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Abstract

The b-matching problem is a well-known generalization of the classical matching prob-

lem with various applications in operations research and computer science. Given an

undirected graph, each vertex v has a capacity bv, indicating the maximum number of

times it can be matched, while edges can also be used multiple times. The problem is

solvable in polynomial time and has many real-world applications.

In some of them, a feasible matching must exactly satisfy the capacities bv, leading

to the so-called perfect b-matching problem. Typically, the capacities bv are assumed to

be fixed and known. However, in practice, these capacities often face uncertainties, such

as worker availability or customer demand fluctuations.

This paper analyses a robust variant of both the b-matching and perfect b-matching

problems, accounting for such capacity uncertainties, termed the Directed Robust b-

Matching Problem. We study the computational complexity of this problem across

different classes of graphs, providing insights into its tractability for potential applica-

tions.
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1 INTRODUCTION

1 Introduction

Combinatorial optimization plays a crucial role in various fields, from logistics and net-

work design to machine learning. One of the fundamental problems in this domain is the

matching problem, where the goal is to find a subset of edges in a graph that do not share

any common vertices. Among the different variants of matchings, b-matchings have gar-

nered significant interest due to their flexibility and applicability in modeling real-world

scenarios. In a b-matching, each vertex v in a graph is allowed to be incident to at most

bv edges, where bv is a predefined capacity for that vertex. Additional constraints, such

as upper bounds on the number of times each edge can be part of a b-matching as well

as requiring a perfect b-matching, where the capacities are met exactly on each vertex,

can be imposed depending on the use case.

While b-matchings have been extensively studied, their robustness against uncertain-

ties in the capacities has received less attention. However, including these uncertainties

is critical in many applications where uncertainty and variability are inherent. Robust

optimization focuses on finding solutions that remain feasible and near-optimal under

perturbations or uncertainties in the input data. In the case of perfect b-matchings, find-

ing a feasible solution for different capacities b is impossible because a perfect b-matching

is only perfect for one unique scenario of capacities b. Thus, we need to include some

flexibility when defining robust b-matching. To address this, we explore a variant known

as the Directed Robust Perfect b-Matching Problem, first introduced in the context of

vaccination scheduling [11]. In this problem, only the sum over all outgoing arcs of each

vertex, named a pre-matching, is fixed across all scenarios. This leads to a two-stage

approach where the first stage sets the pre-matching on each vertex, while the second

stage sets a perfect b-matching fitting the pre-matching for every capacity scenario b.

Additionally, we introduce three new variants of the problem by relaxing the perfect

matching constraint, resulting in the Directed Robust b-Matching Problem, and adding

upper arc-bounds to both variants.

Due to the two-stage approach, this problem has multiple practical applications.

In [11], the problem was introduced through an application related to healthcare: the

scheduling of vaccinations requiring two doses. Due to limited and often unpredictable

vaccination supply, the capacities are uncertain. In this application, the pre-matching

would set appointments for a first dose for each patient, while the perfect matching in

the second stage sets appointments for the second dose dynamically. Similarly, in sup-

ply chain management, the Directed Robust Perfect b-Matching Problem can be used

to model problems where goods must be shipped to multiple locations with uncertain

demand while ensuring that deliveries satisfy customer demand across all potential sce-

narios. This can be represented by a bipartite graph, where each vertex corresponds
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1 INTRODUCTION

to either a manufacturer or a shop location with uncertain demand, and arcs repre-

sent possible shipments from manufacturers to shops. The pre-matching then represents

the production of goods by manufacturers, and the final b-matching represents shipping

these products to customers or shop locations in response to the uncertain demand.

Originally, robust matching problems have been examined for uncertainties in the

objective value. Kouvelis and Gang [9] showed NP-hardness of the min-max assignment

problem and the min-max regret assignment problem. For the same problems, Aissi

et al. [1] showed strong NP-hardness if the number of scenarios is not bounded by a

constant. Additionally, they extend this problem to interval data, where instead of dis-

crete scenarios, upper and lower bounds for the objective coefficient are given, and show

equivalence to the deterministic assignment problem for the min-max assignment prob-

lem and strong NP-hardness for the min-max regret assignment problem. Katriel et al.

[7] examine both stochastic and robust variants of the two-stage recoverable matching

problem, where edges can be purchased at a base cost in the first stage or at a higher

cost in the second stage. They propose a randomized algorithm for the robust recover-

able matching problem. Kasperski et al. [6] show NP-hardness of the rent-recoverable

robust minimum assignment problem, which generalizes the robust recoverable matching

problem. In this variant, a solution is rented in the first stage and can be adapted, not

only expanded, in the second stage for additional implementation costs.

Recent literature considering the matching problem under uncertain capacity mostly

focused on online variants of the problem. This is due to an application linked to online

advertisements, the Ad Allocation Problem. We refer to Mehta et al. [10] for more

details on the topic. To the best of our knowledge, the research on the robust matching

or b-matching problem is very sparse. We are aware of only three publications considering

variants of this problem. Housni et al. [5] consider a robust version of the ride-hailing

problem where riders are matched to drivers. They propose a two stage model where the

available drivers and a first batch of riders are known while the second batch of drivers

are subject to uncertainty and only revealed in the second stage. Schmitz and Büsing [2]

consider a version of the robust perfect b-matching problem under consistent selection

constraints. They propose a two stage approach. In the first stage, the b-matching is

only set on a given subset of all edges, while the b-matching on the remaining edges is

set in the second stage when the scenario is known.

As already mentioned, in [11], we introduced the Directed Robust Perfect b-Matching

Problem and showed its NP-hardness on instances with large numbers of scenarios or

graphs with large bandwidth. However, we did not explore the influence of different

graph classes on the complexity of the problem. Building on this foundation, this paper

extends our earlier work by investigating the complexity of the four variants of the

Directed Robust Perfect b-Matching Problem across different graph classes.
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The contributions of this paper are many-fold. We formally define these four problem

variants and examine their complexity on different graph classes. To this end, we focus

on both directed and oriented paths, pearl graphs, trees, bipartite graphs, SP-graphs

and cactus graphs. Our key results include proving NP-hardness of the Directed Robust

b-Matching Problem even on oriented paths and directed trees and NP-hardness of the

Directed Robust Perfect b-Matching Problem on oriented cactus graphs without upper

arc-bounds and on directed SP-graphs when including upper arc-bounds. Furthermore,

we present a polynomial-time algorithm for the Directed Robust Perfect b-Matching

Problem on graphs without direction-alternating circuits and extend it to certain in-

stances with upper arc-bounds.

This paper is organized as follows. In the next section, we introduce the problem vari-

ants and summarize relevant results from [11]. Over the next three sections, we examine

the complexity of the problem variants across various graph classes split up by problem

variant. First, we examine the not-perfect variants in Section 3 and show NP-hardness

on all graph classes except directed paths and directed pearl graphs. In Section 4, we

show NP-hardness of the Directed Robust Bounded Perfect b-Matching Problem with

upper arc bounds on oriented pearl graphs and directed SP-graphs. Finally, in Section

5, we examine the Directed Robust Perfect b-Matching Problem without arc bounds by

first showing NP-hardness for semi-directed cactus graphs. Then, we introduce a poly-

nomial time algorithm on graphs without alternating cycles in Section 5.2. We conclude

by showing that this algorithm can be used on directed SP-graphs and even for the

Directed Robust Bounded Perfect b-Matching Problem on directed cactus graphs.

2 Terminology and Definitions

2.1 Terminology for Directed and Undirected Graphs

This section introduces the terminology and definitions used to describe subclasses of

both undirected and directed graphs in this paper. Let D = (V,A) be a directed graph,

and let G = (V,E) be an undirected graph. On directed graphs, for each vertex v, we

denote the set of all outgoing arcs by δ+(v) = {(v, w) ∈ A} and the set of all incoming

arcs by δ−(v) = {(w, v) ∈ A}. The set of all adjacent arcs is called δ(v) = δ+(v)∪ δ−(v)

and analogous δ(v) = {e ∈ E : v ∈ e} on undirected graphs.

A walk in G is defined as a sequence of edges (e1, . . . , ek) that connects a correspond-

ing sequence of vertices (v0, . . . , vk). If all edges in this sequence are distinct, we refer to

it as a trail. If, additionally, all vertices in the sequence are also distinct, the sequence is

called a path. A circuit is a trail where the first and last vertices are identical. Similarly,

a cycle is a path where the first and last vertices are the same. In other words, a cycle
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is a circuit in which all vertices, except for the first and last, are distinct.

Most graph classes discussed in this paper are defined on undirected graphs, as the

deterministic b-matching problem is itself formulated on undirected graphs. Given a

directed graph D = (V,A), its underlying undirected graph is defined as G = (V,E)

where E = {{v, w} : (v, w) ∈ A ∨ (w, v) ∈ A}. For a graph class G, a given directed

graph is termed an oriented G-graph if its underlying undirected graph is a G-graph. A

directed graph is called a directed G-graph if, in addition to being an oriented G-graph,

the direction of its arcs follows the arc orientation rules specified for G. For instance, an

oriented path is derived from an undirected path where all arcs are directed arbitrarily,

whereas a directed path is one where all arcs point in the same direction, with each vertex

having at most one incoming and one outgoing arc.

We define the following graph classes on undirected and directed graphs:

• An undirected graph G is a path if all of its vertices form a sequence as defined

above.

• A pearl graph is an extension of a path graph that allows parallel edges between

any two vertices. Formally, a pearl graph is a graph in which the vertex set can be

arranged in a linear order such that every edge connects two consecutive vertices

in this order. This structure allows for parallel edges between consecutive vertices

but does not allow edges to skip any intermediate vertices. In a directed pearl

graph, all arcs are oriented in the same direction, similar to a directed path.

