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Abstract

We present an algorithm for triobjective nonlinear integer programs
that combines the ε-constraint method with available oracles for biobjec-
tive integer programs. We prove that our method is able to detect the
nondominated set within a finite number of iterations. Specific strate-
gies to avoid the detection of weakly nondominated points are devised.
The method is then used to determine the nondominated solutions of tri-
objective 0-1 models, built to design nutritionally adequate and healthy
diet plans, minimizing their environmental impact. The diet plans refer to
menus for school cafeterias and we consider the carbon, water and nitrogen
footprints as conflicting objectives to be minimized. Energy and nutrient
contents are constrained in suitable ranges suggested by the dietary rec-
ommendation of health authorities. Results obtained on two models and
on real world data are reported and discussed.

1 Introduction

Multiobjective optimization is used by decision makers when considering more
than one conflicting objective function simultaneously. Multiobjective optimiza-
tion is applied to several fields such as chemical engineering, energy manage-
ment, drug design [29, 32, 22], just to name a few. Some applications may
require to model the problem using integer variables, see e.g. [17, 19, 26]. In
these cases, we are in the context of multiobjective (mixed) integer programming
(MOIP). It is the purpose of this paper to define and solve triobjective integer
models to design nutritionally adequate and sustainable diet plans. In partic-
ular, we look for diet plans for school cafeterias that simultaneously minimize
their carbon, water and nitrogen footprints. When dealing with more than one
objective function, one looks for the so called nondominated solutions, points
for which none of the objective functions can be improved without degrading
some of the other objective values. In some applications, like ours, it is desirable
to find the complete set of nondominated solutions so that the decision maker
is able to choose among them. In this case, an exact algorithm is needed, i.e.
an algorithm able to find the whole set of nondominated points of a MOIP.
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There is a growing interest on exact algorithms for multiobjective mixed
integer optimization and we mention the recent survey from Halffmann et al. [16]
for a comprehensive overview on solution approaches for multiobjective mixed
integer linear problems. Exact methods for nonlinear integer problems also exist
and there is a distinction between those that work in the space of the decision
variables (see e.g [5, 6, 7, 11, 21]), and those that work in the space of the
objective functions (see e.g. [9, 8, 31]). This work presents an exact algorithm
for triobjective integer programming problems of the following form

min (f1(x), f2(x), f3(x))
T

s.t. x ∈ X ∩ Zn,
(TOIP)

where X ⊆ Rn and f1, f2, f3 : Rn → R are continuous functions. Nonlinear
functions can be handled by our approach, as long as they satisfy the so called
positive γ property introduced in [9] that will be recalled later. The image of
the feasible set X ∩Zn under the vector-valued function f : Rn → R3 represents
the feasible set in the criterion space, or the image set. The efficient solutions of
problem (TOIP) are points x∗ ∈ X ∩Zn such that there exists no other feasible
point x ∈ X ∩ Zn for which fj(x) ≤ fj(x

∗), j = 1, 2, 3 and f(x) ̸= f(x∗).
The images f(x) of efficient points x ∈ X ∩ Zn are called nondominated points.
Furthermore, a point x̄ ∈ X ∩ Zn is called a weakly efficient point of (TOIP)
if there is no x ∈ X ∩ Zn with f(x) < f(x̄), where < is meant componentwise.
The images f(x) of weakly efficient solutions x ∈ X ∩Zn are called weakly non-
dominated points. In the following, we will denote the set of non-dominated
points of (TOIP), also called the non-dominated set, by YN and the set of
weakly non-dominated points by YwN .

The paper is organized as follows. In Section 2, we present our method for
triobjective integer nonlinear problems. We analyze its correctness and present
a strategy to avoid the detection of weakly nondominated points. A comparison
on linear instances with two solvers for triobjective integer linear programming
problems is reported in the Appendix. In Section 3, we present our application
and two triobjective integer programs modeling the design of sustainable diet
plans. We finally discuss the results obtained by solving the models using our
algorithm. In Section 4, we draw some conclusions.

2 Algorithm TrIntOpt

The algorithm we propose extends the ideas used in [8] in order to define an
exact criterion space method for triobjective nonlinear integer programs. Our
algorithm, named TrIntOpt, is based on the ε-constraint method, a well-known
scalarization technique. The idea is to iteratively solve biobjective subproblems,
defined by adding further constraints to the original feasible set. More precisely,
given (TOIP), at every iteration k our method determines the nondominated
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set of biobjective problems of the following form:

min (f1(x), f2(x))
⊤

s.t. f3(x) ≤ εk

x ∈ X ∩ Zn,

(BOIPk)

where the parameter εk varies between minx∈X∩Zn f3(x) and the value f3(x̂
0)−δ,

being δ a positive step size and x̂0 the point defined as follows. Among the
efficient points of the biobjective problem minx∈X∩Zn(f1(x), f2(x))

⊤, x̂0 is one
that achieves the maximum with respect to the objective function f3. As it will
be clarified later on, the step size δ controls the exacteness of TrIntOpt. The
role of f1, f2 and f3 in the definition of Problem (BOIPk) can be interchanged.

