiple
node collections at different node layers, as outlined in Algorithm 3. In this algorithm, the merging
operation is performed by the merging oracle Merge(ω, V), where ω is the width limit, and V is the
set of nodes at a particular layer of the DD. This oracle employs a merging policy that identifies one
or more subsets of V whose nodes should be merged according to the merging operation described
in Proposition 3.3 to ensure that the width limit is satisfied. Various merging policies can be
implemented within Merge(ω, V). In Section 3.4, we present two general and effective policies that
can be utilized within this oracle.
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Algorithm 3: Relaxed DD for a separable constraint with merging operation

Data: Set G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

where g(x) =
∑n
i=1 gi(xi) is separable, the

sub-domain partitions Dji with j ∈ Li for i ∈ [n], a width limit ω, and a merging
oracle Merge(ω, V)

Result: A DD D

1 create the root node r in the node layer U1 with state value s(r) = 0
2 create the terminal node t in the node layer Un+1

3 forall i ∈ [n− 1] do

4 forall u ∈ Ui, j ∈ Li do

5 calculate ξ = s(u) + η where η ≤ gi(xi) for all xi ∈ Dji
6 create a node v with state value s(v) = ξ (if it does not already exist) in the node

layer Ui+1

7 add two arcs from u to v with label values Dji ↓ and Dji ↑
8 merge nodes at this layer to satisfy the prescribed width limit by invoking the merging

oracle Merge(ω, Ui+1)

9 forall u ∈ Un, j ∈ Ln do

10 calculate ξ∗ = s(u) + η where η ≤ gn(xn) for all xn ∈ Djn
11 if ξ∗ ≤ b then

12 add two arcs from u to the terminal node t with label values Djn ↓ and Djn ↑

Theorem 3.1 Consider G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

, where g(x) =
∑n
i=1 gi(xi) is separable. Let D

be the DD constructed via Algorithm 3 for some sub-domain partitions Dji with j ∈ Li for i ∈ [n], width

limit ω, and merging oracle Merge(ω, V). Then, conv(G) ⊆ conv(Sol(D)).

Proof We prove the result by decomposing the merging operations used in line 8 of the algorithm
as follows. Starting from lines 1–2 of Algorithm 3, for each i ∈ [n − 1], consider the node layer
Ui+1 after the for-loop 4-7 is completed. Assume that the merging oracle Merge(ω, Ui+1) invoked in
line 8 of the algorithm consists of the merging operations Oi1, O

i
2, . . . , O

i
pi for some pi ∈ {0, 1, . . . },

where Oij indicates the operation for merging nodes in a subset V ij of Ui+1 into a node ṽij with the

state value s(ṽij) = minv∈V ij
{s(v)}. In this definition, pi = 0 means that no merging operation is

used in layer i. Note also that in this definition, the sets V ij are mutually exclusive for each i, i.e.,⋂pi
j=1 V

i
j = ∅, because a node cannot be merged into multiple distinct nodes.

Define D0
0 to be the DD constructed by Algorithm 2 for the same sub-domain partitions and the

same lower bound calculation rules for computing state values that were used for D. Define D1
1 to be

the DD constructed from Algorithm 2 for the same sub-domain partitions and the same lower bound
calculation rules for computing state values that were used for D0

0 with the following additional
operation: At layer i = 1, the nodes in subset V 1

1 of U2 are merged into node ṽ1
1 according to the

merging operation O1
1. Then, it follows from Proposition 3.3 that Sol(D0

0) ⊆ Sol(D1
1). We extend this

process as follows: We define Dij to be the DD constructed from Algorithm 2 for the same sub-domain
partitions and the same lower bound calculation rules for computing state values that were used for
Dij−1 if j > 1, or Di−1

pi if j = 1, with the following additional operation: At layer i, the nodes in subset

V ij of Ui+1 are merged into node ṽij according to the merging operation Oij . In other words, each new
DD has one more merging operation applied at some layer of it compared to the DD constructed in
the previous iteration. Using arguments similar to those in the proof of Proposition 3.3, we can show
that Sol(Dij−1) ⊆ Sol(Dij) if j > 1, and Sol(Di−1

pi ) ⊆ Sol(Dij) if j = 1. Considering this relation for the

sequence of the constructed DDs, we obtain that Sol(D0
0) ⊆ Sol(Dn−1

pn−1
). It follows by construction

that Dn−1
pn−1

is the same as the DD D that is constructed via Algorithm 3 according to the proposition
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statement. Further, Proposition 3.2 implies that conv(G) ⊆ conv(Sol(D0
0)). Combining the above

three statements, we obtain that conv(G) ⊆ conv(Sol(D)).
ut

The following example demonstrates the steps of Algorithm 3 construct relaxed DDs with a
specified size.

Example 3.2 Consider the MINLP set G studied in Example 3.1. Assume that a width limit ω = 2
is imposed. Because the DD constructed via Algorithm 2 in Figure 3.1 does not satisfy this width
limit, we use Algorithm 3 to apply a merging operation at node layers whose size exceed the width
limit. The process of constructing the DD through merging nodes is shown in Figure 3.2. Following
the top-down construction steps, the first and second node layers satisfy the width limit. After the
nodes in the third node layer are created through lines 4–7 of the algorithm, we observe that the
number of nodes in this layer exceeds the width limit, which calls for the merging oracle Merge(ω, U3)
in line 8. According to this oracle, we merge nodes with state values 0 and 0.27, as well as the nodes
with state values 0.76 and 1.03, as depicted in dashed boxes in Figure 3.2a. This merging operation
selects the minimum state value for each pair of merged nodes and updates the incoming arcs
accordingly, as shown in the second layer of Figure 3.2b. During this process, the arcs with labels
1 are removed according to Proposition 3.1 as they are the middle arcs in a group of parallel arcs.
Since the number of nodes in this layer satisfies the width limit, the algorithm proceeds to the last
iteration to create the arcs that are connected to the terminal node. The resulting DD, which we
refer to as D2, is shown in Figure 3.4b.

It is easy to verify that the convex hull of solutions of D2 is equal to the convex hull of the union
of hyper-rectangles

{
[0, 1]× [0, 2]× [0, 2], [1, 2]× [0, 2]× [0, 1]

}
. This yields the polyhedral convex hull

conv(Sol(D2)) =
{

(x1, x2, x3) ∈ [0, 2]3
∣∣x1 + x3 ≤ 3

}
. This set provides a relaxation for the convex

hull of the original set G with strict inclusion, i.e., conv(G) ⊂ conv(Sol(D2)). Furthermore, this set
provides a relaxation for the convex hull of the solutions of the DD constructed in Example 3.1, i.e.,
conv(Sol(D1)) ⊂ conv(G) ⊂ conv(Sol(D2)). This verifies the result of Proposition 3.3, demonstrating
that applying a merging operation to the DD associated with sets that contain separable functions
leads to a relaxation of the initial DD. �

3.3 Relaxed DD for Non-Separable Constraints

In this section, we consider a more general case for constructing DDs corresponding to a constraint
of a MINLP, where the functions involved in the constraint are not separable. In the separable case
discussed in Section 3.2, the state values calculated for a node layer of the DD depend only on
the state values of the nodes in the previous layer and the labels of the arcs in that layer, thereby
satisfying a Markovian property. This property simplifies the construction of the DD. However, in
the non-separable case, the state values calculated for a node layer can be impacted by the arc labels
from any of the preceding layers, due to the interactions between variables in the non-separable
terms. As a result, constructing a relaxed DD in this context is more challenging. In what follows,
we illustrate the methods for constructing such relaxed DDs.

Definition 3.1 Consider a DD D = (U, A, l(.)) with the variable ordering 1, . . . , n. Given a layer
i ∈ [n] and a node v ∈ Ui, we define Aj(v) to be the set of arcs in arc layer j ∈ [i − 1] that
lie on a path from the root node to node v. Further, we define Dj(v) = [Dj(v) ↓,Dj(v) ↑] for
j ∈ [i− 1] to be the sub-domain of variable xj relative to node v. In this definition, the domain lower
bound is calculated as Dj(v) ↓= mina∈Aj(v){l(a)} and the domain upper bound is calculated as
Dj(v)↑= maxa∈Aj(v){l(a)}.
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(a) Merging operation at node layer 3 (b) Relaxed DD representation

Fig. 3.2: Relaxed DD for the set in Example 3.4.

Determining the variable sub-domains relative to a node requires accounting for all paths in
the DD that pass through that node. This can become computationally intensive, especially for
large-scale DDs. The following proposition offers an efficient method for calculating these bounds
by leveraging the top-down construction process of DDs.

Proposition 3.4 Consider a DD D = (U, A, l(.)) with the variable ordering 1, . . . , n. Given a node layer

i ∈ [n] and a node v ∈ Ui, we can calculate Dj(v) = [Dj(v)↓,Dj(v)↑] for j ∈ [i− 1] as follows:

(i) If j = i− 1:

Dj(v)↓= min
a∈δ−(v)

{
l(a)

}
(3.1a)

Dj(v)↑= max
a∈δ−(v)

{
l(a)

}
. (3.1b)

(ii) If j < i− 1:

Dj(v)↓= min
a∈δ−(v)

{
Dj(t(a))↓

}
(3.2a)

Dj(v)↑= max
a∈δ−(v)

{
Dj(t(a))↑

}
. (3.2b)

Proof We prove the results for the lower bound equations (3.1a) and (3.2a) as the proof arguments
for the upper bound equations are similar.

(i) Assume that j = i − 1. In this case, node v ∈ Ui must be the head node of each arc a ∈ Aj(v)
that is on a path from the root node of D to node v. That is, Aj(v) ⊆ δ−(v). On the other hand,
using the DD structure that each node at layer i ∈ {2, . . . , n − 1} is connected to at least one
node in the previous layer, we obtain that each arc a ∈ δ−(v) must be on a path from the root
node to v, i.e., Aj(v) ⊇ δ−(v). Therefore, Aj(v) = δ−(v). As a result, by definition of Dj(v)↓, we
have Dj(v)↓= mina∈Aj(v){l(a)} = mina∈δ−(v)

{
l(a)

}
.
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(ii) Assume that j < i − 1. For the forward direction, consider arc a ∈ Aj(v), i.e., a is on a path
from the root node of D to node v. This path passes through some node u in the node layer i−1
that is connected to node v via arc ȧ, i.e., u = t(ȧ) and ȧ ∈ δ−(v). As a result, a ∈ Aj(u). Using
this relation, we obtain that Aj(v) ⊆

⋃
ȧ∈δ−(v) Aj(t(ȧ)). Therefore, Dj(v)↓= mina∈Aj(v){l(a)} ≥

minȧ∈δ−(v)

{
minâ∈Aj(t(ȧ)){l(â)}

}
= minȧ∈δ−(v)

{
Dj(t(ȧ)) ↓

}
, where the first equality follows

from the definition of Dj(v) ↓, the inequality follows from the previously derived inclusion
argument, and the last equality follows from the definition of Dj(t(ȧ)) ↓. By design, node v

is connected to a node u in the previous node layer Ui−1. For the reverse direction, assume
that mina∈δ−(v)

{
Dj(t(a)) ↓

}
is achieved by arc a∗ ∈ δ−(v), i.e,. Dj(t(a∗)) ↓= l(ā) for some

ā ∈ Aj(t(a∗)). This means that ā is on a path from the root node of D to node t(a∗), which
is the tail node of arc a∗ that connects this node to v. As a result, ā is on a path from the
root node of D to node v, i.e., ā ∈ Aj(v). We can write that Dj(v)↓= mina∈Aj(v){l(a)} ≤ l(ā) =

Dj(t(a∗)) ↓= mina∈δ−(v)

{
Dj(t(a)) ↓

}
, where the first equality follows from the definition of

Dj(v)↓, the inequality holds because ā ∈ Aj(v), and the second and third equalities follow from
the assumptions. Combining both directions, we obtain the equation 3.2a.

ut

The recursive relations (3.1a)–(3.1b) and (3.2a)–(3.2b) provide an efficient method to compute
the values of Dj(v) during the construction of DD layers by updating the lower and upper bound
values of its interval as each new node is created. The next corollary gives the complexity of
these calculations. The proof is omitted, as it directly follows from the application of the recursive
formulas across consecutive DD layers.

Corollary 3.1 Consider a DD D = (U, A, l(.)) with the variable ordering 1, . . . , n. Given a node layer

i ∈ [n] and an arc layer j ∈ [i − 1], the sub-domain of variable xj relative to all nodes in Ui can be

calculated in O(
∑i−1
k=j |Ak|) using the recursive relations (3.1a)–(3.1b) and (3.2a)–(3.2b). ut

Corollary 3.1 shows that the sub-domains of a particular variable in layer j relative to all nodes
in layer i, for any j < i, can be computed in linear time in the number of arcs between layers j
and i. This method makes the calculation of these interval values simple and fast during the DD
construction process.

Next, we introduce an algorithm to build relaxed DDs for non-separable functions. Consider
G =

{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

, where g(x) =
∑q
j=1 gj(xHj ) such that gj(xHj ) : R|Hj | → R is a

non-separable function that contains variables with indices in Hj ⊆ [n]. For each j ∈ [q], define
Hmax
j = maxk∈Hj{k}, which represents the last DD layer that involves a variable in the non-

separable function gj(xHj ).

Similarly to Section 3.2, we will first present an algorithm to construct a DD-based relaxation
for the solutions of G. Then, we will discuss how merging operations can be incorporated to produce
relaxed DDs of the desired size.