• G = (V,E) is bipartite if there exists a partition of its vertex set V = V1 ∪ V2 such

that E ⊆ V1 × V2. In a directed bipartite graph, all arcs are directed from V1 to

V2.

• A series-parallel graph (SP-graph) can be constructed from single edges by a se-

quence of two basic composition operations: serial composition and parallel com-

position. An SP-graph is defined with two distinct terminals, denoted s (source)

and t (sink). The graph is either:

1. A single edge {s, t}, or

2. Constructed recursively by applying one of the following two operations to

two smaller SP-graphs G1 = (V 1, E1, s1, t1) and G2 = (V 2, E2, s2, t2):

Serial composition: Merge the terminal t1 of G1 with the terminal s2 of

G2, creating a new SP-graph where s = s1 and t = t2.

Parallel composition: Merge the sources s1 and s2 into a single source s,

and merge the sinks t1 and t2 into a single sink t, constructing a new SP-graph

with the same source and sink.
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In a directed SP-graph, every arc is directed from the source s to the sink t.

• A cactus graph is a graph in which every edge belongs to at most one cycle. In

a cactus graph, each block (maximal connected subgraph without cut-vertex) is

either a cycle or a single edge. In a directed cactus graph, every cycle is oriented

consistently in one direction.

2.2 The Directed Robust b-Matching Problem and its Variants

Given a graph G = (V,E) with weights c ∈ Z|E|, the maximum-weight matching problem

aims to find a set of edges M ⊆ E with maximum weight c(M) =
∑

e∈M ce such

that no two edges e1, e2 ∈ M share a common vertex, i.e., e1 ∩ e2 = ∅. For an edge

e = {v, w} ∈M , we say that vertex v is matched to vertex w via edge e. A matching M

is called perfect if every vertex v ∈ V is incident to exactly one edge e = {v, w} ∈ M .

In general, the maximum-weight matching problem and the maximum-weight perfect

matching problem are equivalent [8, Proposition 11.1], though this equivalence may not

hold for specific graph classes. Therefore, we will distinguish between these two variants.

The b-matching problem generalizes the standard matching problem by allowing each

vertex v to be incident to up to bv edges for given capacities b ∈ Z|V |+ . In a b-matching,

edges can appear multiple times. For b ≡ 1, the problem reduces to the standard

matching problem. Formally, a b-matching is defined as a vector m ∈ Z|E|+ , where me

denotes the number of times edge e ∈ E is used. A b-matching is feasible if it satisfies

the following, so-called matching constraints∑
e∈δ(v)

me ≤ bv ∀v ∈ V (1)

where δ(v) denotes the set of edges incident to vertex v. A b-matching is called perfect

if the matching constraints are satisfied with equality. Consequently, we call∑
e∈δ(v)

me = bv ∀v ∈ V (2)

the perfect matching constraints.

In some cases, each edge e ∈ E also has an upper bound ue such that me ≤ ue
is required. This is typically still referred to as a b-matching problem since the two

variations are equivalent [4, Section 7.1.1]. However, this equivalence may not hold when

restricted to specific graph classes. Thus, we denote this variant with upper bounds as

the Bounded b-Matching Problem (BbM), and the perfect variant as Directed Robust

Bounded Perfect b-Matching Problem (DRBPbM).
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2 TERMINOLOGY AND DEFINITIONS

To account for uncertainties in the vertex capacities, we consider the Directed Robust

b-Matching Problem (DRUbM) introduced in [11]. An instance of the DRUbM consists of

a directed graph D = (V,A) with arc weights c ∈ Z|A| and a set of scenarios B ⊆ Z|V |+ for

the uncertain capacities of each vertex. The problem consists of two stages: in the first

stage, a pre-matching hv is set for each vertex v ∈ V , representing the total matching

over all outgoing arcs. In the second stage, after the realization of a scenario b ∈ B,

a maximum-weight b-matching that satisfies both the pre-matching and the matching

constraints induced by the scenario is selected. This problem can be formulated as a

three-stage integer linear program:

max
h≥0

min
b∈B

max
m≥0

∑
a∈A

cama, (3a)

s.t.
∑

a∈δ+(v)

ma = hv, ∀v ∈ V, (3b)

∑
a∈δ(v)

ma ≤ bv, ∀v ∈ V, (3c)

hv ∈ Z+, ma ∈ Z+, ∀a ∈ A, v ∈ V. (3d)

The objective function (3a) maximizes the weight of the matching in the worst-

case scenario. The constraints (3b) ensure that the matching is feasible for the pre-

matching. We refer to these constraints as pre-matching constraints. Constraints (3c)

represent the matching constraints for the worst-case scenario, as defined in (1). For

the Directed Robust Perfect b-Matching Problem (DRUPbM), the second-stage matching

must be a perfect b-matching, and constraints (3c) are replaced with the perfect matching

constraints: ∑
a∈δ(v)

ma = bv, ∀v ∈ V. (3c’)

Analogously to the deterministic case, we can define a variant of the problem with

upper bounds u ∈ Z|A|+ on each arc. We call this problem the Directed Robust Bounded

b-Matching Problem (DRBbM) or the Directed Robust Bounded Perfect b-Matching

Problem (DRBPbM) for the perfect variant, respectively. This variant introduces the

following upper-bound constraints to the three-stage formulation (3):

ma ≤ ua, ∀a ∈ A. (3e)

2.3 Adapting Known Results to new Variants

In this section, we begin by summarizing the relevant results from [11] concerning

DRUPbM and then extend these findings to the other variants of the problem. Af-
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2 TERMINOLOGY AND DEFINITIONS

terwards, we generalize the equivalence of the deterministic matching variants to the

robust case.

The DRUPbM can be reformulated as the following Integer Linear Program (ILP)

as shown in [11]:

max
h,mb,z

z (4a)

s.t. z ≤
∑
a∈A

cam
b
a ∀b ∈ B (4b)∑

a∈δ+(v)

mb
a = hv ∀v ∈ V, b ∈ B (4c)

∑
a∈δ(v)

mb
a = bv ∀v ∈ V, b ∈ B (4d)

hv ∈ Z+, m
b
a ∈ Z+ ∀a ∈ A, v ∈ V, b ∈ B (4e)

This formulation can be adapted to DRUbM by using matching constraints (3c) instead

of those in (4d). Similarly, the upper bound constraints can be added for each matching

mb to get ILP formulations for DRBbM and DRBPbM.

In [11], we show that DRBPbM is strongly NP-hard on arbitrary graphs when |B| ∈
O(n) and weakly NP-hard when |B| = 2. The weak NP-hardness is shown through a

reduction from the Partition Problem. The graph used in the reduction is an oriented

bipartite graph that can also be extended to an oriented SP-graph. For a detailed proof,

we refer to [11, Theorem 10]. Additionally, we show that the problem becomes strongly

NP-hard if the directed bandwidth of the graph as defined in [3] is in O(n), even for a

constant number of scenarios. However, we did not investigate the influence of different

graph classes on the complexity of the problem. Thus, we investigate various graph

classes to identify structures where the problems might be solvable in polynomial time.

All four variants of Directed Robust b-Matching Problem on arbitrary graphs are

equivalent. The following reductions for including upper arc bounds are based on the

work by Gerards [4, Section 7.1.1].

Theorem 1 The Directed Robust Bounded Perfect b-Matching Problem and the Di-

rected Robust Perfect b-Matching Problem are equivalent.

Proof

For each instance (D = (V,A),B, c) of DRUPbM, an equivalent instance of DRBPbM

can be obtained by setting large upper bounds ua ≥ bv for each a ∈ A, v ∈ a, and b ∈ B.

Conversely, any instance of DRBPbM can be transformed into an equivalent instance

of DRUPbM by replacing each arc a = (v, w) with weight ca and upper bound ua with

two new vertices v′, w′ and three new arcs a1 = (v, v′), a2 = (w′, v′) and a3 = (w′, w).
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The vertices have capacities bv′ = bw′ = ua in each scenario b ∈ B and the arcs have

weight ca1 = ca and ca2 = ca3 = 0. Since v′ has only incoming arcs and w′ has only

outgoing arcs, each feasible pre-matching h must satisfy hv′ = 0 and hw′ = bw′ = ua. For

each scenario b ∈ B, and each perfect b-matching, the perfect matching constraints must

hold and it holds ma1 = bv′−ma2 = bw′−ma2 = ma3 and ma1 ≤ bv′ = ua. Therefore, this

matching m is equivalent to the corresponding matching m′ for the DRBPbM instance

with m′a = ma1 . �

We note that transforming an instance of DRUPbM into an instance of DRBPbM

does not change the graph and thus, polynmial-time algorithms for DRBPbM on specific

graph classes can also be used for DRUPbM on the same graph class. Similarly, if

DRUPbM is NP-hard on a specific graph class, the same holds for DRBPbM. We can

say that the arc-bounded variant is at least as hard as the arc-unbounded variant on

each graph class.

For the perfect and not-perfect variants, the following result is based on Korte and

Vygen [8, Proposition 11.1. ].

Theorem 2 The Directed Robust b-Matching Problem and the Directed Robust Perfect

b-Matching Problem are equivalent.

Proof

An instance of DRUPbM can be transformed into an instance of DRUbM by adding a

large constant M to the weight of each arc. Then, each optimal solution of DRUbM will

use as many arcs as possible (with
∑

a∈Ama = 1
2

∑
v∈V bv) and will also be a solution to

DRUPbM if such a solution exists .

