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University students benefit academically, personally and pro-
fessionally from an expansion of their in-class social net-
work. To facilitate this, we present a novel and broadly-
applicable optimization approach that exposes individuals
to as many as possible peers that they do not know. This
novel class of ‘social seating assignment problems’ is param-
eterized by the social network, the physical seating struc-
ture and ‘tie potentials’ representing the likelihood for two
neighbors to connect. The resulting problem is NP-hard and
belongs to assignment problems with an elaborate objec-
tive that depends on the relation of both seats and individ-
uals assigned to them. We develop compact integer pro-
gramming formulations and strengthen them with valid in-
equalities to improve performance. In parallel, we suggest
fast heuristics that are guided by network centrality mea-
sures. Finally, we present the necessary modelling tech-
niques to integrate practically relevant instructor preferences
and special student needs. Combining the above, we ex-
periment on a set of 320 realistic instances with up to 200

students forming both sparse and dense social networks
and for both rectangular and circular classrooms. For sparse
or small instances we present optimality gaps under 1.3%
within a few minutes, whereas in larger or denser cases the
algorithmic performance decreases. We also evaluate our
approach from both a quantitative and a qualitative per-
spective on three actual classeswithmore than 70 students.
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A network-analysis-based comparison of a priori and a pos-
teriori networks shows that 40% of opportunities led to
new connections, while feedback from both instructor and
student is particularly favorable for our method.
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1 | INTRODUCTION

Our research examines seating arrangements in classes in a manner that maximizes the potential for new ties among
students. Put more simply, our goal is to seat students who do not already know one another closer together in
the classroom. Although intuition alone designates the importance of the problem we introduce, let us recall some
indicative arguments. A strong social network (SN) is an important factor for students’ integration and persistence
[44]. Moreover, increased social interaction leads to enhanced knowledge, critical thinking, problem-solving skills [17],
and innovation [28]. Factors that facilitate the creation of new ties in class include instructor teaching style, mode of
instruction (face-to-face or virtual), student body, and course content. It is also known that physical proximity remains
a fundamental way to establish connections [42].

This brings us back to intuition. Though people can work in a variety of positions, most humans these days sit in
offices, classrooms, or other types ofworkplaces. Seating patterns can influence social interactions even outside of the
workplace. It is therefore surprising that existing literature, to the best of our knowledge, has overlooked the synergies
between social and student life while sitting for long hours in a classroom. In fact, the literature remains limited for
similar synergies outside the classroom, for example, in professional workshops, team-building events, therapeutic
sessions, and social gatherings. As a result, one could argue that our work could be utilized in social seating settings
outside of student environments and traditional classrooms.

In more technical terms, we consider two graphs. The first one represents the social network, having one node
per student and an edge per pair of students who are already socially acquainted. The second graph represents the
seating structure of a classroom, having one node per seat and one edge per pair of neighboring seats, accompanied
by a positive weight that resembles the social potential of the seat pair. We associate with these two graphs an
integer programming formulation, whose structure is novel, in order to determine the seating plan that maximizes the
weighted sum of edges in the classroom graph whose endpoints are assigned to students unknown to each other. This
is an assignment problem whose objective is determined by both seats and the students assigned to them. Different
formulations of varying strength, accompanied by heuristics, exhibit a remarkable computational performance on
instances of realistic size. Our evidence shows that a-priori knowledge of an existing SN can be exploited to create
neighborhoods of students who do not know each other yet but can effectively interact. This is supported by a case
study including three real classrooms, where students provided qualitative feedback that supports the quantitative
results. The transparent nature of the deterministic approach makes the method explainable and trustworthy which
we think is of particular importance in an educational setting.

Our work offers an optimization perspective to the literature on education that investigates the impact of seating
arrangements on students’ performance [35] or engagement [39]. In that sense, it bridges the research gap identified
by Hill and Peuker [15]. A parallel gap shows up in the optimization community, which has been studying seating
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arrangement mostly from a location perspective and without exploiting or enhancing social aspects. Indicatively,
Vangerven et al. [48] examine seating in a parliament as an assignment problem that uses a binary seat neighborhood
relation to indicate whether communication between two seats is conveniently possible; here, the sole social aspect
is whether two members of parliament belong to the same party.

Diverse subset selection is an appealing and impactful optimization problem. Specifically, the ‘maximum disper-
sion/diversity problem’ (MDP) [20, 21] aims at maximizing the sum of the Euclidean distances among the selected
seats. If distances were determined by a social network, that sum could become highly correlated with the objective
function we consider. However, MDP overlooks the conditional benefits of an assignment coming from the existing
social network. What is encouraging is that the MDP can be handled by exact optimization methods [40], hence its
broader applicability in realistic conditions appears more plausible. Our presented model can also be used to solve
‘social team formation problems’ [15, 34] in which students are assigned to teams such that the overall number of
potential new ties is maximized, i.e., the classroom graph is not taken into account. We could represent teams of
given sizes in our model by assigning a uniform pairwise tie potential to all associated seats.

Our contribution is threefold: we advance education research by integrating seating with social networking; we
introduce a relevant assignment problem for which integer programming is a valuable modeling and solution method;
and we prove its applicability via a comprehensive case study. The details of our contribution are as follows: Related
literature is exploredmore thoroughly in Section 2 to bothmotivate our study and explain its significance. We describe
our model along with the notation we used in Section 3, together with an illustrative example. The mathematical
formulation(s) are presented in Section 4, while some variations and extensions arising from educational practices
are discussed in Section 5. Section 6 describes our heuristics that complement the efficiency of the mathematical
models, as documented by the experimentation presented in Section 7. Our case study, which is included in Section
8, provides additional insight into the efficacy of our approach.

2 | RELATED WORK

Finding seating plans that conform to the -potentially strange- particularities of social events has recently gained
attention. Indicatively, Lewis and Carroll [24] and Tomić and Urošević [45] propose heuristics for finding seating
arrangements for dinners where given individuals or groups (e.g., families) should sit at the same table, with the former
also introducing a compact integer programming formulation. They do so by solving an associated graph partitioning
problem where the sum of edges within each partition is to be minimized. Although [24] caters for certain seating
requirements (i.e., groups seating on the same or on different tables), its focus is on groups rather than individuals and
on finding solutions of good quality through a meta-heuristic.

Class seating has motivated two further interesting problems. The primary goal of Berriaud et al. [4] is envy-
freeness and stability if individuals have cardinal preferences over where they would sit, i.e., people should sit such
that no pair wishes to switch their seats and no individual envies the seat of another. Social distancing in classrooms
[12] also resembles the need for certain pairs of people not to sit too close. Similarly, exam hall seating problems ad-
dress strategies to minimize cheating by maximizing the distance between students. Relevant side constraints include
ensuring that students enrolled in the same course are not seated next to each other. Metaheuristic approaches have
been suggested to solve this problem in the literature (e.g., [1, 9]).

As mentioned in the introduction, our objective is to strengthen social connections by seating individuals who are
not acquainted with each other in close proximity. As this could be interesting in non-classroom arrangements, we
should mention that seating on both professional and social occasions appears to be a non-trivial task. This explains
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why an optimization approach has been employed for social distancing in cinemas [41], airplanes [37] and buses [18].
Parliament seating is another relevant problem, as already discussed, that has been tackled – similar to our work – by
integer programming and heuristic methods [48].

Our combinatorial problem is a special case of thewell-known and notoriously hard quadratic assignment problem
(QAP), which has numerous applications including facility location, material handling, andmanufacturing (e.g., see [26]).
The QAP focuses on the minimization of two types of costs: an assignment cost per pair selected and a ‘combined’
cost occurs only when selected pairs have been assigned simultaneously. In our setting, there are no costs (negative
benefits) for individual assignments and we aim at maximizing overall benefit. An early application that results in
a QAP variant that is similar to ours is office-employee assignment [14], which minimizes communication efforts
between employees assigned to different offices. Our problem focuses on the fact (which it also exploits) that only
selected pairs of both students and seats (i.e., employees and offices, respectively) can contribute to enhanced social
interaction.

Teachers themselves desire to organize classroom seating for a variety of reasons, including tightening social ties
[16]. There is a breadth of papers on the multiple factors influencing how and whether the seating arrangement
affects student performance. However, to the best of our knowledge, the impact of seating arrangements in higher
education classrooms on the development of students’ social networks has not been explored.

The concept of sociograms [25] has been extensively utilized in educational contexts to analyze the social rela-
tionships within a classroom via appropriate graphical representations. Visualizations map out social dynamics such
as friendships, interactions, social isolates, and group structures, allowing educators to address social and emotional
needs effectively. Sociograms are also used to capture changes in social relationships over time, providing a dynamic
view of the classroom’s social landscape which can be used to understand complex peer relations during childhood
[2]. In our study, we complement the diagnostic nature of sociograms, offering a prescriptive approach to enhance
classroom social networks.

In the field of STEM education, the application of social network analysis has been used in understanding and
improving student interactions and social structures. Pearson et al. [32] have demonstrated how network analysis
can uncover patterns of inclusion and exclusion within student cohorts. Additionally, studies have explored various
aspects of student relationship networks (see, for example, [38, 7, 6, 11, 27]). The topic also considered important
in educational psychology [36]. Similar to our work, all these studies focus on fostering bridging and bonding social
capital among students.

In more detail, Levine et al. [23] present a two-phase study examining the effects of classroom seating on test
scores and participation. They report that, when students selected their seats, those in the front performed better,
but there was no effect on participation. When randomly assigned to seats, students in the front participated more
than those in the rear. These results suggest that the relationship between seating position and grades is mediated
by self-selection processes, while participation can be influenced by seat location.

