
Robust combinatorial optimization problems with

knapsack constraints under interdiction

uncertainty

Alejandro Crema

Escuela de Computación, Facultad de Ciencias, Universidad Central de
Venezuela.

Contributing authors: alejandro.crema@ciens.ucv.ve;

Abstract

We present an algorithm for finding near-optimal solutions to robust combinato-
rial optimization problems with knapsack constraints under interdiction uncer-
tainty. We incorporate a heuristic for generating feasible solutions in a standard
row generation approach. Experimental results are presented for set covering,
simple plant location, and min-knapsack problems under a discrete-budgeted
interdiction uncertainty set introduced in this work.

Keywords: Combinatorial optimization, Robust optimization, Interdiction
uncertainty, Bulk-robust optimization

1 Introduction

To simplify the exposition we prefer to present directly the notation in section 1.1.
In section 1.2 we present the Robust combinatorial optimization problem under inter-
diction uncertainty [1] when the problem is defined with knapsack constraints and in
section 1.3 we present the Bulk-robust combinatorial optimization problem ([2], [3])
which results for the mentioned special case an equivalent problem. In section 1.4 we
present a summary of our contribution and in section 1.5 we present some remarks
and the organization of the paper.

1

1.1 Notation

1. if U is an optimization problem then: (i) F (U) is its feasible solution set and v(U)
is its optimal value with the usual convention v(U) = +∞(−∞) for the minimiza-
tion (maximization) case when an optimal solution does not exist and (ii) let ϕ
the cost function for the minimization case and let ϵ ≥ 0 then y is an ϵ-optimal

solution for U if y ∈ F (U) and ϕ(y)−v(U)
ϕ(y) ≤ ϵ

2. if n ≥ 1 then [n] = {1, · · · , n}

3. let K ≥ 1, let Y a non-empty set and let xk ∈ Y for all k ∈ [K] then
{xk}K1 = {x1, · · · ,xK} ⊆ Y

4. let n ≥ 1, if x ∈ {0, 1}n then supp(x) = {j : xj = 1, j ∈ [n]}

5. 0(1) denotes a vector with all coordinates equal to 0(1) and the dimensions will
be clear each time in the context

6. let r ≥ 1, if y,w ∈ {0, 1}r then y⊗w is defined as follows: y⊗wj = yjwj ∀j ∈ [r]

7. let m,n ≥ 1, let A ∈ Rm×n and let y,w ∈ {0, 1}n then Ay⊗w = Az with z = y⊗w

1.2 Robust combinatorial optimization problems with
knapsack constraints under interdiction uncertainty

Let m,n ≥ 1, let A ∈ Zm×n
+ , let b ∈ Zm

+ with b > 0, and let ϕ : {0, 1}n −→ R+. The
nominal problem to be considered is a problem in x defined as follows:

min ϕ(x) P
s.t. Ax ≥ b

x ∈ {0, 1}n

Several important combinatorial problems are defined as P, for example: the set
covering (SC) problem, the quadratic set covering problem, the min-knapsack (mK)
and the multidimensional min-knapsack problem with integer weights, the quadratic
min-knapsack and the quadratic multidimensional min-knapsack problem with inte-
ger weights, the selection problem and the simple plant location (SPL) problem.

Let S ⊆ {0, 1}n be the implicitly defined interdiction uncertainty set. If s ∈ S let
X (s) = {x ∈ {0, 1}n : Ax⊗ (1− s) ≥ b}. Let Sf = {s ∈ S : X (s) ̸= ∅}. If s ∈ S then
s is an scenario. If s ∈ S and X (s) ̸= ∅ then s is a feasible scenario. If x ∈ {0, 1}n and
s ∈ Sf we say that x covers s if and only if x ∈ X (s).

2

The Robust combinatorial optimization problem with knapsack constraints under
interdiction uncertainty is a problem in x defined as follows:

min ϕ(x) I
s.t. A x⊗ (1− s) ≥ b ∀s ∈ Sf

x ∈ {0, 1}n

Let us suppose that F (P) ̸= ∅. Let us suppose that 0 ∈ S. Since F (P) ̸= ∅ then
(i) X (0) ̸= ∅, (ii) 0 ∈ Sf and (iii) Sf ̸= ∅. Note that 1 ∈ F (I) and then there is an
optimal solution. Note that x ∈ F (I) if and only if x covers s for all s ∈ Sf .

Let w ∈ Zn
+, c ∈ R+ and W > 0. If S is defined by S = {s ∈ {0, 1}n : wts ≤ W}

and ϕ(x) = ctx then there is a compact formulation for I in the case where the
constraints are of cardinality ([1]).

Let us suppose that a compact formulation for I either does not exist or we we
do not known it.

A standard row generation approach to solve I, mentioned in [4] as the scenarios-
dynamic-approach, is to solve a sequence of relaxations defined with a subset of Sf

until a solution x is generated with x ∈ F (I). If the solution x obtained by solving a
relaxation does not belong to F (I), the rows of some feasible scenario not previously
considered and not covered by x are added to define a new relaxation.

If S = {sk}K1 ⊆ Sf the corresponding relaxation I(S) is a problem in x defined as
follows:

min ϕ(x) I(S)
s.t. A x⊗ (1− sk) ≥ b ∀k ∈ [K]

x ∈ {0, 1}n

The standard approach outlined has a crucial drawback: there is a lack of upper
bounds that would allow to stop the algorithm execution with ϵ-optimal solutions.

1.3 Bulk-robust combinatorial optimization

Let Ω = {x ∈ {0, 1}n : ∀s ∈ Sf ∃ y(s) ∈ {0, 1}n such that Ay(s) ≥ b, y(s) ≤ (1− s)
and y(s) ≤ x}.

The Bulk-robust combinatorial optimization problem ([2], [3]) with knapsack
constraints is a problem in x defined as follows :

min ϕ(x) s.t. x ∈ Ω Bu

3

Remark 1. I and Bu are equivalent problems.

Proof: Let x ∈ F (I) and let y(s) = x⊗ (1− s) for all s ∈ Sf then y(s) ∈ {0, 1}n,
Ay(s) ≥ b, y(s) ≤ (1 − s) and y(s) ≤ x, therefore x ∈ Ω. Let x ∈ Ω and let s ∈ Sf

then there existe y(s) ∈ {0, 1}n such that Ay(s) ≥ b, y(s) ≤ (1 − s) and y(s) ≤ x,
therefore Ax ⊗ (1 − s) ≥ Ax ⊗ y(s) ≥ b and x ∈ F (I). Therefore, I and Bu are
equivalent problems □

1.4 Our contribution

We will show that we can overcome the drawback of the standard row generation
approach. Some points to note are the following:

� we will present a greedy heuristic to generate: (i) a solution in F (I) starting from x
not in F (I) with which obtaining of ϵ-optimal solutions becomes possible and (ii) a
set of feasible scenarios not previously considered such that x does not cover them

� an ϵ-optimal algorithm to solve I with a row-and-bound generation approach will
be presented

� we present a new non-uniform interdiction uncertainty sets resulting from applying
the fundamental idea of an uniform budgeted interdiction uncertainty set to a set
of explicitly defined basic binary scenarios

� we will present experimental results for problems whose nominal version corresponds
to set covering, simple plant location and min-knapsack problems.

1.5 Remarks and paper organization

We will now present some remarks to clarify the context and the organization of the
paper:

� in order to simplify the exposition, the auxiliary problems, the greedy heuristic,
and the resulting ϵ-optimal algorithm will be presented assuming that the sequence
of auxiliary problems and relaxations used are solved exactly. Subsequently, appro-
priate remarks will be made when considering tolerances if necessary

� the study of the computational complexity of I and Bu is beyond the scope of
the paper. Results on complexity for several kind of constraints can be found in
[1],[2],[3],[5],[6],[7] and [8]

� the paper is organized as follows: section 2 presents the theoretical results, auxiliary
problems and greedy heuristic that allow us to define an ϵ-optimal algorithm, which
is presented in the same section. Section 3 presents the non-uniform interdiction
uncertainty sets. Section 4 presents the experimental results and finally section 5
presents the conclusions and possible extensions of the work.

4

2 Theoretical results and algorithms

Remark 2. Let s ∈ S then: s ∈ Sf if and only if A(1− s) ≥ b

Proof: If s ∈ Sf then there exists x(s) ∈ {0, 1}n such that b ≤ Ax(s) ≤ A(1− s).
If A(1− s) ≥ b we have that 1− s ∈ X (s) and then s ∈ Sf □

2.1 Adversarial problem

Next we present the adversarial problem to verify whether a solution is feasible and,
if not, to generate a feasible scenario that is not covered.