For the definition of TrIntOpt we need to have an oracle able to detect the
nondominated set of the biobjective nonlinear integer problem (BOIPk):

Assumption 2.1. There exists an oracle able to detect the complete nondom-
inated set of Problem (BOIPk) after having addressed a finite number Bk of
single-objective integer programs. For each nondominated point y ∈ R2 de-
tected, the oracle is able to compute one of its preimage, namely one efficient
point x ∈ X ∩ Zn such that (f1(x), f2(x)) = y.

In the following, we denote by Ek the set of efficient points detected by the
oracle in Assumption 2.1. We cite [8, 9] as works where algorithms satisfying
Assumption 2.1 are defined. Furthermore, we need to assume the existence of
the ideal point, in order to be guaranteed that the nondominated set is a finite
set:

Assumption 2.2. We assume that the ideal objective values f id
i := minX∩Zn fi(x),

i = 1, 2, 3, and thus the ideal point f id := (f id
1 , f id

2 , f id
3 ) ∈ R3, exists.

We report in Algorithm 1 the scheme of our method TrIntOpt. TrIntOpt

starts by computing x∗ ∈ X ∩Zn as the minimum with respect to f3 and E0 as
the set of efficient points detected when addressing minx∈X∩Zn(f1(x), f2(x))

⊤.
The images of points in E0 are nondominated points of Problem (TOIP) and
define the set M0. The output of TrIntOpt, M ⊆ R3, is initially set equal
to M0. The starting ε1 is set equal to f3(x̂

0) − δ and we enter in a loop. At
every iteration k, the biobjective problem (BOIPk) is handled, the set Ek and
its image Mk are computed and M is enriched by the points in Mk. As it is
shown in Proposition 2.5, the points in Ek are at least weakly efficient. Then,
the new value εk+1 is set equal to f3(x̂

k)− δ, being x̂k a maximum with respect
to f3 over the set Ek and we go on until εk is less than f3(x

∗), meaning that
the whole criterion space has been visited.

In order to prove that TrIntOpt detects the complete nondominated set of
Problem (TOIP), we need to assume that the objective functions are positive
γ-functions, a concept first introduced in [9]. Basically, we need to assume that
a positive value exists that underestimates the distance between the image of
two integer feasible points of (TOIP), componentwise.
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Algorithm 1: Scheme of TrIntOpt

Input: (TOIP), δ > 0, k = 1;
Output: Set YN ⊆ M ⊆ YwN of nondominated points of (TOIP );
Compute x∗ ∈ argminx∈X∩Zn f3(x)
Compute E0 by addressing minx∈X∩Zn(f1(x), f2(x))

⊤

Compute x̂0 ∈ argmaxx∈E0 f3(x)
Set M = M0 = {f(x) | x ∈ E0}
Set ε1 = f3(x̂

0)− δ
while εk ≥ f3(x

∗) do
Compute Ek by addressing minx∈Xk∩Zn(f1(x), f2(x))

⊤,
with X k = X ∩ {x ∈ Rn : f3(x) ≤ εk}
Compute x̂k ∈ argmaxx∈Ek f3(x)
Set Mk = {f(x) | x ∈ Ek}
Set M = M∪Mk

Set εk+1 = f3(x̂
k)− δ

Set k = k + 1
end
Return M Algorithm

Definition 2.3 (Positive γ-function). Let γ > 0. A function g : X → R is a
positive γ-function over X ∩Zn if it holds |g(x)−g(z)| ≥ γ for all x, z ∈ X ∩Zn

with g(x) ̸= g(z).

Assumption 2.4. The functions fi : Rn → R, i = 1, 2, 3 in Problem (TOIP)
are positive γ-functions as in Definition 2.3 for some γ > 0.

Linear or quadratic functions defined over Qn are examples of functions
satisfying Assumption 2.4. Table 1, in Section 4.3 in [8], shows some classes of
functions for which Assumption 2.4 holds and reports how to compute γ.