An instance of the DRUbM (D = (V,A),B, c, u) can be reduced to the DRUPbM

by adding a gadget V ′, A′ with three new vertices V ′ = {w1, w2, w3, d} and arcs A′ =

{(w1, v) : v ∈ V } ∪ {(w1, w2), (w1, w3), (w2, w3), (w1, d)}. We call the resulting graph

D′ = (V ∪ V ′, A ∪A′). The gadget is depicted in Figure 1. The vertices have capacities

bwi = maxb̃∈B
∑

v∈V b̃v =: M for each i ∈ {1, 2, 3} and bd = M −
∑

v∈V bv in each

scenario b ∈ B and the weights of all arcs a ∈ A′ and ca = 0. The 3-cycle w1, w2, w3 is

used to absorb unused capacities from the not-perfect matchings in D and the vertex

d balances the different total capacities in each scenario. Clearly, each solution of the

DRUPbM instance corresponds to a solution of the DRUbM instance by restricting the

solution to D. Given a pre-matching h with b-matchings mb in each scenario b ∈ B
in graph D that are solutions to the DRUbM instance, the corresponding DRUPbM

solution in D′ is obtained by setting the pre-matching on the added gadget to h′w1 = M ,

h′w2 = M −
∑

v∈V hv and h′w3 = 0. The perfect matchings on the gadget are set as

indicated in blue by Figure 1. On the arcs connecting the gadget to D, the matchings

are set to m′b(w1,v) = bv −
∑

a∈δ(v) m
b
a. Finally, all matchings and pre-matchings on D
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w1

M

w2

M

w3

M

d

M −
∑

v∈V bv

D

B

∑
v∈V

hv

∑
v∈
V

h v

∑
v∈V

bv − 2
∑
v∈V

hv

M
− ∑

v∈
V b
v

M
− ∑

v∈
V h
v

Figure 1: Reduction from the DRBbM to the DRBPbM

remain the same: h′v = hv and m′ba = ma for all v ∈ V and a ∈ A. On each vertex

v ∈ V , the matchings (m′)b are perfect due to the definition on the arcs (w1, v). In each

scenario, the sum over all these remaining capacities is given by∑
v∈V

bv −
∑
a∈δ(v)

mb
a =

∑
v∈V

bv − 2
∑
a∈A

mb =
∑
v∈V

bv − 2
∑
a∈A

h

as depicted in Figure 1. For all vertices in the gadget V ′, the perfect matching con-

straints and pre-matching constraints are also satisfied as shown in the illustration.

Thus, h′, (m′)b is a feasible solution of the DRUPbM instance with the same weight as

the corresponding solution of the DRUbM instance. �

Similar to the result for the arc-bounded variants, we note that the graph structure

remains the same when transforming an instance of DRUPbM to an instance of DRUbM.

Thus, on each graph class, DRUbM is at least as hard as DRUPbM.

We combine the techniques from the previous Theorems and obtain the following

result.

Corollary 1 The Bounded b-Matching Problem, Bounded Perfect b-Matching Problem,

Directed Robust Bounded b-Matching Problem and Directed Robust Bounded Perfect

b-Matching Problem are equivalent.

As a consequence of this result, all complexity results for DRUPbM on arbitrary

graphs presented in [11] can also be extended to the other three variants. Finally, we

note that the decision problems of all four variants are in NP. Thus, in the following,

NP-hardness directly implies NP-completeness.

Lemma 1 The decision variants of Bounded b-Matching Problem, Bounded Perfect b-

Matching Problem, Directed Robust Bounded b-Matching Problem and Directed Robust

Bounded Perfect b-Matching Problem are in NP.
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Proof

For a given pre-matching h and lower bound on the objective value Z, computing

maximum-weight (bounded, perfect) b-matchings mb and testing whether
∑

a∈A cam
b
a ≥

Z for each scenario b ∈ B can be done in polynomial time. Thus, the decision variant of

DRUbM on directed trees is in NP. �

3 Non-perfect Variants

Directed paths represent one of the simplest classes of digraphs. On such paths, all four

variants of DRUbM become easy to solve. Each vertex possesses at most one outgoing

and one incoming arc, leading to each pre-matching being feasible for exactly one b-

matching, and vice versa. Consequently, the problem reduces to finding a b-matching

that is feasible across all scenarios b ∈ B.

The same holds for directed pearl graphs. The added multi-arcs have no influence

on DRUbM and DRUPbM, because an optimal solution will only use the parallel arc

with the highest weight. For the variants with upper bounds on the arcs, this is not

necessarily the case. However, it still holds that for each feasible pre-matching, all

feasible matchings for each scenario can only differ on parallel arcs. Assuming w.l.o.g.

parallel arcs differ in their weight, each pre-matching already defines a unique, optimal

b-matchings independent of the scenario Consequently, the problem can be solved in

polynomial time by finding the optimal matching feasible in all scenarios. For DRBbM,

this can be done by solving the deterministic BbM on bmin with bmin
v = minb∈B bv.

These results no longer hold for directed trees or oriented paths, where each vertex

can have outgoing arcs to multiple other vertices. Then, the (optimal) b-matchings in the

second stage are no longer unique for each pre-matching and depend on the worst-case

scenario. The following reduction illustrates the main technique used for NP-hardness

proofs in this paper.

Theorem 3 The Directed Robust b-Matching Problem is weakly NP-complete on di-

rected trees.

Proof

We show NP-hardness by a reduction from the well-known Partition problem. Given a

set S = {s1, . . . , sn} ∈ Zn+, the Partition problem asks if there is a subset T ⊆ {1, . . . , n}
such that

∑
i∈T si =

∑
i/∈T si. Hence, a set T is a solution to the instance of Partition if

min{
∑
i∈T

si,
∑
i∈S\T

si} =
1

2

n∑
i=1

si.
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Similar to DRUbM, Partition can be reformulated as a two stage problem:

max
T⊂{1,...,n}

min
D∈{T,S\T}

∑
i∈D

si ≥
1

2

n∑
i=1

si

Based on this idea, we construct an instance of DRUbM such that the pre-matching

defines a set T ⊆ {1, . . . , n} and one of two scenarios bT , bS\T being the worst-case

scenarios represents either T or S \ T being minimal.

Let S be an instance of Partition, let P =
∑n

i=1 si and let M > P be some large

integer. We define a directed graph D = (V,A) with V = {r}∪
⋃n
i=1 Vi, A = Ar∪

⋃n
i=1 Ai

and gadgets (Vi, Ai) for each element si ∈ S with

Vi = {di, vin
i , v

out
i , vT,ini , vT,out

i , v
S\T,in
i , v

S\T,out
i }

Ai = {(di, vin
i ), (di, v

out
i ), (vin

i , v
T,in
i ), (vin

i , v
S\T,in
i ), (vout

i , vT,out
i ), (vout

i , v
S\T,out
i )}

Ar = {(r, di) : i = 1, . . . , n}

One gadget of the instance is depicted in Figure 2. D is a directed tree with dummy

vT,ini

1

0

vin
i

1

1

v
S\T,in
i

0

1

di

1

1

vS,out
i

1

0

vout
i

1

1

v
S\T,out
i

0

1

si

M M

si

Figure 2: Gadget used to show NP-hardness of DRUbM on directed trees

root r that has no capacity and only ensures that D is a connected tree. Additionally,

12



3 NON-PERFECT VARIANTS

we define two scenarios bT and bS\T and objective value c as follows:

bTv =


1 if v ∈ {di, vin

i , v
out
i : i = 1, . . . , n}

1 if v ∈ {vT,ini , vT,out
i : i = 1, . . . , n}

0 else

,

bS\Tv =


1 if v ∈ {di, vin

i , v
out
i : i = 1, . . . , n}

1 if v ∈ {vS\T,ini , v
S\T,out
i : i = 1, . . . , n}

0 else

,

ca =


si if a ∈ {(vin

i , v
T,in
i ), (vout

i , v
S\T,out
i )}

M if a ∈ {(di, vin
i ), (di, v

out
i ) : i = 1, . . . , n}

0 else

.

In Figure 2, the capacities in scenario bT are written above each vertex and the capacities

in bS\T are written below. The non-zero weight of each arc is written on the arcs.

Each optimal pre-matching will set hdi = 1 to include one of its outgoing arcs with

high weight M . Thus, di must be matched with either vin
i or vout

i and since both vertices

have a capacity of one in both scenarios, only one of them can be matched through an

outgoing arc and it has to hold hvini + hvouti
≤ 1. Because there are no negative weights

and no other vertices with outgoing arcs, any optimal solution always sets either hvini = 1

or hvouti
= 1. All remaining vertices are leafs without outgoing arcs, thus every feasible

pre-matching on these vertices is always zero. Thus, restricted to a gadget (Vi, Ai), there

are two possible, optimal pre-matchings hi,in and hi,out defined by

hi,inv =

{
1 if v ∈ {di, vin

i }
0 else

and hi,out
v =

{
1 if v ∈ {di, vout

i }
0 else.

Using hi,in on gadget (Vi, Ai) then represents setting i ∈ T . On this basis, we can define a

solution of the Partition instance from an optimal pre-matching h∗ as T ∗ = {i : hvini = 1},
which is the set of all gadgets where hi,in is used. Then, T ∗ is a solution to the instance

of Partition if and only if the objective value of h∗ is ≥ n ·M + P
2

.

We can see in Figure 2 that for each pair of scenario and choice of pre-matching as

described above, the b-matching in the second stage is unique. For example, restricted

to gadget (Vi, Ai), the only bT -matching fitting hi,in uses the arcs (di, v
out
i ) and (vin

i , v
T,in
i )

once and no other arcs. This matching has objective value M + si. Similarly, for the

combination bS\T , hi,out, the unique bS\T -matching includes only the arcs (di, v
in
i ) and

(vin
i , v

S\T,out
i ) once with objective value M + si. For the combinations bT , hi,out and

bS\T , hi,in, the objective value is M with the same argumentation.