Lemma 1. Let x ∈ {0, 1}n. Let Q(x) be a problem in (z, s) defined as follows:

max
∑
i∈[m]

zi Q(x)

s.t.
∑
j∈[n]

Aijxj(1− sj) ≤ zi(bi − 1) + (1− zi)
∑
j∈[n]

Aijxj ∀i ∈ [m] (∗1)

A(1− s) ≥ b (∗2)
z ∈ {0, 1}m, s ∈ S

then:

1. F (Q(x)) ̸= ∅

2. If (z, s) ∈ F (Q(x)) then s ∈ Sf

3. v(Q(x)) ≥ 1 if and only if x /∈ F (I)

4. Let S = {sk}K1 ⊆ Sf , let x ∈ F (I(S)) and let (z, s) be an optimal solution for
Q(x). If v(Q(x)) ≥ 1 then s /∈ {sk}K1 and x does not cover s.

Proof:

1. If z = 0 then constraints in (∗1) are satisfied for all s ∈ S and if s = 0 then
constraints in (∗2) are satisfied, therefore (0,0) ∈ F (Q(x))

2. If (z, s) ∈ F (Q(x)) then s ∈ S with A(1− s) ≥ b and, from remark 2, s ∈ Sf

3.(a) Let (z, s) be an optimal solution with v(Q(x)) ≥ 1, then we have that s ∈ Sf

and there exists i ∈ [m] such that zi = 1 and then
∑

j∈[n] Aijxj(1− sj) ≤ bi−1.

Therefore x does not cover s and x /∈ F (I)

(b) Let us suppose that x /∈ F (I) then there exists s ∈ Sf such that x does not
cover it. Let H(x, s) = {i ∈ [m] :

∑
j∈[n] Aijxj(1 − sj) ≤ bi − 1}. Let zi = 1 if

5

and only if i ∈ H(x, s). In that case we have that (z, s) ∈ F (Q(x)), therefore
v(Q(x)) ≥ 1

4. Let (z, s) be an optimal solution with v(Q(x)) ≥ 1, since v(Q(x)) ≥ 1 then there
exists i ∈ [m] such that zi = 1 and in that case

∑
j∈[n] Aijxj(1− sj) ≤ bi − 1 and

x does not cover s. Since x ∈ F (I(S)) we have that s /∈ {sk}K1 □

2.2 Scenarios unfeasibility problem

Next we present a problem to verify if there are non-feasible scenarios.

Lemma 2. Let R be a problem in (z, s) defined as follows:

max
∑
i∈[m]

zi R

s.t.
∑
j∈[n]

Aij(1− sj) ≤ zi(bi − 1) + (1− zi)
∑
j∈[n]

Aij ∀i ∈ [m]

z ∈ {0, 1}m, s ∈ S

then:

1. F (R) ̸= ∅

2. v(R) ≥ 1 if and only if S − Sf ̸= ∅

Proof:

1. (0,0) ∈ F (R)

2.(a) Let (z, s) be an optimal solution with v(R) ≥ 1 then there exists i ∈ [m] such
that zi = 1, therefore

∑
j∈[n] Aij(1 − sj) ≤ bi − 1 and from remark 2 we have

that s /∈ Sf

(b) Let us suppose that S − Sf ̸= ∅ and let s ∈ S − Sf . Let H(s) = {i ∈ [m] :∑
j∈[n] Aij(1− sj) ≤ bi − 1}. Since s /∈ Sf we have that H(s) ̸= ∅. Let zi = 1 if

and only if i ∈ H(s) then (z, s) ∈ F (R), therefore v(R) ≥ 1 □

2.3 Greedy heuristic

Next we present a greedy heuristic to generate feasible solutions and non-covered
unconsidered feasible scenarios.

Let x ∈ {0, 1}n with x /∈ F (I). What is done in the heuristic is the following:
find s ∈ Sf such that s is not covered by x, add indexes to supp(x) to cover the new
scenario at minimum cost, update x and repeat the procedure until x ∈ F (I).

6

Let x ∈ {0, 1}n and let s ∈ Sf such that s is not covered by x . Let I(s,x) be a
problem in x define as follows

min ϕ(x) I(s,x)

s.t. A x⊗ (1− s) ≥ b

x ≥ x

x ∈ {0, 1}n

Note that 1 ∈ F (I(s,x)). The greedy heuristic is defined as follows:

Algorithm 1 Greedy heuristic: H

Require: Let S ⊆ Sf , let x1 be an optimal solution for I(S) and let (z∗, s∗) be an
optimal solution for Q(x1). Let us suppose that v(Q(x1)) ≥ 1 and let r = 1

1: while v(Q(xr)) ≥ 1 do
2: Solve I(s∗,xr) and let xr+1 be an optimal solution
3: Solve Q(xr+1) and let (z∗, s∗) be an optimal solution
4: r = r + 1

5: return xr

Lemma 3. H is finite and if xr is the output then xr ∈ F (I).

Proof: From the definition of H we have for the first s∗:
∑

j∈[n] Aijx
1
j (1−s∗j) ≤ bi−1

for some i ∈ [m]. In step 2 we have that
∑

j∈[n] Aijx
2
j (1 − s∗j) ≥ bi for all i ∈ [m]

and then x2 ̸= x1. Since x2 ≥ x1 we have that |supp(x2)| ≥ |supp(x1)| + 1. We
can repeat the reasoning to proof that, as long as the algorithm does not stop,
|supp(xr+1)| ≥ |supp(xr)| + 1 for all r in such a manner that in the worst case we
will find xr = 1 for some r and the algorithm will stop because 1 ∈ F (I). When the
algorithm stops because v(Q(xr)) = 0 we have that xr ∈ F (I) □

Note that the original s∗ before step 1 and all the scenarios generated at step 3
while v(Q(xr)) ≥ 1 are not covered with x1.

2.4 The non-vulnerable problem

Let NV the set of non-vulnerables variables defined as follows: NV = {j ∈ [n] : sj =
0 ∀s ∈ S} and let P (NV) the non-vulnerable problem defined as follows:

min ϕ(x) P (NV)

s.t. Ax ≥ b

xj = 0 ∀j /∈ NV

x ∈ {0, 1}n

7

If F (P (NV)) ̸= ∅ and xnv is an optimal solution then xnv ∈ F (I) and then we
have that v(I) ≤ min{v(P (NV)), ϕ(1)}.

2.5 An algorithm to find an ϵ-optimal solution for I

Let ϵ ≥ 0 be a predefined relative global tolerance. We are now in a position to define
an algorithm to find x+ ∈ F (I) such that x+ is an optimal solution or at least is an
ϵ-optimal solution.

In order to simplify the exposition we present the algorithm with the relative global
tolerance (ϵ) fixed. Some schemes are valid with ϵ updated as time progress and will
be presented with the computational experience.

Algorithm 2 An algorithm to find an ϵ-optimal solution for I: A(ϵ)

Require: Let ϵ ≥ 0, let S = {0}, let LB = 0 and let UB = min{v(P (NV)), ϕ(1)}
1: while UB(1− ϵ) > LB do
2: Solve I(S), let x∗ be an optimal solution and let LB = ϕ(x∗)
3: Solve Q(x∗) and let (z, s) be an optimal solution
4: if v(Q(x∗)) = 0 then
5: UB = ϕ(x∗) and x+ = x∗ ▷ in this case UB = LB

6: if UB(1− ϵ) > LB then
7: S = S ∪ {s}
8: while v(Q(x∗)) ≥ 1 do
9: x = x∗

10: Solve I(s,x) and let x∗ be an optimal solution
11: Solve Q(x∗) and let (z, s) be an optimal solution
12: S = S ∪ {s}
13: if ϕ(x∗) < UB then
14: UB = ϕ(x∗) and x+ = x∗

15: return x+, gap = 100UB−LB
UB

Lemma 4. A(ϵ) is finite and if x+ is the output then x+ is an optimal solution or
at least is an ϵ-optimal solution for I

Proof: Note that: (i) Steps 8-12 correspond to executing H and will always run in
a finite number of steps, (ii) all scenarios generated in steps 3 and 11 are feasible, (iii)
if the algorithm stops with LB = UB because of v(Q(x∗)) = 0 at step 4 then x+ = x∗

is an optimal solution for I, (iv) if the algorithm stops because of UB(1 − ϵ) ≤ LB
then x+ is an ϵ-optimal solution for I.

In step 3 if v(Q(x∗)) ≥ 1 then s /∈ S, therefore in the worst case I(Sf) is solved in
step 2 by finding an optimal solution for I and the algorithm will stop □

8

3 Discrete-budgeted interdiction uncertainty set

Let Γ ≥ 1, a uniform budgeted interdiction uncertainty set is defined as follows:
S = {s ∈ {0, 1}n :

∑n
j=1 sj ≤ Γ}. Thus, the supports of the scenarios defining S are

the subsets of [n] with at most Γ elements. No correlation is assumed between the
elements of [n] that conditions their appearance in the scenarios. A step towards
non-uniformity is to consider that there are vulnerable elements defining the set
V ⊂ [n] and non-vulnerable elements in the complement of V and in that case a
particular case of a non-uniform budgeted interdiction uncertainty set is defined as
follows: S = {s :

∑
j∈V sj ≤ Γ}. Again for elements in V no correlation is assumed.