Let Assumption 2.4 hold for all the objective functions in (TOIP) with γ > 0.
Let δ > 0 be the input parameter for TrIntOpt. In case δ > γ TrIntOpt could
miss some nondominated points of Problem (TOIP), since the step size δ may
be wider than the distance between two nondominated points. On the other
hand, if δ is chosen to be less than or equal to γ, we have that TrIntOpt is able
to detect the complete nondominated set of (TOIP), as shown in the following.

In Proposition 2.5, we first prove that any point detected by TrIntOpt is
at least a weakly nondominated point. Then, Proposition 2.6 shows that ev-
ery nondominated point is detected at some iteration of TrIntOpt, so that
no nondominated point is left undetected, meaning that the set M, output of
TrIntOpt, is a superset of the nondominated set YN .

Proposition 2.5. Let Assumption 2.1 and Assumption 2.2 hold. Let Assump-
tion 2.4 hold with γ > 0 and assume that δ ≤ γ in Algorithm 1. Let x̃ ∈ Ek.
Then f(x̃) ∈ YwN .

Proof. Assume by contradiction that f(x̃) ̸∈ YwN , namely x ∈ X ∩ Zn exists
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such that
fi(x) < fi(x̃) i = 1, 2, 3. (1)

Since x̃ ∈ X k ∩ Zn we have that f3(x̃) ≤ εk. Therefore, x ∈ X k ∩ Zn and
f3(x) ≤ εk, otherwise f3(x̃) < f3(x), getting a contradiction to (1). Since x̃ is
an efficient point for Problem (BOIPk), we have that

̸ ∃ x̂ ∈ X k ∩ Zn such that f1(x̂) ≤ f1(x̃), f2(x̂) ≤ f2(x̃),

with fi(x) ̸= fi(x̃) i = 1, 2; so that (1) cannot hold.

Proposition 2.6. Let Assumption 2.1 and Assumption 2.2 hold. Let Assump-
tion 2.4 hold with γ > 0 and assume that δ ≤ γ in Algorithm 1. Let y ∈ YN .
Then k ∈ N and x̃ ∈ Ek exist such that f(x̃) = y.

Proof. Let k ∈ N be the iteration of Algorithm 1 where it holds

εk+1 < y3 ≤ εk. (2)

Note that such value k ∈ N exists from the definition of εk within Algorithm 1
and since f3 : Rn → R satisfies Assumption 2.4. Note also that since y3 ≤ εk,
we have that x ∈ X k ∩ Zn exists such that y = f(x). Assume by contradiction
that x ̸∈ Ek. Two possibilities need to be considered:

i) if we assume that x ̸∈ Ek as it is not an efficient point for (BOIPk), we
have that (y1, y2) = (f1(x), f2(x)) does not belong to the nondominated
set of Problem (BOIPk). Then, x̂ ∈ X k ∩ Zn exists such that

f1(x̂) ≤ y1, f2(x̂) ≤ y2,

with fi(x̂) ̸= yi, i = 1, 2. Since y ∈ YN it must hold

y3 < f3(x̂) ≤ εk.

Since Assumption 2.4 holds and δ ≤ γ, necessarily y3 ≤ εk+1, that is a
contradiction to (2),

ii) if we assume that x ̸∈ Ek as it has not been detected by the Oracle
satisfying Assumption 2.1 used within Algorithm 1, we would have that
(f1(x), f2(x)) belongs to the nondominated set of Problem (BOIPk) but
x̄ ∈ Ek, x̄ ̸= x exists such that (f1(x̄), f2(x̄)) = (f1(x), f2(x)) = (y1, y2).
From Proposition 2.5, it holds that f(x̄) ∈ YwN . Then, since y ∈ YN ,
we have that y3 = f3(x) ̸= f3(x̄) only if y3 = f3(x) < f3(x̄). As before,
necessarily y3 ≤ εk+1 and we get a contradiction to (2).

Based on the previous lemmata we are able to prove the following.
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Theorem 2.7. Let Assumption 2.1 and Assumption 2.2 hold. Let Assump-
tion 2.4 hold with γ > 0. Let δ ≤ γ. Algorithm 1 finds the complete non-
dominated set YN of (TOIP) after having addressed a finite number of single-
objective integer programs.

Proof. By Proposition 2.5 and Proposition 2.6 we have YN ⊆ M. Thanks
to Assumption 2.4, choosing δ ∈ (0, γ] allows the while loop to take at most
m =

⌊ (
f3(x̂

0)− f3(x
∗)
)
/γ
⌋
iterations. Furthermore, taking into account As-

sumption 2.1, we have that Mk can be detected after having solved Bk single-
objective integer programs.