13



3 NON-PERFECT VARIANTS

Let mT and mS\T be the max-weight b-matchings for h∗ and the corresponding

scenario b ∈ B. It holds∑
a∈A

cam
T
a =

∑
i : h

vin
i

=1

M + si +
∑

i : h
vout
i

=1

M = n ·M +
∑
i∈T ∗

si

∑
a∈A

cam
S\T
a =

∑
i : h

vin
i

=1

M +
∑

i : h
vout
i

=1

M + si = n ·M +
∑

i∈S\T ∗
si

Because we optimize the worst case scenario, it holds

∑
i∈T ∗

si =
P

2
⇔ min

∑
i∈T ∗

si,
∑

i∈S\T ∗
si

 ≥ P

2
⇔ min

D∈{T,S\T}

∑
a∈A

cam
D
a ≥ n ·M +

P

2

and T ∗ is a solution to the instance of Partition if and only if the objective value of h∗

is ≥ n ·M + P
2

. With the above considerations, we also see that the objective value of

the DRUbM instance cannot be larger than n ·M + P
2

. Thus, there is a solution to the

instance of Partition if and only if there is a solution to the instance of DRUbM with

objective value ≥ n ·M+ P
2

. This concludes the proof of NP-hardness. NP-completeness

follows with Lemma 1. �

Using the reduction from Theorem 1, this also holds for DRBbM. Using a similar

approach, NP-hardness on oriented paths can be shown.

Theorem 4 The Directed Robust b-Matching Problem is weakly NP-complete on ori-

ented paths.

A proof of this Theorem is given in Appendix A.1.

In instances of the b-matching problem, we can augment the graph by adding vertices

with capacity zero without affecting the solution as seen with the dummy vertices r in

both reductions. The graph defined in the second reduction is an oriented tree, an

oriented bipartite graph, and a directed (and oriented) cactus graph. The graph used in

the proof of Theorem 3 is a directed tree and can be expanded into a directed SP-graph.

Similar, simple reductions confirm that these problems remain NP-hard on directed

bipartite graphs. Thus, it appears that both DRUbM and DRBbM are NP-hard across

all graph classes examined in this paper that permit vertices to be matched with more

than one vertex through outgoing arcs.

14



4 THE DIRECTED ROBUST BOUNDED PERFECT B-MATCHING PROBLEM

4 The Directed Robust Bounded Perfect b-Matching

Problem

Next, we analyze the two perfect matching variants: DRUPbM and DRBPbM. A crucial

distinction between these variants lies in their treatment of parallel arcs. In DRUPbM,

parallel arcs can be disregarded since we always select the arc with greater weight.

Conversely, in DRBPbM, such an arc might have an upper bound and we may have

to use the parallel arc with lesser weight. As a consequence, DRUPbM can be solved

in polynomial time on directed and oriented pearl graphs with the same reasoning as

applied to paths. However, DRBPbM is NP-hard on oriented pearl graphs and directed

SP-graphs, which both allow parallel arcs. We first show NP-hardness on oriented pearl

graphs based on a reduction from [2, Corollary 6.1].

Theorem 5 The Directed Robust Bounded Perfect b-Matching Problem is weakly NP-

complete on oriented pearl graphs.

Proof

We again show NP-hardness by reducing from Partition. Let S = {s1, . . . , sn} be an

instance of the Partition Problem, P =
∑n

i=1 si and M > 2 · P some large integer. We

define a directed graph D = (V,A) with gadgets D = (Vi, A1) for each si ∈ S and an

auxiliary gadget D0 = (V0, A0) as follows:

Vi = {v1
i , v

2
i , v

3
i , ri} ∀i = 0, . . . , n

Ai = {(v2
i , v

1
i ), (v

2
i , v

3
i ), (v

2
i , v

3
i ), (ri, v

3
i ), (ri, v

1
i+1)} ∀i = 1, . . . , n

A0 = {(v2
0, v

1
0), (v2

0, v
3
0), (r0, v

3
0)}

V =
n⋃
i=0

Vi A =
n⋃
i=0

Ai.

D is an oriented pearl graph. We define an instance of DRBPbM as shown in Figure 3.

The capacities are written in green, with scenario bT written above and scenario bS\T

bT :

bS\T :

v1
0

1

v2
0

1

1

v3
0

1
M − P M

v1
1

1

v2
1

2

2

v3
1

2

1

M M

M − 2s1

M − s1

. . .

Figure 3: Gadget used to show NP-hardness of DRBPbM on oriented pearl graphs
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4 THE DIRECTED ROBUST BOUNDED PERFECT B-MATCHING PROBLEM

written below the vertices. The costs of the arcs are written next to the arcs. The only

arc with an upper bound is marked in red and has an upper bound of 1. The dummy

vertices ri are shown in gray since they are only necessary to connect the gadgets.

Using these definitions, there is a solution h∗ with objective value ≥ (2n+1) ·M− 3
2
P

if and only if T ∗ = {i : h∗
v3i

= 1} is a solution to the instance of Partition.

On the auxiliary gadget D0 there is only one feasible solution with objective value

M in scenario bT and objective value M − P in scenario bS\T .

In each gadget Di, there are only two feasible pre-matchings: setting the pre-

matching of v2
i to h1

v2i
= 2 and the others to zero or setting the pre-matching of both v2

i

and v3
i to h2

v2i
= h2

v3i
= 1. Similar to the previous proof, there is a unique pre-matching

for each combination of scenario and pre-matching. For the first pre-matching h1 and

scenario bT , the upper bound on the red arc forces us to also use the parallel arc with

worse weight M − 2si, resulting in an objective value of 2M − 2si. In scenario bS\T ,

the objective value of the corresponding matching is M + M = 2M . For the second

pre-matching h2, the objective value of the matchings is the same in both scenarios:

M + (M − si) = 2M − si. Each feasible pre-matching h has to be a combination of the

pre-matchings h1 and h2 on each gadget Di. On gadget D0, the pre-matching is unique.

Let h∗ be part of the optimal solution and T ∗ as defined above. Additionally, let mT be

the optimal, perfect bT -matching and mS\T be the optimal, perfect bS\T -matching fitting

h∗. Then, the objective values of the (unique) perfect b-matchings in both scenarios are

given by

∑
a∈A

cam
T
a = M +

∑
i∈T ∗

2M − 2si +
∑

i∈S\T ∗
2M − si = (2n+ 1)M −

n∑
i=1

si −
∑
i∈T ∗

si

= (2n+ 1)M − P −
∑
i∈T ∗

si∑
a∈A

cam
S\T
a = M − P +

∑
i∈T ∗

2Msi +
∑

i∈S\T ∗
2M − si = (2n+ 1)M − P −

∑
i∈S\T ∗

si
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4 THE DIRECTED ROBUST BOUNDED PERFECT B-MATCHING PROBLEM

With this, it holds

min{
∑
a∈A

cam
T
a ,
∑
a∈A

cam
S\T
a } ≥ (2n+ 1) ·M − 3

2
P

⇔ min{(2n+ 1)M − P −
∑
i∈T ∗

si, (2n+ 1)M − P −
∑

i∈S\T ∗
si} ≥ (2n+ 1) ·M − 3

2
P

⇔ min{−
∑
i∈T ∗

si,−
∑

i∈S\T ∗
si} ≥ −

1

2
P

⇔
∑
i∈T ∗

si ≤
1

2
P ∧

∑
i∈S\T ∗

si ≤
1

2
P

Thus, T ∗ is a solution to the instance of Partition. The reverse follows directly using

the same definitions. �

Next, we adjust this reduction to a directed SP-graph by “folding” the backward arc

(v3
i , v

2
i ) to the right and adding two three-cycles, one to the left and one to the right.

Additionally, we add dummy arcs that cannot be part of a feasible solution but ensure

that the graph is a directed SP-graph.

Theorem 6 The Directed Robust Bounded Perfect b-Matching Problem is weakly NP-

complete on directed SP-graphs.

Proof

We again show NP-hardness by reducing from Partition. Let S = {s1, . . . , sn} be an

instance of the Partition Problem, P =
∑n

i=1 si and M > 2 · P some large integer. We

define a directed graph D = (V,A) with gadgets D = (Vi, A1) for each si ∈ S and an

auxiliary gadget D0 = (V0, A0) as follows:

Vi = {v1
i , v

2
i , v

3
i , d

1
i , d

2
i , d

3
i , d
−2
i , d−3

i ri}
Ai = {(d−3

i , v2
i ), (d

−3
i , d−2

i ), (d−2
i , v2

i ), (v
2
i , v

1
i ), (v

2
i , v

3
i ), (v

2
i , v

3
i ), (v

3
i , d

1
i ), (v

1
i , d

1
i ),

(d1
i , d

2
i ), (d

1
i , d

3
i ), (d

2
i , d

3
i ), (d

3
i , ri), (ri, v

2
i+1)}

A0 = {(v2
0, v

1
0), (v2

0, v
3
0), (v3

0, d0), (v1
0, r0)}

V =
n⋃
i=0

Vi A =
n⋃
i=0

Ai.

On this graph, we define an instance of DRBPbM with B = {bT , bS\T} as shown in

Figure 4.The capacities in bT are written above the vertices and the capacities in bS\T

below the vertices. The only arc with a non-redundant upper bound is marked in red

and has upper bound two. The illustration shows that D is a series parallel graph.
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v10

1

0

v20

1

1

v30

1

0

M
− P

M

d−2
1

2

2

d−3
1

2

2

v11

1

0

v21

3

3

v31

3

2

d11

2

2

d21

2

2

d31

2

2

M

M
M
−

2s
1

M
−
s1

2

. . .r0 r1

Figure 4: Gadget used to show NP-hardness of DRBPbM on oriented pearl graphs

The auxiliary gadget acts the same as in the previous proof. For each gadget Di,

there are still only two feasible pre-matchings: one pre-matching with hv2i = 3 and

one with hv2i = 1. We note that there can be no feasible pre-matching with hv2i = 0,

otherwise the capacity in v1
i cannot be matched: it has only one incoming arc and cannot

be matched through an outgoing arc because then the pre-matching would have to be

one and the capacity in scenario bT is zero. Similarly, if hv2i = 2, the vertex v2
i would

have to be matched through an incoming arc exactly once. This is impossible while also

satisfying the perfect matching constraints in d−3
i and d−2

i .