On the other hand, it is usual to consider the discrete interdiction uncertainty
set in the following form: let K ≥ 1 and let {sk}K1 ⊆ {0, 1}n with 0 ∈ {sk}K1 then
S = {sk}K1 . With this option, the scenario supports are subsets of [n] that can be
defined based on the existing correlations for the occurrence of the elements.

It is quite natural to define an uncertainty set based on the above two ideas. Let

KB ≥ 1, let {skB}
KB

1 ⊆ {0, 1}n an explicit basic scenarios set and let Γ ≥ 1. What
we do then in the hard version of the set we propose is to define the support of each
scenario as the union of the supports of up to Γ basic scenarios and in the soft version
we require that the support of each scenario be a subset of the union of the supports
of at most Γ basic scenarios.

Formal definitions, the corresponding 0-1-Mixed Integer Linear Programming
formulations and some basic properties are presented below.

3.1 Hard discrete-budgeted interdiction uncertainty set

The hard discrete-budgeted interdiction uncertainty set is defined as follows:

Sh({skB}
KB

1 ,Γ) = {s ∈ {0, 1}n : supp(s) =
⋃

k:zk=1

supp(skB), e
tz ≤ Γ, z ∈ {0, 1}KB} =

{s ∈ {0, 1}n : zks
k
Bj ≤ sj ≤

∑
q∈[KB]

zqs
q
Bj ∀k ∈ [KB] ∀j ∈ [n], 1tz ≤ Γ, z ∈ {0, 1}KB}

3.2 Soft discrete-budgeted interdiction uncertainty set

The soft discrete-budgeted interdiction uncertainty set is defined as follows:

Ss({skB}
KB

1 ,Γ) = {s ∈ {0, 1}n : supp(s) ⊆
⋃

k:zk=1

supp(skB), e
tz ≤ Γ, z ∈ {0, 1}KB} =

{s ∈ {0, 1}n : sj ≤
∑

q∈[KB]

zqs
q
Bj ∀j ∈ [n], etz ≤ Γ, z ∈ {0, 1}KB}

9

3.3 Remarks

Note that:

1. Sh({skB}
KB

1 ,Γ) ⊆ Ss({skB}
KB

1 ,Γ)

2. if supp(sk1

B) ∩ supp(sk2

B) = ∅ for all k1, k2 ∈ [KB] with k1 ̸= k2 then:

Sh({skB}
KB

1 ,Γ) = {s ∈ {0, 1}n : sj = zk ∀j ∈ supp(skB) ∀k ∈ [KB],1
tz ≤ Γ, z ∈ {0, 1}KB}

3. Sh({skB}
KB

1 , 1) = {0} ∪ {skB}
KB

1 which is the discrete interdiction uncertainty set

4. if skB = jk ∀k ∈ [KB] with jk1
̸= jk2

for all k1, k2 ∈ [KB], k1 ̸= k2 and V =
{j1, · · · , jKB

} ⊆ [n] then

Sh({skB}
KB

1 ,Γ) = Ss({skB}
KB

,Γ) = {s ∈ {0, 1}n :
∑
j∈V

sj ≤ Γ}

which is a uniform (non-uniform) budgeted interdiction uncertainty set when KB =
n (KB < n) .

4 Computational experience

The experiments have been performed on a personal computer as fol-
lows:Intel(R)Core(TM) i7-9750H CPU, @ 2.60 GHz Lenovo ThinkPad X1 Extreme
Gen 2, 32.00 GB Ram and Windows 10 Pro Operating System. All the instances have
been processed through ILOG-Cplex 12.10 from a DOcplex Python code. All the pa-
rameters of ILOG-Cplex 12.10 are in their default values unless otherwise indicated.

Computational experiences for the I and Bu problems using mathematical pro-
gramming algorithms to find optimal or ϵ-optimal solutions are not abundant in the
literature. To the best of our knowledge, we can refer to two cases: (i) [1] presents ex-
perience for several types of problems with cardinality constraints (selection problem,
job assignment problem and connected 2-edge subgraph problem) and the uncertainty
set defined with a knapsack constraint with which the adversarial problem allows
a compact formulation and (ii) in [9] a preliminary computational experience was
presented (as far as we know not published later) using a branch and cut algorithm
to solve Bu with assignment constraints, ϕ(x) = ctx, supp(s) ∈ {{1}, · · · , {n}} for all
s ∈ S and S = Sf .

In this first computational experience with A(ϵ) we will highlight the behavior
of the algorithm, when the dimensions grow, in terms of the computation time, the
final gap reached and the criterion with which the algorithm stopped. However, other
statistics that may be useful for other types of analysis are presented and will be
postponed for future occasions.

10

As usual when using mathematical programming it is very easy to define a con-
figuration, to generate the synthesized data defining the problems, in such a way
that the algorithms are very efficient. Such is the case of the configurations presented
in the first rows of all tables presented. What was done starting from these easy
configurations was to progressively increase the difficulty of the problems by ma-
nipulating some parameters and increasing the dimensions and uncertainty until it
became evident that configurations were reached whose associated problems required
a high computational work as will be seen in the tables. We hope that this first com-
putational experience will demonstrate that the algorithm is able to find ϵ-optimal
solutions for moderate dimensions even with a high degree of uncertainty.

In order to save time in experimentation, we implemented a flexible strategy for
stopping the algorithm, which we call the tolerance-time-strategy (tts), based on
increasing the relative global tolerance (ϵ) as time progresses.

The cases considered presented in section 4.1 have nominal versions corresponding
to Set Covering, Simple plant location and min-Knapsack problems. SC and SPL
problems are presented with specific motivations to help to understand a particular
interpretation of the solution of I. Also we include how the data, the basic scenarios
and the uncertainty set used were generated. Details on the tolerance-time-strategy
can be found in Section 4.2. The definition of the statistics can be found in section
4.3. The experimental results are presented in section 4.4.

Arbitrarily it was decided to use as uncertainty set Ss, for the SC problems,
Sh for the SPL problems, which leads according to the basic scenarios defined to a
classical budgeted uncertainty set over the servers, and Sh for the mK problems. The
Γ parameter was taken at {3, 6}, which makes it practically impossible to find Sf

explicitly for almost all cases considered.

4.1 The problems

4.1.1 Set covering

The authorities of a city want to organize the attention to the citizens (users) in pub-
lic offices (servers) in such a way that each user is assigned to one or several servers
located no farther than a certain pre-established distance. In the event that some
of the servers temporarily collapse (e.g. due to traffic congestion or too many users
being served) every user should have, except in extreme cases (unfeasible scenarios),
some non-collapsed server available.

The city is divided into sectors and the users of each sector are assigned in block
to one or several servers but then each user decides individually, and in each op-
portunity, which of the servers use among those to which was assigned. Each sector
may or may not become a server. The authorities have an implicit description of the
uncertainty set associated with the collapse of the servers.

11

Let S be the uncertainty set (implicitly known). If s ∈ S then sj = 1 indicates
the temporary collapse of a server in sector j. The 0 scenario is in S and at every
instant for a long time horizon some scenario is active. Let Sf be the set (not known
a priori) of scenarios that can be successfully faced (feasible): those in which every
user has an assigned non-collapsed server.

Let n be the number of sectors. Let cj the cost per unit time to keep a server

in sector j operational (unless a temporary collapse), let A ∈ {0, 1}n×n
the matrix

that indicates whether the users of sector i can be served in a server located in sector
j (Aij = 1) or not (Aij = 0). It is desired to find the servers to be opened with
minimum cost per unit time.

Let xj = 1 if it is decided use the sector j as a server, the nominal problem is
defined as follows

min ctx P

s.t. Ax ≥ 1

x ∈ {0, 1}n

Note that if x is an optimal solution for I and s ∈ Sf is active then
the available solution for s is y(s) = x ⊗ (1 − s) and the population of sec-
tor i can be well served by any of the servers belonging to the set defined by
Serv(i, s) = {j : Aijyj = 1, sj = 0, j ∈ [n]} = {j : Aijxj(1 − sj) = 1, j ∈ [n]}. If
sj = 1 the interpretation is not exactly that x(s)j = 1 can not be implemented, the
new interpretation in this case is that the users are not well served temporary from
the server open in sector j and must use another server.

Note that if Sf is known explicitely then I is an ordinary set covering problem
with n× |Sf | rows and n columns.

The data were generated at random as follows: (i) the coordinates of the sectors
are chosen at random in the circle of ratio 1 in such a manner that the distance from
the origin and the angle are uniform distribution on [0, 1] and [0, 2π] respectevily, (ii)
the distance from sector i to sector j is the euclidian distance denoted dij , (iii) let
δ ∈ [0, 1000] then Aij = 1 if and only if dij < δ

1000 max
l,r∈[n]

dlr, (iv) cj is proportional

(without loss of generality the proportionality constant is 1) to the total population
assigned to a server in sector j, (v) let Pi the population of sector i chosen uniformly
at random in [0, 100] then cj =

∑
i∈[n]

AijPi.