Then, considering the single-objective integer programs tackled at the be-
ginning of Algorithm 1 for the computation of x∗ and M0, that is B0 + 1, the
total number of single objective integer programs addressed by Algorithm 1 is
B0 +

∑m
k=1 B

k + 1.

2.1 Avoiding the detection of weakly nondominated points

Starting from the ideas presented in [20], we propose to modify Problem (BOIPk)
addressed at Step 7 of Algorithm 1. An additional nonnegative continuous vari-
able s ∈ R is introduced to avoid the detection of weakly nondominated solu-
tions along the iterations of TrIntOpt. The biobjective nonlinear mixed-integer
problem we consider is as follows:

min (f1(x)− ρs, f2(x)− ρs)⊤

s.t. f3(x) + s = εk

x ∈ X ∩ Zn

s ≥ 0,

(BOMIPk)

where ρ > 0 is an adequately small number (usually between 10−3 and 10−6)
(see [20]). Despite Problem (BOMIPk) is a mixed-integer problem, its nondom-
inated set is finite and can be detected by the same oracle used for addressing
Problem (BOIPk). We denote by Ẽk the set of efficient points detected by the
oracle in Assumption 2.1, when solving Problem (BOMIPk).

Proposition 2.8. Let Assumption 2.2 hold. Let Assumption 2.4 hold with
γ > 0. Then, Problem (BOMIPk) has a finite nondominated set. Furthermore,
if x ∈ Ẽk then f(x) ∈ YN .

Proof. Recall that by X k we denote the set X ∩ {x ∈ Rn : f3(x) ≤ εk}. From
Assumptions 2.2 and 2.4, we have that the set {f3(x) | x ∈ X k ∩ Zn} ⊂ R is a
finite set. Furthermore, given x̄ ∈ X k ∩ Zn, a unique s̄ exists such that

s̄ = argmax s

s.t. f3(x̄) + s = εk

s ≥ 0.

6



Therefore, the nondominated set of Problem (BOMIPk) is finite. Let x′ ∈ Ek

be an efficient solution of (BOIPk). From Proposition 2.5 we have that f(x′) ∈
YwN . Let (x̂, ŝ) ∈ Ẽk be an efficient solution of (BOMIPk) and assume by
contradiction that x′ dominates x̂, with

f1(x
′) = f1(x̂) and f2(x

′) = f2(x̂).

Then, f3(x
′) < f3(x̂) = εk − ŝ, with ŝ ≥ 0. This implies that s′ ≥ 0 exists such

that f3(x
′) = εk − s′ and s′ > ŝ. However, this contradicts the efficiency of

(x̂, ŝ) for Problem (BOMIPk), as (x′, s′) is feasible for (BOMIPk), with

f1(x
′)− ρs′ < f1(x̂)− ρŝ and f2(x

′)− ρs′ < f2(x̂)− ρŝ.

3 Designing sustainable diet plans through tri-
objective 0-1 models

Sustainable diets are defined by the Food and Agriculture Organization of the
United Nations [2] as “those diets with low environmental impact that con-
tribute to food and nutrition security and to a healthy life for present and
future generations”. A sustainable diet must therefore be healthy, have low
environmental impact and respect cultural habits in order to be acceptable to
the population. These issues are often incompatible, for example low-cost diets
correspond to high energy density, whereas diets of higher nutrient density and
nutritional quality have higher costs. The healthiness of food is guaranteed
by following the advices of nutritionists and various medical and governmental
institutions, which mainly consist of dietary guidelines [23] defining nutrient
requirements, recommended nutrient intakes as well as recommended consump-
tion levels of some foods [33].

The environmental impact of food production refers to the level of green-
house gas emissions, the use of land and water resources, pollution, phosphorus
depletion and the impact of chemical products such as herbicides and pesticides.
Cultural habits, i.e. the composition of meals, food preferences and preparation
techniques, are strongly influenced by the traditions, beliefs and values shared
by a community. They therefore define the structure of each meal and the set of
foods and dishes that are considered edible and acceptable [14]. In addition, the
attractiveness and variability of meals must also be considered when designing
a diet. A meal plan, or menu, consists of the sequence and composition of daily
meals over a given period of time. This can be done by selecting dishes from a
given set of recipes with a portion size that generally depends on age, weight,
gender, and level of physical activity. The design of a menu can therefore be
modeled as the assignment of dishes (resources) to given places in a schedule
(slots).