Proposition 3.5 Consider G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

, where g(x) =
∑q
j=1 gj(xHj ) such that

gj(xHj ) : R|Hj | → R is a non-separable function that contains variables with indices in Hj ⊆ [n].

Let D be the DD constructed via Algorithm 4 for some sub-domain partitions Dji with j ∈ Li for i ∈ [n].
Then, conv(G) ⊆ conv(Sol(D)).

Proof We show that G ⊆ conv(Sol(D)). Pick x̄ ∈ G. It follows from the definition of G that∑q
k=1 gk(x̄Hk) ≤ b. For each i ∈ [n], let j∗i be the index of a sub-domain partition Dj

∗
i
i in Li

such that x̄i ∈ D
j∗i
i . This index exists because x̄i ∈ Di =

⋃
j∈Li D

j
i , where the inclusion follows from

the fact that x̄ ∈ G, and the equality follows from the definition of sub-domain partitions.

Next, we show that D includes a node sequence {u1, u2, . . . , un+1}, where ui ∈ Ui for i ∈ [n+ 1],

such that each node ui is connected to ui+1 via two arcs with labels Dj
∗
i
i ↓ and Dj

∗
i
i ↑ for each i ∈ [n].
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Algorithm 4: Relaxed DD for a non-separable constraint

Data: Set G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

, where g(x) =
∑q
k=1 gk(xHk) where

gk(xHk) : R|Hk| → R is a non-separable function that contains variables with indices

in Hk, and the sub-domain partitions Dji with j ∈ Li for i ∈ [n]
Result: A DD D

1 create the root node r in the node layer U1 with state value s(r) = 0
2 create the terminal node t in the node layer Un+1

3 forall i ∈ [n], u ∈ Ui, j ∈ Li do

4 forall k ∈ [q] do

5 if i = Hmax
k then

6 calculate ηk such that ηk ≤ gk(xHk) for all xi ∈ Dji and xl ∈ Dl(u) for l ∈ Hk \ {i}
7 else

8 calculate ηk = 0

9 calculate ξ = s(u) +
∑q
k=1 ηk

10 if i < n then

11 create a node v with state value s(v) = ξ (if it does not already exist) in the node
layer Ui+1

12 add two arcs from u to v with label values Dji ↓ and Dji ↑
13 update Dk(v) for all k such that k ∈ Hl for some l > i

14 else if ξ ≤ b then

15 add two arcs from u to the terminal node t with label values Dji ↓ and Dji ↑

Using an argument similar to that in the proof of Proposition 3.2 together with the instructions
in lines 10–12 of Algorithm 4, we conclude that a node sequence {u1, u2, . . . , un} that satisfies the
above conditions exists. We prove this sequence is completed by two arcs directed from node un to

the terminal node t with labels Dj
∗
n
n ↓ and Dj

∗
n
n ↑. To this end, we need to show that the condition

in line 14 of Algorithm 4 is satisfied.

We use induction on layer i ∈ [n] to prove s(ui) ≤
∑
k∈[q]:Hmax

k <i gk(x̄Hk). In words, we show that

the state value of each node ui in the previously picked sequence is no greater than the summation
of non-separable function terms gk(x̄Hk) whose variables have already been visited in the previous
layers of the DD. The induction base for i = 1 follows from line 1 of Algorithm 4 because s(u1) =
s(r) = 0, and the fact that Hmax

k > 0 for all k ∈ [q], implying that
∑
k∈[q]:Hmax

k <i gk(x̄Hk) = 0 by

default. For the inductive hypothesis, assume that s(uî) ≤
∑
k∈[q]:Hmax

k <î gk(x̄Hk) for î ∈ [n − 1].

For the inductive step, we show that s(uî+1) ≤
∑
k∈[q]:Hmax

k <î+1 gk(x̄Hk). It follows from lines 9–11

of Algorithm 4 that s(uî+1) = s(uî) +
∑q
k=1 ηk, where ηk is a lower bound for gk(xHk) for all

xî ∈ D
j∗
î

î
and xl ∈ Dl(uî) for all l ∈ Hk \ {̂i}. Furthermore, we have that

∑
k∈[q]:Hmax

k <î+1 gk(x̄Hk) =∑
k∈[q]:Hmax

k <î gk(x̄Hk) +
∑
k∈[q]:Hmax

k =î gk(x̄Hk). Therefore, to prove the relation in the inductive

step, it suffices to show that
∑q
k=1 ηk ≤

∑
k∈[q]:Hmax

k =î gk(x̄Hk), because s(uî) ≤
∑
k∈[q]:Hmax

k <î gk(x̄Hk)

by the inductive hypothesis. We can rewrite the right-hand-side
∑
k∈[q]:Hmax

k =î gk(x̄Hk) of the above

inequality as
∑q
k=1 φk where φk = gk(x̄Hk) if Hmax

k = î, and φk = 0 otherwise. As a result, it is
sufficient to show that ηk ≤ φk for each k ∈ [q]. There are two cases.

For the first case, assume that Hmax
k 6= î. Then, it follows from line 7–8 of Algorithm 4 that

ηk = 0. Additionally, the definition of φk implies that φk = 0, which proves the desired inequality.
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For the second case, assume that Hmax
k = î. It follows from the arguments in the first paragraph

of the proof that x̄i ∈ D
j∗i
i for all i ∈ [n]. Further, we have established that {u1, u2, . . . , uî} is a node

sequence such that each node ul is connected to ul+1 via two arcs a1
l and a2

l with labels Dj
∗
l

l ↓ and

Dj
∗
l

l ↑ for l = 1, . . . , î−1. By definition of Hmax
k , we must have that Hk\{̂i} ⊆ {1, . . . , î−1}. Therefore,

for each l ∈ Hk \ {̂i}, the arcs a1
l and a2

l must be in Al(uî) because they are on some paths from r

to uî. We can write that Dl(uî)↓≤ D
j∗l
l ↓≤ x̄l, where the first inequality follows from the definition

of Dl(uî) in Definition 3.1, and the second inequality follows from the fact that x̄l ∈ D
j∗l
l . Similarly,

we can write that Dl(uî)↑≥ D
j∗l
l ↑≥ x̄l. This yields x̄l ∈ Dl(uî). Additionally, we have argued that

x̄î ∈ D
j∗
î

î
. Therefore, it follows from the definition of ηk that ηk ≤ gk(x̄Hk) = φk, obtaining the

desired inequality.

For the next step of the proof, we show that the condition in line 14 of Algorithm 4 is satisfied,
i.e., ξ∗ = s(un) +

∑q
k=1 η

∗
k ≤ b, where we use ∗ to distinguish the values of ξ and ηk calculated

at the last layer i = n from those calculated in the previous part for layers i < n. It follows
from the above induction result that s(un) ≤

∑
k∈[q]:Hmax

k <n gk(x̄Hk). Using an argument similar

to that used in the above induction steps, we can show that, for each k ∈ [q], we have η∗k ≤
gk(x̄Hk) if Hmax

k = n, and η∗k = 0 otherwise. Aggregating the above two inequalities, we obtain that
s(un) +

∑q
k=1 η

∗
k ≤

∑
k∈[q]:Hmax

k <n gk(x̄Hk) +
∑
k∈[q]:Hmax

k =n gk(x̄Hk). The right-hand-side of this

inequality can be rewritten as
∑
k∈[q] gk(x̄Hk) because Hmax

k ≤ n for all k ∈ [q] by definition. On the

other hand, the definition of G implies that
∑q
k=1 gk(x̄Hk) ≤ b. Combining the above inequalities,

we conclude that s(un) +
∑q
k=1 η

∗
k = ξ∗ ≤ b, which satisfies the condition in line 14 of Algorithm 4.

Therefore, line 15 of Algorithm 4 implies that two arcs with label values Dj
∗
n
n ↓ and Dj

∗
n
n ↑ connect

node un to the terminal node t which can be considered as un+1, completing the desired node
sequence.

Now consider the collection of points x̃κ for κ ∈ [2n] encoded by all paths composed of the

above-mentioned pair of arcs with labels Dj
∗
i
i ↓ and Dj

∗
i
i ↑ between each two consecutive nodes ui

and ui+1 in the sequence {u1, u2, . . . , un+1}. Therefore, x̃κ ∈ Sol(D) for κ ∈ [2n]. It is clear that

these points form the vertices of an n-dimensional hyper-rectangle defined by
∏n
i=1[Dj

∗
i
i ↓,D

j∗i
i ↑].

By construction, we have that x̄ ∈
∏n
i=1[Dj

∗
i
i ↓,D

j∗i
i ↑], i.e., x̄ is a point inside the above hyper-

rectangle. As a result, x̄ can be represented as a convex combination of the vertices x̃κ for κ ∈ [2n]
of the hyper-rectangle, yielding x̄ ∈ conv(Sol(D)).

ut

The following example illustrates the steps of Algorithm 5 for an MINLP set with a non-
separable term.

Example 3.3 Consider a nonconvex MINLP set G =
{
x ∈

∏3
i=1Di

∣∣∣−x2
1 + x2 − x1x3 ≤ −1

}
, where

D1 = {0, 1, 2}, D2 = {0, 1}, and D3 = [0, 1]. Following the definition of sets studied in this section,
we have g(x) = g1(x1) + g2(x2) + g3(x1, x3) where g1(x1) = −x2

1, g2(x2) = x2, and g3(x1, x3) =
−x1x3. Further, we obtain Hmax

1 = 1, Hmax
2 = 2, and Hmax

3 = 3. The feasible region of G can
be represented as the following union of hyper-rectangles: G =

{
{1} × {0} × [0, 1], {1} × {1} ×

[0, 1], {2} × {0} × [0, 1], {2} × {1} × [0, 1]
}

. Therefore, we can obtain the convex hull of this set as
conv(G) = [1, 2]× [0, 1]× [0, 1].

To obtain a relaxation for this set based on DDs, we apply Algorithm 4 with sub-domain
partitions D1

1 = [0, 0], D2
1 = [1, 1], D3

1 = [2, 2] for x1 as a discrete variable, D1
2 = [0, 0], D2

2 = [1, 1]
for x2 as a binary variable, and D1

3 = [0, 1] for x3 as a continuous variable. Following the steps of
the algorithm, we obtain the DD D3 presented in Figure 3.3, where the numbers next to each arc
represent the arc label, and the numbers inside each node show the state value of the node. To
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illustrate the state value computation of non-separable terms, consider the node with state value 1
at node layer 3, which we refer to as u ∈ U3 with s(u) = 1. In line 6 of the algorithm, a lower bound
η3 for g3(x1, x3) must be calculated over the domain x3 ∈ D1

3 and x1 ∈ D1(u). Since there is one
path from the root node to u with arc label 0 for variable x1, we obtain D1(u) = [0, 0]. Therefore,
η3 can be set to 0. Similarly, we set η1 = η2 = 0 in line 8 of the algorithm because Hmax

1 6= 3 and
Hmax

2 6= 3. Therefore, we obtain ξ = s(u) +
∑3
i=1 η3 = 1. Since ξ � −1, the condition in line 14 of

the algorithm is not satisfied, implying that node u is not connected to the terminal node.

Now consider the node with state value 0 at node layer 3, which we refer to as v ∈ U3 with
s(v) = 0. In line 6 of the algorithm, a lower bound η3 for g3(x1, x3) must be calculated over the
domain x3 ∈ D1

3 and x1 ∈ D1(v). Since there are two paths from the root node to v with arc labels
0 and 1 for variable x1, we obtain D1(v) = [0, 1]. Therefore, η3 can be set to −1. Similarly, we set
η1 = η2 = 0 in line 8 of the algorithm because Hmax

1 6= 3 and Hmax
2 6= 3. Therefore, we obtain

ξ = s(v)+
∑3
i=1 η3 = −1. Since ξ ≤ −1, the condition in line 14 of the algorithm is satisfied, implying

that node v is connected to the terminal node by two arcs with labels 0 and 1. The calculation for
other nodes can be carried out similarly, which yields the DD in Figure 3.3a. Since there is a node
at layer 3 that is not connected to the terminal node, we can reduce the size of the DD by removing
that node and its incoming arc as it does not lead to a feasible path, which yields a reduced DD in
Figure 3.3b. It is easy to verify that conv(Sol(D3)) =

{
(x1, x2, x3) ∈ [0, 2]×[0, 1]×[0, 1]

∣∣x2−x1 ≤ 0
}

.
This set provides a relaxation for the convex hull of the original set G with strict inclusion, i.e.,
conv(G) ⊂ conv(Sol(D3)). �

(a) Original DD representation (b) Reduced DD representation

Fig. 3.3: Relaxed DD for the set in Example 3.3.