As intuitively expected, students who prefer to sit near the front of the room have a higher probability of receiving
better grades [3]. Along these lines, Perkins and Wieman [33] investigated a large introductory physics course in
which students were randomly assigned to seats and observed that seat location had a noticeable impact on student
success in the course, particularly in the top and bottom parts of the grade distribution. Furthermore, Tagliacollo et
al. [43] conclude that students’ motivation for learning determines their seat choice and this effect explains why seat
position is associated with school performance. They suggest that displacing students to a frontal seat position in the
classroom to improve learning performance does not necessarily change a student’s performance if a lack ofmotivation
persists. Analogous observations are made in [47]. The relationship between students’ classroom seating location and
their learning outcomes in five marketing classes (N = 232) over five years is reported by Pichierri and Guidoin [35].
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They examine the moderating role of shyness and nonconformity; results indicate that classroom seating does affect
learning performance, however shyness but not nonconformity moderates this association. Less surprisingly, Lacroix
and Lacroix [22] conclude that seat location affects grades in larger classrooms, but not in smaller ones, according to
their review of previous literature and analysis of student performance in six small Economics classes.

Learning is typically associated with engagement and the overall class experience, hence seating could meaning-
fully be associated not just with performance. Indeed, Shernoff et al. [39] examined the influence of seating location
on student engagement, attention, classroom learning experience, and course performance. Results showed lower
engagement, attention, and quality of classroom experience when sitting in the back of the classroom. Multilevel mod-
els revealed both within-student and between-student effects. Social interaction is no longer neglected: indicatively,
Nehyba et al. [30] investigated university students’ interaction intensity in pre-service teachers’ groups during reflec-
tive practice. Results showed more intensive interaction in rows with moderation influenced by the field of study and
facilitator involvement. The study highlights the importance of seating arrangements in student interaction.

In a recent study, Bluteau et al. [5] compared the well-being and mental health of 10-12 years old students in
fixed and flexible classrooms. The research, based on a quasi-experimental, quantitative design, found that flexible
classroom seating positively impacted girls’ well-being and mental health, while fixed classroom seating was most ben-
eficial for boys. The impact of classroom seating on student engagement is examined in [13] via wearable physiological
sensors. The study, conducted at a high school, found that individual and group seating experiences are associated
with perceived engagement and physiologically-based engagement. Students who sit close together are more likely
to have similar learning engagement and high physiological synchrony. The findings suggest that flexible seating ar-
rangements can maximize student engagement and suggest intelligent seating choices in the future, something that
our work could easily facilitate.

Last, Van den Berg and Cillessen [46] explored the relationship between classroom seating arrangements and peer
status using the social relations model. Results show that children who sit closer to the center of the classroom are
more liked and popular. Additionally, placing liked peers closer to themselves leads to better likeability and popularity.
The findings suggest further research on classroom seating arrangements and peer relationships.

As this literature review shows, further research is needed to examine the potential link between seating arrange-
ments and social network development among higher education students. This could provide valuable insights into
how classroom design can promote not only academic success but also social integration and support among students.
Moreover, it could possibly be intertwined with the growing interest in optimizing over group centrality metrics [8].

3 | THE SOCIAL SEAT ASSIGNMENT PROBLEM

3.1 | Definition

The social seat assignment problem (SSAP) can be defined as follows. Let N = (V , E ) be an undirected graph that
represents the student social network. That is, every student is represented by a node i ∈ V and an edge {i , i ′ }
is contained in E if the students i , i ′ ∈ V know each other. The physical seating structure is represented by the
undirected edge-weighted neighborhood graph M = (W , F ) : a node j ∈ W represents a seat and an edge {j , j ′ } ∈ F
is associated with two seats j , j ′ ∈ W that are considered to allow direct student interaction. Such seats are typically
neighboring seats - horizontal, vertical, or diagonal. For two seats that are connected through an edge {j , j ′ } ∈ F ,
we are given a tie potential value p j ,j ′ > 0, which indicates how likely a new connection is created given that the
students assigned to seats j and j ′ do not know each other. A higher value would be chosen for seats that are close
to each other, whereas seats that are too far apart will not even be connected through an edge inM . We assume that
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a sufficient number of seats is always available to accommodate all students; i.e., |W | ≥ |V | .

A valid seating assignment assigns every student to exactly one seat, such that every seat has at most one student
assigned. In such an assignment, the utilized tie potential for neighboring seats {j , j ′ } ∈ F is p j ,j ′ if two students
i , i ′ ∈ V are assigned to the seats and they do not know each other (i.e., {i , i ′ } < E ). SSAP asks for a valid seating
assignment such that the overall tie potential is maximized. It differs from classical assignment problems in two aspects.
First, profit (here, the tie potential value) is achieved by assigning pairs of items (students) rather than by individual
assignments. Second, the profit (tie potential) depends on where the two items (students) are assigned to. Note that
the maximum number of new ties for a given social network N is given by the number of edges in its complement
graph. Let us now examine the relation of SSAP to two problems discussed in the literature.

Recall the definition of QAP from [14]: we are given a set of employees I and a set of offices J , where |I | = |J | ,
together with a measure ci ,i ′ reflecting the affinity between two employees i , i ′ ∈ I and the distance dj ,j ′ between
two offices j , j ′ ∈ J . If f (i ) denotes the office assigned to employee i , the objective is to minimize the sum of
ci ,i ′ · df (i ) ,f (i ′ ) . More intuitively, QAP asks to place in geographical proximity pairs of employees who feel close to
each other.

Although SSAP serves the opposite purpose, it can be transformed to a special case of QAP as follows. (i) We
introduce |W | − |V | isolated ‘dummy’ student nodes in N in order to obtain |V | = |W | and set I = V , J = W ; (ii) we
set ci ,i ′ = −1 if {i , i ′ } ∈ E and ci ,i ′ = 0 otherwise; (iii) last, we set dj ,j ′ = p j ,j ′ if {j , j ′ } ∈ F and dj ,j ′ = 0 otherwise. One
can then verify that minimizing the sum of ci ,i ′ · df (i ) ,f (i ′ ) over all pairs i , i ′ ∈ I becomes equivalent to maximizing the
sum of p j ,j ′ for all {j , j ′ } ∈ F such that f (i ) = j , f (i ′ ) = j ′ (or vice-versa) and {i , i ′ } ∈ E .

The optimal student assignment problem (OSAP) [15] is defined on the graph N = (V , E ) used by SSAP to repre-
sent the students’ social network plus a set of teamsT , each having a minimum size and a maximum size; let l t and ut

denote such size limitations per t ∈ T . OSAP asks for an assignment of students, i.e., nodes inV , to theT teams in a
way that respects that allowable size per tem and minimizes the pairs of neighboring nodes placed in the same team.

OSAP is the special case of SSAP where the neighborhood graph M can be partitioned into a set T cliques, i.e.,
we have one ‘clique of seats’ per potential student team. Clique t ∈ T has ut nodes, while l t = 0. If we set the same
tie-potential for all pairs of neighboring seats, i.e., p j ′,j = 1 for all {j ′, j } ∈ F , maximizing the sum of tie potentials for
SSAP becomes equivalent to minimizing the number of existing intra-team ties (as OSAP aims at). As OSAP is NP-hard
[15], so is SSAP. However, for completeness of our exposition, let us provide a formal reduction.

Lemma 1 SSAP is NP-hard.

Proof We show a reduction from the variant of the maximum clique problem (MCP) that asks whether a given undi-
rected graph has a complete subgraph (i.e., a clique) of a given size. Formally, an instance of MCP receives as input an
undirected graph G ′ = (V ′, E ′ ) and a positive integer k ≤ |V ′ |, asking whether G ′ has a clique of k nodes.

Given an arbitrary MCP instance, we construct an instance of SSAP as follows. We set the social network N to
be the complement graph of MCP’s input graph, i.e., N = G ′. Also, we set the classroom network M as the union of
the complete graph on k nodes and |V ′ | − k isolated nodes, and set a tie potential p j ,j ′ = 1 for each edge {j , j ′ } ofM .
Observe that that G ′ has a clique of size k if and only if its complement G ′ has an independent set of size k , which is
equivalent to SSAP having k students whose seating in the clique of M yields a solution with value k · (k − 1)/2.

That is, MCP has a clique of size k if and only if k students can sit together in a ‘clique’ classroom whereas all
remaining students are assigned to isolated seats. As MCP is NP-complete [19], so does the version of SSAP asking
whether a given instance admits a solution with a given value. The result follows.
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3.2 | An Illustrative Example

Consider a class with six students ( |V | = 6) and a classroom with ten seats ( |W | = 10). Figure 1 illustrates the
room layout (left) and its neighborhood network representation (M ) including tie potential values from 1 to 3 (right),
respectively. Note that M is disconnected since across-aisle seats are not considered neighbors in this example. The
given tie potentials favor students to be horizontal neighbors (3), followed by vertical neighborhood (2), and diagonally
seated neighbors (1). We denote the corresponding sets of edges as Fh , Fv , and Fd , respectively.

F IGURE 1 An example classrooms with 10 seats (left) and its neighborhood network representation M with 17
edges ( |F | = 17) including edge weights (pi ,i ′ ∈ {1, 2, 3}) representing tie potentials (right).

The student social network (N = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {1, 6}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, {3, 6}, {4, 5}, {4, 6}})
is depicted in Figure 2 (left). The complement graph of N , i.e., N = (V , {{i , i ′ } ⊆ V : i , i ′ ∧ {i , i ′ } < E }) , has an edge
for two students that do not know each other (see Figure 2, center). An optimal seat assignment is shown in Figure
2 (right). Students are only seated at tables in the left part of the classroom to make best use of direct (horizontal)
neighborhoods which have the highest tie potential (3). Nevertheless, each student has one vertical neighbor and at
least one diagonal neighbor. Using the tie potentials assigned to edges inM , the overall potential is 4 · 3+ 1 · 2+ 1 · 1 =

15. Note that an equally good assignment can be obtained by swapping assignments in row one and row two. The

F IGURE 2 An example social network N (left) with 6 students ( |V | = 6) and 9 ties ( |E | = 9), the complement
network N representing possible new ties (center), and an optimal social seating assignment of the students to seats
with an overall potential of 15 (right).

maximum number of possible new ties for this optimal assignment is 6, namely {1, 3}, {1, 4}, {1, 5}, {2, 4}, {3, 5} and
{5, 6} which corresponds to the theoretical maximum represented by N .
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4 | MATHEMATICAL FORMULATION

Our integer programming (IP) formulations for SSAP uses two types of variables. A binary assignment variable xi ,j

indicates whether student i ∈ V is assigned to seat j ∈ W (xi ,j = 1) or not (xi ,j = 0). Additionally, we introduce a binary
tie potential variable z j ,j ′ for every edge {j , j ′ } ∈ F that becomes 1 if seats j and j ′ are assigned to two students that
do not know each other, i.e., if there is potential for a new tie.