The case study considered in this paper is the design of school lunch menus
for primary schools in Italy. The set of dishes available to be served was deter-
mined by collecting a sample of several Italian primary school menus (children
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aged 6–11 years) and results in a list of 178 dishes grouped as 66 first-course
dishes (in general including pasta or other carbohydrate sources), 75 second-
course dishes (in general a source of protein), 35 side dishes (vegetables, pota-
toes, or salad), fresh fruit, and bread. Tap water is the only beverage allowed
for lunch.

Complying with the Italian recommended dietary allowances (RDAs) [30],
a fixed portion size for each dish was considered. Recommended ranges for
energy and nutrient intakes (fats, proteins, carbohydrates, sugars, fiber, sodium,
calcium, iron, and vitamin B12) for each lunch are also obtained from RDAs.
To satisfy these requirements, the energy quantity qeni and nutrient quantities
qpi of each dish i and nutrient p were calculated from its ingredients using the
Italian Food composition and Nutrition database [1]. Other recommendations
include limiting or avoiding consumption of some food groups and increasing
consumption of others. For example, health authorities recommend eating more
plant-based foods, limiting animal products, especially red meat, and avoiding
processed meats. To reflect such recommendations, different food groups are
defined (white meat, red meat, eggs, fish, dairy, and vegetables) and dishes
are assigned to the appropriate food group g. In addition, dishes containing
processed meat are not included in the list of available dishes.

The impact of food production on the environment was characterized by
some standard consumption-based indicators, such as the carbon, water, and
nitrogen footprints. The first is expressed as carbon dioxide equivalent and
takes into account all the primary greenhouse gases, i.e., carbon dioxide CO2,
methane CH4, and nitrous oxide N2O, emitted during food production. The
second takes into account for the freshwater withdrawals required to produce
food and the last the pollution of water bodies and ecosystems due to the excess
of nitrogen in agricultural production systems. The carbon and water footprints
associated to each dish i, denoted by qcfi and qwf

i respectively, were computed
from its ingredients using the database developed in the framework of the EU
SU-EATABLE LIFE project [27]. The nitrogen footprint qnfi associated to each
dish i was estimated from its ingredient using the model presented in [18].

We report in Figure 1 the carbon, water and nitrogen footprints of second-
course dishes and side dishes containing vegetables. As expected, the second-
course dishes containing red meat are the less sustainable ones.

Cultural habits are naturally complied with the choice of the set of recipes
from which to select the dishes of the menu, and with the structure of the lunch
which must consists of one first-course dish, one second-course dish, one side-
dish, fresh fruit and bread. On the other hand, attractiveness and variability
of the menu is pursued by fixing the minimum and maximum number of times
that each dish, and dishes of the same food group g, can be served in the menu.

The design of a lunch menu over D days can be modelled as the assignment
of D× 178 binary variables xi

d, each one associated to each available dish i and
day d, assuming value 1 if the dish i is served in the lunch of the day d, and 0
otherwise.

Nutritional recommendations consists of recommended nutrient intakes and
can then be modeled as lower and/or upper bounds on energy and nutrients
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Figure 1: Carbon, water and nitrogen footprints of second-course dishes and
side dishes containing vegetables (one fixed-size portion).

contents of each lunch and of the overall menu as follows:

Lday
p ≤

178∑
i=1

xi
d · q

p
i ≤ Uday

p , ∀d, p

Lweek
p ≤

5∑
d=1

178∑
i=1

xi
d · q

p
i ≤ Uweek

p , ∀p (3)

where Lday
p , Uday

p , Lweek
p , and Uweek

p are the lower and upper bounds on the
recommended daily and weekly intake of nutrient p. The recommendations
limiting or increasing the consumption of some food groups, as well as those
related to the attractiveness and variability of the menu, can be modeled as
lower and/or upper bounds on the number of dishes of the same food group g
served during the week as follows:

mg ≤
5∑

d=1

∑
i∈g

xi
d ≤ Mg, ∀g (4)
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where mg, and Mg are the lower and upper bound associated to group g. More-
over, variability is increased by imposing that each dish cannot be served more
than once in the menu, that is

D∑
d=1

xi
d ≤ 1, ∀i (apart from fruit and bread)

The values of the above defined lower and upper bounds are given in Tables
1 and 2.

p Lday
p Uday

p Lweek
p Uweek

p

energy (kcal) 500 900 3000 4000
fats (g) 10 40 100 150

proteins (g) 15 40 100 175
carbohydrates (g) 70 130 450 550

sugars (g) - 40 50 150
fiber (g) - 20 25 75

sodium (mg) 100 700 1500 2500
calcium (mg) - - 1000 -
iron (mg) - - 25 -

vitamin B12 (µg) 0.35 - - -

Table 1: Lunch energy and nutrient constraints for children aged 6–11 years.

g mg Mg

white meat 1 2
red meat - 1

eggs 1 2
fish 1 2
dairy 1 2

vegetables 4 -

Table 2: Food groups repetition constraints for health, acceptability and vari-
ability requirements.