Similarly to the case with separable functions discussed in Section 3.2, we can control the size
of the DD constructed via Algorithms 4 by adjusting the number of sub-domain partitions and
employing a merging operation. In particular, Algorithm 5 incorporates a merging oracle after
the nodes in each DD layer are created to ensure that the prescribed width limit is satisfied.
The correctness of this algorithm in providing a relaxation for the convex hull of the solution
set described by a non-separable function is established in Theorem 3.2. This method is further
illustrated in Example 3.4.
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Algorithm 5: Relaxed DD for a non-separable constraint

Data: Set G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

with g(x) =
∑q
k=1 gk(xHk) where

gk(xHk) : R|Hk| → R is a non-separable function that contains variables with indices

in Hk, the sub-domain partitions Dji with j ∈ Li for i ∈ [n], a width limit ω, and a
merging oracle Merge(ω, V)

Result: A DD D

1 create the root node r in the node layer U1 with state value s(r) = 0
2 create the terminal node t in the node layer Un+1

3 forall i ∈ [n] do

4 forall u ∈ Ui, j ∈ Li do

5 forall k ∈ [q] do

6 if i = Hmax
k then

7 calculate ηk such that ηk ≤ gk(xHk) for all xi ∈ Dji and xl ∈ Dl(u) for
l ∈ Hk \ {i}

8 else

9 calculate ηk = 0

10 calculate ξ = s(u) +
∑q
k=1 ηk

11 if i < n then

12 create a node v with state value s(v) = ξ (if it does not already exist) in the
node layer Ui+1

13 add two arcs from u to v with label values Dji ↓ and Dji ↑
14 update Dk(v) for all k such that k ∈ Hl for some l > i

15 else if ξ ≤ b then

16 add two arcs from u to the terminal node t with label values Dji ↓ and Dji ↑

17 if i < n then

18 merge nodes at this layer to satisfy the prescribed width limit by invoking the
merging oracle Merge(ω, Ui+1)

Theorem 3.2 Consider G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

with g(x) =
∑q
j=1 gj(xHj ) where gj(xHj ) :

R|Hj | → R is a non-separable function that contains variables with indices in Hj ⊆ [n]. Let D be the DD

constructed via Algorithm 5 for some sub-domain partitions Dji with j ∈ Li for i ∈ [n], width limit ω,

and merging oracle Merge(ω, V). Then, conv(G) ⊆ conv(Sol(D)).

Proof Most of the proof steps are similar to those in Proposition 3.5, with an additional step to
account for the impact of the merging operation on calculating the state values of each node.
Throughout this proof, we reference the proof of Proposition 3.5 for the parts that follow from
similar arguments provided therein. We show that G ⊆ conv(Sol(D)). Pick x̄ ∈ G. It follows from
the definition of G that

∑q
k=1 gk(x̄Hk) ≤ b. For each i ∈ [n], let j∗i be the index of a sub-domain

partition Dj
∗
i
i in Li such that x̄i ∈ D

j∗i
i . This index exists because x̄i ∈ Di =

⋃
j∈Li D

j
i where the

inclusion follows from the fact that x̄ ∈ G, and the equality follows from the definition of sub-domain
partitions.

Next, we show that D includes a node sequence {u1, u2, . . . , un+1}, where ui ∈ Ui for i ∈ [n+ 1],

such that each node ui is connected to ui+1 via two arcs with labels Dj
∗
i
i ↓ and Dj

∗
i
i ↑ for each i ∈ [n].

Using an argument similar to that in the proof of Proposition 3.5 together with the instructions
in lines 11–13 of Algorithm 5 and the fact that the incoming arcs of a node are preserved through



20 Danial Davarnia, Mohammadreza Kiaghadi

the merging operation, we conclude that a node sequence {u1, u2, . . . , un} that satisfies the above
conditions exists. We prove this sequence is completed by two arcs directed from node un to the

terminal node t with labels Dj
∗
n
n ↓ and Dj

∗
n
n ↑. To this end, we need to show that the condition in

line 15 of Algorithm 5 is satisfied.

To achieve this goal, we use induction on layer i ∈ [n] to prove s(ui) ≤
∑
k∈[q]:Hmax

k <i gk(x̄Hk).

In words, we show that the state value of each node ui in the previously picked sequence is no
greater than the summation of non-separable function terms gk(x̄Hk) whose variable have al-
ready been visited in the previous layers of the DD. The induction base for i = 1 follows from
line 1 of Algorithm 5 due to s(u1) = s(r) = 0 and the fact that Hmax

k > 0 for all k ∈ [q],
implying that

∑
k∈[q]:Hmax

k <i gk(x̄Hk) = 0 by default. For the inductive hypothesis, assume that

s(uî) ≤
∑
k∈[q]:Hmax

k <î gk(x̄Hk) for î ∈ [n − 1]. For the inductive step, we show that s(uî+1) ≤∑
k∈[q]:Hmax

k <î+1 gk(x̄Hk). To calculate s(uî+1), we consider two cases for uî+1.

For the first case, assume that uî+1 is not a merged node created through the merging oracle
Merge(ω, V). Therefore, this node must have been created through lines 11–13 of Algorithm 5. This
case falls into the settings for Proposition 3.5. Consequently, we can use arguments similar to those
in the proof of Proposition 3.5 to show that s(uî+1) ≤

∑
k∈[q]:Hmax

k <î+1 gk(x̄Hk).

For the second case, assume that uî+1 is a merged node created through the merging oracle
Merge(ω, V). Therefore, before reaching line 18 of Algorithm 5, there must have been a node v in
layer î + 1 created in lines 11–13 of the algorithm, with arcs connected to uî with label values

Dj
∗
î

î
↓ and Dj

∗
î

î
↑, which is subsequently merged into node uî+1 after executing the merging oracle

Merge(ω, V) in line 18 of the algorithm. As a result, we can use an argument similar to that of the
first case above to show that s(v) ≤

∑
k∈[q]:Hmax

k <î+1 gk(x̄Hk). Since v is merged into uî+1, it follows

from the merging rule that s(uî+1) ≤ s(v), yielding s(uî+1) ≤
∑
k∈[q]:Hmax

k <î+1 gk(x̄Hk).

The remainder of the proof follows from arguments similar to those in the proof of Proposi-
tion 3.5.

ut

Example 3.4 Consider the MINLP set G studied in Example 3.3. Assume that a width limit ω = 2
is imposed. Since the DD constructed via Algorithm 4 in Figure 3.3 does not satisfy this width
limit, we employ Algorithm 5 to apply a merging operation at layers whose size exceeds the width
limit. The process of constructing the DD through merging nodes is shown in Figure 3.4. The first
node layer contains the root node with state value 0. After the nodes in the second node layer
are created through lines 3–14 of the algorithm, we observe that the number of nodes in this layer
exceed the width limit, thereby calling the merging oracle Merge(ω, U2) in line 18. According to
this oracle, we merge nodes with state values −1 and −4, as shown in Figure 3.4a. The algorithm
proceeds with creating the next layer which contains four nodes as shown in Figure 3.4b. Similarly
to the previous layer, the merging oracle Merge(ω, U3) is called to merge nodes with state values 1
and 0, as well as the nodes with state values −4 and −3 as depicted in dashed boxes in Figure 3.4b.
Since the number of nodes in this layer satisfies the width limit, the algorithm continues to the last
iteration to create the arcs that are connected to the terminal node. Through a calculation similar
to that in Example 3.3, we conclude that the node with state value 0 in the node layer 3 cannot
be connected to the terminal node as it does not satisfy the condition in line 15 of Algorithm 5.
In contrast, the node with state value −4 is connected to the terminal node via two arcs with
labels 0 and 1. The resulting DD, which we refer to as D4, is shown in Figure 3.4c. To reduce the
size of the DD, we can remove the nodes that are not connected to the terminal node together
with their incoming arcs to obtain a reduced DD shown in Figure 3.4d. It is easy to verify that
conv(Sol(D4)) = [0, 2] × [0, 1] × [0, 1]. This set matches the convex hull of the original set G, i.e.,
conv(G) = conv(Sol(D4)). �
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(a) Merging operation at node layer 2 (b) Merging operations at node layer 3

(c) Relaxed DD representation (d) Reduced DD representation

Fig. 3.4: Relaxed DD for the set in Example 3.4.

Theorem 3.2 implies that applying a merging operation at the layers of a DD that models
non-separable functions can effectively reduce the size of the DD while still providing a relaxation
for the underlying set. This result is analogous to Theorem 3.1 for separable functions. However,
there is an interesting and notable difference in how the merging operation impacts the relaxations
produced for the separable and non-separable cases. In the separable case, the merging operation
exhibits a sequential relaxation property. This means that the operation can be decomposed into a
sequence of steps, with each step providing a relaxation for the set obtained from the previous step.
This property is formalized in Proposition 3.3, which is used to establish Theorem 3.1. In contrast,
the sequential relaxation property does not apply to the non-separable case. Specifically, merging
nodes at the layers of a DD that uses node backtracking, as in Algorithm 4, while still providing a
relaxation for the original set, does not necessarily provide a relaxation for the solution set of the
DD itself.
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This result may initially seem counterintuitive because merging operations are traditionally
associated with weakening the relaxation, as they often lead to underestimating the state value of
some nodes in the DD. However, when dealing with functions that include non-separable terms,
the impact of merging operations extends beyond just the state values of individual nodes. Merging
nodes at a given layer of a DD not only directly affects the state values of those nodes but also
indirectly alters the structure of the DD by regrouping the arcs that can reach specific nodes in
subsequent layers. This restructuring can significantly influence how state values are computed in
later layers, potentially leading to stronger relaxations rather than weaker ones. As a result, the
DD obtained after applying merging operations may not necessarily provide a relaxation of the
original DD. This phenomenon can be illustrated by comparing the DDs from the separable and
non-separable cases in Examples 3.1 and 3.2 for the former, and Examples 3.3 and 3.4 for the
latter. For the separable case, as discussed in Examples 3.1 and 3.2, we have conv(D1) ⊂ conv(D2),
where D2 is obtained by applying the merging operation at some layers of D1. However, in the
non-separable case discussed in Examples 3.3 and 3.4, the relationship between the DDs changes.
In particular, we have conv(D3) * conv(D4), even though D3 is derived by merges some nodes of D4.
Instead, the opposite inclusion holds, i.e., conv(D4) ⊂ conv(D3). This inversion occurs because the
merging operation regrouped the arcs in layer 1 in a manner that strengthened the relaxation of
the bilinear term −x1x3 in layer 3, leading to a tighter overall relaxation. This example highlights
the nuanced effects of merging operations in non-separable DDs and demonstrates that, contrary
to what one might expect, these operations can sometimes result in stronger relaxations rather
than weaker ones.

The foundation of our DD solution framework lies in constructing outer approximations for
the MINLP by convexifying the feasible regions defined by its individual constraints. However, a
valuable feature that can enhance both the flexibility and strength of our method is the ability to
convexify the feasible region defined by an intersection of multiple constraints simultaneously. The
following remark outlines two approaches that can be employed to achieve this feature.

Remark 3.1 Consider sets Gk defined in (2.2) for k ∈ K. The first approach for representing the
intersection of multiple constraints via DDs involves the following steps: (i) Begin by constructing a
separate DD Dk corresponding to each constraint Gk for k ∈ K using the appropriate algorithms such
as Algorithms 2–5, depending on whether the constraints are separable or non-separable; and (ii)
intersect the resulting DDs using the well-known “conjoining” technique, which yields a DD D̄ whose
feasible solutions consist of the solutions feasible to all individual DDs, i.e., Sol(D̄) =

⋂
k∈K Sol(Dk);

see [11] for a detailed exposition to the conjoining technique.

The second approach involves directly constructing a DD D̃ that represents the feasible region
defined by the intersected constraints, i.e., Sol(D̃) =

⋂
k∈K G

k. The construction procedure follows
a similar process to that outlined in Algorithms 2–5, with a key difference: for each node in the
DD, instead of a single state value, there will be a vector of state values. Each component of this
vector corresponds to the state values calculated according to the algorithms for each individual
constraint Gk. In the final step of these algorithms, a node at layer n is connected to the terminal
node if and only if the last if-condition is satisfied for all components of the state value vector.

3.4 Merging Policies

In Algorithms 3 and 5, the merging oracle Merge(ω, U) plays a critical role by providing a policy
by merging subsets of nodes U in a DD layer to satisfy the prescribed DD width ω. As noted in
Example 3.4 and its subsequent discussions, this merging policy significantly impacts the quality of
the relaxation represented by a DD. Various general-purpose and problem-specific merging policies
can be developed to achieve specific properties for the relaxed DD set. In this section, we introduce
two of the most effective and versatile merging oracles that can be applied to any MINLP structures.
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The first merging oracle, denoted by Mergef (.), is described in Algorithm 6. This algorithm
takes as inputs a width limit ω and a set of nodes Ui = {u1, u2, . . . , uκ} in a DD layer i > 1, where
κ = |Ui|. The merging policy used in this algorithm merges the κ − ω + 1 nodes with the lowest
state values to ensure that the width limit is satisfied. This approach aims to group nodes that are
more likely to be part of feasible paths in the DD due to their minimal state value contribution
at this layer. The following result shows that the time complexity of Algorithm 6 depends on the
width limit and the number of sub-domain partitions, both of which can be controlled by the user.

Proposition 3.6 Consider a node set Ui created in layer i > 1 of a DD D through Algorithm 3 or

Algorithm 5. Let ω be the width limit and Li−1 be the index set of sub-domain partitions at layer i− 1.

Then, Algorithm 6 implements the merging policy defined by Mergef (ω, Ui) with a time complexity of

O(τ log(τ)), where τ = ω|Li−1|.