Let β ∈ [0, 1000] and let KB ∈ [n]. For k ∈ [KB] a neighborhood of sector k is
found defined by those sectors no farther than a certain prespecified distance. Each
neighborhood defines a basic scenario as follows:
.

supp(skB) = {j ∈ [n] : djk < β
1000 max

l,r∈[n]
dlr} ∀k ∈ [KB]

12

The basic scenarios based on the defined neighborhoods are based on the assump-
tion that, in general, there is a correlation in the collapse of neighboring sectors.

In this case we use S = Ss({skB}
KB

1 ,Γ) and the configuration for a problem to be
considered in the experimentation is identified in tables as (n,KB ,Γ, β, δ).

4.1.2 Simple plant location

Consider a set of r points in the plane. Each point is associated with a user and
potentially a server. Let dik be the Euclidean distance between points i and k. Each
user can be served from any server located no more than a prespecified distance away.
Let A ∈ {0, 1}r×r

and let Aik = 1 if and only if the population of point i may be
assigned to server in point k.

In order to write I with the same notation used in the rest of paper we can do:

(i) let m = r, n = r × r and let A ∈ {0, 1}m×n
defined as follows:

Aij =

Aik ∀(i, j) : i ∈ [m], j = (i− 1)m+ k

0 ∀(i, j) : i ∈ [m], j /∈ {(i− 1)m+ 1, · · · , (i− 1)m+m}
(ii) let x ∈ {0, 1}n and xj = 1 if and only if the population of point i is assigned

to a server in point k with j = (i− 1)m+ k

(iii) Let Fk a fixed cost of using a server at location k. Let Pi the population of
point i. Let us suppose that the cost per unit time for a server open at j is defined
with ϕ as follows: ϕ(x) =

∑
k∈[m]

ϕk(x) with:

ϕk(x) =

∑

i∈[m]

Pix(i−1)m+k + Fk if
∑

i∈[m]

x(i−1)m+k ≥ 1

0 if
∑

i∈[m]

x(i−1)m+k = 0

(iv) Let S be the uncertainty set (implicitly known). If u ∈ S then uk = 1 indi-
cates the temporary collapse of a server in sector k. The 0 scenario is in S and at
every instant for a long time horizon some scenario is active. Let S ⊆ {0, 1}n defined
as follows: sj = uk if j = (i− 1)m+ k with i, k ∈ [m].

The nominal problem is defined as follows:

min ϕ(x) P

s.t. Ax ≥ 1

x ∈ {0, 1}n

13

Note that the nominal problem is independent of the Pi values because there is
an optimal solution such that any point i is assigned to only one server k.

Note that if Sf is known explicitely then I is not an ordinary simple plant loca-
tion problem.

The data were generated at random as follows: (i) the coordinates of locations
are chosen at random in the circle of ratio 1 in such a manner that the distance from
the origin and the angle are uniform distribution on [0, 1] and [0, 2π] respectevily, (ii)
let δ ∈ (0, 1000) then Aik = 1 if and only if dik < δ

1000 max
l,r∈[r]

{dlr}, (iii) let disti the

distance from the origen until the point i, then Pi is choosen from a uniform distribu-
tion in [800(1−disti), 1200(1−disti] for all i ∈ [r], (iv) let F > 0 then Fi is choosen
from a uniform distribution in [800F (1− disti), 1200F (1− disti] for all i ∈ [r],

Let KB ∈ [r]. For k ∈ [KB] a basic scenario is defined as follows:

supp(uk
B) = {q : Akq = 1, q ∈ [r]}

In this case we use S = Sh({uk
B}

KB

1 ,Γ). This means that we use a discrete bud-
geted uncertainty set for the servers: up to Γ servers (with all its links) may colapse
at the same time.

The configuration for a problem to be considered in the experimentation is defined
as (r,KB ,Γ, δ, F)

4.1.3 Min-Knapsack

Let n ≥ 1 and letm = 1, let c ∈ Zn
+, let ϕ(x) = ctx, letw ∈ Z+, let A1j = wj ∀j ∈ [n],

let W > 0, let b1 = W and let S be the uncertainty set (implicitly known).

The nominal problem is:

min ctx P

s.t. wtx ≥ W

x ∈ {0, 1}n

Note that if Sf is known explicitely then I is an ordinary multidimesional knpa-
sack problem with n× |Sf | rows and n columns.

We generate Weakly correlated instances ([10]) as follows: (i) wj is chosen uni-
formly at random in [1000] for all j ∈ [n], (ii) let W = ⌊ 1

2

∑
j∈[n] wj⌋ and (iii) cj is

chosen uniformly at random in [max{wj − 100, 1},wj + 100] for all j ∈ [n].

14

Despite their name, weakly correlated instances have a very high correlation
between the cost and weight of an item.

Let β ∈ [0, 1000] and let KB ∈ [n]. For k ∈ [KB] a basic scenario is (arbitrarily)
generated as follows:

supp(skB) =

{
j ∈ [n] : | ck

wk
− cj

wj
| < β

1000 min
i∈[n]

{ ci
wi

}
}

In this case we use S = Sh({skB}
KB

1 ,Γ) and the configuration for a problem to be
considered in the experimentation is defined as (n,KB ,Γ, β).

4.2 Tolerances, gaps and time management

Let ϵ be the relative global tolerance and let T be the global time limit (T is used also
as limit time for solving I(S)). Let t be the cumulative running time when leaving
step 1.

1. Problems P, P (NV), Q(x),R and I(s,x) are solved using the Cplex default relative
gap tolerance (mipgap = 0.0001) and without time limit

2. Problem I(S) is solved with mipgap(I) = 0.01

3. The relative global tolerance, ϵ, is adjusted in execution as follows:

(a) a tolerance-time-strategy (tts) is defined as follows: let L ≥ 2 and let
tts = ((T1, ϵ1), · · · , (TL, ϵL)) such that: 0 = T1 < · · · < TL−1 < TL = T ,
mipgap(I) ≤ ϵ1 ≤ · · · ≤ ϵL−1 < ϵL = +∞.

(b) we run the algorithm as follows: if Ti < t ≤ Ti+1 then we use ϵ = ϵi. Note that if
t > TL = T then the algorithm will stop with a solution

(
UB−LB

UB

)
-optimal. In

order to save time during experimentation the scheme relaxes the requirement
for stopping as time progresses

(c) usual tts has the form {(0, ϵ), (T,∞)} which say that the algortithm stop if
either an ϵ-optimal solution was found or t > T with a

(
UB−LB

UB

)
-optimal

solution. In order to save time in the experimentation we use more complex tts
as indicated in the tables.

4. The lower bounds for I are rigorously updated using the lower bound available
from Cplex (bestbound) at the end of the solution of I(S) and not the value of
the obtained solution (if LB is the lower bound after solving I(S) then LB =
max{LB, bestbound}). Since mipgap(I) ≤ ϵ at all times the scheme guarantees
that if a generated solution x∗ is in F (I) (step 4) it will meet the relative global
tolerance of the algorithm by the time it is generated. Also, if the algorithm stops
without x∗ ∈ F (I) in step 4 then LB and UB are valid bounds.

15

4.3 Statistics to be presented in the tables

For each configuration considered, as indicated in the tables, a set of random in-
stances is generated. For each instance, P , P (NV) and I, the nominal, nonvulnerable
and robust problems, respectively, are solved. The I problem is solved according to
the tts as indicated. Also we solve R problem.

Details of the results are presented in tables. The basic information comes in two
types of tables, one presents statistics that have to do with the generation of the data
and some important characteristics of the generated problems (tables 1,3 and 5 for
SC,SPL and mK problems respectively) and the other presents statistics that have to
do with the performance of the A(ϵ) algorithm with the tts used and some important
characteristics of the solutions found (tables 2,4 and 6 for SC,SPL and mK problems
respectively and table 7 for all problems).

The independent statistics of the (A(ϵ) run are defined as follows:

1. |set|: the number of problems in the set
2. sB: the average of the cardinality of the basic scenarios support

3. ŝB: the average of the maximum cardinality of the basic scenarios support
4. nv: the average percentage of non-vulnerable elements
5. dens: the density of the A and A matrices defining the possible assignments in the

SC and SPL problems, respectively
6. #nv

f : the number of problems in which the solution of the non-vulnerable problem
is feasible in I

7. #nf : the number of problems in which there are infeasible scenarios

The dependent statistics of the A(ϵ) run are defined as follows:

1. s3: the average number of resolved relaxations (scenarios generated) in step 2(3)
2. sH: the average of the total number of generated scenarios using the greedy heuristic
3. tH: the average execution time in seconds for the greedy heuristic
4. t: the average execution time in seconds
5. t̂: the worst execution time in seconds
6. #∗

+:the number of problems in which the algorithm ended up verifying that the
solution generated in the relaxation (x∗) is feasible in I and is the solution reported
by the algorithm (x+)

7. %#∗
+: the percentage of problems in which the algorithm ended up verifying that

the solution generated in the relaxation (x∗) is feasible in I and is the solution
reported by the algorithm (x+)

8. #nv
+ : the number of problems in which the solution of the non-vulnerable problem

(xnv) ended up being the solution reported by the algorithm (x+)
9. gap: the final average gap found

10. ĝap): the worst final gap found
11. ryx: the average of the percentage increase of the active variables in the solution

of I with respect to the nominal problem

16

12. r̂nvI: the average of the percentage increase in the value of the non-vulnerable
problem with respect to the I problem (when the non-vulnerable problem is
feasible)

13. rIP: the average of the percentage increase in the value of the I problem with
respect to the nominal problem

14. #>
α : the number of problems in which gap > α with the tts used with α as indicated

Table 7 summarizes the results in terms of time, gap and stopping condition as a
function of dimensions and number of basic scenarios. The same table illustrates the
influence of the matrix density for the SC and SPL cases.