Let us introduce three IP models, in increasing order regarding their tightness.

(F0 ) Maximi ze
∑
{j ,j ′}∈F

p j ,j ′ · z j ,j ′ (1)

Subj ect t o
∑
j ∈W

xi ,j = 1 [i ∈ V , (2)

∑
i ∈V

xi ,j ≤ 1 [j ∈ W , (3)

z j ,j ′ + xi ,j + xi ′,j ′ ≤ 2, z j ,j ′ + xi ,j ′ + xi ′,j ≤ 2 [{i , i ′ } ∈ E , {j , j ′ } ∈ F , (4)

2 · z j ,j ′ ≤
∑
i ∈V

(
xi ,j + xi ,j ′

)
[{j , j ′ } ∈ F , (5)

xi ,j ∈ {0, 1} [i ∈ V , j ∈ W , (6)

z j ,j ′ ∈ {0, 1} [{j , j ′ } ∈ F . (7)

The objective function (1) maximizes the total weight of potential new ties, which is measured by summing over the
tie potential variables, multiplied by the pre-specified tie potential values. The assignment constraints (2) assure that
every student is assigned to precisely one seat. Inequalities (3) forbid assigning more than one student to each seat.
Binary variables xi ,j and z j ,j ′ are linked through constraints (4). For two neighboring seats j , j ′ ∈ W and two students
i , i ′ ∈ V who know each other, variable z j ,j ′ is forced to zero if students i and i ′ are both assigned to seats j and j ′ in
one of the two possible ways. This only covers the case that exactly two connected students are assigned to a pair
of neighboring seats. To prevent tie potentials in the case of one or two empty seats, we add inequalities (5). They
ensure that the tie variable for two neighboring seats is bounded from above by 0.5 if one seats remains empty and
forces it to zero in the case of both seats being empty. The variables are defined in (6) and (7). The overall number of
potential new connections can be calculated as ∑{j ,j ′}∈F z j ,j ′ .



Hill et al. 9

A stronger version of Inequalities (4) leads to our second formulation.

(F1 ) Maximi ze
∑
{j ,j ′}∈F

p j ,j ′ · z j ,j ′

S .t . : (2), (3), (5), (6), (7)

z j ,j ′ + xi ,j + xi ′,j ′ + xi ,j ′ + xi ′,j ≤ 2 [{i , i ′ } ∈ E , {j , j ′ } ∈ F . (8)

Formulation F1 can be strengthened further by a dis-aggregated version of Inequalities (5), which also address
the case of no student assigned, but for one seat at a time:

(F2 ) Maximi ze
∑
{j ,j ′}∈F

p j ,j ′ · z j ,j ′

S .t . : (2), (3), (6), (7), (8)

z j ,j ′ ≤
∑
i ∈V

xi ,j [{j , j ′ } ∈ F . (9)

To obtain our last formulation, we propose an alternative version for Ineq. (5), derived after observing that the
sum of all tie potential variables incident with one seat has to be zero if no student has been assigned to the seat:

(F3 ) Maximi ze
∑
{j ,j ′}∈F

p j ,j ′ · z j ,j ′

S .t . : (2), (3), (8), (6), (7)

∑
{j ,j ′}∈F

z j ,j ′ ≤ | {{j , j ′ } ∈ F } | ·
∑
i ∈V

xi ,j [j ∈ W . (10)

To formally establish a relation among the above formulations, let, for i ∈ {0, 1, 2, 3}, P (Fi ) denote the polytope
defined as the convex hull of integer vectors satisfying formulation Fi .

Lemma 2 P (F2 ) ⊂ P (F1 ) ⊂ P (F0 ) and P (F2 ) ⊂ P (F3 ) .

Proof It becomes easy to see that each inequality (5) is the sum of two inequalities (9), since graph M is undirected.
Hence any vector violating (5) must also violate one of the associated (9) and this shows that P (F2 ) ⊂ P (F1 ) .

Now observe that (8) dominates any of the inequalities (4) in the sense that it has more variables in its left-hand
side (it is a ‘lifted’ version of (4)). Therefore, any vector violating any of (4) must also violate (8) and this explains why
P (F1 ) ⊂ P (F0 ) .
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Last, (10) for a given j ∈ W is the sum of (9) for all j ′ ∈ W such that j , j ′ ∈ F . Hence, P (F2 ) ⊂ P (F3 ) . ■

Simple arguments can show that all inequalities in Formulation (F2 ) are maximally valid except for inequalities (8),
i.e., no such inequality can either get a larger coefficient or an additional variable in its left-hand side (written as ‘≤’),
without increasing its right-hand side.

Inequalities (8) are in fact special cases of what could be called clique inequalities for SSAP:

z j ,j ′ +
∑
i ∈C

xi ,j +
∑
i ∈C

xi ,j ′ ≤ 2 [C ∈ C(N ), {j , j ′ } ∈ F , (11)

where C(N ) ⊆ 2V is the set of all maximal cliques in N . Note that it reduces to inequality (8) when we limit ourselves
to cliques of cardinality 2. However, not all clique inequalities can be added without increasing unreasonably (or even
exponentially) the size of the formulation. Even finding a clique whose corresponding inequality (11) is maximally
violated by a given vector is NP-hard. Efficient separation is plausible through enumeration only for small instances
and cliques of small cardinality.

Although there is symmetry in the problem, it becomes tough to incorporate as it requires detecting the auto-
morphism groups of the underlying graphs. For example, two equally-sized front rows without any back rows are
interchangeable. More formally, letM1, . . . ,Mk ⊂ M be a collection of maximal connected components ofM that are
pairwise isomorphic; i.e. it is sufficient that Mk ′ ≃ Mk ′+1[k ′ ∈ {1, . . . , k − 1}.

∑
i ∈V

∑
j ∈W (Mk ′ )

xi ,j ≤
∑
i ∈V

∑
j ∈W (Mk ′+1 )

xi ,j [k ′ ∈ {1, . . . , k − 1} (12)

Similarly, we have symmetry breaking constraints regarding tie potentials (e.g., as in [29]):

∑
e∈F (Mk ′ )

ze ≤
∑

e∈F (Mk ′+1 )
ze [k ′ ∈ {1, . . . , k − 1} . (13)

For two maximally connected components ofM , we can perform an isomorphism test considering edges weights
as explained by Cordella et al. [10]. However, our experiments showed that the presented algorithms are not able to
take notable advantage of these inequalities, possibly due to the powerful solver-internal symmetry-breaking tech-
niques. Nevertheless, we mention them because they could be useful for related models and methods in future
research.

5 | PRACTICAL MODEL EXTENSIONS

When implementing our model in a real-world classroom, it is very important to incorporate students and instructor
preferences and needs. Additional side requirements can arise from the spatial table arrangement, course content,
teaching style, and student special needs. They can notably complicate the problem introduced above. In the following,
we provide model-based techniques that allow us to respect practical constraints and preferences in order to ensure
a positive classroom experience.
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5.1 | Seat, Zone and Neighbor Pre-Assignment

If a student i ∈ V is required to sit on a seat, say j ∈ W , then we can enforce this assignment by adding the variable
fixing constraint xi ,j = 1. In the opposite case that student i must not sit on seat j , we add xi ,j = 0 instead. Similarly,
a seat j ∈ W can be forced to be used (stay empty) by adding the constraint ∑i ∈V xi ,j = 1 (∑i ∈V xi ,j = 0).

More generally, a student might need to sit in the front due to vision or hearing problems. Moreover, students
might be restricted to certain seats due to physical accessibility limitations. Let Z ⊂ W be a zone represented by an
arbitrary subset of seats that student i has to be assigned to. Then adding the constraint ∑j ∈Z xi ,j = 1 ensures that
no seat outside of Z is selected for student i . Note that if |Z | = 1, then this model extension corresponds to fixing a
seat for the student, as described above.

A student may require support from a classmate who sits nearby. Enforcing two students i , i ′ ∈ V to sit in the
same neighborhood can be achieved by adding the following constraints to the formulation:

xi ,j ≤
∑

j ′∈N [j ]
xi ′,j ′ [j ∈ W

Here, N [j ] denotes the set of neighbors of j in M and can be substituted by an arbitrary set of suitable instructor-
defined seats.

5.2 | Student Density

Similar to the seating preferences described above, instructors might want to ensure a certain minimum number of
students assigned to a classroom area. Let u ≥ 1 be the desired number of occupied seats for a specific subset of
seatsW ′ ⊂ W . Then we can ensure this minimum occupation in a seating assignment via

∑
i ∈V

∑
j ∈W ′

xi ,j ≥ u .

Note that these inequalities can be used to model lower bounds on the number of students in teams in the OSAP
[15]. Finally, we can also limit the student density for subsets of seats from above through similar constraints.

5.3 | Neighbor Aversion

When incompatibility between two students is known, then we want our model to avoid seating them together. Let
i , i ′ ∈ V be the two students that need to sit apart. Then our formulations can be extended by the following constraint
to account for this requirement.

xi ,j + xi ′,j +
∑

j ′∈N [j ]
xi ,j ′ +

∑
j ′∈N [j ]

xi ′,j ′ ≤ 1 [j ∈ W

5.4 | Student Isolation

A student might prefer to not having neighbors in order to minimize potential distraction or due to mental health
reasons (e.g., ADHD). Our model can account for such a requirement for student i by adding the following constraints
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to any of the formulations.