Proof The runtime complexity of Algorithm 6 is O(|Ui| log(|Ui|) + |Ai−1|) since O(|Ui| log(|Ui|) is the
complexity of sorting elements in Ui in line 2 of the algorithm, and |Ai−1| is an upper bound for
the number of incoming arcs that are updated in line 5 of the algorithm. Since the node set Ui is
created through Algorithm 3 or Algorithm 5, the number of nodes in this layer can be bounded by
the prescribed width limit and the number of sub-domain partitions in that layer. In particular, we
have |Ui| ≤ ω|Li−1|. This is because of the for-loops in line 4 of Algorithms 3 and 5, which imply
that for each node v ∈ Ui−1 and each sub-domain partition j ∈ Li−1, one new node can be created
in layer i as shown in line 6 of Algorithms 3 and line 12 of Algorithm 5. Because the previous
DD layers satisfy the width limit, we have that |Ui−1| ≤ ω. Similarly, the arcs in layer Ai−1 are
created within the same for-loops in line 7 of Algorithms 3 and line 13 of Algorithm 5, yielding
|Ai−1| ≤ 2ω|Li−1|. Therefore, we obtain the time complexity O(τ log(τ)) for the algorithm. ut

Algorithm 6: Merging oracle Mergef (.)

Data: Set Ui in a DD layer i, a width limit ω
Result: A modified set Ui that satisfies the width limit

1 if |Ui| > ω then

2 sort the node indices in Ui based on their state values, i.e., {uj1 , uj2 , . . . , ujκ} such that
s(uj1) ≤ s(uj2) ≤ . . . , s(ujκ)

3 create a node v in Ui and assign its state value
s(v) = min

{
s(uj1), s(uj2), . . . , s(ujκ−ω+1

)
}

4 forall k ∈ [κ− ω + 1] do

5 disconnect the incoming arcs of ujk from it and connect them to v

6 delete node ujk from Ui

The second merging oracle, denoted by Mergeg(.), is given in Algorithm 7. Similar to Algorithm 6,
the inputs are the node sets Ui and a width limit ω. This merging oracle divides the entire range
of state values of nodes in Ui into ω sub-ranges, then merges all nodes within each sub-range. The
rationale behind this approach is to group nodes with similar state values as merging candidates,
thereby reducing the variation in new paths created by merging, hence yielding a tighter relaxation.
The next result shows the time complexity of Algorithm 6. The proof is omitted as it follows from
arguments similar to those presented in Proposition 3.6.

Proposition 3.7 Consider a node set Ui created in layer i > 1 of a DD D through Algorithm 3 or

Algorithm 5. Let ω be the width limit and Li−1 be the index set of sub-domain partitions at layer i− 1.

Then, Algorithm 7 implements the merging policy defined by Mergeg(ω, Ui) with a time complexity of

O(τ log(τ)), where τ = ω|Li−1|.
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Algorithm 7: Merging oracle Mergeg(.)

Data: Set Ui in a DD layer i, a width limit ω
Result: A modified set Ui that satisfies the width limit

1 if |Ui| > ω then

2 sort the node indices in Ui based on their state values, i.e., Us = {uj1 , uj2 , . . . , ujκ} such
that s(uj1) ≤ s(uj2) ≤ . . . , s(ujκ)

3 calculate the merging interval length γ =
(
s(ujκ)− s(uj1)

)
/ω

4 forall k ∈ [ω] do

5 create a node vk in Ui and assign its state value s(v) = minl∈π{s(ul)}, where π is
the set of indices of nodes in Ui whose state value lie within[
s(uj1) + (k − 1)γ, s(uj1) + kγ

]
6 forall l ∈ π do

7 disconnect the incoming arcs of ul from it and connect them to vk
8 delete node ul from Ui

3.5 Lower Bound Calculation Rules

A key step in constructing DDs using Algorithms 2–5 is calculating a lower bound for constraint
terms, which is used for determining the state values of each node. In this section, we discuss the
methods that can be employed to calculate these bounds.

The first approach leverages factorable decomposition, a widely used technique for obtaining
convex relaxations of MINLPs in existing global solvers. Consider a factorable function g(x) :
Rn → R, i.e., it can be decomposed into simpler terms with known convex hull representations over
box domains. The goal is to find a lower bound η for g(x) over the box domain described by xi ∈ Di
for all i ∈ [n]. Let S be the convex relaxation (possibly in a higher dimension) for the set

{
(x, z) ∈∏n

i=1Di×R
∣∣ z = g(x)

}
obtained by applying the factorable decomposition technique. Since S may

be defined in a higher-dimensional space, we represent its solutions as a vector (x, z,y) ∈ Rn+1+p,
where components y ∈ Rp are auxiliary variables introduced during the factorable decomposition
process. The desired lower bound can then be computed as η = min

{
z
∣∣(x, z,y) ∈ S

}
. This results

in a convex program that can be solved using various existing convex optimization methods.

Although convex programs can be solved in polynomial time, repeatedly invoking a convex solver
for a large number of nodes in DD layers can be computationally intensive. Moreover, there are
several applications, such as those discussed in Section 6, where the underlying nonlinear functions
are not factorable, making them unsuitable for the factorable decomposition approach outlined
above. Therefore, it is critical to develop an alternative method that can efficiently find lower bounds
for a broader class of nonlinear functions when constructing large DDs. Our proposed method
addresses this by leveraging the monotone properties of the underlying function, as described
below. In the following definition, given a vector x ∈ Rn, we denote by x−i a replica of the vector
x with component i ∈ [n] is removed.

Definition 3.2 Consider a function g(x) : Rn → R and a box domain described by xi ∈ Di for
all i ∈ [n]. For each i ∈ [n], we denote by g(xi, x̄−i) : R → R the univariate restriction of g(x)
in the space of xi where variables xj are fixed at x̄j for all j ∈ [n] \ {i}. We say that g(xi, x̄−i)
is monotonically non-decreasing (resp. non-increasing) over Di if g(x̂) ≤ g(x̃) for any pair of points
x̂, x̃ ∈ Rn such that x̂j = x̃j = x̄j for j ∈ [n] \ {i}, x̂i, x̃i ∈ Di, and x̂i ≤ x̃i (resp. x̂i ≥ x̃i). Further,
we say that g(x) is monotone over

∏n
i=1Di if its univariate restriction g(xi, x̄−i) is monotonically

non-decreasing or non-increasing over Di for each i ∈ [n] and all fixed values x̄j ∈ Dj for j ∈ [n]\{i}.
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Next, we demonstrate how the monotone property of functions can be used to efficiently find a
lower bound by evaluating the function at a specific point within its domain.

Proposition 3.8 Consider a monotone function g(x) : Rn → R over a box domain described by xi ∈
Di for all i ∈ [n]. Then, the minimum value of g(x) over the above box domain can be calculated as

η = g(x̃) where x̃i = Di ↓ if g(xi, x̄−i) is monotonically non-decreasing, and x̃i = Di ↑ if g(xi, x̄−i) is

monotonically non-increasing, for each i ∈ [n] and all fixed values x̄j ∈ Dj for j ∈ [n] \ {i}.

Proof Assume by contradiction that g(x̃) is not the minimum value of g(x) over the box domain∏n
i=1Di. Then, there exists a point x̂ ∈

∏n
i=1Di such that g(x̂) < g(x̃). Since x̂ 6= x̃, there must exist

indexes i1, i2, . . . , ip for some 1 ≤ p ≤ n such that x̂ij 6= x̃ij for each j ∈ [p]. For each such j, construct

x̂j to be the point where x̂jk = x̂j−1
k for k 6= ij , and x̂jij = Dij ↓ if g(xij , x̂−ij ) is monotonically

non-decreasing over Dij , and x̂jij = Dij ↑ if g(xij , x̂−ij ) is monotonically non-increasing over Dij . In

this definition, we set x̂0 = x̂. Further, the description of x̃ in the proposition statement implies
that x̂p = x̃. It follows from Definition 3.2 that g(x̂) = g(x̂0) ≥ g(x̂1) ≥ . . . ≥ g(x̂p) = g(x̃). This is
a contradiction to the initial assumption that g(x̂) < g(x̃). ut

In practice, many nonlinear functions satisfy the monotone property as defined in Definition 3.2,
enabling the use of a fast method, as outlined in Proposition 3.8, to calculate lower bounds when
constructing DDs for those functions. For example, consider a general polynomial function com-
monly used in MINLP models, defined as g(x) =

∏n
i=1 x

αi
i with αi ∈ R for i ∈ [n]. It is easy to verify

that g(x) is monotone over each orthant. As another advantage, the monotone property facilitates
the calculation of lower bounds for non-factorable functions that are not suitable for factorable
decomposition, as demonstrated in the following example.

Example 3.5 Consider the `p-norm function g(x) = ||x||p =
(∑n

i=1 x
p
i

)1/p
, for p ∈ (0,∞). This

function can be convexified using factorable decomposition method over a box domain
∏n
i=1Di in

the positive orthant. Let S be the convex relaxation described by convexifying individual constraints
of the following decomposed formulation of the model

z = y
1/p
0

y0 =
n∑
i=1

yi

yi = xpi ∀i ∈ [n]

xi ∈ Di ∀i ∈ [n].

According to the previous arguments, minimizing z over S provides a lower bound for g(x) over its
box domain. Alternatively, we can use Proposition 3.8 to calculate this lower bound because g(x) is
monotone over its imposed domain. An advantage of the latter approach is that it can be executed
directly in the space of the original variables, eliminating the need to introduce auxiliary variables
and additional constraints to handle decoupled terms, as required by the factorable decomposition
approach.

Now consider the `0-norm function h(x) = ||x||0 =
∑n
i=1 I(xi) over the above box domain∏n

i=1Di, where I(xi) = 0 if xi = 0, and I(xi) = 1 otherwise. This function is not factorable, making
it not unsuitable for application of factorable decomposition. In contrast, it is easy to verify that
h(x) is monotone over its box domain. Therefore, we can use Proposition 3.8 to calculate its lower
bound. �

Despite the wide range of functions that satisfy the monotone property, some functions do not
exhibit this property due to the presence of variables in multiple positions, breaking the monotonic
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patterns of their univariate restrictions. For instance, consider the function g(x1, x2) =
x4

2 e
−x2

arctan(x1)+1

over the positive orthant. It is clear that the univariate restriction of g(x1, x2) in the space of

x1, i.e., g(x1, x̄−1) =
x̄4

2 e
−x̄2

arctan(x1)+1 , is monotonically non-increasing over this domain. However, the

univariate restriction of g(x1, x2) in the space of x2, i.e., g(x2, x̄−2) =
x4

2 e
−x2

arctan(x̄1)+1 , is not monotone.

Consequently, the method of Proposition 3.8 cannot be used to find a lower bound for g(x1, x2). To
address such function structures, we employ a technique referred to as re-indexing, which is outlined
next.

Definition 3.3 Consider a function g(x) : Rn → R. Define the re-indexed function grx(y) of g(x)
by substituting the variables x with variables y such that each yi variable appears only once in the
function’s expression. If variable yj substitutes variable xi in the re-indexed function, we denote
the relation between these indices by the mapping R(j) = i.

In the example discussed previously, the re-indexed function of g(x1, x2) is grx(y1, y2, y3) =
y4

1 e
−y2

arctan(y3)+1 , where R(1) = 2, R(2) = 2, and R(3) = 1. It is easy to verify that grx(y1, y2, y3) is

monotone over the positive orthant, allowing the application of Proposition 3.8 to calculate its
lower bound. The next proposition shows that this lower bound can also serve as a lower bound
for the original function g(x1, x2).

Proposition 3.9 Consider a function g(x) : Rn → R over a box domain described by xi ∈ Di for all

i ∈ [n]. Let grx(y) : Rp → R be the re-indexed function of g(x) with re-index mapping R(.). Assume that

grx(y) is monotone over the box domain described by yj ∈ DR(j) for all j ∈ [p]. Then, a lower bound

for g(x) over the above box domain can be calculated as η = grx(ỹ) where ỹj = DR(j) ↓ if grx(yj , ȳ−j)
is monotonically non-decreasing, and ỹj = DR(j) ↑ if grx(yj , ȳ−j) is monotonically non-increasing, for

each j ∈ [p] and all fixed values ȳk ∈ DR(k) for k ∈ [p] \ {j}.

Proof Since grx(y) is monotone over the box domain described by yj ∈ DR(j) for all j ∈ [p], Propo-

sition 3.8 implies that η is the minimum of grx(y) over this box domain, i.e., η = min
{
grx(y)

∣∣y ∈∏p
j=1DR(j)

}
. Now consider point x∗ ∈

∏n
i=1Di that achieves the minimum of g(x) over the box

domain
∏n
i=1Di, i.e., g(x∗) ≤ g(x) for all x ∈

∏n
i=1Di. Construct the point y∗ ∈ Rn such that y∗j =

x∗R(j) for all j ∈ [p]. Therefore, for each x ∈
∏n
i=1Di, we can write that g(x) ≥ g(x∗) = grx(y∗) ≥ η,

where the first inequality holds because of the previous argument, the first equality follows from
the definition of grx(y), and the second inequality is due to the first argument in the proof. As a
result, η is a lower bound for g(x) over the above box domain

∏n
i=1Di.

ut

From a practical standpoint, the combination of exploiting the monotone property of functions
as outlined in Proposition 3.8, the re-indexing technique described in Proposition 3.9, and the
DD intersection method discussed in Remark 3.1 offers a unique and powerful modeling tool for
constructing relaxed DDs across a wide range of MINLP structures. In fact, our observations suggest
that these techniques can handle most structures in the MINLP library, including the most complex
types that remain unsolved due to their inadmissibility by state-of-the-art global solvers; see the
computational studies in Section 6.

3.6 Time Complexity of Algorithms

In this section, we analyze the time complexity of Algorithms 3 and 5, incorporating the merging
policies outlined in Section 3.4 and lower bound calculation rules discussed in Section 3.5. Specifi-
cally, for all these algorithms, we assume that the lower bounds on the functions, whether separable
or non-separable, are calculated using the monotone property and the re-indexing technique de-
scribed in Section 3.5. Proposition 3.10 presents the time complexity results for the algorithm that
constructs a DD corresponding to constraints with separable functions, as developed in Section 3.2.