The composition of the lunch of each day d is guaranteed by the following
constraints: ∑

i∈first

xi
d = 1,

∑
i∈second

xi
d = 1,

∑
i∈side

xi
d = 1, ∀d

and xd
i = 1, ∀d and when i corresponds to fruit and bread.

In this paper two different models are considered, with different objective
functions and different number of days D. The first model refers to a weekly
menu, i.i. D = 5, and the objective functions to be minimized are the carbon
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footprint (expressed as grams of carbon dioxide equivalent emitted), the wa-
ter footprint (expressed as liters of freshwater withdrawals), and the nitrogen
footprint (expressed as grams of nitrogen released) of the menu, that is

f1(x) =

D∑
d=1

178∑
i=1

xi
d·q

cf
i , f2(x) =

D∑
d=1

178∑
i=1

xi
d·q

wf
i , f3(x) =

D∑
d=1

178∑
i=1

xi
d·q

nf
i . (5)

This model results in a triobjective problem of 890 binary variables and 292
constraints 25 of which are equality constraints. As reported above, the ob-
jective functions and the constraints are linear and Assumption 2.4 is satisfied
with γ = 0.01.

The second model refers to a menu for just two days (D = 2). In this case
the weekly constraints (3) and (4) do not apply and the objective functions to
be minimized are the carbon and water footprints of the menu, that is f1(x)
and f2(x) in (5), and the mean square deviation of the daily energy intake with
respect to the RDAs reference value of 700 kcal/day, that is

f3(x) =
1

D

2∑
d=1

[(
178∑
i=1

xi
d · qeni

)
− 700

]2
.

The model is then a triobjective binary quadratic one, requiring a much
heavier computational burden for our algorithm. This is the reason why the
menu runs over just two days, so that only 356 binary variables are needed.
Solving this triobjective model ended in identifying 5 nondominated solutions
and the related 5 menus, that are reported in the table below. Note that every
menu is also including bread and fruit for every day, which are not reported in
Table 3.

3.1 Numerical results and discussion

The performance of TrIntOpt strongly depends on the performance of the oracle
satisfying Assumption 2.1 adopted. In our Python implementation of TrIntOpt
we solve the biobjective subproblems (BOMIPk) by the Frontier Partitioner Al-
gorithm (FPA) presented in [8]. Assumption 2.1 is satisfied by FPA and the num-
ber Bk of single-objective integer programs addressed is equal to |Yk

N |+2, being
|Yk

N | the cardinality of the nondominated set of the subproblem (BOMIPk). For
how TrIntOpt works, it can happen that single-objective integer problems are
addressed to detect nondominated points that have already been found. In or-
der to avoid useless computations and save CPU time, we keep a list of the
nondominated points detected along the iterations of TrIntOpt and use the
corresponding efficient points to warmstart the solver of the single-objective
integer problems. Within our Python implementation of TrIntOpt we use the
MIP solver of GUROBI [15]. All experiments have been executed on an Intel(R)
Xeon(R) Gold 6252N CPU running at 2.30GHz.

For what concerns the first model, 635 weakly nondominated points were
determined. Each point represents a set of menus with the same carbon, wa-
ter, and nitrogen footprint values, and therefore equivalent with respect to the
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Figure 2: Projection of the weakly nondominated points on the plane nitrogen-
water footprints.

environmental impact. For example, the simple permutation of lunches within
the days of the week, provides equivalent menus. Moreover, there are dishes
sharing the same energy, nutrients, and environmental impact values that can
be interchangeably used1, and this may further increase the number of possible
equivalent menus. All the menus associated with the 635 points are nutritionally
adequate, healthy and attractive, since they satisfy the constraints.

Projections of weakly nondominated points on the three coordinate planes
are shown in Figures 2, 3, and 4.