Let h1 with h1
v2i

= 3 be a feasible pre-matching. To satisfy the perfect matching

constraints on d−3
i and d−2

i , it has to hold h1
d−3
i

= 2 and hd−2
i

= 0. When looking to

the right of v2
i , we see that the vertices v3

i and v1
i are matched with v2

i for their whole

capacity in both scenarios. Thus, the only feasible matching for the three-cycle on the

right is using each arc once. This results in a pre-matching with h1
d1i

= 2 and h1
d2i

= 2.

Furthermore, this shows that h1 has exactly one feasible, perfect b-matching in each

scenario. In bT , the objective value of this matching is 2 ·M + (M − si) = 3M − 2si; in

bS\T , it is 2 ·M +M = 3M .

With the same argumentation, we can show that there is exactly one feasible pre-

matching h2 with h2
v2i

= 1. Again, there is exactly one feasible, perfect b-matching in

each scenario. The objective value of this matching is M + 2 · (M − si
2

) = 3M − si in

both scenarios. Except for an additional weight of M in each solution, this is the same

situation as in the previous reduction. Thus, it holds that an optimal pre-matching h∗

has objective value ≥ (3n + 1)M − 3
2
P if and only if T ∗ = {i : h∗

v2i
= 3} is a solution to

the instance of Partition. Let mT be the optimal, perfect bT -matching and mS\T be the

18



5 THE DIRECTED ROBUST PERFECT B-MATCHING PROBLEM

optimal, perfect bS\T -matching fitting h∗. Then, it again holds

cTmT = M +
∑
i∈T ∗

3M − 2si +
∑

i∈S\T ∗
3M − si = (3n+ 1)M − P −

∑
i∈T ∗

si

cTmS\T = M − P +
∑
i∈T ∗

3M +
∑

i∈S\T ∗
3M − si = (3n+ 1)M − P −

∑
i∈S\T ∗

si

Thus, the worst-case objective value is ≥ (3n+ 1)M − 3
2
P if and only if∑

i∈T ∗
si =

P

2
=
∑

i∈S\T ∗
si

and T ∗ is a solution to the instance of Partition. �

We note that both of the presented reduction graphs are no longer part of their

respective graph class after using the reduction from Theorem 1 to reduce the instance to

an instance of DRUPbM without upper bounds. Thus, this does not show NP-hardness

of DRUPbM on oriented pearl graphs or directed SP-graphs.

5 The Directed Robust Perfect b-Matching Problem

5.1 NP-hardness

In [11], it was shown that DRUPbM is weakly NP-hard on oriented SP-graphs and

oriented bipartite graphs. Using the three-cycle gadgets introduced in the previous

proof of Theorem 6 and the general approach used in Theorem 3, we expand on these

results and show weak NP-hardness on oriented cactus graphs for both DRUPbM and

DRBPbM.

Theorem 7 The Directed Robust Perfect b-Matching Problem is weakly NP-complete

on oriented cactus graphs.

A proof of this Theorem is given in Appendix A.2.

To summarize, we prove the NP-hardness of DRUPbM and DRBPbM on oriented

bipartite graphs, oriented SP-graphs and oriented cactus graphs. For DRBPbM, we also

show NP-hardness on oriented pearl graphs and directed SP-graphs. In the next section,

we show that the problem can be solved in polynomial time on the directed version of

these graph classes as well as oriented paths and oriented trees. The graph classes,

where a polynomial time algorithm exists (excluding directed bipartite graphs), share a

common property: they do not allow alternating circuits. We use this property and give

a polynomial time algorithm on all graphs without alternating circuits.
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5 THE DIRECTED ROBUST PERFECT B-MATCHING PROBLEM

5.2 Directed Graphs without Alternating Circuits

In this section, we characterize a class of graphs on which the Directed Robust Perfect

b-Matching Problem can be solved in polynomial time.

Definition 1 Let D = (V,A) a directed graph, and let C = (a1, . . . , an) be a circuit in

D. We call C an alternating circuit if the directions of the arcs in C alternate. More

formally, C is an alternating circuit if for any two consecutive arcs ai, ai+1 incident to a

common vertex v ∈ V , both arcs are either directed towards v or away from it.

1
2

3

4
5

6
7

8 1

2

3
4

5
6

Figure 5: Examples for alternating circuits of length 4, 8 and 6 respectively.

Figure 5 illustrates three examples of alternating circuits. The first graph is an alter-

nating cycle of length 4. In the second and third graph, arcs are numbered to highlight

the alternating circuits. The second graph also appears as part of the reduction used in

Theorem 7.

We show that the Directed Robust Perfect b-Matching Problem can be solved in

polynomial time on graphs without alternating circuit. First, we establish an upper

bound on the number of arcs that a graph without alternating circuit can have. This is

based on the similar fact that undirected graphs with |V | ≤ |E| must have a cycle.

Lemma 2 Let D = (V,A) be a directed graph with |A| ≥ 2|V |. Then, D has an

alternating circuit.

Proof

For D = (V,A), we define an undirected graph G = (Ṽ , E) with

Ṽ = {vin, vout : v ∈ V } and E = {{vout, win} : (v, w) ∈ A}.

For each vertex v ∈ V , there are two vertices vin and vout in Ṽ . For each arc (v, w) ∈ A,

there is one edge between vout and vin in E. Then, G is a bipartite graph with partition

V in = {vin : v ∈ V } and V out = {vout : v ∈ V }. This way, each path in G alternates

between vertices from V in and V out and thus, in the corresponding path in D, the

orientation of the arcs alternates. Then, each path in G corresponds to an alternating

trail in D and vice versa.
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5 THE DIRECTED ROBUST PERFECT B-MATCHING PROBLEM

Because cycles (and circuits) are paths (and trails) where the first and last vertex

are identical, it also holds that each circuit in G corresponds to an alternating circuit

in D and vice versa. Thus, D contains an alternating circuit if and only if G contains a

cycle. It holds |A| = |E| and |Ṽ | = 2|V |. If |A| ≥ 2|V |, then it is |E| ≥ |Ṽ | and there is

a cycle in G. Thus, there is also an alternating circuit in D if |A| ≥ 2|V |. �

Next, we examine the influence of alternating circuits on the perfect b-matchings

chosen in the second stage for a fixed pre-matching and scenario. It turns out that these

perfect matchings are unique. Furthermore, for each pair of scenario and pre-matching,

there is at most one not necessarily integer or non-negative matching satisfying both the

perfect matching constraints (3c’) and the pre-matching constraint (3b).

Lemma 3 LetD = (V,A),B, c be an instance of the Directed Robust Perfect b-Matching

Problem. Then, D has no alternating circuits if and only if for each pair of scenario

b ∈ B and (not necessarily integer) pre-matching h ∈ R|V |, there is at most one m̃ ∈ R|A|
satisfying both the pre-matching constraint (3b) and the perfect matching constraint

(3c’).

Proof

Let C = (a1, a2, . . . , ak) be an alternating circuit in D and h,m1, . . . ,m|B| a feasible

solution. Then, we define a matching mC restricted to the circuit as

mC
a =


0 a /∈ C
1 if a = ai ∈ C and i is even

−1 if a = ai ∈ C and i is odd

Then, it holds ∑
a∈δ(v)

mC
a = 0 and

∑
a∈δ+(v)

mC
a = 0

for all vertices v ∈ V . Thus, for each perfect bi-matching mi fitting h, mi + mC is also

a perfect bi-matching fitting h and mi is not unique.

Let D = (V,A) be a digraph and V = {v1, . . . , v|V |}, A = {a1, . . . , a|A|} enumerations

of the arcs and vertices. A matching m ∈ R|A| is a perfect b-matching fitting h if and

only if it holds ∑
a∈δ−(v)

ma = bv − hv ∀v ∈ V

∑
a∈δ+(v)

ma = hv ∀v ∈ V
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5 THE DIRECTED ROBUST PERFECT B-MATCHING PROBLEM

This is equivalent to Cm = (b−hh ) with C ∈ {0, 1}2|V |×|A| and

Ci,j =


1 if i ≤ |V | and aj ∈ δ−(vi),

0 if i ≤ |V | and aj /∈ δ−(vi),

1 if i > |V | and aj ∈ δ+(vi),

0 if i > |V | and aj /∈ δ+(vi).

It is well-known that there is at most one solution to the equality Cm = (b−hh ) if the

matrix C has full column rank. We show that C has linear dependent columns if and

only if there is an alternating circuit in D. If 2|V | < |A|, C has more columns than rows

and cannot have full column rank. With Lemma 2, there always exists an alternating

circuit in D in this case. Thus, the assumption holds in this case and we now examine

the case 2|V | ≥ |A|. We denote the i-th column of C by C−,i. This column corresponds

to the arc ai = (v, w) ∈ A. There are exactly two 1 entries in the column, one in

the upper half corresponding to the start vertex v of the arc and one in the lower half

corresponding to the end vertex w.