A graphical global solver for MINLPs 27

Proposition 3.10 Consider set G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

where g(x) =
∑n
i=1 gi(xi) is separable,

the sub-domain partitions Dji with j ∈ Li for i ∈ [n], a width limit ω, and a merging oracle Merge(ω, V)
described in Algorithm 6 or 7. Then, Algorithm 3 constructs a DD D = (U, A, l(.)) corresponding to G
in time O(

∑n
i=1 τi log(τi)), where τi = ω|Li| for i ∈ [n].

Proof It follows from the for-loop in line 4 of Algorithms 3 that at each layer i ∈ [n], the arcs in
that layer and the nodes in the next layer are computed in O(|Ui||Li|). However, the steps of the
algorithm ensure that |Ui| does not exceed the width limit ω, yielding the time complexity O(τi)
for the above operations. On the other hand, Propositions 3.6 and 3.7 imply that the merging
operation in line 8 of Algorithms 3 can be performed in O(τi log(τi)) for each i ∈ [n]. Considering
all layers, we obtain the total time complexity of O(

∑n
i=1 τi log(τi)).

ut

Proposition 3.11 provides the time complexity results for the algorithm that builds a DD cor-
responding to constraints with non-separable functions, as developed in Section 3.3.

Proposition 3.11 Consider set G =
{
x ∈

∏n
i=1Di

∣∣ g(x) ≤ b
}

where g(x) =
∑q
k=1 gk(xHk) such that

gk(xHk) : R|Hk| → R is a non-separable function that contains variables with indices in Hk. Consider

the sub-domain partitions Dji with j ∈ Li for i ∈ [n], a width limit ω, and a merging oracle Merge(ω, V)
described in Algorithm 6 or 7. Then, Algorithm 5 constructs a DD D = (U, A, l(.)) corresponding to G
in time O

(∑n
i=1 τi log(τi) +

∑q
k=1 θk

)
, where τi = ω|Li|, and θk = ω|Hk|

∑Hmax
k −1

l=Hmin
k

|Ll| with Hmax
k =

maxl∈Hk{l} and Hmin
k = minl∈Hk{l}.

Proof It follows from the for-loops in lines 3–5 of Algorithm 5 that at each layer i ∈ [n], the lower
bound calculation in lines 6–10 of the algorithm, as well as the node and arc creation in lines 12–16
of the algorithm can be performed in O(|U|i|Li|). Considering that |Ui| is bounded by the width
limit ω, we obtain the time complexity of O(ω|Li|) for the above operations. Further, it follows from
an argument similar to that in the proof of Proposition 3.10 that the merging operation in line 18
of Algorithm 5 can be performed in O

(
ω|Li| log(ω|Li|)

)
= O(τi log(τi)) for each i ∈ [n]. Considering

all layers, we obtain the total time complexity for these tasks to be O(
∑n
i=1 τi log(τi)).

Next, we obtain the time complexity for calculating the relative sub-domains in line 14 of the
algorithm. Corollary 3.1 implies that the sub-domain Dj(v) relative to variable xj for all nodes v in

layer i ∈ [n] can be computed in O(
∑i−1
l=j |Al|). Using a similar argument to that given previously,

we can bound the above term by O(ω
∑i−1
l=j |Ll|). These values are calculated for each layer i =

Hmax
k for all k ∈ [q]. Furthermore, for the nodes v in layer i = Hmax

k for each k ∈ [q], we need
to calculate the sub-domain Dj(v) for all j ∈ Hk \ {i}. Therefore, for a given k ∈ [q], the time
complexity for calculating the sub-domains relative to all xj with j ∈ Hk \ {Hmax

k } can be bounded

by O
(
ω|Hk|

∑Hmax
k −1

l=Hmin
k

|Ll|
)

= O(θk). This yields the total time complexity for calculating the relative

sub-domains in line 14 of the algorithm to be bounded by O
(∑q

k=1 θk
)
.

ut

4 Outer Approximation

In this section, we describe the oracle Outer Approx in Algorithm 1. This oracle produces a linear
outer approximation for the solutions of the DD constructed by Construct DD to find dual bounds.
Recently, [22, 23] proposed efficient methods to obtain a convex hull description for the solution set
of DDs in the original space of variables through a successive generation of cutting planes. In this
section, we present a summary of those methods, adapted for the DDs constructed in Section 3;
refer to the references above for detailed derivations. We begin by describing the convex hull in an
extended space of variables.
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Proposition 4.1 Consider a DD D = (U, A, l(.)) with solution set Sol(D) ⊆ Rn. Define

P =
{

(x;y) ∈ Rn ×R|A|
∣∣∣(4.1a), (4.1b)

}
where

∑
a∈δ+(u)

ya −
∑

a∈δ−(u)

ya = fu, ∀u ∈ U (4.1a)

∑
a∈Ai

l(a) ya = xi, ∀i ∈ [n] (4.1b)

ya ≥ 0, ∀u ∈ U, (4.1c)

where fr = −ft = 1, fu = 0 for u ∈ U\{r, t}, and δ+(u) (resp. δ−(u)) denotes the set of outgoing (resp.

incoming) arcs at node u. Then, projx P = conv(Sol(D)). ut

Viewing ya as the network flow variable on arc a ∈ A of D, the formulation (4.1a)–(4.1c) implies
that the LP relaxation of the network model that routes one unit of supply from the root node
to the terminal node of the DD provides a convex hull description for the solution set of D in a
higher dimension. Thus, projecting out the arc-flow variables y from this formulation would yield
conv(Sol(D)) in the original space of variables. This result leads to a separation oracle that can be
used to separate any point x̄ ∈ Rn from conv(Sol(D)) through solving the cut-generating LP given
in Proposition 4.2 below. In this model, θ ∈ R|U| and γ ∈ Rn are dual variables associated with
constraints (4.1a) and (4.1b), respectively.

Proposition 4.2 Consider a DD D = (U, A, l(.)) with solution set Sol(D) ⊆ Rn. Consider a point

x̄ ∈ Rn, and define

ω∗ = max
∑
i∈[n]

x̄iγi − θt (4.2)

θt(a) − θh(a) + l(a)γi ≤ 0, ∀i ∈ [n], a ∈ Ak (4.3)

θr = 0. (4.4)

Then, x̄ ∈ conv(Sol(D)) if ω∗ = 0. Otherwise, x̄ can be separated from conv(Sol(D)) via
∑
i∈[n] xiγ

∗
i ≤

θ∗t where (θ∗;γ∗) is an optimal recession ray of (4.2)–(4.4). ut

The above separation oracle requires solving an LP whose size is proportional to the number of
nodes and arcs of the DD, which could be computationally intensive when used repeatedly inside an
outer approximation framework. As a result, an alternative subgradient-type method is proposed
to solve the same separation problem, but with a focus on detecting a violated cut faster.

In Algorithm 8, Terminate Flag contains criteria to stop the loop, such as iteration number,
elapsed time, objective function improvement tolerance, among others. We summarize the recursive
step of the separation method employed in this algorithm as follows. The vector γτ ∈ Rn is used
in line 3 to assign weights to the arcs of the DD, which are then used to obtain the longest r-t
path. The solution xτ corresponding to this longest path is subtracted from the separation point x̄,
yielding the subgradient value for the objective function of the separation problem at the point γτ ;
see Proposition 3.5 in [23]. The subgradient direction is then updated in line 7 for a step size ρτ , and
subsequently projected onto the unit sphere of the variables γ in line 8. It is shown in [23] that for an
appropriate step size, this algorithm converges to an optimal recession ray of the separation problem
(4.2)–(4.4), thereby producing the desired cutting plane in line 11. This algorithm is derivative-
free, as it computes subgradient values by solving a longest path problem over a weighted DD.
Consequently, it is highly effective in identifying violated cutting planes compared to the LP (4.2)–
(4.4), making it well-suited for implementation within the spatial branch-and-cut framework used
in Algorithm 1.
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Algorithm 8: A subgradient-type separation algorithm

Data: A DD D = (U, A, l(.)) and a point x̄
Result: A valid inequality to separate x̄ from conv(Sol(D))

1 initialize τ = 0, γ0 ∈ Rn, τ∗ = 0, ∆∗ = 0
2 while Terminate Flag = False do

3 assing weights w(a) = l(a)γτi to each arc a ∈ Ai of D for all i ∈ [n]
4 find a longest r-t path in the weighted DD and compute its encoding point xτ

5 if γτ (x̄− xτ ) > max{0,∆∗} then

6 update τ∗ = τ and ∆∗ = γτ (x̄− xτ )

7 update φτ+1 = γτ + ρτ (x̄− xτ ) for step size ρτ
8 find the projection γτ+1 of φτ+1 onto the unit sphere defined by ||γ||2 ≤ 1
9 set τ = τ + 1

10 if ∆∗ > 0 then

11 return inequality γτ
∗
(x− xτ

∗
) ≤ 0

The cutting planes obtained from the separation methods in Proposition 4.2 and Algorithm 8
can be incorporated into Outer Approx as follows. In the recursive steps of Algorithm 1, the LP
relaxation LP at a node of the B&B tree is solved to obtain an optimal solution x∗, if one exists.
For each constraint k ∈ K in the MINLP (2.1a)–(2.1c), the solution x∗ is evaluated to identify
any violated constraints. For each violated constraint, the aforementioned separation methods are
employed to generate a cutting plane that separates x∗ from conv(Sol(Dk)), where Dk is the DD
constructed for set Gk in line 7 of Algorithm 1. The resulting cutting plane is then added to the
LP relaxation, and the process is repeated until no new cuts are introduced or a stopping criterion,
such as a maximum number of iterations or gap tolerance, is met. Subsequently, the bounds are
updated, and if the current node is not pruned, a spatial branch-and-bound scheme is applied, as
discussed in the following section.

5 Spatial Branch-and-Bound

In global optimization of MINLPs, a divide-and-conquer strategy, such as spatial branch-and-
bound (SB&B), is employed to achieve convergence to a global optimal solution of the problem.
The SB&B strategy reduces the domain of the variables by successively partitioning their original
box domains. These partitions are typically rectangular, dividing the variable domain into smaller
hyper-rectangles as a result of branching. For each such partition, a convex relaxation is constructed
to calculate a dual bound. As the process advances, tighter relaxations are obtained, leading to
updated dual bounds, which continue to improve until they approach the global optimal value
of the problem within a specified tolerance. To establish convergence, it must be shown that the
convexification method applied at each partition converges (in the Hausdorff sense) to the convex
hull of the feasible region restricted to that partition; refer to [7, 50, 62] for a detailed discussion
on SB&B methods for MINLPs.

In this section, we discuss the convergence results for the SB&B procedure employed in Algo-
rithm 1. After solving a linear outer approximation of the MINLP at the current node of the SB&B
tree and updating the bounds, the Branch oracle in line 13 of the algorithm is invoked to perform
the branching operation, provided the node is not pruned. This operation creates two child nodes
by partitioning the domain of the selected branching variable based on the branching value. In the
sequel, we show that the convex hull of the solution set of the DDs obtained from Algorithms 2–5
converges to the convex hull of the solutions of the original set G as the partition volume decreases.
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We establish these results for DDs of unit width as a DD with a larger width can be decomposed
into a union of finitely many unit-width DDs while preserving the convex hull; see the discussions
in Section 3. Throughout this section, we assume that the domain partitioning performed through
SB&B takes into account the integrality requirements for integer variables. For instance, if an in-
teger variable x within the domain [l, u], where l, u ∈ Z and l < u, is selected for branching at a
value w ∈ [l, u], the new domain partitions will be [l, bwc] and [bwc+ 1, u].

First, we prove that reducing the variables’ domain through SB&B partitioning leads to tighter
convex relaxations obtained by the proposed DD-based convexification method described in Sec-
tions 3 and 4. Propositions 5.1 and 5.2 establish this result for the separable and non-separable
case, respectively. To prove this, we rely on a key property of the lower bound calculation rules
used in the SB&B process, which we define next.

Definition 5.1 Consider a function g(x) : D → R, where C ⊆ [n] and I = [n]\C represent the index
sets of continuous and integer variables, respectively, and where D =

∏n
i=1Di with Di = [Di ↓,Di ↑]

for i ∈ C and Di = [Di ↓,Di ↑] ∩ Z for i ∈ I. Consider a lower bound calculation rule that outputs
a lower bound η(D̄) for g(x) over a box domain D̄ ⊆ D. We say that this lower bound calculation
rule is consistent with respect to g(x) over D if η(D1) ≥ η(D2) for any D1 ⊆ D2 ⊆ D.

Proposition 5.1 Consider a separable function g(x) : P → R, where C ⊆ [n] and I = [n] \C represent

the index sets of continuous and integer variable, respectively, and where P =
∏n
i=1 Pi with Pi = [Pi ↓

,Pi ↑] for i ∈ C and Pi = [Pi ↓,Pi ↑] ∩ Z for i ∈ I. Define Fj = {x ∈ Pj | g(x) ≤ b} for j = 1, 2, where

b ∈ R, and Pj =
∏n
i=1 P

j
i ⊆ P. For each j = 1, 2, let Dj be the DD constructed via Algorithm 2 or 3 for

a single sub-domain partition Pji of variable xi for each i ∈ [n] using a lower bound calculation rule that

is consistent with respect to gi(xi) over Pi. If P2 ⊆ P1, then conv(Sol(D2)) ⊆ conv(Sol(D1)).