∑
i ′∈V

xi ′,j ′ ≤ |V | · (1 − xi ,j ) [j ∈ W , j ′ ∈ N [j ]

Here, the neighboring seats of j are denoted by N [j ]. Note that the addition of such a constraint tends to increase the
number of seats that must be empty which can cause infeasibility to the model. However, we can guarantee feasibility
if the following condition holds for a specific number of isolated students h: |W | ≥ ( |V | −h ) +h · (1+dM ) = |V | +h ·dM ,
where dM is the maximum node degree in M .

5.5 | Neighborhood Ties Enforcement

Students might appreciate both having some neighbors that they already know and being exposed to peers that they
do not know. Although this feature might come at the cost of losing some potential for new ties, it can address a
student need, as revealed by our case study (Section 8, critical comment #7). To ensure that each student has at least
k familiar neighbors, we can add the following constraints.

∑
{j ,j ′}∈F

(1 − z j ,j ′ ) ≥ k ·
∑
i ∈V

xi ,j [j ∈ W

These additional requirements can also be adjusted to student-dependent needs; e.g., use k = 1 for student i ∈ V

and k = 2 for student i ′ ∈ V . To achieve this, we simply exchange the right-hand side summation by corresponding
student assignment variable xi ,j . Note that corresponding requirements may turn out to be infeasible; e.g., when k

exceeds the number of ties of student i . In a similar manner, we can also enforce a minimum number of unacquainted
neighbors by omitting the constant on the left-hand side.

5.6 | Spatial Preferences

Our model does not account for inconveniences that could come with certain seats. An optimal solution might place
students in the back of the classroom although an equally good configuration exists that places them in the front.
Preferred seats can be defined based on several aspects, including room lighting, board view, room acoustics and
furniture. Let us assume that seats W ′ ⊂ W are preferred seats. To model favor for seats in W ′, we substitute
objective (1) by the following alternative objective.

∑
{j ,j ′}∈F

p j ,j ′ · z j ,j ′ +
φ

|W ′ | + 1 ·
∑
i ∈V

∑
j ∈W ′

xi ,j

The parameter φ ≥ 1 is used to specify the importance of preferred seats. When using φ = 1 then the preferences
will not override the objective criterion of overall new tie potential, but they will be considered when multiple optimal
solutions exist. An optimal assignment that uses the maximum number of seats inW ′ will be returned. The effect is
illustrated for the example class withW ′ = {1, 2, 3, 4, 5} and φ = 6 in Figure 3 (left). Since φ > 1, the overall potential
reduces from 15 to 12.
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5.7 | Avoiding Conflicts

Our formulations aim at maximizing the opportunities for students to get to know their classmates. A related but
generally weaker approach is to minimize the number of already connected students that sit together. This could
be useful when, for example, seeking a seating plan for exams. Students who are familiar with each other are more
likely to recognize those who are knowledgeable. The level of familiarity among students may make them tempted
to “cheat” by viewing the answers of knowledgeable people during in-person exams. This strategy tends to create
gaps between students and can be useful when the student social network is dense. Let q j ,j ′ be a penalty value for
students that know each other and sit on seats j , j ′ ∈ W . Then formulation (F ′ ) can be used to model this situation.

(F ′ ) Minimi ze
∑
{j ,j ′}∈F

q j ,j ′ · z j ,j ′ (14)

Subj ect t o (2), (3), (6), (7)

z j ,j ′ ≥ xi ,j + xi ′,j ′ + xi ,j ′ + xi ′,j − 1 [{i , i ′ } ∈ E , {j , j ′ } ∈ F . (15)

Inequality (15) will force the reinterpreted conflict variables z j ,j ′ to take the value of 1 if connected students i and
i ′ are both assigned to seats j and j ′ in any of the two possible ways. Note that the value of the right-hand side
is at most 1. Figure 3 (right) shows an optimal assignment with an overall penalty of zero for the example class
(q j ,j ′ = p j ,j ′[{j , j ′ } ∈ F ). The overall potential is 5 which is lower than the previously obtained value of 15.

F IGURE 3 Optimal seat assignments with preferred seating on seats 1-5 (left) and when avoiding conflicts (right).

6 | HEURISTIC ASSIGNMENT STRATEGIES

In addition to the exact methods presented in Section 4, we developed heuristics to find optimized seating arrange-
ments quickly. Although problem specific heuristics have been developed for a wide range of assignment problems
(e.g., [48]), the particular structure of SSAP requires special attention. Hence, we propose approaches that integrate
information from both network layers, the social network and the classroom neighborhood network.

Our heuristic methods assign individuals to seats in an iterative fashion. They differ in the sequence in which the
students are assigned using various dynamic priority rules. Finally, we apply an efficient local search that explores
two polynomial neighborhoods to further optimize the assignment. For a (partial) assignment of studentsV ′ ⊆ V to
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seatsW ′ ⊆ W , letW (i ) ∈ W ′ denote the seat that student i ∈ V ′ is assigned to, andV (j ) ∈ V ′ the student on seat
j ∈ W ′. During the assignment process, we calculate a tie potential score σ (i , j ) for an unseated student i < V ′ and
an empty seat j <W ′ as

σ (i , j ) =
∑

{j ,j ′}∈F :j ′∈W ′∧{i ,V (j ′ ) }<E
p j ,j ′ . (16)

The σ-score takes into account potentials of neighboring seats that are occupied by unrelated students. There may be
multiple assignment options with identical score. Therefore, we break ties by calculating the priority πi ,j of assignment
(i , j ) ∈ Ã =V \V ′ ×W \W ′ via one of the following rules.

(A) Lexicographical first student: πi ,j = −i

(B) High-degree seat: πi ,j = dM (j )

(D) Low-degree student on high-degree seat: πi ,j = dM (j )/dN (i )

(E) High-centrality seat: πi ,j = cM (j )

(F) High-degree student: πi ,j = dN (i )

(G) Low-degree seat: πi ,j = −dM (j )

(I) High-centrality seat and student: πi ,j = cM (j ) + cN (i )

Note that rules B-I are all based on network centrality, measured either by node degree centrality (d ) or node
closeness centrality (c) in the corresponding network. We recall that the latter, node closeness centrality (c), is cal-
culated as the reciprocal of the average distance to all other nodes in the network, measured by the shortest path
lengths. We also experimented with using closeness centrality instead of degree centrality in (F) but did not observe
improved results although computation times were longer. We also experimented with inverse versions of these rules
which led to inferior results.

An assignment in Ã with the highest priority is implemented in each iteration. Note that all rules are based on the
structure of the dynamic social and classroom networks. Algorithm 1 formally describes the constructive technique.

Algorithm 1 Heuristic Seating Assignment.
Input: Social network N , classroom network M , priority strategy X∈ {A-I}
Output: Seating assignment

1: V ′ ← ∅,W ′ ← ∅, A∗ ← ∅
2: while |V ′ | < |V | do ▷ Iteratively assign students to seats
3: A← (V \V ′ ) × (W \W ′ )
4: for all (i , j ) ∈ A do ▷ Update scores for potential assignments
5: σ (i , j ) ← ∑

{j ,j ′}∈F p j ,j ′

6: Ã← {(i , j ) ∈ A : σi ,j = max(i ′,j ′ ) ∈A σi ′,j ′ } ▷ Select max-score assignments
7: (i ∗, j ∗ ) ← argmax(i ,j ) ∈Ã πi ,j ▷ Select next testing opportunity
8: A∗ ← A∗ ∪ { (i ∗, j ∗ ) } ▷ Add assignment
9: V ′ ←V ′ ∪ {i ∗} ▷ Update set of assigned students

10: W ′ ←W ′ ∪ {j ∗} ▷ Update set of occupied seats

11: return A∗ ▷ Return seating assignment
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To potentially improve the obtained assignments, we developed an iterated local search procedure that is applied
to the constructed assignments. We explore two types of neighborhoods. First, we consider single-reassignment
(MOVE) in a best-first fashion. That is, for each student i and each open seat j , we evaluate the benefit of reassigning
i to j . To quantify the latter, we calculate the objective function value of the modified seating assignment (after
assigning student j to available seat j ) and subtract the initial objective function value (j remains assigned to its
original seat). If the resulting value is greater than zero then we identified a potential improvement and we discard
the (non-beneficial) student relocation otherwise. Among all potential improvements, we choose the move with the
highest benefit and repeat this MOVE search until no improvement can be identified. Afterwards, we analogously
search for a best way to swap two seated individuals (SWAP). We consider each pair of two students i and i ′ that are
assigned to seats, say j and j ′, respectively. A potential improvement is the reassignment of student i to seat j ′ and
student i ′ to seat j such that the overall objective function value increases. Through experiments, we found out that
the best result can be obtained when applying MOVE first, followed by SWAP. In the case where an improvement
was found, we repeat these two search steps.

7 | COMPUTATIONAL ANALYSIS

In the following, we provide an empirical evaluation of our model and the developed methods. We implemented
all procedures using Python (v3.12) on a win-x64 machine with an Intel i7-1365U processor (10 cores) and 32 GB
of RAM. Linear programs and integer linear programs were solved using Gurobi1 (Version 11.0.1) using the Python
interface gurobipy2.

7.1 | Test Instances

We evaluate our exact and heuristic methods on a set of realistic test instances. Therefore, we generate social net-
works of various sizes by randomly extracting subnetworks from the real social network of the Industrial Engineering
program at Cal Poly. This data was collected using an online survey system that students could access via computer
and mobile phone [31]. Students were presented with the names of peers from each year in the program where
they were asked to indicate “who they know”. We did incentivize participation in the social network surveys through
coffee shop gift card raffles that took place in class after the assigned survey class time. From our experience, the
engagement of the instructors themselves in person are extremely important for high response rates [15]. In addition,
instructors sent email reminders to students who did not participate. Finally, we symmetrized the network assuming
that one indication for a tie is sufficient. The class social networks used in our case study (Section 8) are subnetworks
of this network. The overall network with 272 student nodes and 3315 ties is depicted in Figure 4. We select student
sets of six cardinalities (10,25,50,100,150,200) using two different random seeds. Moreover, we consider two density
scenarios: The original set of induced connections between selected individuals and an augmented network in which
we randomly insert four times the number of ties of the sparse case. The detailed social network data can be found
in Table 1.