In Table 8 we present experiments for the problems with the worst gap of some
selected sets. In the left part of the table we can see the time (t) and the gap
achieved with the original tts. On the right side of the table we can see the time
and gap achieved without time limit (tts = {(0, ϵ), (∞,∞)} with ϵ as indicated). The
percentage improvement in the upper bound value found is presented in the ∆UB
column

Counters and time statistics will be presented as integer numbers and other
statistics will be presented to two decimal places.

4.4 Experimental results

4.4.1 Set covering

For the SC problems we varied n by {300, 400, 600}, for each n we took KB = 0.5n,
Γ was set to 6, for each (n,KB ,Γ) β was varied by {5, 10} and for each (n,KB ,Γ, β)
δ was varied by {100, 150, 200}. For each of the sets denoted SC1, · · · , SC12 30
problems were considered for a subtotal of 360 cases. For each of the more demanding
sets denoted SC13, · · · , SC18 10 problems were considered for a subtotal of 60 cases.
In total, 420 SC problems were considered (see table 1).

In all the SC problems referenced in Tables 1 and 2 the following tts was used: tts =
((0, 0.01), (600, 0.0125), (1200, 0.015), (1800, 0.0175), (2400, 0.02), (3000, 0.03), (3600.∞))
(in the worst case it was aimed to find solutions in no more than one hour with a gap
at most 3%).

In 418 problems out of 420 total SC problems, the algorithm found solutions with
gap at most 3% and the worst average was 1.59% for problems of the SC13 set (with
(n,KB ,Γ, β, δ) = (600, 300, 6, 5, 100)). The worst average time was 2026 seconds for
the SC18 set (with (n,KB ,Γ, β, δ) = (600, 300, 6, 10, 200)) (see Tables 1 and 2). The
computation time and gap averages found clearly evolve as expected as a function of
n, going from minutes for n = 300 to just over twenty minutes for n = 600, with the
average gap going from less than 1% for n = 300 to 1.43% for n = 600) (see Table 7).

The two problems with gap greater than 3% in sets SC13 and SC16 (with gap
6.85% and 8.27% respectively) were solved with tts = ((0, 0.03), (∞,∞)) i.e., requir-
ing to find a solution with gap less than 3% with no time limit. In both cases a

17

solution with gap less than 3% was found and in the worst case the run time was close
to twelve hours (see Table 8). The percentage upper bound improvement for the SC
cases is very low (3.0% in the best case), showing that the original solutions had a true
gap close to 3%, lower than the gap verified at the time of stopping the algorithm.

In 87%, 77% and 33% of the problems with n fixed at 300,400,600 respectevily
(see table 7), the algorithm stopped upon detecting a solution in F (I) at steps 2-4
(in that cases the algorithm found a solution in F (I) before upper bounds of quality
were achieved using the greedy heuristic). In the rest of cases the algorithm stopped
upon detecting a solution with a gap smaller than the one in effect at the time of
the stop, this means that an upper bounds of quality were achieved using the greedy
heuristic before sufficient scenarios were generated to find a solution at F (I) in steps
2-4. The results seem to indicate that as the problem size grows it is more useful to
have good bounds to stop the algorithm in a reasonable time before a solution in F (I)
is generated in a relaxation.

4.4.2 Simple plant location

For SPL problems (see table 3) we varied r by {200, 300, 400}, for each r we var-
ied KB by {0.25r, 0.50r}, for each (r,KB) was made to vary Γ by {3, 6}, for each
(r,KB ,Γ) was made to vary δ by {100, 200} and for each (r,KB ,Γ, δ) was made
to vary F by {20, 40}. For each of the configurations denoted SP1, · · · , SP20 and
SP33, · · · , SP36 30 problems were considered for a subtotal of 720 cases, for the
demanding configurations denoted S21, · · · , SP24 and SP37, · · · , SP40 10 cases were
considered for a subtotal of 80 cases and finally for the demanding configurations
denoted SP25, · · · , SP32 and SP41, · · · , SP48 5 cases were taken for a subtotal of
80 cases for a total of 48 sets and 880 SPL problems.

In all problems that belong to the SPL1, · · · , SPL24 and SPL33, · · · , SPL40
sets contemplated in tables 3 and 4, the following tts was used: tts =
((0, 0.01), (600, 0.0125), (1200, 0.015), (1800, 0.0175), (2400, 0.02), (3000, 0.03), (3600.∞))
(in the worst case it was aimed to find solutions in no more than one hour with a gap
at most 3%).

For the more demanding SPL25, · · · , SPL32 and SPL41, · · · , SPL48
sets contemplated in tables 3 and 4, the following tts was used: tts =
((0, 0.01), (600, 0.015), (1200, 0.02), (1800, 0.03), (2400, 0.04), (3000, 0.05), (7200.∞))
(in the worst case it was aimed to find solutions in no more than two hours with a
gap at most 5%).

In 858 of the 860 cases of the first 40 sets, the algorithm found solutions with
gap at most 3%. The worst average time was 2810 seconds for the SPL26 set (with
(n,KB ,Γ, δ, F) = (300, 150, 3, 100, 40)) and the worst average gap was 2.29% for the
same set.

18

For the remaining 8 sets, all with (r,KB) = (400, 0.5r), the algorithm found solu-
tions with gap at most 3% in 29 of the 40 problems solved. All 11 failures occurred
at low density (δ = 100). For sets with δ = 200 the worst average time was 2406 sec-
onds for the SPL48 set (with (n,KB ,Γ, δ, F) = (400, 200, 6, 200, 40)) and the worst
average gap was 2.31% for the same set.

The two problems with gap greater than 3% in SPL26 and SC32 sets
and the worst case of SPL41,SPL42,SPL45 and SPL46 sets were solved with
tts = ((0, 0.03), (∞,∞)) i.e. requiring to find a solution with gap less than 3% with
no time limit. In the six cases a solution with gap less than 3% was found and in the
worst case the execution time was more that 21 hours (see table 8). The percentage
improvement for the upper bound for the SPL cases were very high in three cases.

Table 7 shows the evolution of the time, gap and percentage of times the algo-
rithm stopped for finding a solution in F (I) as the dimensions grow. From minutes
and average gap less than 1% to hours and average gap greater than 3%. As in the
case of SC the percentage decreases as the dimensions increase. Additionally, the
influence of the density of A can be seen: the higher the density the lower the time,
gap and percentage.

In 232 of 880 problems the algorithm stopped upon detecting a solution with a
gap less than the one in effect at the time of the stop, this means that upper bounds
on quality were reached using the greedy heuristic before sufficient scenarios were
generated to find a solution in F (I) when solving a relaxation.

4.4.3 Min-knapsack

For the mK problems (see table 5) we varied n in {500, 1000, 2000, 4000}, for each
n we took KB in {0, 1n, 0.2n}, fixed Γ at 6 and for each (n,KB ,Γ) we varied β in
{100, 150, 200}. For each of the configurations denoted K1, · · · ,K12 30 problems
were considered for a subtotal of 360 problems. For each of the more demanding sets
denoted K13, · · · ,K24 5 cases were considered for a subtotal of 60 cases, thus 420
mK problems were considered.

In all the mK cases contemplated in tables 5 and 6, the following tts was used:

tts = ((0, 0.01), (300, 0.0125), (600, 0.015), (900, 0.0175), (1200, 0.02), (1800,∞))

(in the worst cases it was aspired to find solutions with gap in at most one 2% in
about half an hour).

For the 390 problems in the K1, · · · ,K18 sets, solutions with gaps of less than 2%
were achieved in less than half an hour (the worst case was 1.89%). For the problems
in the K1, · · · ,K15 configurations the average time did not exceed 10 min. For 27 of
the 30 problems in the K19,K24 configurations the final gaps clearly exceeded 2%

19

with the worst case at 8.73%.

The worst cases in terms of gap was selected for each of the configurations
K19, · · · ,K24. These 6 problems were solved with tts = ((0, 0.02), (∞,∞)) i.e. re-
quiring to find a solution with gap less than 2% with no time limit. In all 6 cases a
solution with gap less than 2% was found and in the worst case the execution time
was a little more than two hours (see table 7).