Proof Since there is only one sub-domain partition for each variable, the DDs constructed via
Algorithm 2 and 3 are the same. Thus, we show the result assuming Algorithm 2 is used. According
to this algorithm, because there is only one sub-domain partition P2

i for the domain of variable
xi for i ∈ [n], each node layer of D2 contains one node, referred to as ui. Following the top-down
construction steps of Algorithm 2, for each i ∈ [n − 1], the node ui is connected via two arcs with
label values P2

i ↓ and P2
i ↑ to the node ui+1. There are two cases for the arcs at layer i = n based

on the value of ξ∗ calculated in line 8 of this algorithms.

For the first case, assume that ξ∗ > b. Then, the if-condition in line 9 of Algorithm 2 is not
satisfied. Therefore, the node un is not connected to the terminal node t of D2. As a result, there
is no r-t path in this DD, leading to an empty solution set, i.e., conv(Sol(D2)) = Sol(D2) = ∅. This
proves the result since ∅ ⊆ conv(Sol(D1)).

For the second case, assume that ξ∗ ≤ b. Then, the if-condition in line 9 of Algorithm 2 is
satisfied, and node un is connected to the terminal node t of D2 via two arcs with label values P2

n ↓
and P2

n ↑. Therefore, the solution set of D2 contains 2n points encoded by all the r-t paths of the
DD, each composed of arcs with label values P2

i ↓ or P2
i ↑ for i ∈ [n]. It is clear that these points

correspond to the extreme points of the rectangular partition P 2 =
∏n
i=1 P

2
i . Pick one of these

points, denoted by x̄. We show that x̄ ∈ conv(Sol(D1)). It follows from lines 1–6 of Algorithm 2
that each layer i ∈ [n] of D1 includes a single node vi. Further, each node vi is connected to vi+1

via two arcs with label values P1
i ↓ and P1

i ↑ for i ∈ [n− 1]. To determine whether vn is connected
to the terminal node of D1, we need to calculate ξ∗ (which we refer to as ξ̇∗ to distinguish it from
that calculated for D2) according to line 8 of Algorithm 2. Using an argument similar to that in
the proof of Proposition 3.2, we write that ξ̇∗ =

∑n
i=1 η̇i, where η̇i ≤ gi(xi) for all xi ∈ P1

i , which
is obtained from the lower bound calculation rule employed for this algorithm. We can similarly
calculate the value of ξ∗ for D2 as ξ∗ =

∑n
i=1 ηi ≤ b, where the inequality holds by the assumption

for this case, and where ηi ≤ gi(xi) for all xi ∈ P2
i , which is obtained from the lower bound

calculation rule employed for this algorithm. On the other hand, because P2 ⊆ P1, we have that



A graphical global solver for MINLPs 31

P1
i ↓≤ P

2
i ↓≤ P

2
i ↑≤ P

1
i ↑ for each i ∈ [n]. As a result, due to the consistency property of the lower

bound calculation rule, we have that η̇i ≤ ηi for each i ∈ [n]. Combining the above results, we
obtain that ξ̇∗ =

∑n
i=1 η̇i ≤

∑n
i=1 ηi ≤ b. Therefore, the if-condition in line 9 of Algorithm 2 is

satisfied for D1, and thus vn is connected to the terminal node of D1 via two arcs with label values
P1
n ↓ and P1

i ↑. Consequently, Sol(D1) includes all extreme points of the rectangular partition P1

encoded by the r-t paths of this DD. Since P2 ⊆ P1, the extreme point x̄ of P2 is in conv(Sol(D1)),
proving the result. ut

Proposition 5.2 Consider a function g(x) : P → R, where g(x) =
∑q
j=1 gj(xHj ), with each gj(xHj )

being a non-separable function that contains variables with indices in Hj ⊆ [n]. Let C ⊆ [n] and I = [n]\C
represent the index sets of continuous and integer variable, respectively. Consider P =

∏n
i=1 Pi, where

Pi = [Pi ↓,Pi ↑] for i ∈ C and Pi = [Pi ↓,Pi ↑] ∩ Z for i ∈ I. Define Fk = {x ∈ Pk | g(x) ≤ b} for

k = 1, 2, where b ∈ R, and Pj =
∏n
i=1 P

j
i ⊆ P. For each k = 1, 2, let Dk be the DD constructed via

Algorithm 4 or 5 for a single sub-domain partition Pki of variable xi for each i ∈ [n] using a lower bound

calculation rule consistent with respect to gk(xHk) over
∏
l∈Hk Pl for each k ∈ [q]. If P2 ⊆ P1, then

conv(Sol(D2)) ⊆ conv(Sol(D1)).

Proof The main idea of the proof is similar to that of Proposition 5.1, with the key difference being
that the calculation of lower bounds for state values requires the use of the backtracking method
from Section 3.3, which is demonstrated next. Since there is only one sub-domain partition for
each variable, the DDs constructed via Algorithm 4 and 5 are the same. Thus, we show the result
assuming Algorithm 4 is used. According to this algorithm, because D2 has a unit width, we denote
by ui the only node at each node layer i ∈ [n] of this DD. Following the top-down construction
steps of Algorithm 4, for each i ∈ [n − 1], ui is connected via two arcs with label values P2

i ↓ and
P2
i ↑ to ui+1. For layer i = n, we refer to the ξ value computed in line 9 of this algorithm as ξ∗ to

distinguish it from the values calculated at the previous layers. There are two cases for ξ∗.

For the first case, assume that ξ∗ > b. Then, the if-condition in line 14 of Algorithm 4 is not
satisfied. Therefore, node un is not connected to the terminal node t of D2. As a result, there is no
r-t path in this DD, leading to an empty solution set, i.e., conv(Sol(D2)) = Sol(D2) = ∅. This proves
the result since ∅ ⊆ conv(Sol(D1)).

For the second case, assume that ξ∗ ≤ b. Then, the if-condition in line 14 of Algorithm 4 is
satisfied, and node un is connected to the terminal node t of D2 via two arcs with label values P2

n ↓
and P2

n ↑. Therefore, the solution set of D2 contains 2n points encoded by all the r-t paths of the
DD, each composed of arcs with label values P2

i ↓ or P2
i ↑ for i ∈ [n]. It is clear that these points

correspond to the extreme points of the rectangular partition P2 =
∏n
i=1 P

2
i . Pick one of these

points, denoted by x̄. We show that x̄ ∈ conv(Sol(D1)). It follows from lines 1–12 of Algorithm 4
that each layer i ∈ [n] of D1 includes a single node vi. Further, each node vi is connected to vi+1 via
two arcs with label values P1

i ↓ and P1
i ↑ for i ∈ [n − 1]. To determine whether vn is connected to

the terminal node of D1, we need to calculate ξ∗ (which we refer to as ξ̇∗ to distinguish it from that
calculated for D2) according to line 9 of Algorithm 4. Since all the nodes v1, . . . , vn are connected
via the arcs described above, we conclude that the sub-domain of variable xi relative to node vj
for each i ∈ [n−1] and j > i is the entire variable domain P1

i . Using an argument similar to that in
the proof of Proposition 3.5, we write that ξ̇∗ =

∑q
k=1 η̇k, where η̇k ≤ gk(xHk) for all xj ∈ P1

j with
j ∈ Hk, which is obtained from the lower bound calculation rule employed for this algorithm. We
can similarly calculate the value of ξ∗ for D2 as ξ∗ =

∑q
k=1 ηk ≤ b, where the inequality holds by the

assumption for this case, and where ηk ≤ gk(xHk) for all xj ∈ P2
j with j ∈ Hk, which is obtained

from the lower bound calculation rule employed for this algorithm. On the other hand, because
P2 ⊆ P1, we have that P1

i ↓≤ P
2
i ↓≤ P

2
i ↑≤ P

1
i ↑ for each i ∈ [n]. As a result, due to consistency

property of the lower bound calculation rule, we have that η̇k ≤ ηk for each k ∈ [q]. Combining the
above results, we obtain that ξ̇∗ =

∑q
i=1 η̇q ≤

∑q
i=1 ηq ≤ b. Therefore, the if-condition in line 14 of

Algorithm 4 is satisfied for D1, and thus vn is connected to the terminal node of D1 via two arcs with
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label values P1
n ↓ and P1

n ↑. Consequently, Sol(D1) includes all extreme points of the rectangular
partition P1 encoded by the r-t paths of this DD. Since P2 ⊆ P1, the extreme point x̄ of P2 is in
conv(Sol(D1)), proving the result. ut

Although Propositions 5.1 and 5.2 imply that the dual bounds obtained by our proposed DD-
based outer approximation framework can improve through SB&B as a result of partitioning the
variables’ domain, an additional property of the employed lower bound calculation rules is needed
to guarantee convergence to the global optimal value of the problem, as described next.

Definition 5.2 Consider a function g(x) : D → R, where C ⊆ [n] and I = [n]\C represent the index
sets of continuous and integer variable, respectively, and where D =

∏n
i=1Di with Di = [Di ↓,Di ↑]

for i ∈ C and Di = [Di ↓,Di ↑] ∩ Z for i ∈ I. Consider a lower bound calculation rule that outputs a
lower bound η(D̄) for g(x) over a box domain D̄ ⊆ D. We say that this lower bound calculation rule
is convergent with respect to g(x) over D if (i) it is consistent with respect to g(x) over D, and (ii)
limj→∞ η(Dj) = g(x̄) for any nested sequence of box domains {Dj}∞j=1 with Dj ⊆ D that converges

(in the Hausdorff sense) to a singleton set {x̄}, i.e., {Dj} ↘ {x̄}.

As the next step, Propositions 5.3 and 5.4 give the convergence results for constraints with
separable and non-separable terms, respectively.

Proposition 5.3 Consider a separable function g(x) : P → R, where g(x) =
∑n
i=1 gi(xi). Let C ⊆ [n]

and I = [n] \ C represent the index sets of continuous and integer variable, respectively, and let P =∏n
i=1 Pi with Pi = [Pi ↓,Pi ↑] for i ∈ C and Pi = [Pi ↓,Pi ↑]∩Z for i ∈ I. Define Fj = {x ∈ Pj | g(x) ≤

b} for any j ∈ N, where b ∈ R, and Pj =
∏n
i=1 P

j
i ⊆ P. For j ∈ N, let Dj be the DD representing Fj ,

which is constructed via Algorithm 2 or 3 for the single sub-domain partition P ji for i ∈ [n] using a

lower bound calculation rule convergent with respect to gi(xi) over Pi. Assume that {P1,P2, . . . }, with

Pj ⊆ P, is a nested sequence of rectangular partitions of the variables’ domain created through the SB&B

process, i.e., Pj ⊇ Pj+1 for each j ∈ N. Let x̃ ∈ Rn with x̃i ∈ Z for i ∈ I be the point in a singleton set

to which the above sequence converges (in the Hausdorff sense), i.e., {Pj} ↘ {x̃}. Then, the following

statements hold:

(i) If g(x̃) ≤ b, then
{

conv(Sol(Dj))
}
↘ {x̃}.

(ii) If g(x̃) > b, then there exists m ∈ N such that Sol(Dj) = ∅ for all j ≥ m.

Proof (i) Assume that g(x̃) ≤ b. Since there is only one sub-domain partition for each variable,
the DDs constructed via Algorithm 2 and 3 are the same. Thus, we show the result assuming
Algorithm 2 is used. Consider j ∈ N. Note that Fj ⊆ conv(Fj) ⊆ conv(Sol(Dj)) according to
Proposition 3.2. We prove that Sol(Dj) ⊆ Pj . There are two cases. For the first case, assume
that the if-condition in line 9 of Algorithm 2 is not satisfied. It implies that there are no
r-t paths in Dj , i.e., Sol(Dj) = ∅ ⊆ Pj . For the second case, assume that the if-condition
in line 9 of Algorithm 2 is satisfied. Then, Sol(Dj) contains the points encoded by all r-t
paths in Dj composed of arcs with label values Pji ↓ or Pji ↑ for each i ∈ [n], i.e., Sol(Dj) ⊆
Pj . As a result, conv(Sol(Dj)) ⊆ Pj . Because {P1,P2, . . . } is a nested set sequence, it follows
from Proposition 5.1 that the sequence {conv(Sol(D1)), conv(Sol(D2)), . . . } is also nested, i.e.,
conv(Sol(Dj)) ⊇ conv(Sol(Dj+1)) for j ∈ N. On the other hand, we can write Fj = {x ∈
Rn | g(x) ≤ b} ∩ Pj by definition. Since {Pj} ↘ {x̃}, we obtain that {Fj} ↘ {x ∈ Rn | g(x) ≤
b} ∩ {x̃} = {x̃} since g(x̃) ≤ b by assumption. Therefore, based on the previous arguments, we
can write that Fj ⊆ conv(Sol(Dj)) ⊆ Pj . Because {Fj} ↘ {x̃} and {Pj} ↘ {x̃}, we conclude
that

{
conv(Sol(Dj))

}
↘ {x̃}.