Figures 2, 3 show that menus with low/high nitrogen or carbon footprint are
generally those with higher/lower water footprint. On the contrary, menus with
high/low carbon footprint exhibit also high/low nitrogen footprint, see Figure
4. As a consequence, menus with high water footprint have low values for both
carbon and nitrogen footprints, and menus with low water footprint have high
values for both carbon and nitrogen footprint. This is clearly shown in Fig-
ure 4 checking the color mark for the water footprint values. An approximate
quadratic relation between the footprint values associated to the (weakly) non-
dominated points found is obtained by least square fitting with R2 = 0.98, and
the corresponding surface is shown in Figure 5. Hence water footprint increases
on average quadratically when carbon and nitrogen footprints decrease. This
allows, for instance, to estimate the minimum water footprint of a menu fixing

1This happens when different recipes have the same ingredients with the same quantity,
i.e., they have only a different food preparation such as, for example, Backed potatoes, Boiled
potatoes with olive oil, Crispy backed potatoes, and Sauteed potatoes (see Supplementary
material).
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Figure 3: Projection of the weakly nondominated points on the plane water-
carbon footprints.

Figure 4: Projection of the weakly nondominated points on the plane carbon-
nitrogen footprints.
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Figure 5: Quadratic approximate relation between weakly nondominated points
(R2 = 0.98).

some values for the associated carbon and nitrogen footprint.

4 Conclusions

An exact method for detecting the nondominated set of triobjective nonlinear
integer programs has been devised. The method TrIntOpt uses the concept of
γ-positive function in order to properly combine the ε-constraint method with
solvers for biobjective integer programs. A strategy to avoid the detection of
weakly nondominated points, seen as a disadvantage of the ε-constraint method,
is presented. By applying TrIntOpt to two triobjective 0-1 problems modeling
the design of nutritionally adequate and healthy diet plans, we were able to
collect menus, minimizing standard consumption-based indicators measuring
the impact of food production on the environment. Thanks to the theoretical
results proven we are guaranteed that each menu detected is a nondominated
point of the problem considered and that the whole nondominated set has been
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recovered.

Appendix: A numerical comparison with LSM [3]
and QSM [4] on linear instances

There exists several approaches for multiobjective linear integer (and mixed-
integer) programming. We mention the works by Ozlen and coauthors [24,
25, 28] and we refer to [16] for a comprehensive overview on solution ap-
proaches for multiobjective mixed integer linear problems. Among the criterion
space methods specifically developed for triobjective integer linear programming
problems, we find the L-shape method (LSM) [3] and the Quadrant Shrinking
Method (QSM) [4]. In the following, we compare our Python implementation
of TrIntOpt with both LSM and QSM, that are implemented in C++ and rely
on the IBM CPLEX Optimizer as MIP solver.

The L-shape method (LSM) [3] is an image space decomposition method. The
algorithm holds a priority queue of rectangles to be explored, in the image space
of two objective functions. The method looks into the rectangles with the aim
of finding all those nondominated points for (TOIP) having their projection in
the rectangle itself. In case an already-found nondominated point outside the
rectangle is detected the rectangle is shrunk. The search can either determine
that the rectangle contains no as yet unknown nondominated point so that the
rectangle is discarded, or find a new nondominated point having its projection
in the rectangle. In this case, the nondominated point found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk, discarded
or split into more rectangles that are added to the priority queue.

The Quadrant Shrinking Method (QSM) [4] partitions the image space by
splitting it into “quadrants” which are defined starting from an upper bound
point in the image space of two out of three objective functions. A search
procedure looks for nondominated points over the current quadrant. Then, if no
nondominated point is found the quadrant is shrunk. On the other hand, when
a nondominated point is detected, a new search region is defined and the search
procedure looks for an as yet unknown nondominated point. Strategies to avoid
the solution of redundant single-objective integer problems are implemented.

In Table 4, we report the comparison among TrIntOptILP , i.e. TrIntOpt

without the strategy proposed in Section 2.1, TrIntOpt, LSM and QSM on in-
stances of the triobjective assignment problem (AP) available at https://usf.
app.box.com/s/ds0g3ktcjg7vgfsbegzu53ptjgsfq1jg. Such instances are 0-1
linear and the functions involved have all integer entries, so that Assumption 2.4
for TrIntOpt is satisfied with γ = 1.

For each instance and each method, we report the time needed in seconds
and the cardinality of the output set, namely the cardinality of M for both
TrIntOptILP and TrIntOpt and the cardinality of YN for LSM and QSM. In fact,
despite the adoption of the strategy described in Section 2.1, we noticed that
TrIntOpt may also detect weakly nondominated points. From our numerical ex-
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perience, this depends on the choice of the parameter ρ within (BOMIPk). The
results shown are obtained with ρ = 10−6, that, in our experiments, leads to the
lowest number of additional weakly nondominated points. We can also notice
that solving (BOMIPk), instead of (BOIPk), comes at a not negligible compu-
tational time, as TrIntOpt is always slower with respect to TrIntOptILP . This
could depend on both the value of ρ and on the introduction of the additional
variable s in (BOMIPk). QSM is the fastest method on every instance but AP5
and AP8, where TrIntOptILP is the fastest. Furthermore, despite TrIntOptILP

detects a higher number of solutions, it is faster than LSM on seven instances,
suggesting that the warmstarting strategy may pay off.