It is noteworthy that in 389 of the 390 problems in the K1, · · · ,K18 configura-
tions, the algorithm stopped upon detecting a solution with a gap smaller than the one
in effect at the time of the stop (see column #∗

+ with zeroes except for one instance).
This means that in general upper bounds of quality were achieved using the greedy
heuristic before sufficient scenarios were generated to find a solution at F (I) in steps
2-4. In the 6 cases reported in Table 7 the algorithm stopped for the same reason.

Table 7 shows the evolution of the time and gap as the dimensions grow. From
minutes and average gap less than 1% to more than half an hour and average gap
greater than 3%.

5 Conclusions and further extensions

5.1 Conclusions

An algorithm was defined to find ϵ-optimal solutions for the Robust combinatorial
optimization problems with knapsack constraints under interdiction uncertainty. It is
not assumed that all scenarios are feasible. The key elements of the algorithm are:
(i) solving an adversarial problem that allows to decide if a solution generated in one
of the relaxations is a feasible solution and that finds some scenario feasible and not
covered by the solution if it turns out not to be a feasible solution and (ii) applying
a greedy heuristic that generates feasible solutions from a generated solution as well
as feasible and uncovered scenarios, allowing to stop the algorithm when finding an
ϵ-optimal solution.

It was experimented with three types of problems and from the experimentation it
became evident that the proposed algorithm is able to generate in general, ϵ-optimal
solutions (with ϵ ∈ [0, 0.03] in our experiments) for problems with moderate dimen-
sions.

The experimentation was done on Discrete-budgeted interdiction uncertainty
sets, introduced in this paper, that result from applying the fundamental idea of the
discrete budgeted uncertainty to a set of explicitly defined binary scenarios.

20

5.2 Further extensions

There are at least three natural paths to try to define algorithms, based on mathe-
matical programming, to deal with I with better performance than the proposed one,
as follows:

1. use the same idea of the proposed algorithm to solve each relaxation, i.e., apply
the proposed algorithm to the problem restricted to the set of scenarios already
generated,

2. solve I using a Branch-and-cut algorithm in which the usual criteria (relaxation,
branching, cutting, bounding), based on the set of scenarios already generated, are
also valid for Sf ,

3. replace the proposed greedy heuristic with a greedy heuristic specialized to the
problem to be solved and solve the relaxations with appropriate algorithms to the
case, e.g., one would use an algorithm for set-covering (multidimensional knapsack)
problems when solving the relaxations corresponding to the robust set-covering
(knapsack) problem.

References

[1] Goerigk, M., Khosravi, M.: Robust combinatorial optimization problems
under budgeted interdiction uncertainty (2024) https://doi.org/10.1007/
s00291-024-00772-0

[2] Adjiashvili, D.: Structural robustness in combinatorial optimization. In: DISS.
ETH NR. 20327, (2012). https://doi.org/10.3929/ethz-a-007579109

[3] Adjiashvili, D., Stiller, S., Zenklusen, R.: Bulk-robust combinatorial op-
timization. Math. Program. 149, 361–390 (2015) https://doi.org/10.1007/
s10107-014-0760-6

[4] Pfetsch, M.E., Schmitt, A.: A generic optimization framework for resilient sys-
tems. Optimization Methods and Software 38(2), 356–385 (2023) https://doi.
org/10.1080/10556788.2022.2142581

[5] Hommelsheim, F.: Complexity of bulk-robust combinatorial optimization prob-
lems (2020) https://doi.org/10.17877/DE290R-21673

[6] Adjiashvili, D., Bindewald, V., Michaels, D.: Robust Assignments via Ear De-
compositions and Randomized Rounding (2016). https://arxiv.org/abs/1607.
02437

[7] Adjiashvili, D., Bindewald, V., Michaels, D.: Robust assignments with vulnerable
nodes. CoRR abs/1703.06074 (2017) 1703.06074

[8] Bindewald, V.: Bulk-robust assignment problems: hardness, approximability and

21

https://doi.org/10.1007/s00291-024-00772-0
https://doi.org/10.1007/s00291-024-00772-0
https://doi.org/10.3929/ethz-a-007579109
https://doi.org/10.1007/s10107-014-0760-6
https://doi.org/10.1007/s10107-014-0760-6
https://doi.org/10.1080/10556788.2022.2142581
https://doi.org/10.1080/10556788.2022.2142581
https://doi.org/10.17877/DE290R-21673
https://arxiv.org/abs/1607.02437
https://arxiv.org/abs/1607.02437
https://arxiv.org/abs/1703.06074

algorithms. PhD thesis, Dortmund University, Germany (2017). https://doi.org/
10.17877/DE290R-19108 . http://hdl.handle.net/2003/37112

[9] Walter, M., Adjiashvili, D., Bindewald, V., Michaels, D.: Solving bulk-robust ass-
ingment problems to optimality. Aussois Combinatorial Optimization Workshop
(2018)

[10] Pisinger, D.: Where are the hard knapsack problems? Computers and Operations
Research 32(9), 2271–2284 (2005) https://doi.org/10.1016/j.cor.2004.03.002

22

https://doi.org/10.17877/DE290R-19108
https://doi.org/10.17877/DE290R-19108
http://hdl.handle.net/2003/37112
https://doi.org/10.1016/j.cor.2004.03.002

Table 1 SC problems

set |set| n KB Γ β δ sB ŝB nv dens #nv
f #nf

SC1 30 300 0.5n 6 5 100 1.08 3.30 48.31 7.19 2 28
SC2 150 1.10 3.70 48.11 13.48 24 5
SC3 200 1.10 3.77 48.35 21.23 30 0
SC4 10 100 1.34 7.17 44.45 6.84 1 29
SC5 150 1.37 6.83 44.14 13.38 29 1
SC6 200 1.34 6.57 43.77 21.69 29 1

SC7 30 400 0.5n 6 5 100 1.14 4.90 47.18 6.97 5 24
SC8 150 1.12 4.43 47.55 13.37 27 1
SC9 200 1.13 4.63 47.74 21.55 30 0
SC10 10 100 1.47 8.97 42.68 7.09 6 23
SC11 150 1.43 8.80 42.84 13.97 28 2
SC12 200 1.44 8.33 42.75 21.31 30 0

SC13 10 600 0.5n 6 5 100 1.16 5.50 46.80 6.83 6 3
SC14 150 1.19 7.00 46.63 13.23 10 0
SC15 200 1.16 5.10 47.06 20.99 10 0
SC16 10 100 1.68 12.50 40.63 6.79 7 2
SC17 150 1.70 13.30 39.91 13.51 10 0
SC18 200 1.67 13.80 40.80 21.22 10 0

Table 2 SC problems, tts = ((0, 0.01), (600, 0.0125), (1200, 0.015), (1800, 0.0175), (2400, 0.02), (3000, 0.03), (3600,∞))

set |set| s3 sH tH t t̂ #∗
+ #nv

ϵ gap ĝap ryx r̂nvI rIP #>
3

SC1 30 8.40 51.07 56 65 201 30 1 0.71 1.00 24.93 0.00 21.88 0
SC2 8.60 40.00 48 65 216 25 22 0.87 1.00 14.29 0.00 11.70 0
SC3 6.97 27.37 34 52 114 25 27 0.93 1.00 7.33 0.00 5.43 0
SC4 18.40 94.13 138 189 3007 27 1 0.81 2.81 28.13 0.00 23.87 0
SC5 8.03 44.50 51 68 141 24 27 0.91 1.00 6.82 0.00 8.68 0
SC6 8.13 34.23 41 65 162 26 27 0.90 1.00 6.93 0.00 6.81 0

SC7 30 11.67 76.50 150 184 1115 27 4 0.89 1.24 23.06 0.00 18.50 0
SC8 9.73 50.70 97 155 389 20 26 0.93 1.00 7.52 0.00 8.67 0
SC9 7.70 30.17 61 134 630 23 30 0.94 1.00 4.40 0.00 4.65 0
SC10 11.23 93.83 185 224 682 26 5 0.90 1.09 24.86 0.00 21.12 0
SC11 9.13 58.47 120 191 586 23 26 0.95 1.00 7.85 0.00 7.66 0
SC12 10.37 60.70 141 336 802 21 29 0.96 1.22 11.78 0.00 6.85 0

SC13 10 13.10 113.30 463 966 3706 6 4 1.59 6.85 14.72 0.00 12.38 1
SC14 8.80 54.70 227 629 1306 6 10 1.08 1.47 5.28 0.00 4.68 0
SC15 9.10 45.60 215 1075 1927 3 10 1.12 1.50 5.67 0.00 3.89 0
SC16 12.60 150.10 653 1256 3699 3 7 1.82 8.27 13.62 0.00 13.49 1
SC17 11.20 91.20 416 1854 3292 1 10 1.44 1.75 6.21 0.00 5.98 0
SC18 9.40 62.30 309 2026 3073 1 10 1.52 2.88 8.06 0.00 4.74 0