(ii) Assume that g(x̃) > b. We prove the result for the general case where both integer and continuous
variables are present in the model, i.e., I 6= ∅ and C 6= ∅. The result for the case where I = ∅
(resp., C = ∅) follows similarly, by omitting the arguments used for I (resp., C). For each DD
Dj for j ∈ N, using an argument similar to that of Proposition 5.1, we can calculate the value
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ξ∗ =
∑n
i=1 ηi in line 8 of Algorithm 2, where ηi ≤ gi(xi) for all xi ∈ Pji , which is obtained from

the lower bound calculation rule employed for this algorithm. Since the sequence of domain
partitions {Pj} is nested and converges to {x̃}, we can equivalently write that the sequence
of variable lower bounds {P1

i ↓,P
2
i ↓, . . . } in these partitions is monotone non-decreasing and

converges to x̃i for i ∈ [n], i.e., P1
i ↓≤ P

2
i ↓≤ . . . , and limj→∞ Pji ↓= x̃i. Similarly, the sequence

of variable upper bounds {P1
i ↑,P

2
i ↑, . . . } in these partitions is monotone non-increasing and

converge to x̃i for i ∈ [n], i.e., P1
i ↑≥ P

2
i ↑≥ . . . , and limj→∞ Pji ↑= x̃i. Therefore, for each

i ∈ I, since x̃i ∈ Z and the partitions Pji include integer values for all j ∈ N by design,
there exists mi ∈ N such that Pmii ↓= Pmii ↑= x̃i. Thus, the convergence property of the

employed lower bound calculation rule implies that ηi = g(x̃i) for any Dj with j ≥ mi. On
the other hand, it follows from the assumption of this case that g(x̃) =

∑n
i=1 gi(x̃i) > b.

Define ε =
∑n
i=1 gi(x̃i)−b
|C| > 0. For each i ∈ C, by definition of convergence for the lower bound

calculating rule, the lower bounds ηi of gi(xi) computed in line 5 of Algorithm 2 monotonically
converge to gi(x̃i) as the domain partitions Pji converge to {x̃i}. Therefore, there exists mi ∈ N
such that ηi > gi(x̃i) − ε, where ηi is computed over the domain partition Pji for all j ≥ mi.
Pick m = maxi∈[n]mi. The value of ξ∗ for Dm is calculated as ξ∗ =

∑
i∈I ηi +

∑
i∈C ηi >∑

i∈I gi(x̃i) +
∑
i∈C gi(x̃i) − ε =

∑n
i=1 gi(x̃i) − |C|ε = b, where the inequality follows from the

value of ηi obtained in the previous parts for both i ∈ I and i ∈ C, and the last equality is due
to the definition of ε given previously. Since ξ∗ > b, the if-condition in line 9 of Algorithm 2
is not satisfied, and thus the single node vn at layer n of Dm is not connected to the terminal
node of this DD, implying that Sol(Dm) = ∅. Finally, it follows from Proposition 5.1 that
Sol(Dj) ⊆ conv(Sol(Dj)) ⊆ conv(Sol(Dm)) = ∅, for all j > m, proving the result.

ut

Proposition 5.4 Consider a function g(x) : P → R, where g(x) =
∑q
j=1 gj(xHj ), with each gj(xHj )

being a non-separable function that contains variables with indices in Hj ⊆ [n]. Let C ⊆ [n] and I = [n]\C
represent the index sets of continuous and integer variable, respectively. Consider P =

∏n
i=1 Pi, where

Pi = [Pi ↓,Pi ↑] for i ∈ C and Pi = [Pi ↓,Pi ↑] ∩ Z for i ∈ I. Define Fj = {x ∈ Pj | g(x) ≤ b} for any

j ∈ N, where Pj =
∏n
i=1 P

j
i ⊆ P. For j ∈ N, let Dj be the DD representing Fj , which is constructed

via Algorithm 4 or 5 for the single sub-domain partition Pji for i ∈ [n] using a lower bound calculation

rule convergent with respect to gk(xHk) over
∏
l∈Hk Pl for each k ∈ [q]. Assume that {P1,P2, . . . }, with

Pj ⊆ P, is a nested sequence of rectangular partitions of the variables domain created through the SB&B

process, i.e., Pj ⊇ Pj+1 for each j ∈ N. Let x̃ ∈ Rn with x̃i ∈ Z for i ∈ I be the point in a singleton set

to which the above sequence converges (in the Hausdorff sense), i.e., {Pj} ↘ {x̃}. Then, the following

statements hold:

(i) If g(x̃) ≤ b, then
{

conv(Sol(Dj))
}
↘ {x̃}.

(ii) If g(x̃) > b, then there exists m ∈ N such that Sol(Dj) = ∅ for all j ≥ m.

Proof (i) The proof of this part follows from arguments similar to those given in part (i) of Propo-
sition 5.3, but uses the result of Proposition 3.5 in place of Proposition 3.2.

(ii) Assume that g(x̃) > b. For each DD Dj for j ∈ N, using a similar approach to that of Propo-
sition 5.2, we can calculate the value ξ∗ =

∑q
k=1 ηk at layer n of the DD in line 9 of Algo-

rithm 4, where ηk ≤ gk(xHk) for all xi ∈ Pji for each i ∈ Hk, which is obtained from the
lower bound calculation rule employed for this algorithm. In this relation, we have used the
fact that Dj has a unit width, thus the sub-domain of each variable xi relative to the single
node at any layer of the DD is the entire domain Pji . The assumption of this case implies that

g(x̃) =
∑q
k=1 gk(x̃Hk) > b. Define ε =

∑q
k=1 gk(x̃Hk )−b

q > 0. For each k ∈ [q], by definition of

convergence for the lower bound calculation rule, the lower bounds ηk of gk(xHk) computed in

line 6 of Algorithm 4 monotonically converge to gk(x̃Hk) as the domain partitions Pji converge
to {x̃i}. Therefore, there exists mi ∈ N such that ηk > gk(x̃Hk) − ε computed over the domain
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partition Pji for all j ≥ mi. Pick m = maxi∈[n]mi. The value of ξ∗ for Dm is calculated as

ξ∗ =
∑q
i=1 ηk >

∑q
i=1

(
gk(x̃Hk)− ε

)
=
∑q
i=1 gk(x̃Hk)−qε = b, where the inequality follows from

the value of ηk computed above, and the last equality is due to the definition of ε given previously.
Since ξ∗ > b, the if-condition in line 14 of Algorithm 4 is not satisfied, and thus the single node
vn at layer n of Dm is not connected to the terminal node of this DD, implying that Sol(Dm) = ∅.
Finally, it follows from Proposition 5.2 that Sol(Dj) ⊆ conv(Sol(Dj)) ⊆ conv(Sol(Dm)) = ∅, for
all j > m, proving the result.

ut

The result of Propositions 5.3 and 5.4 show that the convex hull of the solution set, as repre-
sented by the DDs constructed through the proposed convexification technique, converges to the
feasible region of the underlying MINLP constraint during the SB&B process. This guarantees con-
vergence to the global optimal value of the MINLP (if one exists), as implemented in Algorithm 1.

Since the convergence results above depend on the convergence properties of the lower bound
calculation rules used in the DD construction method, we conclude this section by outlining the
conditions required to achieve these properties. First, we demonstrate that a necessary condition for
this property pertains to a variant of lower semicontinuity in the functions defined over the space of
their continuous variables, if such variables are present. Consider a function g(x) : Rn → R, where
I ⊂ [n] and C = [n] \ I represent the index sets of integer and continuous variables, respectively.
Following the Definition 3.2, we denote by g(xC , x̄I) : R|C| → R the restriction of g(x) in the space
of xC , where variables xk are fixed at value x̄k for all k ∈ I. Further, we say that g(x) is lower

semicontinuous over a domain D ⊆ Rn if for any point x̄ ∈ D and any ε > 0, there exists δ > 0 such
that g(x) > g(x̄)− ε for every x ∈ D with ||x− x̄||2 < δ.

Proposition 5.5 Consider a function g(x) : D → R, where I ⊂ [n] and C = [n] \ I represent the index

sets of integer and continuous variables, respectively, and where D =
∏n
i=1Di with Di = [Di ↓,Di ↑] for

i ∈ C and Di = [Di ↓,Di ↑] ∩ Z for i ∈ I. Consider a lower bound calculation rule that outputs a lower

bound η(D̄) for g(x) over a box domain D̄ ⊆ D. If this lower bound calculation rule is convergent with

respect to g(x) over D, then g(xC , x̄I) is lower semicontinuous over
∏
i∈C Di for any x̄I ∈

∏
i∈I Di.

Proof Assume by contradiction that there exists x̄I ∈
∏
i∈I Di such that g(xC , x̄I) is not lower

semicontinuous over
∏
i∈C Di. Therefore, there exist x̃C ∈

∏
i∈C Di and ε > 0 such that, for any

δ > 0, there is a point x̂δC ∈
∏
i∈C Di with g(x̂δC , x̄I) ≤ g(x̃C , x̄I) − ε and ||x̂δC − x̃C ||2 < δ.

Consider a sequence {δj} with δj = 1/j for j ∈ N. Define a sequence of box domains {Dj} with
Dj =

∏n
i=1D

j
i where Dji = [x̄i, x̄i] for each i ∈ I and Dji = [x̃i − δj , x̃i + δj ] ∩ [Di ↓,Di ↑] for each

i ∈ C. It is clear that {Dj} converges to {(x̃C , x̄I)}. Furthermore, it follows from the definition

of x̂δC that (x̂δ
j

C , x̄I) ∈ D
j for each j ∈ N. As a result, the lower bound η(Dj) obtained by the

lower bound calculation rule satisfies η(Dj) ≤ g(x̂δ
j

C , x̄I) ≤ g(x̃C , x̄I)− ε < g(x̃C , x̄I)− ε
2 , where the

second inequality follows from the contradiction assumption, and the last inequality holds because
ε > 0 by assumption. This is a contradiction to the assumption that the considered lower bound
calculation rule is convergent with respect to g(x) over D as for the domain sequence {Dj}, we
must have limj→∞ η(Dj) 6= g(x̃C , x̄I). ut

Next, we show that the lower bound calculation rules introduced in Section 3.5 possess the
convergence property when applied to functions that satisfy the necessary condition outlined in
Proposition 5.5. In other words, as long as this functional property for the MINLP is fulfilled, our
proposed lower bound calculation rules guarantee convergence to a global solution. Considering
that the lower semicontinuity of Proposition 5.5 holds for a broad range of functions commonly
used in MINLP models, including test instances in the MINLP library, our proposed framework
provides a powerful tool for globally solving various families of MINLPs.
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Proposition 5.6 Consider a monotone function g(x) : D → R, where I ⊆ [n] and C = [n]\ I represent

the index sets of integer and continuous variables, respectively, and where D =
∏n
i=1Di with Di = [Di ↓

,Di ↑] for i ∈ C and Di = [Di ↓,Di ↑]∩Z for i ∈ I. Assume that g(xC , x̄I) is lower semicontinuous over∏
i∈C Di for any x̄I ∈

∏
i∈I Di. Then, the lower bound calculation rule described in Proposition 3.8 is

convergent with respect to g(x) over D.

Proof Let η(D̄) be the lower bound of g(x) over D̄ ⊆ D calculated by the considered lower bound
calculation rule. It follows from the definition of Proposition 3.8 that η(D̄) = minx∈D̄{g(x)}. This
definition implies that η(D1) ≤ η(D2) for any D2 ⊆ D1 ⊆ D, proving condition (i) of convergence
property. To prove condition (ii), consider a nested domain sequence {Dj} with Dj =

∏n
i=1D

j
1 ⊆ D

for j ∈ N such that {Dj} ↘ {x̃} for some x̃ ∈ D. On the one hand, since x̃ ∈ D, we must have
x̃i ∈ Z for i ∈ I. Further, for each i ∈ I, we have Dji ⊆ Z for all j ∈ N by definition. Thus, there

exist m̄ ∈ N such that Dji = [x̃i, x̃i] for each i ∈ I and j ≥ m̄. On the other hand, it follows from
the lower semicontinuity of g(xC , x̃I) over

∏
i∈C Di that, for any ε > 0, there exists m̂ ∈ N such

that g(xC , x̃I) > g(x̃C , x̃I) − ε for each xC ∈
∏
i∈C D

j
i for all j ≥ m̂. Define m = max{m̄, m̂}.

For all x ∈ Dj with j ≥ m, we can write g(x) = g(xC , x̃I) > g(x̃C , x̃I) − ε = g(x̃) − ε, where
the first equality follows from the fact that xi = x̃i for i ∈ I, the inequality is due to the relation
obtained previously, and the last equality holds because (x̃C , x̃I) = x̃ by definition. As a result,
η(Dj) = minx∈Dj{g(x)} > g(x̃)− ε for all j ≥ m. Since this result holds for any ε > 0, we conclude
that limj→∞ η(Dj) = g(x̃), proving the result. ut

Proposition 5.7 Consider a function g(x) : D → R, where I ⊆ [n] and C = [n] \ I represent the index

sets of integer and continuous variables, respectively, and where D =
∏n
i=1Di with Di = [Di ↓,Di ↑]

for i ∈ C and Di = [Di ↓,Di ↑] ∩ Z for i ∈ I. Let grx(y) : Rp → R be the re-indexed function of

g(x) with re-index mapping R(.). Assume that grx(y) is monotone over the box domain described by

P =
∏p
j=1 Pj where Pj = DR(j) for j ∈ [p]. Define the index set of continuous variables in grx(y) as

Ċ =
{
j ∈ [p]

∣∣R(j) ∈ C
}

, and define the index set of integer variables in grx(y) as İ = [p] \ Ċ. Assume

that grx(yĊ , ȳİ) is lower semicontinuous over
∏
j∈Ċ Pj for any ȳİ ∈

∏
j∈İ Pj . Then, the lower bound

calculation rule described in Proposition 3.9 is convergent with respect to g(x) over D.