Instance TrIntOptILP TrIntOpt LSM QSM
time |M| time |M| time |YN | time |YN |

AP2 17.18 223 19.20 221 14.46 221 10.75 221
AP3 45.69 500 53.43 488 41.54 483 31.92 483
AP4 260.30 2030 340.38 1962 264.10 1942 226.66 1942
AP5 484.99 3872 617.47 3765 617.29 3750 530.74 3750
AP6 936.99 5380 1097.05 5231 1059.81 5195 874.00 5195
AP7 2169.03 10996 2913.69 10546 2545.78 10498 2231.19 10498
AP8 3289.97 15373 4693.06 14809 4068.96 14733 3552.93 14733
AP9 6971.05 25684 10142.39 24021 7315.51 23941 6626.87 23941
AP10 9437.76 30802 15100.32 29259 10313.50 29192 9337.88 29193

Table 4: Results on triobjective assignment problem instances

Appendix: A numerical comparison with AdEnA [13]
on quadratic instances

In the following, we report a comparison of TrIntOpt with AdEnA, the hybrid
decision-criterion space method proposed in [13, Algorithm 3] on tri-objective
integer nonlinear instances, with convex quadratic objective functions and linear
constraints. We used the code of AdEnA provided on GitHub [12]. AdEnA is an ex-
act method for Multi-Objective Mixed-Integer Nonlinear Problems (MOMINLPs),
meaning that it is able to detect an approximation of the nondominated set of a
MOMINLP according to a prescribed precision. In particular, AdEnA is able to
compute an enclosure of the nondominated set, i.e. a well-structured set in the
image space, as for example a union of boxes, which contains the nondominated
set as a subset. The precision of an enclosure as an approximation of the non-
dominated set is given by its width (we refer to [10] for further details on the
concept of enclosure). The precision required to AdEnA cannot be set to zero, so
that the approximation of the nondominated set obtained by AdEnA for purely
integer instances cannot be compared - in terms of quality - with the exact
nondominated set detected by TrIntOpt, that is a finite set. We chose to set ϵ,
the parameter controlling the width of the enclosure released by AdEnA, equal to
0.01. The instances were randomly generated with a number of variables n = 15,
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a number of constraints m = 10. The matrices defining the quadratic terms in
the objective functions were built using the MATLAB function sprandsym and
we considered three different density levels ρ ∈ {0.25, 0.50, 0.75}. Namely, we
generated matrices with approximately ρ · n2 nonzeros entries. For what con-
cerns the linear inequality constraints Ax ≤ b, we randomly generated matrix
A ∈ Rm×n and vectors b ∈ Rm with m = 10 using the MATLAB functions
sprand and rand respectively. For each ρ we produced 5 different instances and
we report the CPU time (in seconds) needed by the two algorithms in Table 5.
On the instances considered, TrIntOpt is not only able to reproduce the finite
nondominated set, but it is also almost three times faster than AdEnA.

ρ time TrIntOpt time AdEnA

inst1 0.25 25.69 113.26
inst2 0.25 39.01 102.50
inst3 0.25 55.67 206.12
inst4 0.25 64.98 460.29
inst5 0.25 61.48 439.78
inst6 0.50 180.97 693.57
inst7 0.50 14.22 86.52
inst8 0.50 47.80 195.50
inst9 0.50 11.48 85.94
inst10 0.50 229.15 364.82
inst11 0.75 36.11 164.87
inst12 0.75 41.23 137.59
inst13 0.75 106.97 354.59
inst14 0.75 169.75 404.57
inst15 0.75 268.47 807.92

Table 5: Results on randomly generated triobjective quadratic instances
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[30] Società Italiana di Nutrizione Umana. Livelli di Assunzione di Riferimento
di Nutrienti ed Energia per la Popolazione Italiana (LARN), 4th ed., 2014.

[31] Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated
set of multiobjective discrete optimization problems. INFORMS Journal
on Computing, 33(1):72–85, 2021.

[32] Aly-Joy Ulusoy, Filippo Pecci, and Ivan Stoianov. Bi-objective design-for-
control of water distribution networks with global bounds. Optimization
and Engineering, 23(1):527–577, 2022.

[33] World Health Organization. Healthy Diet. Fact sheet N. 394, 2015.

21