23

Table 3 SPL problems

set |set| r KB Γ δ F sB ŝB nv dens #nv
f #nf

SPL1 30 200 0.25r 3 100 20 13.86 39.87 75.47 7.08 13 9
SPL2 40 13.84 40.33 75.25 6.99 12 11
SPL3 200 20 43.01 82.10 75.17 21.64 29 0
SPL4 40 41.53 80.63 75.35 21.06 30 0
SPL5 6 100 20 14.50 40.73 74.40 7.09 16 6
SPL6 40 13.48 40.23 76.17 7.06 15 11
SPL7 200 20 43.49 83.57 75.08 21.85 30 0
SPL8 40 43.76 81.37 74.68 21.56 30 0

SPL9 30 200 0.5r 3 100 20 14.05 40.63 49.11 6.88 1 22
SPL10 40 14.35 41.80 49.93 7.18 0 14
SPL11 200 20 43.40 82.90 49.78 21.61 30 0
SPL12 40 42.77 82.57 50.62 21.66 27 0
SPL13 6 100 20 15.10 42.80 48.83 7.38 1 17
SPL14 40 13.91 39.77 49.28 6.87 3 18
SPL15 200 20 43.27 82.03 49.65 21.46 27 0
SPL16 40 43.80 83.27 49.95 21.88 25 0

SPL17 30 300 0.25r 3 100 20 21.28 60.40 74.92 7.06 18 6
SPL18 40 20.81 59.07 74.62 6.83 21 6
SPL19 200 20 63.04 118.73 75.01 21.02 30 0
SPL20 40 63.38 121.43 75.31 21.40 30 0
SPL21 10 6 100 20 21.23 58.30 74.04 6.81 6 2
SPL22 40 21.14 61.60 75.13 7.07 7 1
SPL23 200 20 61.88 117.20 75.20 20.78 10 0
SPL24 40 63.71 120.10 74.96 21.19 10 0

SPL25 5 300 0.5r 3 100 20 21.39 63.00 49.28 7.02 0 1
SPL26 40 23.44 68.60 49.67 7.75 1 0
SPL27 200 20 65.55 124.80 50.02 21.83 5 0
SPL28 40 64.43 122.20 49.46 21.26 5 0
SPL29 6 100 20 21.84 62.40 49.58 7.20 0 2
SPL30 40 21.41 60.60 49.63 7.08 2 1
SPL31 200 20 64.52 122.40 49.84 21.43 5 0
SPL32 40 64.69 121.60 49.72 21.46 5 0

SPL33 30 400 0.25r 3 100 20 28.18 80.33 74.78 6.97 23 1
SPL34 40 27.20 78.50 74.83 6.76 28 1
SPL35 200 20 84.90 161.23 75.01 21.22 30 0
SPL36 40 85.06 162.47 75.25 21.49 30 0
SPL37 10 6 100 20 27.69 82.50 75.82 7.15 6 0
SPL38 40 28.27 85.70 75.50 7.24 9 1
SPL39 200 20 86.27 164.80 75.43 21.94 10 0
SPL40 40 85.06 159.50 74.89 21.20 10 0

SPL41 5 400 0.5r 3 100 20 28.95 83.00 49.49 7.17 2 1
SPL42 40 28.44 84.80 50.37 7.16 1 0
SPL43 200 20 88.12 165.40 50.00 22.02 5 0
SPL44 40 85.69 158.00 48.86 20.94 5 0
SPL45 6 100 20 25.93 77.60 49.97 6.48 1 0
SPL46 40 26.44 78.00 48.99 6.48 1 1
SPL47 200 20 85.04 161.40 50.58 21.51 5 0
SPL48 40 85.85 161.40 49.85 21.42 5 0

24

Table 4 SPL problems, tts = ((0, 0.01), (600, 0.0125), (1200, 0.015), (1800, 0.0175), (2400, 0.02), (3000, 0.03), (3600,∞)) ∗
tts = ((0, 0.01), (600, 0.015), (1200, 0.02), (1800, 0.03), (2400, 0.04), (3000, 0.05), (7200,∞))

set |set| s3 sH tH t t̂ #∗
+ #nv

ϵ gap ĝap ryx r̂nvI rIP #>
3

SPL1 30 3.93 21.47 48 59 113 27 1 0.69 1.00 8.85 3.97 3.05 0
SPL2 3.60 20.23 45 55 139 28 0 0.63 1.00 11.87 5.25 2.56 0
SPL3 3.50 6.27 14 55 268 24 11 0.76 0.99 2.35 4.01 1.52 0
SPL4 2.97 4.83 11 39 120 26 9 0.65 0.99 3.18 2.92 1.55 0
SPL5 3.87 16.03 35 46 178 28 0 0.61 0.97 10.20 3.87 2.85 0
SPL6 3.40 13.47 30 41 161 26 0 0.65 0.99 14.40 7.25 2.49 0
SPL7 2.97 2.70 6 35 167 21 15 0.70 0.99 1.65 1.38 1.22 0
SPL8 3.00 2.63 6 42 300 23 10 0.67 1.00 2.92 4.10 1.43 0

SPL9 30 6.80 89.97 230 267 723 26 0 0.80 0.99 19.02 4.82 6.98 0
SPL10 6.47 93.30 237 280 913 27 - 0.75 1.20 24.58 - 5.96 0
SPL11 7.43 36.80 87 328 1139 26 4 0.74 0.98 4.63 4.44 3.08 0
SPL12 7.23 43.97 106 422 2056 29 0 0.78 1.57 7.90 7.07 4.39 0
SPL13 6.97 124.90 352 414 1461 29 0 0.78 1.00 20.55 1.39 6.73 0
SPL14 6.63 126.90 370 449 1543 28 0 0.82 1.00 27.68 11.38 6.19 0
SPL15 7.63 19.37 48 261 771 25 4 0.70 1.04 3.65 4.74 3.42 0
SPL16 6.63 16.20 38 299 1504 27 2 0.74 1.06 6.63 11.41 3.89 0

SPL17 30 4.97 43.07 220 346 904 22 3 0.84 1.21 5.72 2.64 2.77 0
SPL18 4.70 38.67 195 340 1266 22 2 0.73 0.97 8.47 4.51 2.76 0
SPL19 3.07 5.80 28 132 775 17 15 0.78 1.01 1.24 1.31 0.89 0
SPL20 3.70 8.77 42 254 555 22 11 0.87 1.00 2.02 2.01 1.35 0
SPL21 10 5.50 22.50 113 235 486 9 1 0.83 1.00 2.67 1.26 2.82 0
SPL22 4.60 46.40 246 392 901 9 0 0.82 1.00 9.83 4.20 2.82 0
SPL23 2.40 1.80 9 119 580 5 7 0.84 0.98 0.87 0.32 0.83 0
SPL24 3.80 4.20 21 167 462 9 3 0.81 0.99 1.60 2.02 1.29 0

SPL25 *5 8.40 210.80 1381 1814 3234 4 - 1.05 1.30 13.73 - 5.60 0
SPL26 9.00 209.40 1404 2810 7578 2 0 2.29 7.44 27.33 4.24 7.84 1
SPL27 6.40 42.80 219 965 1786 2 3 1.26 2.00 1.20 1.50 2.66 0
SPL28 7.00 62.60 328 1463 1999 3 1 1.29 2.72 7.67 4.34 3.58 0
SPL29 9.00 234.00 1620 2564 6090 5 0 0.81 0.99 13.60 0.00 6.10 0
SPL30 8.80 235.00 1702 2135 4343 3 0 1.03 1.95 18.67 6.87 5.62 0
SPL31 6.00 32.40 172 936 1488 1 4 1.31 1.98 0.80 0.51 2.82 0
SPL32 8.40 15.80 83 1569 2474 2 4 1.97 3.59 0.13 0.91 4.21 1

SPL33 30 5.07 48.63 453 1076 2423 19 7 1.02 1.69 4.81 2.35 2.17 0
SPL34 4.97 50.13 471 1246 3351 18 6 1.18 2.83 5.77 3.20 2.51 0
SPL35 1.97 2.33 20 163 794 4 27 0.81 1.07 0.25 0.48 0.60 0
SPL36 3.03 6.23 56 456 1514 18 22 0.85 1.25 0.73 0.94 0.96 0
SPL37 10 5.90 62.00 590 1438 2682 9 1 0.99 1.79 5.60 2.35 2.05 0
SPL38 4.90 36.30 339 867 1950 9 0 0.86 1.03 13.40 2.90 1.88 0
SPL39 3.00 5.20 45 336 799 3 7 0.91 1.14 0.48 0.34 0.72 0
SPL40 2.60 3.20 28 293 1466 7 6 0.93 1.40 1.57 0.68 1.10 0