The columns of C are linear dependent if and only if a column of C, w.l.o.g. the first

column C−,1 is a linear combination of the other columns. Let λ2, . . . , λ|A| such that

C−,1 =

|A|∑
i=2

λiC−,i

Let a1 = (vj, vk). Then, there must be a set Mj ⊆ δ+(vj) of outgoing arcs from vj with

1 =
∑

ai∈M λi. With the same reasoning, there has to be a set Nk ⊆ δ−(vk) of incoming

arcs from vk with 1 =
∑

ai∈N λi. Now, for each arc aj′ = (vj, vj′) ∈ Mj, there has to

be a set Nj′ ⊆ δ−(vj′) with −λj′ =
∑

aj′′∈Nj′
λj′′ . By repeating this argument, we form

alternating paths in the digraph D. Since D is a finite graph and the argumentation can

be repeated infinitely many times, these paths have to form alternating circuits. Thus, if

the rows of C are linear dependent, there exists an alternating circuit in D. Reversely, it

is easy to see that the columns corresponding to an alternating circuit in D are linearly

dependent. Thus, the assumption holds and there is at most one solution to Cm = (b−hh )

if and only if there is no alternating circuit in D. �

Building on this, we examine the influence of scenario changes on the unique, perfect

b-matching. It turns out that the differences between these b-matchings remain constant,

independent of the shared pre-matching. Therefore, the perfect matchings for each

scenario can be computed by solving the problem for one scenario and adding the fixed

differences. Additionally, the difference in objective values between the scenarios is also

fixed and independent of the pre-matching. Thus, in each instance, there is a fixed

scenario which is the worst-case scenario for each pre-matching.
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Lemma 4 LetD = (V,A),B, c be an instance of the Directed Robust Perfect b-Matching

Problem and for fixed b ∈ B and h ∈ R|V |, let mb,h ∈ R|A| be the unique matching satis-

fying both the pre-matching constraint for h and the matching constraint for b. Then, D

has no alternating circuit if and only if for each pair of scenario b1, b2 ∈ B and (not neces-

sarily integer) pre-matching h1, h2 ∈ R|V |, it holds mb1,h1

a −mb2,h1

a = mb1,h2

a −mb2,h2

a =: ∆a

for all a ∈ A.

Proof

Let D = (V,A),B, c be an instance of DRUPbM. Let b1, b2 ∈ B be arbitrary scenarios,

h1, h2 ∈ Q|V | rational pre-matchings and mb1,h1 ,mb1,h2 ,mb2,h1 ,mb2,h2 ∈ Q|A| the unique,

perfect b-matchings fitting for the corresponding pre-matching and scenario as shown in

Lemma 3. Additionally, we define the differences

∆1
a := mb2,h1

a −mb1,h1

a

∆2
a := mb2,h2

a −mb1,h2

a .

Because the matchings are fitting for their corresponding pre-matching, we can use the

pre-matching constraints (3b) to show for i ∈ {1, 2} and all v ∈ V :

hiv
(3b)
=

∑
a∈δ+(v)

mb1,hi and hiv
(3b)
=

∑
a∈δ+(v)

mb2,hi

⇒ h2
v − h1

v =
∑

a∈δ+(v)

mb1,h2 −mb1,h1 and (5)

h2
v − h1

v =
∑

a∈δ+(v)

mb2,h2 −mb2,h1 def.
=

∑
a∈δ+(v)

mb1,h2 + ∆2
a −mb1,h1 −∆1

a

⇒
∑

a∈δ+(v)

mb1,h2 −mb1,h1 =
∑

a∈δ+(v)

mb1,h2 + ∆2
a −mb1,h1 −∆1

a

⇒
∑

a∈δ+(v)

∆1
a =

∑
a∈δ+(v)

∆2
a (6)

Additionally, with the perfect matching constraints (3c’), it holds for i ∈ {1, 2} and all

v ∈ V :

b1
v

(3c’)
=

∑
a∈δ(v)

mb1,hi

a
def.
=
∑
a∈δ(v)

mb2,hi

a −∆i
a and

b2
v

(3c’)
=

∑
a∈δ(v)

mb2,hi

a

⇒ b2
v − b1

v =
∑
a∈δ(v)

∆i
a (7)
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5 THE DIRECTED ROBUST PERFECT B-MATCHING PROBLEM

Now, let

m̃a = mb1,h1

a + ∆2
a

Then, m̃ is a (rational) perfect b2-matching fitting h1:∑
a∈δ+(v)

m̃a =
∑

a∈δ+(v)

(
mb1,h1

a + ∆2
a

)
(6)
=

∑
a∈δ+(v)

(
mb1,h1

a + ∆1
a

)
def.
=

∑
a∈δ+(v)

mb2,h1

a

(3c’)
= h1

v

∑
a∈δ(v)

m̃a =
∑
a∈δ(v)

(
mb1,h1

a + ∆2
a

)
(7)
= b2

v − b1
v +

∑
a∈δ(v)

mb1,h1

a

(3b)
= b2

v − b1
v + b1

v = b2
v

With Lemma 3, mb2,h1 is the unique perfect b2-matching fitting h1. Thus, the two

matchings have to be the same, which implies

m̃ = mb2,h1

⇒ mb1,h1

a + ∆2
a = mb1,h1

a + ∆1
a

⇒ ∆2
a = ∆1

a

Thus, the difference between two matchings fitting the same pre-matching is always the

same, independent of the matchings and pre-matchings chosen. �

These results lead to a polynomial-time algorithm. We compute the differences ∆i

relative to a fixed scenario b1 by solving the relaxed ILP formulation (4). Then,we

determine an optimal solution m∗ for b1 under the additional constraint that the unique

solutions for the other scenarios, m∗ + ∆i, are feasible. The algorithm is detailed in

Algorithm 1.

Algorithm 1 polynomial-time algorithm for the Directed Robust Perfect b-Matching

Problem without alternating circuits

Input: D = (V,A) without alternating cycles, scenarios B = {b1, . . . , bk} ⊂ Z|V |+ ,

weights c ∈ R|A|
Output: h,m1, . . . ,mk maximizing worst-case value mini=1,...,k c

Tmi

1: zLP, hLP,m1,LP, . . . ,mk,LP ← optimal solution of the relaxed problem (4a)-(4d)

2: ∆i
a ← mi,LP

a −m1,LP
a for all bi ∈ B \ {b1} and a ∈ A

3: lba ← maxi∈{2,...,k}−∆i
a

4: m1 ← optimal b1-matching with lower bounds lb on each arc

5: h← fitting pre-matching for m1

6: Return h,m1,m1 + ∆2, . . . ,m1 + ∆k

Theorem 8 Algorithm 1 computes an optimal solution to the Directed Robust Perfect

b-Matching Problem on graphs without alternating circuits in polynomial time.
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5 THE DIRECTED ROBUST PERFECT B-MATCHING PROBLEM

Proof

We begin by showing feasibility of the solution h,m1,m1 + ∆2, . . . ,m1 + ∆k returned by

Algorithm 1. With Lemmas 3 and 4, we know that m1 +∆2, . . . ,m1 +∆k are the unique

matchings satisfying the perfect matching constraint (4d) for bi and the pre-matching

constraints (4c) for the same pre-matching as m1. Thus, it only remains to be shown that

the matchings are non-negative and integer if and only if m1
a ≥ lba. Since m1 ∈ Z|V |+ per

definition, the matchings are integer if and only if ∆i is integer. However, with Lemma

4, we know that the values of ∆i are fixed for the instance. Thus, if ∆i is non-integer,

the instance is infeasible. It holds m1
a + ∆i

a ≥ 0⇔ m1
a ≥ −∆i

a. Thus, all matchings are

non-negative if and only if m1
a ≥ maxi∈{2,...,k}−∆i

a. With this, we have shown that the

matchings m1 + ∆1, . . . ,m1 + ∆k are perfect bi-matchings fitting for h. Now, it is easy

to see that the computed solution is also optimal because m1 is an optimal b1-matching

under the additional condition that the other matchings are feasible.

Finally, it only remains to be shown that the algorithm can be computed in poly-

nomial time. Linear Programs can be solved in polynomial time as well as perfect

b-matchings with lower bounds on the arcs. The remaining steps of the algorithm are

simple, arithmetic computations which can be done in polynomial time. This concludes

the proof. �

This algorithm can also handle certain instances of DRBPbM by using the reduction

from Theorem 1.

Corollary 2 The Directed Robust Bounded Perfect b-Matching Problem can be solved

in polynomial time on graphs without alternating ciruits and without parallel arcs.

Proof

We can use the reduction from Theorem 1 to transform a given instance of DRBPbM into

an instance of DRUPbM. In this reduction, each arc with an upper bound is replaced by

an alternating path of length three. Thus, there is an alternating circuit in the instance

of DRUPbM if and only if there is an alternating circuit or parallel arcs in the instance

of DRBPbM. Using Algorithm 1, this instance of DRUPbM can be solved in polynomial

time. �

This implies that DRBPbM can be solved in polynomial time on directed cactus

graphs. We note that both reduction graphs used in Theorems 5 and 6 use parallel arcs

with upper bounds and the algorithm cannot be used on these instances.

5.3 Graph Classes Without Alternating Circuits

Next, we explore the graph classes for which this algorithm is applicable. Clearly, graphs

without cycles, such as oriented paths, and oriented trees, do not contain alternating
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5 THE DIRECTED ROBUST PERFECT B-MATCHING PROBLEM

circuits. As mentioned before, the same holds for directed cactus graphs. For directed

SP-graphs, it is less obvious that they do not allow alternating circuits.

Theorem 9 Let D = (V,A, s, t) be a directed SP-graph without parallel arcs. The, D

does not contain an alternating cycle. Furthermore, there is no alternating path between

s and t of length ≥ 2. Thus, the only possible alternating path between s and t consist

of the arc (s, t) only.

Proof

We proof the statement by induction over the graph structure. The statement holds

for single arcs. Let D be a directed SP-graph gained through composition of D1 =

(V1, A1, s1, t1) and D2 = (V2, A2, s2, t2). Then, the statement holds per induction on D1

and D2.

Case 1: D is a series composition. We begin by showing that there is no alternating

path of length ≥ 2 in D. Each (s, t)-path p between s1 = s and t2 = t would have to

pass through vertex t1 = s2. However, when crossing from V1 to V2 through t1 = s2, the

path would necessarily use two arcs oriented in the same direction, since t1 = s2 has only

incoming arcs from V1 and only outgoing arcs to V2. Thus, p cannot be an alternating

path. The same argumentation holds for any pair of vertices v1 ∈ V1 and v2 ∈ V2. Thus,

an alternating cycle in D would have to lie completely in either D1 or D2, which is a

contradiction to the induction hypothesis.