Proof Since grx(y) is monotone, it follows from the definition of the lower bound calculation rule of
Proposition 3.9 that η(D) = miny∈P{grx(y)}. To prove condition (i) of the convergence property,
consider box domains D1 and D2 such that D1 ⊆ D2 ⊆ D. Define P1 =

∏p
j=1D

1
R(j) and P2 =∏p

j=1D
2
R(j). It follows that P1 ⊆ P2. Therefore, we can write that η(D1) = miny∈P1{grx(y)} ≥

miny∈P2{grx(y)} = η(D2), which proves condition (i). For condition (ii) of the convergence prop-
erty, since grx(y) is monotone and grx(yĊ , ȳİ) is lower semicontinuous over

∏
j∈Ċ Pj for any

ȳİ ∈
∏
j∈İ Pj , Proposition 5.6 implies that the lower bound calculation rule that outputs η̇(P) =

miny∈P{grx(y)} is convergent with respect to grx(y) over P. In other words, for any nested domain

sequence {Pk}, with Pk ⊆ P for k ∈ N, that converges to ỹ, we have limk→∞ η̇(Pk) = grx(ỹ).
Consider a nested domain sequence {Dk}, with Dk ⊆ D for k ∈ N, that converges to x̃. De-
fine Ṗk =

∏p
j=1D

k
R(j) for each k ∈ N. It is clear that {Ṗk} ↘ {ẏ} where ẏj = x̃R(j) for each

j ∈ [p]. Thus, we obtain limk→∞ η̇(Ṗk) = grx(ẏ) by the above definition. Using the fact that
η(Dk) = miny∈Ṗk{g

rx(y)} = η̇(Ṗk) by definition of the considered lower bound calculation rule,

we conclude that limk→∞ η(Dk) = grx(ẏ) = g(x̃), where the last equality follows from the defini-
tion of re-indexed functions that preserve the function values at each given point. This shows that
condition (ii) of the convergence property is satisfied. ut

6 Computational Results

In this section, we present numerical results based on benchmark instances from the MINLP Library
[1] to demonstrate the effectiveness and capabilities of our global solution framework, compared
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to state-of-the-art global solvers. Since previous studies utilizing DD-based outer approximation
[23, 22] have primarily focused on challenging problem classes that existing global solvers can
handle, albeit with optimality gaps, this paper focuses on complementary problem classes that
are unsolvable by current global solvers, marking them as the most challenging problems in the
MINLP Library. As discussed in Section 3.5, one of the main advantages of our DD-based global
solution framework, compared to existing methods, is its ability to model and solve a broader class
of MINLPs, including those with complex structures that are not amenable to conventional convex-
ification methods, such as the factorable decomposition technique that is widely used in existing
solvers. To demonstrate this capability, in this section, we present computational experiments on
benchmark test instances from the MINLP Library that contain functional forms not admissible by
global solvers, such as BARON, the leading commercial solver, and SCIP, the leading open-source
solver.

6.1 Algorithmic Settings

The numerical results presented in this section are obtained on a Windows 11 (64-bit) operating
system, 64 GB RAM, 3.8 GHz AMD Ryzen CPU. The DD-ECP Algorithm is written in Julia
v1.9 via JuMP v1.11.1, and the outer approximation models are solved with CPLEX v22.1.0. For
comparison with existing global solvers, we use GAMS Release 47.6.0, equipped with BARON
version 24.5.8 and SCIP version 9.1.0. In this section, we present the general settings for the
algorithms used in our solution framework.

We use Algorithm 1 to solve the MINLP instances reformulated into the problem form described
in (2.1a)–(2.1c). Since the model studied in this paper is bounded, for instances with variables that
lack explicit bounds, we infer valid bounds based on the constraints of the model. To calculate the
optimality gap, we use the primal bound reported for each instance in the MINLP Library. The
stopping criteria employed in Stop Flag in Algorithm 1 are a remaining optimality gap of 0.05 or an
elapsed time of 5000 seconds, whichever occurs first. The initial LP relaxation LP for each instance
is obtained by removing all nonlinear constraints. The pruning rules in Prune Node include: (i)
the dual bound obtained at a node is smaller than the best current primal bound; (ii) the outer
approximation is infeasible; (iii) the DD constructed for any constraints is infeasible; and (iv) the
optimal solution of the outer approximation satisfies all constraints.

For the Construct DD oracle, we use Algorithms 3 and 5 for constructing DDs for separable and
non-separable constraints, respectively. In these algorithms, we create the sub-domain partitions
for each variable xi for i ∈ [n] such that the entire variable domain is divided into 50 intervals of
equal length, i.e., |Li| = 50. We impose a default width limit of ω = 5000. To merge nodes at each
layer, we apply the the merging policy Mergeg(.) as described in Section 3.4. The state values at
the DD nodes are computed using the lower bound calculation rules based on the monotonicity
property and re-indexing techniques outlined in Section 3.5.

For the Outer Approx oracle, we use the subgradient-type method of Algorithm 8 to generate
cutting planes that are added to the outer approximation model. For this algorithm, we set a
constant step size rule ρ = 1 and use the origin as the starting point for the subgradient algorithm.
The termination criterion is defined by the number of iterations, which is set to 50.

For the Branch oracle, after obtaining the optimal solution of the outer approximation model,
we select the variable whose optimal solution lies closest to the center of its domain interval. To
continue the B&B process, we apply a node selection rule that prioritizes the node with the largest
dual bound as the next candidate.
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6.2 Test Instances

In this section, we present computational results for various benchmark instances from the MINLP
Library. These instances feature complex functional structures that cannot be handled by existing
global solvers like BARON and SCIP, and are therefore considered inadmissible/intractable. In
contrast to global solvers, which fail to return dual bounds for these test instances, our DD-based
global framework is capable of solving these problems and obtaining dual bounds, as shown in the
tables for each instance. To provide better insight into the structure of each model, a summary of
the problem specifications, their area of application, and their sources of difficulty is presented in
the following sub-sections.

6.2.1 Test Instance: quantum

This problem has applications in quantum mechanics [46]. The test instance has 2 continuous
variables and 1 nonlinear constraint. This nonlinear constraint includes polynomial, fractional,
exponential, and gamma functions. The following constraint illustrates a complex structure used
in this model that is inadmissible in the current solvers used.

−0.5
√
x3 x

1
x3
2 Γ (2− 0.5

x3
) + 0.5x

−1
x3
2 Γ (1.5

x3
) + x

−2
x3
2 Γ (2.5

x3
)

Γ (0.5
x3

)
+ z = 0,

where Γ (.) is the gamma function. The performance of our DD-based solution framework is sum-
marized in Table 6.1. The first two columns show the number of variables and constraints in each
problem, respectively. The column labeled ‘Primal’ presents the primal bound for the test instance,
as reported in the MINLP Library. The dual bound obtained from our proposed global method is
listed in the ‘Dual’ column. The optimality gap is provided in the ‘Gap’ column and is calculated
as dual bound−primal bound

primal bound . The next two columns, ‘Node Explored’ and ‘Node Remaining,’ repre-
sent the number of nodes explored and the number of nodes still open at the termination of the
algorithm in the B&B tree. Finally, the last column shows the total solution time for the algorithm.

Table 6.1: Performance of the DD framework for test instance quantum

Problem Specs Gap Closure B&B Tree Time (s)
Var. # Con. # Primal Dual Gap Node Explored Node Remained

2 1 −0.804 −0.765 0.05 4 1 6.62

6.2.2 Test Instance: ann fermentation tanh

This problem has applications in neural networks used to learn the fermentation process of gluconic
acid, where the activation functions are represented by hyperbolic tangent operators [56]. The test
instance has 12 continuous variables and 10 constraints. The nonlinear constraints include fractional
and hyperbolic (trigonometric) functions. The following constraint illustrates a complex structure
used in this model that is inadmissible in the current solvers used.

tanh(x12)− x8 = 0,

where tanh(.) is the hyperbolic tangent function. The performance of our proposed method when
applied to this test instance is presented in Table 6.2, with columns are defined similarly to those
in Table 6.1.
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Table 6.2: Performance of the DD framework for test instance ann fermentation tanh

Problem Specs Gap Closure B&B Tree Time (s)
Var. # Con. # Primal Dual Gap Node Explored Node Remained

12 10 99.93 104.92 0.05 5104 767 25.74

6.2.3 Test Instance: fct

This problem is included in the GAMS Model Library [47]. The test instance has 12 continu-
ous variables and 10 constraints. The nonlinear constraints include absolute value, trigonometric,
polynomial, and modulo functions. The following constraint shows a complex structure among the
constraints used in this model, which is inadmissible in the current solvers.∣∣∣ sin (4 mod(x2, π)

)∣∣∣− x3 = 0,

where |.| is the absolute value function, and mod(a, b) is the modulo operator with dividend a and
divisor b. The performance of our proposed method when applied to this test instance is presented
in Table 6.3, with columns are defined similarly to those in Table 6.1. For this test instance, we did
not calculate the remaining gap as the primal bound is zero. Instead, we allowed the algorithm to
run until it achieved a global optimal solution with a precision of 10−5 for the optimal value.

Table 6.3: Performance of the DD framework for test instance fct

Problem Specs Gap Closure B&B Tree Time (s)
Var. # Con. # Primal Dual Gap Node Explored Node Remained

12 10 0.00 6.83× 10−6 – 591 0 1668.09

6.2.4 Test Instance: worst

This problem has applications in statistical models used for portfolio optimization and risk man-
agement [21]. The test instance has 35 continuous variables and 30 constraints. The nonlinear
constraints include polynomial, exponential, logarithm, fractional, and modulo functions. The fol-
lowing constraint shows a complex structure among the constraints used in this model, which is
inadmissible in the current solvers.

e−0.33889 x32 ×
(
erf(x3)x21 − 95 erf(x10)

)
− x23 = 0,

where erf(.) is the error function calculated as the integral of the standard normal distribution. The
performance of our proposed method when applied to this test instance is presented in Table 6.4,
with columns are defined similarly to those in Table 6.1.

Table 6.4: Performance of the DD framework for test instance worst

Problem Specs Gap Closure B&B Tree Time (s)
Var. # Con. # Primal Dual Gap Node Explored Node Remained

35 30 −20762609 −19583378 0.05 22 3 211.51
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6.2.5 Test Instance: ann compressor tanh

This problem has applications in learning compressor powers via neural networks [56]. This test
instance has 97 continuous variables and 96 constraints. The nonlinear constraints in this prob-
lem include quadratic and hyperbolic (trigonometric) functions. The following constraint shows a
complex structure among the constraints used in this model, which is inadmissible in the current
solvers.

tanh(x32)− x10 = 0

The performance of our proposed method when applied to this test instance is presented in
Table 6.5, with columns are defined similarly to those in Table 6.1.

Table 6.5: Performance of the DD framework for test instance ann compressor tanh

Problem Specs Gap Closure B&B Tree Time (s)
Var. # Con. # Primal Dual Gap Node Explored Node Remained

97 96 −213100.0 −22331.90 0.05 867 52 276.33

6.2.6 Test Instance: ann peaks tanh

This problem has applications in neural networks [56]. This test instance has 100 continuous vari-
ables and 99 constraints. The nonlinear constraints in this problem include hyperbolic (trigono-
metric) functions. The following constraint shows a complex structure among the constraints used
in this model, which is inadmissible in the current solvers.

tanh(x55)− x6 = 0

The performance of our proposed method when applied to this test instance is presented in
Table 6.6, with columns are defined similarly to those in Table 6.1.

Table 6.6: Performance of the DD framework for test instance ann peaks tanh

Problem Specs Gap Closure B&B Tree Time (s)
Var. # Con. # Primal Dual Gap Node Explored Node Remained

100 99 6.56 6.97 0.05 10 7 135.47

6.2.7 Test Instance: cesam2cent

This problem has applications in information theory, econometrics, and estimating social accounting
matrices using cross entropy methods [29, 36, 49]. This test instance has 316 continuous variables
and 166 constraints. The nonlinear constraints in this problem include polynomial, exponential, and
cross entropy functions. The following constraint shows a complex structure among the constraints
used in this model, which is inadmissible in the current solvers.

316∑
i=160

Centropy(xi, ai)− z = 0,
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where ai ∈ R is a constant, and Centropy(.) is the cross-entropy function. The performance of our
proposed method when applied to this test instance is presented in Table 6.7, with columns are
defined similarly to those in Table 6.1.

Table 6.7: Performance of the DD framework for test instance cesam2cent

Problem Specs Gap Closure B&B Tree Time (s)
Var. # Con. # Primal Dual Gap Node Explored Node Remained

316 166 −0.507 −0.481 0.05 8 3 4604.13

7 Conclusion

We develop a novel graphical framework to globally solve general MINLPs. This paper details the
key components of the framework, including (i) a method for constructing DDs that represent relax-
ations of the MINLP sets, (ii) a cut-generation technique that produces linear outer approximations
of the underlying set, and (iii) a spatial branch-and-bound strategy that iteratively refines these
approximations until convergence to a global optimal solution. Applicable to optimization problems
of general structure, this framework represents the most comprehensive extension of previously de-
veloped DD-based approaches for MINLPs, addressing the longstanding need for a general-purpose
DD-based method for globally solving MINLPs. Computational experiments on benchmark MINLP
instances with complex structures, which are inadmissible in state-of-the-art global solvers, show
the capabilities and effectiveness of the proposed framework.
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