SPL41 *5 9.00 253.20 3052 6041 7326 1 2 4.87 9.82 12.00 0.00 8.84 2
SPL42 6.40 253.20 3022 7388 9511 1 0 9.46 23.44 52.15 7.33 15.70 2
SPL43 4.40 42.60 383 1255 2089 0 5 1.59 2.16 0.00 0.00 2.23 0
SPL44 4.80 34.80 310 1844 2823 0 5 1.70 2.18 0.00 0.00 2.77 0
SPL45 5.20 348.00 4824 7741 8286 0 1 26.53 54.18 94.30 0.00 50.26 5
SPL46 6.00 229.60 2924 5948 9011 1 1 5.75 16.40 25.15 0.00 10.72 2
SPL47 4.60 10.20 92 1003 1496 1 4 1.21 1.51 0.20 0.48 1.35 0
SPL48 6.00 30.40 281 2406 3361 0 4 2.31 2.92 0.80 0.29 3.70 0

25

Table 5 mK problems

set |set| n KB Γ β sB ŝB nv #nv
f #nf

mK1 30 500 50 6 100 3.17 8.07 72.75 30 0
mK2 150 4.29 10.40 66.25 29 0
mK3 200 5.72 13.00 58.35 20 0
mK4 100 6 100 3.26 8.63 52.98 7 0
mK5 150 4.55 11.50 43.81 0 0
mK6 200 5.78 14.27 37.20 0 0

mK7 30 1000 100 6 100 5.03 12.80 62.21 28 0
mK8 150 7.14 16.87 52.47 3 0
mK9 200 9.05 20.80 44.92 0 0
mK10 200 6 100 4.01 13.07 40.68 0 0
mK11 150 7.00 17.50 30.97 0 0
mK12 200 9.11 21.60 25.25 0 0

mK13 5 2000 200 6 100 9.37 24.80 44.79 0 0
mK14 150 11.91 27.80 37.41 0 0
mK15 200 16.09 35.00 29.77 0 0
mK16 400 6 100 8.28 20.80 27.81 0 0
mK17 150 12.56 28.40 19.41 0 0
mK18 200 15.48 35.20 15.87 0 0

mK19 5 4000 400 6 100 15.72 36.80 30.03 0 0
mK20 150 22.30 48.80 22.13 0 0
mK21 200 29.91 62.60 19.11 0 0
mK22 800 6 100 14.78 36.00 16.38 0 0
mK23 150 22.40 50.00 12.47 0 0
mK24 200 29.86 63.80 9.73 0 0

26

Table 6 mK problems, tts = ((0, 0.01), (300, 0.0125), (600, 0.015), (900, 0.0175), (1200, 0.02), (1800,∞))

set |set| s3 sH tH t t̂ #∗
+ #nv

ϵ gap ĝap ryx r̂nvI rIP #>
2

mK1 30 2.57 25.90 4 5 8 0 30 0.67 0.99 -3.80 0.00 4.17 0
mK2 5.63 59.63 12 19 306 0 29 0.69 1.06 -3.75 0.00 5.71 0
mK3 30.40 275.90 46 92 309 0 20 0.85 1.13 3.80 0.00 9.72 0
mK4 85.60 855.83 238 485 1213 0 3 1.25 1.85 5.98 1.37 9.95 0
mK5 56.57 821.87 223 423 922 0 - 1.23 1.55 11.08 - 13.87 0
mK6 87.4 924.50 273 442 906 1 - 1.26 1.55 16.83 - 17,37 0

mK7 30 14.63 209.03 95 115 308 0 9 0.95 1.07 -0.76 0.88 6.66 0
mK8 36.60 453.50 192 248 325 0 1 1.00 1.13 6.47 1.82 10.23 0
mK9 30.94 452.50 202 252 312 0 - 0.99 1.16 10.59 - 13.35 0
mK10 29.34 547.17 385 453 618 0 - 1.20 1.29 8.22 - 10.14 0
mK11 31.23 578.70 408 481 652 0 - 1.20 1.48 11.33 - 13.83 0
mK12 31.63 601.40 447 524 653 0 - 1.24 1.47 14.70 - 17.11 0

mK13 5 19.60 439.60 525 594 633 0 - 1.27 1.37 9.22 - 9.64 0
mK14 19.40 435.00 544 614 659 0 - 1.23 1.33 9.43 - 12.14 0
mK15 19.20 435.80 550 617 659 0 - 1.35 1.48 12.66 - 15.37 0
mK16 18.60 453.40 985 1081 1255 0 - 1.70 1.76 10.26 - 10.56 0
mK17 20.20 525.80 1216 1327 1528 0 - 1.89 1.99 13.22 - 14.52 0
mK18 18.00 531.80 1243 1343 1619 0 - 1.83 1.99 13.85 - 17.25 0

mK19 5 15.20 372.80 1647 1800 1929 0 - 2.16 2.78 8.16 - 10.75 2
mK20 13.80 392.20 1724 1867 1891 0 - 3.18 3.66 10.12 - 15.05 5
mK21 12.40 385.60 1761 1892 1956 0 - 3.83 4.70 12.31 - 18.28 5
mK22 6.40 219.40 1906 2047 2103 0 - 4.53 5.31 9.79 - 12.59 5
mK23 6.00 224.80 1996 2136 2212 0 - 6.64 7.08 13.33 - 18.36 5
mK24 6.20 209.20 1914 2053 2229 0 - 7.83 8.73 16.48 - 22.71 5

27

Table 7
SC problems,
tts =
((0, 0.01), (600, 0.0125), (1200, 0.015), (1800, 0.0175), (2400, 0.02), (3000, 0.03), (3600,∞))
SPL problems, tts =
((0, 0.01), (600, 0.0125), (1200, 0.015), (1800, 0.0175), (2400, 0.02), (3000, 0.03), (3600,∞))
∗ tts =
((0, 0.01), (600, 0.015), (1200, 0.02), (1800, 0.03), (2400, 0.04), (3000, 0.05), (7200,∞))
mK problems,
tts = ((0, 0.01), (300, 0.0125), (600, 0.015), (900, 0.0175), (1200, 0.02), (1800,∞))

P n, r, n KB δ t gap ĝap #>
3,2,2 %#∗

+ |set|

SC 300 0.5n - 84 0.86 2.81 0 87.22 180
400 0.5n - 204 0.93 1.24 0 77.77
600 0.5n - 1301 1.43 8.27 2 33.33 60

SPL 200 0.25r - 47 0.67 1.00 0 84.58 240
0.5r - 340 0.76 1.57 0 90.42

300 0.25r 100 336 0.79 1.21 0 77.50 80
200 181 0.82 1.01 0 66.25

*0.5r 100 2331 1.29 7.44 1 70.00 20
200 1234 1.45 3.59 1 20.00

400 0.25r 100 1159 1.06 2.83 0 68.75 80
200 311 0.85 1.40 0 40.00

*0.5r 100 6679 11.65 54.18 11 20.00 20
200 1627 1.70 2.92 0 0.00

mK 500 0.1n - 39 0.74 1.13 0 0.00 90
0.2n - 450 1.25 1.85 0 1.11

1000 0.1n - 205 0.98 1.16 0 0.00
0.2n - 486 1.22 1.48 0 0.00

2000 0.1n - 609 1.29 1.48 0 0.00 15
0.2n - 1251 1.81 1.99 0 0.00

4000 0.1n - 1853 3.06 4.70 12 0.00
0.2n - 2078 6.34 8.73 15 0.00

28

Table 8 Wort cases. Left side: original tts, right
side: tts = ((0, ϵ), (∞,∞)) (the algorithm only stops
with gap ≤ ϵ). For SC and SPL we use ϵ = 0.03, for
mK we use ϵ = 0.02

|set| = 1 t gap t gap ∆UB

SC13 3706 6.85 41334 2.97 0.21
SC16 3699 8.27 28238 2.96 3.30

SPL26 7578 7.44 15957 1.85 5.09
SPL32 2474 3.59 2799 1.31 2.31
SPL41 7326 9.82 7961 1.00 4.54
SPL42 9511 23.44 11214 2.03 19.21
SPL45 8286 54.18 76244 0.63 52.90
SPL46 8896 16.40 27157 2.82 12.67

mK19 1867 2.78 2047 1.98 0.78
mK20 1883 3.66 2517 1.75 1.80
mK21 1854 4.70 2821 1.75 2.70
mK22 2037 5.31 4783 1.97 2.19
mK23 2152 7.08 5587 1.93 4.01
mK24 1929 8.73 7681 1.79 4.84

29

	Introduction
	Notation
	Robust combinatorial optimization problems with knapsack constraints under interdiction uncertainty
	Bulk-robust combinatorial optimization
	Our contribution
	Remarks and paper organization

	Theoretical results and algorithms
	Adversarial problem
	Scenarios unfeasibility problem
	Greedy heuristic
	The non-vulnerable problem
	An algorithm to find an -optimal solution for I

	Discrete-budgeted interdiction uncertainty set
	Hard discrete-budgeted interdiction uncertainty set
	Soft discrete-budgeted interdiction uncertainty set
	Remarks

	Computational experience
	The problems
	Set covering
	Simple plant location
	Min-Knapsack

	Tolerances, gaps and time management
	Statistics to be presented in the tables
	Experimental results
	Set covering
	Simple plant location
	Min-knapsack

	Conclusions and further extensions
	Conclusions
	Further extensions