Case 2: D is a parallel composition. With the induction hypothesis, there is no

alternating cycle or alternating path length ≥ 2 between s and t in D1 and D2. Each

path in D using vertices from V1 \ {s, t} and V2 \ {s, t} has to pass through s or t. Thus,

each alternating path in D from s to t either lies completely in D1 or D2 or includes an

alternating cycle in one of the two subgraphs. This is a contradiction to the induction

hypothesis.

Similar, an alternating cycle in D would have to use arcs from both A1 and A2 by

induction hypothesis. Since these arcs only share the two vertices s and t, such a cycle

would have to include both vertices and consist of two alternating s, t-paths without

cycles, one in D1 and one in D2. Since we do not allow multi-arcs, at least one of these

alternating s, t paths does not only consist of the arc (s, t) and thus has length ≥ 2.

This is a contradiction to the induction hypothesis. �

Corollary 3 The Directed Robust Perfect b-Matching Problem can be solved in poly-

nomial time on directed SP-graphs.
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5.4 Polynomial Solvable Graph Classes with Alternating Cir-

cuits

The presence of alternating circuits in a graph class does not necessarily imply the NP-

hardness of the Directed Robust Perfect b-Matching Problem problem. One example

are directed bipartite graphs. In a directed bipartite graph D = (V1 ∪ V2, A), each arc

is directed from V1 to V2 and thus each circuit in D is an alternating circuit. However,

each vertex w ∈ V2 has only incoming arcs and thus hw = 0 and each vertex v ∈ V1 has

only outgoing vertices and thus either hv = b1
v = · · · = bkv or the instance is infeasible.

Thus, there is only one feasible pre-matching and the problem can be easily solved in

polynomial time by solving k deterministic b-matching problems on a bipartite graph.

A similar argumentation works for graphs where each alternating cycle (not circuit)

is a maximum connected subgraph and thus not connected to any vertex outside this

alternating cycle. We call these cycles isolated.

Lemma 5 Let D = (V,A) be a directed graph where each alternating circuit is also an

alternating cycle and isolated. Then, the Directed Robust Perfect b-Matching Problem

can be solved in polynomial time on D.

Proof

Let D̃ = (Ṽ , Ã) be the maximum subgraph of D without alternating cycles and D−D̃ =

(V \ D̃, A\ Ã) the subgraph consisting of all alternating cycles in D. We note that there

are no arcs connecting Ṽ and V \ Ṽ in A because all alternating cycles are isolated.

First, we show that there is a unique, feasible pre-matching on D − D̃. Since D

consists of isolated, alternating cycles, each vertex in an alternating cycle in D has

either only incoming or only outgoing arcs. Thus, similar to directed bipartite graphs,

there is at most one feasible pre-matching for each vertex on an alternating cycle: for

v ∈ V \ D̃ with δ+(v) = ∅, we set hv = 0 and for vertices v ∈ V \ D̃ with δ+(v) = δ(v),

it has to hold hv = b1
v = · · · = b

|B|
v or the instance is infeasible.

The DRUPbM can be solved in polynomial time on D̃ using Algorithm 1. Let h̃ be

the pre-matching computed by the algorithm. Since the differences between scenarios

∆ are fixed by Lemma 4, this pre-matching is optimal in each scenario on D̃. Thus, the

pre-matching h∗ defined by

h∗v =


h̃v if v ∈ Ṽ
0 if δ+(v) = ∅
b1
v else

is the optimal pre-matching for the instance on D. It can be computed in polynomial

time because h̃ can be computed in polynomial time as shown in Theorem 8. The worst-
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case scenario and perfect matchings can be computed in polynomial time by solving the

perfect b-matching problem on each scenario. �

However, this does not hold for isolated, alternating circuits.

Theorem 10 The Directed Robust Perfect b-Matching Problem is NP-complete on

graphs where all alternating circuits are isolated.

A proof of this Theorem is given in Appendix A.3.

These results seem to imply that DRUPbM can be solved in polynomial time on

graphs where each alternating circuit is also an alternating cycle. However, the reduction

graph used in [11] to show weak NP-hardness of DRUPbM includes only alternating

cycles. Thus, DRUPbM remains NP-hard on graphs where each alternating circuit is

also an alternating cycle. However, it may be possible to find a pseudo-polynomial

algorithm that first isolates all alternating cycles and then applies Lemma 5.

6 Conclusions

In this paper, we have analyzed the complexity of four variants of the Directed Robust

b-Matching Problem on different graph classes. A summary of the complexity results is

given in Table 6. The results for each graph class are split between directed (dir.) and

path tree pearl bipartite SP-graph cactus no alt.

dir. or. dir. or. dir. or. dir. or. dir. or. dir. or. circuits

DRUbM P NP-c. NP-c. NP-c. P NP-c. NP-c.∗ NP-c. NP-c. NP-c. NP-c. NP-c. NP-c.

DRBbM P NP-c. NP-c. NP-c. P NP-c. NP-c.∗ NP-c. NP-c. NP-c. NP-c. NP-c. NP-c.

DRUPbM P P P P P P P NP-c.∗ P NP-c. P NP-c.∗ P

DRBPbM P P P P P NP-c. P NP-c.∗ NP-c. NP-c. P NP-c.∗ NP-c.

Figure 6: Summary Complexity Results

oriented (or.) graph class. We use P to represent the existence of a polynomial time

algorithm and NP-c. for NP completeness on the corresponding graph class. Results

marked with a star ∗ are not proven in this paper.

The perfect variants of the problem are easier to solve than the other two variants. For

both DRUbM and DRBbM, we could only find a polynomial time algorithm on directed

paths and directed pearl graphs. On all other graph classes, the problem variants are NP-

complete. For DRUPbM, we found a polynomial time algorithm for all graphs without

alternating circuits. When further examining the influence of alternating circuits on

DRUPbM, we found that graphs with isolated alternating cycles could still be solved in

polynomial time, but graphs with isolated alternating circuits are already NP-complete.

For DRBPbM, we could find polynomial-time algorithms for the directed variants of
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most graph classes we examined here. However, it is NP-complete on oriented pearl

graphs and directed SP-graphs, which were both easy to solve for DRUPbM.

Further research might contain finding approximation algorithms or heuristics for

the NP-hard cases or showing approximation hardness. Additionally, given that we

have only proven weak NP-hardness in this paper, it might be interesting to either show

strong NP-hardness or find a pseudo-polynomial algorithm for these cases. Specifically,

it may be possible to find a pseudo-polynomial algorithm for DRUPbM by isolating

all alternating cycles as proposed in the previous section. Alternatively, a polynomial

time algorithm could be found on graphs with a constant number of alternating circuits.

Finally, the problem could also be further extended by using interval data instead of

discrete scenarios.

References

[1] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Complexity of the

min–max and min–max regret assignment problems. Operations Research Letters,

33(6):634–640, 2005.
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A Additional NP-hardness proofs

A.1 DRUbM on oriented paths

Theorem (4)

The Directed Robust b-Matching Problem is weakly NP-complete on oriented paths. �
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Proof

We show NP-hardness by reduction from the Partition Problem. Let S be an instance

of Partition, P =
∑n

i=1 si and M > P some large integer. Analogous to the proof of

Theorem 3, we define a directed graph D = (V,A) with V =
⋃n
i=1 Vi, A =

⋃n
i=1 Ai and

gadgets

Vi = {ri, di, vin
i , v

out
i , vT,ini , vT,out

i , v
S\T,in
i , v

S\T,out
i }

Ai = {(vin
i , v

T,in
i ), (vin

i , v
S\T,in
i ), (v

S\T,in
i , di), (v

T,out
i , di), (v

out
i , vT,out

i ), (vout
i , v

S\T,out
i ),

(ri, v
S\T,out
i ), (ri, v

1
i+1)}

D is an oriented path. Additionally, we define the two scenarios and objective value as

follows:

bTv =

{
0 if v ∈ {vS\T,out

i , ri}
1 else

bS\Tv =

{
0 if v ∈ {vT,ini , ri}
1 else

ca =


si if a ∈ {(vin

i , v
T,in
i ), (vout

i , v
S\T,out
i ) : i = 1, . . . , n}

M if a ∈ δ(di), i = 1, . . . , n}
0 else

One gadget of the instance is depicted in Figure 7. The capacities in scenario bT are

bT

bS\T

vT,in1

1

0

vin
1

1

1

v
S\T,in
1

1

1

d1

1

1

vT,out
1

1

1

vout
1

1

1

v
S\T,out
1

0

1

r1

0

0

s1 M M s1

Figure 7: Gadget used to show NP-hardness of DRUbM on oriented paths

written above the vertices and the capacities in bS\T below the vertices. Non-zero weights

are written on the arcs.

The graph consists of n gadgets connected through the dummy vertices ri with

capacity zero in both scenarios. We now examine solutions for only one gadget Vi for

some fixed i ∈ {1, . . . , n}. Due to the high weights of the arcs adjacent to di and

bTdi = b
S\T
di

= 1, the matching corresponding to h∗ has to include one of the two adjacent

arcs exactly one time. Because all weights are non-negative, an optimal solution will

then always set either hvini = 1 or hvouti
= 1. There are only two pre-matchings (restricted

to Vi) satisfying this: the pre-matching marked in light blue with h1
v2i

= h1
v5i

= 1 and

h1
vji

= 0 else and the pre-matching in red with h2
v3i

= h2
v6i

= 1 and h2
vji

= 0 else. For
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each combination of pre-matching and scenarios, there is only one feasible matching.

For pre-matching h1 on the gadget, the corresponding objective value on gadget Vi is

si+M for scenario bT and M for scenario bS\T . For pre-matching h2, this is reversed: the

objective value in scenario bT is M and the objective value for scenario bS\T is si +M .