We use two types of classroom layouts: Rectangular and circular. Rectangular classrooms are parameterized by
the row block sizes R = [R1, . . .] and the column block sizes C = [C1, . . .]. Circular layouts use parameters for the
number of rows (R ), the number of circular fragments (F ), and the number of seats on the innermost ring (I ). Circular

1www.gurobi.com
2pypi.org/project/gurobipy

www.gurobi.com
pypi.org/project/gurobipy


16 Hill et al.

F IGURE 4 The social network of the 272 students in the Industrial Engineering Program connected by 3315 ties.
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TABLE 1 The 24 realistic social networks with random seed s , density scenario d (S=sparse, D=dense), number
of student nodes |V | , and number of ties |E |.

# s d |V | |E | # s d |V | |E | # s d |V | |E |

1 1 S 10 6 9 5 S 50 100 17 9 S 150 945

2 1 D 10 36 10 5 D 50 600 18 9 D 150 5670

3 2 S 10 4 11 6 S 50 142 19 10 S 150 998

4 2 D 10 24 12 6 D 50 852 20 10 D 150 5988

5 3 S 25 24 13 7 S 100 446 21 11 S 200 1728

6 3 D 25 144 14 7 D 100 2676 22 11 D 200 10368

7 4 S 25 39 15 8 S 100 433 23 12 S 200 1846

8 4 D 25 234 16 8 D 100 2598 24 12 D 200 11076

rows past the innermost ring get one additional seat per new row. For example, if the first row has 2 seats, then the
second row has 3 seats, the third row has 4 seats and so on. The schemes are illustrated in Figure 5 for a rectangular
[R ,C ] = [ [1, 3], [2, 4, 2] ] configuration and a circular [R , F , I ] = [3, 3, 2] configuration. Tie potentials are as follows:
3 (horizontal), 2 (vertical), 1 (diagonal). Note that circular classrooms do not have edges of weight 2.

F IGURE 5 Illustration of the rectangular (left) and the circular classroom (right) scheme with their parameters
using classrooms with 32 seats and 27 seats, respectively.

The detailed classroom networks are described in Table 2. Here, Fh , Fv and Fd denote the sets of horizontal,
vertical and diagonal neighbor edges, respectively (as explained in Section 3.2).
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TABLE 2 The 20 rectangular and 24 circular classroom networks with scheme (row block sizes R and column block sizes C ; ) number of seats and neighbors.

Rectangular Layout Circular Layout

# R C |W | |F | |Fh | |Fv | |Fd | # R F I |W | |F | |Fh | |Fd |
1 2,2 2,2 16 24 8 8 8 21 1 5 3 18 37 15 22
2 2,2,2 2,2,2 36 54 18 18 18 22 1 15 3 48 107 45 62
3 2,2,2,2 2,2,2,2 64 96 32 32 32 23 1 30 3 93 212 90 122
4 2,2,2,2,2 2,2,2,2,2 100 150 50 50 50 24 2 2 3 18 32 12 20
5 2,2,2,2,2,2 2,2,2,2,2,2 144 216 72 72 72 25 33 3 3 36 69 27 42
6 2,2 5 20 42 16 10 16 26 4 1 3 24 36 12 24
7 3,3 5 30 76 24 20 32 27 4 5 3 72 148 60 88
8 4,4 4,4 64 168 48 48 72 28 4 10 3 132 288 120 168
9 2,4,2 2,4,2 64 130 40 40 50 29 1 5 5 35 82 30 52
10 3,6,3 3,6,3 144 378 108 108 162 30 1 15 5 85 212 80 132
11 4,7,4 4,7,4 225 648 180 180 288 31 1 30 5 160 407 155 252
12 5,5,5,5 5,5 200 576 160 160 256 32 2 2 5 40 86 30 56
13 8 8 64 210 56 56 98 33 3 3 5 75 168 60 108
14 10 10 100 342 90 90 162 34 4 1 5 60 120 40 80
15 12 12 144 506 132 132 242 35 4 5 5 140 328 120 208
16 14 14 196 702 182 182 338 36 4 10 5 240 588 220 368
17 6 2,2,2 36 78 18 30 30 37 1 5 7 56 139 49 90
18 10 2,2,2,2,2 100 230 50 90 90 38 1 15 7 126 329 119 210
19 14 2,2,2,2,2,2,2 196 462 98 182 182 39 1 30 7 231 614 224 390
20 18 2,2,2,2,2,2,2,2,2 324 774 162 306 306 40 2 2 7 70 164 56 108

41 3 3 7 126 303 105 198
42 4 1 7 112 252 84 168
43 4 5 7 224 556 196 360
44 4 10 7 364 936 336 600
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For our experiments, we pair each of the 24 random social networks with each of the 44 classrooms if the follow-
ing two properties are satisfied: The number of students must not exceed the number of seats ( |V | ≤ |W |) and the
student to seat ratio is at least 1/3 ( |V |/|W | ≥ 1/3). This results in 320 test instances3.

7.2 | Formulation Strengths

We conduct a computational evaluation of formulations (F0 ) − (F3 ) . To this end, we compare the strengths of the
LP relaxations of all formulations. The aggregated results for all 320 test instances are given in Table 3. We consider
average solution time in seconds (t ), maximal solution time (tmax ), average optimality gap (∆), and maximal optimality
gap (∆max ). Note that we were able to solve all root node LPs with any formulation. The optimality gap is calculated as
100 · (ub− l b )/l b where ub is the objective value of the LP solution and l b is the objective value of the best assignment
that we found; that is, the best lower bound found by our exact method (see Section 7.4). We also report average
gaps for circular and rectangular classroom layouts (∆⃝ and ∆□), showing a very similar trend. Sparse social networks
seem to lead to easier problems than dense social networks (∆S and ∆D ). Note that we could not observe any impact
of Inequalities 11 for our instances when solving the root node LP, and we therefore decided to omit their separation.

We observe that formulation (F2 ) clearly outperforms the other formulations. This significant empirical benefit
supports our theoretical relationships shown in Section 4. The average gap (6.1%) is significantly lower than for the
other formulations. However, the LP relaxation of formulation (F1 ) can be solved slightly faster than the one for
formulation (F2 ) . On average, solving an LP instance takes 4.7 seconds, compared to 5.1, 6.3, and 7.0 respectively.
These observations hold for both classes of neighborhood networks, circular and rectangular. Moreover, the social
network density does not seem to impact these relationships between the formulations. Nevertheless, it can be seen
that dense social networks lead to an average optimality gap that is almost four times the one for sparse instances.

TABLE 3 Comparison of LP relaxation strengths and solution times (in seconds) for all formulations ((F0 ) − (F3 ))
using the 320 sparse/dense and rectangular/circular test instances.

Formulation t tmax ∆S ∆D ∆⃝ ∆□ ∆ ∆max

(F0 ) 7.0 89.1 14.4 22.7 20.6 16.3 18.6 169.6

(F1 ) 4.7 75.4 14.4 22.7 20.6 16.3 18.6 169.6

(F2 ) 5.1 70.9 2.5 9.6 5.3 6.9 6.1 108.7

(F3 ) 6.3 170.7 35.0 45.1 43.4 36.4 40.1 227.7

7.3 | Heuristic Performance

We evaluate the different heuristic strategies based on their performance in all test instances. To better understand
the quality of the best solutions found, we illustrate the achieved average optimality gaps in Figure 6 (left). Clearly,
the inclusion of local search procedures improves the results. It can be seen that the various strategies collectively
help to obtain an average optimality gap of 4.2% versus 5.4% without local search. We note that the maximal gap

3Social network and classroom network data available at https://github.com/ale-hill/SSAP.

https://github.com/ale-hill/SSAP
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is still 85.1% and that for 36 instances (11.3%) the gap is over 10.0%. Overall, both local search techniques (MOVE
and SWAP) were effective. Improvements were mostly found during the first two iterations of the two local searches.
Figure 6 (right) shows the relative number of best assignments found by a strategy and the optimal solutions found

F IGURE 6 The achieved optimiality gaps by the heuristic construction strategies and after the local search
procedures (left); the relative number of best and optimal solutions found including local search (right).

(including local search). We see that strategies F and I find more best solutions than the other strategies (58.8% and
55.6%). We could not detect any dominance, that is, none of the strategies consistently produced equally good or
better solutions than any other single strategy. Finally, we suggest running all strategies to obtain optimal solutions
in 34.1% of the instances.

7.4 | Overall Results

In the following, we report results on the efficacy of our exact solution method. We ran a branch-and-cut method
based on formulation (F2 ) with a time limit of 3600s. Gurobi cuts and heuristics were enabled. The aggregated results
for various instance categories are shown in Table 4. We differentiate between instances with sparse and dense
social networks, and classrooms with circular (CIRCULAR) and rectangular (RECTANGULAR) layout. The number of
instances is given in column #, followed by the number of instances that we could solve to optimality (#opt). The
overall average optimality gap and the average optimality gap for unsolved instances are given in columns ∆ and ∆′.
Finally, we report the maximal optimality gap ∆max and the average runtime in seconds (t ). For the detailed instance
results we refer to Appendix B (Tables 12 and 13).

We were able to solve 206 (64%) of the 320 instances to optimality. The average optimality gap over all instances
was 2.99% and 8.40% for unsolved ones. The maximum gaps of 85.04% and 63.88% were outliers. The average
solution time for solved instances was 416.6 seconds. In experiments with larger time limits (10800 seconds) for
some of the open instances, we observed that we were not able to close optimality gaps. We already saw notable
tailing off with respect to the number of optimally solved instances when approaching the 3600 second time limit.
Only 17 gaps could be closed within 600 and 3600 seconds. For 74 of the open instances, we could not prove
optimality within 3600 seconds. Moreover, the solver ran out of memory during the branch-and-bound procedure
for 48 of the instances with 100 or more students.