Using the same argumentation as in the proof of Theorem 3, it now holds that an

optimal pre-matching h∗ has objective value ≥
(
n+ 1

2

)
·P if and only if T = {i : h∗

v2i
= 1}

is a feasible solution for the Partition problem. Thus, there is a solution to the instance

of Partition if and only if there is a solution of the instance of DRUbM with objective

value ≥ n ·M + P
2

. �

A.2 DRUPbM on oriented cactus graphs

Theorem (7)

The Directed Robust Perfect b-Matching Problem is weakly NP-complete on oriented

cactus graphs. �

Proof

We show NP-hardness by reduction from the Partition problem. Let S = {s1, . . . , sn} ⊂
Z+ be an instance of the Partition problem. Similar to the proof of Theorem 3, we use

the two-stage structure of the Partition problem and define an instance of the Directed

Robust Perfect b-Matching Problem where setting the pre-matching defines a subset

T ⊂ {1, . . . , n} and picking one of the two pre-matchings bT , bS\T picks either
∑

i∈T si
or
∑

i/∈T si ∈ S with

Vi = {v−5
i , . . . , v−1

i , v1
i , . . . , v

5
i }

Ai = {(v1
i , v
−1
i ), (v1

i , v
2
i ), (v

3
i , v

2
i ), (v

3
i , v

4
i ), (v

3
i , v

5
i ), (v

4
i , v

5
i )}

∪ {(v−1
i , v1

i ), (v
−1
i , v−2

i ), (v−3
i , v−2

i ), (v−3
i , v−4

i ), (v−3
i , v−5

i ), (v−4
i , v−5

i )}

bT
vji

=

{
0 if j = 2

2 else
b
S\T
vji

=

{
0 if j = −2

2 else
ca =

{
si
2

if a ∈ {(v1
i , v
−1
i ), (v−1

i , v1
i )}

The gadget graph is depicted in Figure 8. The green numbers next to the vertices

represent the capacities in both scenarios. The black number on the arcs are the non-

negative weights and the blue numbers on the arcs are exemplary perfect matchings for

both scenarios fitting the same pre-matching. We note that the gadgets are symmetrical

as indicated by the naming of the vertices. We set D = (
⋃n
i=1 Vi,

⋃n
i=1Ai). Similar to

the previous proof, there is a solution to the instance of Partition if and only if there

exists a solution to this instance of the Directed Robust Perfect b-Matching Problem

with objective value ≥ 1
2

∑n
i=1 si.
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v−2
i

2|0

v−3
i

2|2

v−1
i

2|2 v2
i

0|2

v3
i

2|2

v1
i

2|2
v−5
i

2|2

v−4
i

2|2

v5
i

2|2

v4
i

2|2

si
2

si
2

hv1i = 2 hv−1
i

= 0

0|2

2|0

0|21|1

1|1

1|1 2|2

Figure 8: Gadget Di used to construct the choice of setting 1 ∈ M for the Partition

Problem

We now show that there are only two feasible pre-matchings on each gadget Di. We

begin by noting that the four vertices v±2
i and v±5

i have no outgoing arcs and thus pre-

matching 0. Additionally, vertices v±3
i have only outgoing arcs and thus pre-matching

hv±i 3 = bT
v±i 3

= b
S\T
v±i 3

= 2. Thus, the pre-matching is only flexible on v±1
i and v±4

i . For

the three-cycles v±3
i , v±4

i , v±5
i on the outside, the two only feasible matchings are shown

in Figure 8. Either each arc is used once and v±3
i cannot be matched with any vertex

outside the cycle (left cycle in the Figure) or the arc (v±4
i , v±5

i ) is used twice and v±3
i

has to be matched twice with vertices outside the cycle (right cycle in the Figure). In

the first case, hv±4
i

= 1 and in the second case, hv±4
i

= 2. There is no feasible solution

for hv±4
i

= 0.

We examine the first case with hi,in
v−4
i

= 1 depicted in the Figure where v−3
i is matched

with v−4
i and v−5

i . Since vertex v−2
i can now only be matched with v−1

i , we have to

set hi,in
v−1
i

= 2. However, since the capacity of v−2
i is 0 in the second scenario b

S\T
v−2
i

= 0,

the vertex v−i 1 must be matched with v1
i via (v−1

i , v1
i ) in the second scenario. This also

implies hi,in
v1i

= 0, as the capacity of vertex v1
i in the second scenario is fully satisfied

through an incoming arc. This, again, implies that v1
i in the first scenario and v2

i in

the second scenario must be matched with v3
i . Then, v4

i and v5
i have to be matched to

each other and it holds hi,in
v4i

= 2 resulting in the matching depicted. Thus, when setting
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hi,in
v−3
i

= 2, the only feasible pre-matching is given by

hi,in
vji

=


2 if j ∈ {−3,−1, 3, 4}
1 if j = −4

0 if j ∈ {−5,−2, 1, 2, 5}

min,T

(vji ,v
k
j )

=


2 if (j, k) ∈ {(−1,−2), (3, 1), (4, 5)}
1 if (j, k) ∈ {(−3,−5), (−3,−4), (−4,−5)}
0 else

m
in,S\T
(vji ,v

k
j )

=


2 if (j, k) ∈ {(−1, 1), (3, 2), (4, 5)}
1 if (j, k) ∈ {(−3,−5), (−3,−4), (−4,−5)}
0 else

with matchings as depicted in Figure 8. Using the symmetries of the graph and the

same argumentation in reverse, we get the only feasible pre-matching for the second

case hi,out

v−4
i

= 1 as hi,out

vji
= hi,in

v−1·j
i

with matchings mout,T

(vji ,v
k
j )

= min,T

(v−1·j
i ,v−1·k

j )
and m

out,S\T
(vji ,v

k
j )

=

m
in,S\T
(v−1·j

i ,v−1·k
j )

.

Since only two arcs in the gadget have non-zero weight, the objective values are easy

to compute: ∑
a∈A

cam
in,T
a = 0

∑
a∈A

cam
out,T
a = si∑

a∈A

cam
in,S\T
a = si

∑
a∈A

cam
out,S\T
a = 0

Since these are the only feasible solutions for the gadget, each feasible solution for the

complete instance can be defined by the choice between these two solutions on every

gadget. Using hi,in on a gadget (Vi, Ai) would then represent picking i ∈ T . Then, the

pre-matching h∗ has objective value ≥ 1
2

∑n
i=1 si if and only if T ∗ = {i : h∗

vji
= hi,in

vji
∀j ∈

{−6, . . . ,−1, 1, . . . , 6}} is a solution to the instance of Partition. Let m∗,T ,m∗,S\T be

the unique, fitting, perfect b-matching, then∑
a∈A

cam
∗,T
a =

∑
i∈T

∑
a∈A

cam
out,T
a +

∑
i∈S\T

∑
a∈A

cam
in,T
a =

∑
i∈T

si∑
a∈A

cam
∗,S\T
a =

∑
i∈T

∑
a∈A

cam
out,S\T
a +

∑
i∈S\T

∑
a∈A

cam
in,S\T
a =

∑
i∈S\T

si

34



A ADDITIONAL NP-HARDNESS PROOFS

Thus, if there is a solution with objective value ≥ 1
2

∑n
i=1 si, then

∑
i∈T

si =
1

2

n∑
i=1

si =
∑
i∈S\T

si

and T is a solution to the instance of Partition. The reverse follows similar by construct-

ing the corresponding pre-matching from the solution of Partition T . �

A.3 DRUPbM on graphs with isolated, alternating ciruits

Theorem (10)

The Directed Robust Perfect b-Matching Problem is NP-complete on graphs where all

alternating circuits are isolated. �

Proof

We show NP-hardness by reduction from the Partition Problem, similar to Theorem 3.

Let S = {s1, . . . , sn} be an instance of the Partition problem. For each si ∈ T , we define

a gadget consisting of an alternating circuit with 3 vertices and 6 arcs as follows:

V i = {vi1, vi2, vi3} Ai = V i × V i \ {(vi1, vi1), (vi2, v
i
2), (vi3, v

i
3)}

The objective value and capacities are set as

ca =


−si a = (vi1, v

i
2)

si a = (vi3, v
i
2)

0 else

, b1
vij

=

{
2 j = 3

1 else
, b2 =

{
2 j = 2

1 else
.

The gadget for si ∈ S is depicted in Figure 9. Next, we examine the solution on one

vi1

1|1

vi2

1|2

vi3

2|1

−si

si

Figure 9: Alternating circuit gadget implementing the decision of picking si ∈ T

gadget only. In each alternating circuits, the sum of capacities in both scenarios is 4.

35



A ADDITIONAL NP-HARDNESS PROOFS

Thus, two arcs must be part of the matching and the sum over all pre-matchings for

the three vertices must be two. Since none of the vertices has capacity ≥ 2 in both

scenarios, the pre-matching on each vertex can be at most one. Thus, the only feasible

pre-matchings are setting two of the three vertices to one and the remaining to zero.

This results in three distinct pre-matchings: for j ∈ {1, 2, 3}, let

hkvij
=

{
0 j = k,

1 else.

For each pair of scenario and pre-matching, there is exactly one feasible matching. For

h1, the corresponding objective values are 0 in scenario b1 and si in scenario b2, for h2

they are si and 0 and for h3, the corresponding objective values are 0 and −ai. The third

pre-matching returns the worst solution in both scenarios. Thus, an optimal solution will

use either h1 or h2 with objective value of si in either the first or the second scenarios.

Analogous to the proof of Theorem 3, it holds that an optimal solution of the instance

of DRUPbM has an optimal pre-matching h∗ objective value ≥ 1
2

∑
ı∈S si if and only if

T := {i : h∗
vij

= h1
vij

for j ∈ {1, 2, 3}} is a solution to the instance of Partition. �
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