Our methods were able to solve all 20 small-classroom problems ( |W | < 50) to optimality within an average
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TABLE 4 Aggregated results for instances with sparse and dense social networks, circular and rectangular
classroom layouts.

M N # #opt ∆ ∆′ ∆max t

CIRCULAR SPARSE 84 77 0.07 0.80 1.26 267.3

CIRCULAR DENSE 84 30 6.22 9.67 85.04 2008.2

RECTANGULAR SPARSE 76 71 0.04 0.60 0.78 373.5

RECTANGULAR DENSE 76 28 5.62 8.90 62.88 1986.9

* SPARSE 160 148 0.05 0.72 1.26 317.7

* DENSE 160 58 5.93 9.31 85.04 1998.1

CIRCULAR * 168 107 3.14 8.65 85.04 1137.7

RECTANGULAR * 152 99 2.83 8.12 62.88 1180.2

* * 320 206 2.99 8.40 85.04 1157.9

of 15 seconds. We could solve 55 of 72 (76.4%) medium-sized classroom instances (50 ≤ |W | ≤ 150), leaving an
average optimality gap of 16.5% for unsolved problems. 131 of 228 (57.5%) large-classroom instances ( |W | > 150)
were solved, and optimized to an average optimality gap of 7.0%, otherwise. Finally, we consider spatial ratio as a
more important factor for instance hardness compared to classroom size, at least for our test scenarios. There was no
significant difference in resolution performance between circular and rectangular instances. The density of the SN did
have an impact on the instance hardness. Most sparse problems could be solved (92.5%) but the majority of dense
problems remain unsolved (63.8%). This is also reflected in the average gaps for unsolved instances where the dense
case (9.31%) is about 13 times higher than the sparse case (0.72%).

The SN density does not only have an impact on the hardness of the instances. Obviously, it can also affect the
optimal overall tie potential for a given classroom. To better understand this influence, we also solved all instances to
optimality using empty social networks. It turned out that the potential decreased by 5.2% for the 160 dense social
network instances whereas the 160 realistic sparse networks did not hinder achieving full potential. Overall, adding
ties caused a potential reduction of 2.6%.

Another metric that is directly related to the solvability of an instance is the spatial ratio ρ; that is, the number of
students per seat, i.e., ρ = |N |/|M |. We observe that our formulations suffer from an increased seat availability. The
optimality gap tends to increase for both root node relaxation and the final result as ρ decreases. We could solve 12
out of 16 instances (75.0%) with ρ = 1 without branching whereas from 228 instances with ρ < 0.75, this occurred
only 25 times (11.0%). A similar effect could be observed when considering the final optimality gaps.

8 | CASE STUDY

Weconducted amulti-week case study inwhichwe assigned seats optimally. Our goal for this real-world experiment is
to demonstrate the practicability and effectiveness of our approach. In the following, we describe the experimentation
process and setup, followed by a comprehensive quantitative, qualitative and visual analysis of both input data and
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results.

8.1 | Experiment Process and Setup

We designed a process that can be applied to periods of various lengths during an academic term (e.g., a semester or
trimester), as illustrated in Figure 7. Prior to the actual seating experiment phase, instructors need to identify both, the
initial student social network (N ) and the classroom network (M ). These diagnostic tasks can be performed in parallel.
We suggest reserving at least one week for the social network survey. Details for how to conduct the latter can, for
example, be found in [15]. In the prescriptive phase, an optimal seating assignment is computed using the integer
program suggested in Section 4. The first session in which students sit in their assigned seats, instructors should
identify special needs and integrate them into the optimization model using the techniques described in Section 5.
An updated seating plan is then used in subsequent class meetings during the teaching period. After the experiment,
the class social network is surveyed again, followed by an analysis. At the same time, the instructor’s feedback and
the students’ comments should be collected to detect potential improvements.

F IGURE 7 The overall process for the in-class seating assignment experiment.

We selected three core courses in the undergraduate industrial engineering program in which we assigned seats.
All courses were taught by different instructors in face-to-face mode. We only assigned seats in lecture meetings and
excluded lab sessions. The experiment period was from week 4 to week 8 (5 out of the overall 10 weeks). For each
class, there were two 80-minute lecture meetings per week, resulting in a total of 800 minutes that the students sat
in the optimized arrangement. These three classes have to be taken in sequence through prerequisite requirements
(A−→B−→C). However, we experimented in parallel since they were all offered in the winter quarter of 2023. Here-
with, we minimize interference between the experiment social networks. There was no student overlap between the
experiment classes.

We extracted the in-class student social networks from the program SN survey data, as explained in Section 7.1.
In our approach, we prioritize seating two students together when we are certain that they have not yet formed a
connection, rather than relying on the uncertain potential of a new tie. Additionally, we have chosen to include ties
that were surveyed at the start of the term in the final social network, as we do not anticipate a significant forgetting
effect over the span of one quarter.

We posted the seating plan at each door of the experiment rooms. Student first names and last name initials were
printed directly on the assigned table segment. An example (Class B, Room R1) is shown in Appendix A (Figure 14).

Table 5 shows the classes (A-C) that we included in our case study, including the student population, survey
response rate and room details. On average, social network survey response rates at the beginning of the term (RR0)
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were 97.3%, and 92.9% at the end of the term (RR1). The social networks were rather sparse with an average density
of 0.24. Classes took place in two different rooms (R1,R2). The number of seats is given in column |W |. The classroom
neighborhood structure is given in columns |FH | , |FV | and |FD | by the overall number of horizontal, vertical and
diagonal neighborships, respectively.

TABLE 5 The courses, social network (SN) survey, and classroom data for experiment classes (A-C).

Course SN Survey Classroom Method

# Code Name |V | RR0 RR1 # |W | |FH | |FV | |FD |

A IME 301 Operations Research I 27 96.2 92.3 R1 32 20 24 30 OPT

B IME 305 Operations Research II 24 95.8 95.8 R1 32 20 24 30 OPT

C IME 420 Simulation 21 100.0 90.5 R2 30 20 15 20 OPT

All 72 97.3 92.9

We used the same potential function as in the example in Section 3: Direct neighbors (left/right) have potential
3; vertical neighbors (front/back) 2; diagonal neighbors 1. In Figure 8, we use solid, dashed and dotted edges to
indicate this in the classroom networks. The networks consist of 3 and 5 connected components, respectively, which
resembles their physical layout (Figure 9). Note that formulations (F0 ) − (F3 ) can be implemented in a spreadsheet
for effective use by instructors in a template fashion. The model can be connected to selected external solvers via
OpenSolver4.

F IGURE 8 The neighborhood networks M1 and M2 for classrooms R1 and R2 (Figure 9) where we experimented
with optimum seating arrangements for three courses.

4opensolver.org

opensolver.org
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8.2 | Results

In this section, we present the results obtained at the different stages of the experiment process (Section 8.1). The
surveyed social networks and the classroom neighborhood networks are presented first. We then present the opti-
mized seating assignments and describe the special accommodations that were made. Finally, we present the final
class social networks.

The physical layout of the classrooms is illustrated in Figure 9 and the corresponding neighbor networks are
shown in Figure 8. Figure 10 shows the class social networks for the experiment classes as captured in the initial

F IGURE 9 The two classrooms, R1 (left) and R2 (right), where we experimented with optimum seating
arrangements for three courses.

surveys. There were isolated students in class A (8), class B (3), and class C (1) This is common and can, for example,
be due to students having transferred into the program, international exchange students, or students taking the class
as an elective in a different program. The class social networks surveyed at the end of the term are illustrated in Figure

F IGURE 10 The social networks NA (left), NB (center) and NC (right) for the experiment classes A, B and C at
the beginning of the academic term.

11. Note that they include all ties from the initial networks.
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F IGURE 11 The social networks NA (left), NB (center) and NC (right) for the experiment classes A, B and C at
the end of the academic term.

The optimized assignments used in experiment classes are shown in Figure 12. All models could be solved to
optimality. Aligned with previous social network and classroom illustrations, black round nodes represent students
allocated to tables. White square nodes are associated with empty seats. All classrooms had spare capacity such that
empty seats were still available after assigning all students. No student sat in an isolated spot, and the model tended
to fill tables rather than spread students over multiple tables that were only partially filled.

F IGURE 12 The optimized seating assignments used for classes A (left), B (center) and C (right).

The following special accommodations were made in the experiment classes using model variations (see Section
5). Class A (Room R1): One student decided not to participate in the experiment. So the student was allowed to sit
on any available (unassigned) seat. Class B (Room R1): One student indicated difficulties seeing the board and the
projector screen from the back of the classroom. We added a zone constraint to the model, making sure that the
student was assigned to one of the seats in {1, . . . , 16}. Class C (Room R2): Students were not able to properly see
the front projector screen from seats 7 and 8. So we configured the model to keep these seats unassigned.

8.3 | Analysis

We assess the efficacy of our optimized seating strategy through a careful analysis of the student social network
dynamics. To this end, we examine the initial social network, the potential new ties, the actual new ties, and the final
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social network as a whole. We are particularly interested in the absolute and relative growth of the social networks.
Table 6 contains the corresponding detailed data that we use for our quantitative evaluation. For each class, we list
the initial number of ties (column “ |E0 |”) and the theoretically maximal number of new ties (column “E0”). Note that
the latter corresponds to the number of edges in the complement network N , as discussed in Section 3. The potential
numbers of newneighborhood tieswith respect to neighborhood networks in Figure 8 (columns under “Potentials”) are
given for each neighbor type: H (horizontal), V (vertical), D (diagonal), and their sum (Σ). Note that these are not the tie
potential values used in the objective function of our formulations, but the neighbor counts. Additionally, we provide
the percentage for maximal network growth with respect to |E0 | (column “%”). The corresponding actual numbers of
new ties that were observed at the end of the term are shown afterwards (columns under “New”). Columns under
“Other” contains the absolute and relative increase of ties that were not established between neighbors as defined in
Figure 8. The total network growth is given in columns under “All”, followed by the final number of ties at the end of
the term (column “Final”). The results in Table 6 demonstrate a substantial increase in new social ties among students,
on average by 94.5%, with Class B showing the highest relative growth at 184.8%. This increase in social connections
suggests that our optimized seating arrangements effectively fostered new interactions. Additionally, the presence
of ’other’ new ties indicate that interactions extended beyond immediate neighbors (54.2% on average), contributing
to the overall social network growth. Note that, on average, about 30% of the potential neighborhood ties were
established.

TABLE 6 Analysis of the student social network growth for the three experiment classes (A-C).

Course Ties

Initial Potentials New Final

Neighborhood Neighborhood Other All

# |E0 | |E0 | H V D Σ % H V D Σ % Σ % Σ % Σ

A 37 288 18 14 14 46 124.3 0 4 4 8 21.6 10 27.0 18 48.6 55

B 33 243 20 15 16 51 154.5 8 5 8 21 63.6 40 121.2 61 184.8 94

C 28 182 12 14 9 35 125.0 6 2 2 10 35.7 4 14.3 14 50.0 42

All 149 713 50 43 39 132 134.6 14 11 14 39 40.3 54 54.2 93 94.5 191

In Table 7, we provide a more detailed analysis of the network expansion, including connectivity, centrality, and
subgroup metrics from social network analysis. The values of k and s , respectively, represent connected components
and the quantity of isolated students (degree equals zero). The average degree of the student nodes, also called
average degree centrality, is given in column d . We also consider more sophisticated centrality measures: 2-step
centrality (column cs2) and Katz-centrality (column cκ ). Both metrics quantify the influence a node has in the network.
The former is also called reach-centrality and focuses on the immediate neighbors and their neighbors, whereas the
latter also takes into account nodes that can be reached indirectly. However, more distant nodes are taken into
account by cκ using the attenuation factor α . In our experiment, we used α = 0.05. To measure the impact of new
ties on large groups of students that are fully connected to each other, we calculate the clique number ω. The relative
change for each metric is presented in columns under ∆ %.

We observe that for classes A and B, both the number of connected components and the number of isolated
students decreased, whereas in class C, the initially low levels persisted. Most notable, the average degree almost
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TABLE 7 Detailed analysis of the initial and final student social networks for the three experiment classes (A-C).

Course Social Network

Initial Final ∆%

# k s d cs2 cκ ω k s d cs2 cκ ω k s d cs2 cκ ω

A 11 9 2.7 7.3 1.2 5 8 7 4.1 10.6 1.3 5 -27.3 -22.2 48.6 45.9 10.4 0.0

B 4 3 2.8 8.9 1.2 3 2 1 7.8 20.0 1.7 6 -50.0 -66.7 184.8 124.3 48.5 100.0

C 2 1 2.7 7.4 1.2 3 2 1 4.0 12.0 1.3 3 0.0 0.0 50.0 61.5 8.8 0.0

All 5.7 4.3 2.7 7.9 1.2 3.7 4.0 3.0 5.3 14.2 1.4 4.7 -25.8 -29.3 94.5 77.2 22.3 33.3

doubled (+94.5%), and the other centralities increased in all classes. We observe an especially strong growth in class
B which is also reflected in a duplication of the number of students in the largest clique (3→ 6).

8.4 | Feedback

We surveyed both the instructors involved in the study and the students enrolled in the class. In the following sub-
sections, we present an overview and analysis of the survey data.

8.4.1 | Instructors

All three experiment class instructors participated in our survey. According to the instructors, there were only a few
occurrences of deviation from the seating plan (4.0 out of 5 on a Likert scale, with 5 being never). Attendance was
reported as high in all classes (4.25 out of 5 on a Likert scale, with 5 being no absences). Collaboration time in the
courses ranged from 15 to 33% per week, and the frequency of student collaboration activities ranged from 1 to 5
times per week. When asked if they observed any positive effects of the seating assignment on the students, all three
instructors responded affirmatively and provided the comments shown in Table 8.

TABLE 8 Positive instructor comments.

# Comment

1 “Immediately introduced each other and collaborated. Good to see more diverse communication/collaboration.”

2 “Students met and socialized with some students they had never spoken with before.”

3 “There was a lot of interaction in the group assignments. I can’t be sure that it was more than not having the
pre-arranged assignment, but it was definitely noticeable.”

When asked about any negative impacts on the students due to the seating assignment, the participating instruc-
tors provided the comments shown in Table 9. It is evident that there was no severe negative impact on the students.
Comment 1 could be addressed through intervention and the addition of a single student to another group when a
group consists of only one student due to absences. Comment 2 is about the classroom layout, while Comment 3 is



28 Hill et al.

about a special accommodation for a single student.

TABLE 9 Negative instructor comments.

# Comment

1 “No communication for at least one table. No collaboration when non-shows caused isolated students.”

2 “In classroom 240 some students needed to move to the center tables to see the screen better.”

3 “Only one student - there was an external reason for the student desiring to sit separately, nothing to do
with an individual in the class.”

8.4.2 | Students

We surveyed the students in the three experiment courses, namely A, B, and C. Figure 13 shows the 26 responses
that we received for four questions using a Likert scale. Students are, on average, neutral about the impact on learning
experience (3.1) and classmate interactions (3.0). Consistent with the instructors’ observations, there were only a few
seating plan deviations (4.3). Students tend to not prefer assigned seating in the future (2.2) which is probably a result
of students being used to choosing their own seat.

F IGURE 13 Student survey results of the seating experiment.

The students’ “positive comments on the seating assignment” are listed in Table 10. Overall, the comments sug-
gest that the seating assignment had a positive impact on the students’ social and academic experiences. Students
reported increased comfort and familiarity with their neighbors, suggesting that the seating arrangement helped them
“break the ice” and foster a sense of community. Many appreciated the opportunity for positive interactions with peo-
ple they hadn’t spoken to before, including teaching assistants and peers from their department, hence indicating that
the arrangement facilitated networking and academic support. The seating arrangement also encouraged diversity,
prompting students to step out of their usual social circles and interact with a diverse group of peers, potentially
leading to a more inclusive and collaborative learning environment. Some students felt that interacting with new
classmates enhanced their learning. Additionally, the creation of new friendships was expressed.

We asked students for “critical comments on the seating assignment” and obtained 14 responses, shown in Table
11. In summary, some individuals preferred sitting in the back of the classroom due to personal reasons, such as feeling
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TABLE 10 All positive student comments.

# Comment

1 “I knew my neighbors a little before, but I’m definitely more comfortable with them after this!”

2 “There weren’t any glaringly obvious issues with it and it was fairly easy to follow.”

3 “I sat next to my TA for 312 at the time so it was really cool for me to talk to him and get to know him more. Every time
I see him we end up talking for a bit so that’s really cool. I don’t think that would’ve happened and I probably would’ve
sat with people I already know if the seating chart didn’t exist.”

4 “I hadn’t met them before and still talk to them now.”

5 “It was nice being at the front of the class.”

6 “I think that it was really good idea that could potentially have many positive impacts.”

7 “I enjoyed being "forced" to meet other people in my class as it brought me closer to other IME students.”

8 “Was able to interact with people I have not talked to before.”

9 “It was nice getting to know someone from my department and help each other out through the class! This would
encourage students to interact out of your circle that you start to form as an upperclassmen.”

10 “It was a good experience to interact with classmates I have not interacted.”

11 “The seating assignment gave me a chance to talk to one of my neighbors that I had other classes with before but never
really interacted with.”

12 “Loved interacting with new students and building new friendships. It positively impacted school since interacting with
these students helped me understand material better.”

13 “I met more people that I didn’t know.”

14 “It was a change of pace from hanging with the same people.”
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TABLE 11 All critical students comments on the seating assignment.

# Comment

1 “My group was a group of 3, while the tables were organized to fit 6 each. Dispersing the empty seats among the class
instead of having one half-empty table would help.”

2 “I prefer to sit in the back of the classroom as it makes me nervous to have people behind me in a work situation. I found
it incredibly difficult to focus during lecture and discussions when this was not the case. As well, I recently transferred
into the IME dept so I was not sat next to the few people I had connected with and it was difficult to make connections
in a 400 level lecture course.”

3 “I feel like some people who typically sit at the front to have a good view/be more interactive with the professor were
forced to sit somewhere in the back and that caused some issues. Other than that nothing really.”

4 “Had to move seats because I have bad vision and was placed in the very back row.”

5 “I did not enjoy being seated in the back of the class as I tend to not learn as much when I am not sitting in the front of
the class.”

6 “I prefer to be seated closer to the board so I can see without any large obstruction/distractions!”

7 “I sit with people I know I can trust and who are proven to be beneficial to my learning. I was friendly but the person
I sat with (no one else at our two person table) hardly ever spoke to me. He was clearly behind and struggling in the
class but refused to ask me questions/help himself. I would have been happy to help once in a while is it bc we were
strangers, or I am a woman, or he just had too much or too little ego idk. So obviously since he was so far behind he
couldn’t help me if I had a question and it was def not a mutually beneficial arrangement. There is a reason why I sit by
people I know and trust.”

8 “I think the seating assignment might be less worthwhile if it’s a class that doesn’t lend itself well to discussions and/or
group work.”

9 “I did not get the chance to talk to the people that were assigned to nearby seats to me so it was overall a neutral
experience.”

10 “I am sure not everyone had the same experience, but my seatmates were very favorable.”

11 “While I met more people most of the interactions were surface level.”

12 “Some of the seats in the room are very hard to learn in because they face away from the lecture. I would not have
chosen that seat because of that reason. I did not learn new names either because I was too busy learning in lecture
and not talking with my neighbors beyond surface level.”

13 “I got seated to the side of the room with only one classmate. I did not know him or interact with him at all throughout
the quarter. I sat with people I knew before the assigned seating.”

14 “I think the seating assignments results really just depends on the dynamic you have with the other person. For instance,
I didn’t feel comfortable with my partner because first off he didn’t sit in the right seat. He sat on my seat even though
he knew which one was his. Also he would always just leave his jacket laid out on the table making it uncomfortable.
But if I was seated to someone who was friendly enough to make small talk, the experience would have been positive.”
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nervous with people behind them in a work situation. However, others found it difficult to focus during lectures and
discussions when not sitting in their preferred location. Students with vision impairments expressed the need to be
seated closer to the board to avoid obstructions and distractions. Some students preferred sitting with people they
knew and trusted, as it was more beneficial to their learning. Negative experiences were reported when seatmates
did not engage or contribute to mutual learning. For some students with only a few connections in the class, being
seated away from students they already know made it challenging to make connections and engage with peers.

The qualitative analysis of the critical comments highlights the importance of considering individual seating pref-
erences, offering students ample opportunity to interact in class, ensuring visual and interactive accessibility, and
instructor intervention when a student is non-participatory.

9 | CONCLUSIONS

The presented paper introduced a new model that optimizes student in-class seating assignments with respect to
the maximum expansion of students’ social networks. The optimization model is particular as it uses structural infor-
mation from two networks, the pre-class student social network and the physical classroom neighborhood network,
to evaluate student-to-seat assignments. The approach can be applied way beyond classrooms to settings such as
networking events, social gatherings and professional development workshops.

After developing efficient mathematical formulations, techniques to model practically important extensions were
presented. Additionally, we devised a set of fast heuristics that are guided by network centrality to complement our
exact algorithms. We evaluated our model and methods on a comprehensive set of realistic test instances with up
to 200 students and 364 seats. We used sparse and dense social networks from student surveys and coupled them
to realistic classrooms of rectangular and circular shapes. We showed that all classrooms with up to 50 seats can be
optimally arranged within a few seconds. For larger classrooms, we observe average optimality gaps of up to 15%.
We identified both the density of the social network and the ratio of the number of seats to the number of students
as important factors influencing problem hardness.

A multi-week case study including three engineering classes and over 70 students revealed the practical potential
for social network growth. An average increase in ties of 40% could be observed. Interestingly, acquainted neighbors
could be avoided in all classes. Furthermore, students and instructors reported that they enjoyed the increased inter-
action. Critical comments could be addressed through model readjustment to incorporate special needs.

We believe that future research could focus on better understanding student needs and how to best make use of
practical model extensions (Section 5) to address them. It would also be interesting to isolate the seating impact from
other relevant factors such as teaching methods. From a practical perspective, the exploration of real-time generation
of seating assignments in-class with a focus on increasing student engagement and acceptance could be beneficial. A
challenging model extension could be the repeated re-assignment of students to seats. Additionally, our model could
be used to optimize classroom layouts from a social network perspective. Finally, the integration of diverse student
relationships using weighted social network graphs could lead to interesting new insights.
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Appendix A: Example Seating Plan Post Example

F IGURE 14 The seating plan (here with 24 blurred student names) that we posted at each classroom door of
Room R1 for experiment class B during the 5-week experiment period.
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Appendix B: Final Results for all Instances

TABLE 12 Lower (lb) and upper (ub) bounds for all instances (social network id #(N ) , classroom network id
#(W )) obtained after one hour of branch-and-bound using formulation (F2 ) .

#(N ) #(M ) lb ub #(N ) #(M ) lb ub #(N ) #(M ) lb ub #(N ) #(M ) lb ub #(N ) #(M ) lb ub

1 21 33 33 5 40 98 98 7 40 98 98 9 38 212 212 10 13 285 290

1 24 28 28 5 2 72 72 7 2 72 72 9 40 196 196 10 14 285 290

1 26 26 26 5 3 72 72 7 3 72 72 9 41 197 197 10 15 282 290

1 1 27 27 5 7 115 115 7 7 115 115 9 42 192 192 10 18 207 207

1 6 42 42 5 8 116 116 7 8 116 116 9 3 147 147 11 23 206 206

1 7 43 43 5 9 110 110 7 9 110 110 9 4 147 147 11 27 185 185

2 21 22 22 5 13 132 132 7 13 132 132 9 5 147 147 11 28 196 196

2 24 19 19 5 17 96 96 7 17 96 96 9 8 237 237 11 30 212 212

2 26 18 18 6 22 98 98 8 22 82 98 9 9 205 205 11 33 192 192

2 1 17 17 6 25 82 82 8 25 71 82 9 10 266 266 11 34 171 171

2 6 23 23 6 27 88 88 8 27 74 88 9 13 290 290 11 35 197 197

2 7 23 23 6 29 98 98 8 29 80 98 9 14 290 290 11 37 211 211

3 21 33 33 6 32 87 87 8 32 74 87 9 15 290 290 11 38 212 212

3 24 28 28 6 33 96 96 8 33 77 96 9 18 207 207 11 40 196 196

3 26 26 26 6 34 85 85 8 34 72 85 10 23 206 206 11 41 197 197

3 1 27 27 6 37 98 98 8 37 78 98 10 27 185 185 11 42 192 192

3 6 42 42 6 40 98 98 8 40 79 98 10 28 196 196 11 3 147 147

3 7 43 43 6 2 72 72 8 2 61 69 10 30 212 212 11 4 147 147

4 21 31 31 6 3 72 72 8 3 61 72 10 33 192 192 11 5 147 147

4 24 27 27 6 7 115 115 8 7 88 115 10 34 171 171 11 8 237 237

4 26 25 25 6 8 116 116 8 8 84 116 10 35 197 197 11 9 205 205

4 1 25 25 6 9 110 110 8 9 86 110 10 37 211 211 11 10 266 266

4 6 37 37 6 13 127 132 8 13 91 132 10 38 212 212 11 13 290 290

4 7 38 38 6 17 96 96 8 17 74 96 10 40 196 196 11 14 290 290

5 22 98 98 7 22 98 98 9 23 206 206 10 41 197 197 11 15 290 290

5 25 82 82 7 25 82 82 9 27 185 185 10 42 192 192 11 18 207 207

5 27 88 88 7 27 88 88 9 28 196 196 10 3 147 147 12 23 184 206

5 29 98 98 7 29 98 98 9 30 212 212 10 4 147 147 12 27 180 185

5 32 87 87 7 32 87 87 9 33 192 192 10 5 147 147 12 28 185 200

5 33 96 96 7 33 96 96 9 34 171 171 10 8 237 237 12 30 189 213

5 34 85 85 7 34 85 85 9 35 197 197 10 9 205 205 12 33 181 192

5 37 98 98 7 37 98 98 9 37 211 211 10 10 266 266 12 34 168 171
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TABLE 13 Lower (lb) and upper (ub) bounds for all instances (social network id #(N ) , classroom network id
#(W )) obtained after one hour of branch-and-bound using formulation (F2 ) .

#(N ) #(M ) lb ub #(N ) #(M ) lb ub #(N ) #(M ) lb ub #(N ) #(M ) lb ub #(N ) #(M ) lb ub

12 35 183 202 13 16 615 615 15 5 300 300 17 44 658 661 20 12 790 792

12 37 195 211 13 18 420 420 15 10 506 506 17 11 812 812 20 16 934 953

12 38 189 216 13 19 426 426 15 11 552 552 17 12 792 792 20 19 639 640

12 40 179 196 14 28 395 399 15 12 528 528 17 16 946 950 20 20 645 650

12 41 182 201 14 31 423 444 15 14 612 612 17 19 639 639 21 36 850 856

12 42 172 192 14 35 406 406 15 15 615 615 17 20 645 650 21 39 918 918

12 3 144 148 14 36 419 427 15 16 615 615 18 31 672 672 21 43 845 845

12 4 145 150 14 38 444 447 15 18 420 420 18 36 633 641 21 44 873 883

12 5 145 150 14 39 423 458 15 19 426 426 18 39 666 689 21 11 1058 1058

12 8 212 239 14 41 400 407 16 28 396 399 18 43 631 634 21 12 1056 1056

12 9 191 205 14 42 382 384 16 31 426 443 18 44 654 664 21 20 864 864

12 10 234 266 14 43 422 422 16 35 405 406 18 11 808 818 22 36 844 858

12 13 247 290 14 4 300 300 16 36 423 427 18 12 792 792 22 39 911 920

12 14 249 293 14 5 300 300 16 38 441 448 18 16 939 953 22 43 841 848

12 15 244 298 14 10 504 510 16 39 426 459 18 19 639 642 22 44 870 1608

12 18 191 207 14 11 540 553 16 41 400 407 18 20 645 650 22 11 1055 1066

13 28 396 396 14 12 524 528 16 42 382 384 19 31 672 672 22 12 1053 1056

13 31 442 442 14 14 603 612 16 43 421 422 19 36 637 637 22 20 862 866

13 35 406 406 14 15 598 624 16 4 300 300 19 39 682 682 23 36 850 857

13 36 425 425 14 16 599 634 16 5 300 300 19 43 634 634 23 39 918 918

13 38 447 447 14 18 420 420 16 10 500 510 19 44 658 661 23 43 845 845

13 39 447 447 14 19 426 426 16 11 545 553 19 11 812 812 23 44 872 883

13 41 406 406 15 28 396 396 16 12 524 528 19 12 792 792 23 11 1058 1064

13 42 384 384 15 31 442 442 16 14 602 612 19 16 946 946 23 12 1056 1056

13 43 422 422 15 35 406 406 16 15 604 625 19 19 639 642 23 20 864 864

13 4 300 300 15 36 425 425 16 16 603 634 19 20 645 650 24 36 843 858

13 5 300 300 15 38 447 447 16 18 420 420 20 31 667 672 24 39 910 920

13 10 506 506 15 39 447 447 16 19 426 426 20 36 633 641 24 43 841 848

13 11 552 552 15 41 406 406 17 31 672 672 20 39 667 688 24 44 869 1608

13 12 528 528 15 42 384 384 17 36 637 642 20 43 630 634 24 11 1057 1066

13 14 612 612 15 43 422 422 17 39 682 682 20 44 654 664 24 12 1053 1056

13 15 615 615 15 4 300 300 17 43 634 634 20 11 804 818 24 20 862 1404
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