
Robust Appointment Scheduling

with General Convex Uncertainty Sets

Judith Brugman∗, Dick den Hertog†, Johan S.H. van Leeuwaarden‡

Abstract

The Appointment Scheduling Problem (ASP) involves scheduling a finite number of cus-
tomers with uncertain service times, served consecutively by a single server, aiming to minimize
the weighted costs of waiting time, idle time, and overtime. Previous studies using stochas-
tic programming were limited to small instances. We introduce a Robust Optimization (RO)
approach that considers service times within a specified uncertainty set and aims to minimize
the worst-case costs, which requires maximizing a convex function. Combining advanced meth-
ods from Robust Convex Optimization, such as the Reformulation-Perspectification Technique
(RPT) and the cutting-set approach, leads to an exact solution procedure for determining op-
timal schedules. Our robust framework for ASP is designed to manage large instances and
accommodates general convex uncertainty sets. Based on extensive numerical experiments for
polyhedral and ellipsoidal uncertainty sets, and problem instances with over 50 customers, we
reveal intricate interactions between the uncertainty of service times, the cost function, and
the structural characteristics of optimal schedules.

Keywords: Appointment Scheduling, Robust Convex Optimization, Convex Uncertainty Sets,
Reformulation-Perspectification Technique (RPT), Computational Tractability.

1 Introduction

The efficient management of appointments is increasingly crucial in a world where online booking
systems are becoming more popular and customer expectations for superior service remain high.
Efficient appointment scheduling is essential not only for optimizing resource utilization but also for
minimizing delays in the system, thereby enhancing overall operational efficiency and service qual-
ity across various sections, such as healthcare, transportation and customer service. These sectors
rely on allocating appointments to available resources – such as time slots, personnel or equip-
ment – while considering sector-specific constraints and preferences. The complexity of scheduling
is heightened by uncertainties such as the unknown duration of appointments. In healthcare, ef-
fective appointment scheduling is vital for ensuring timely access to medical services, reducing
patient waiting times, and optimizing the use of expensive equipment and highly-skilled personnel.
Given the rising healthcare costs and growing demand for services (Hulshof et al. 2012), improving
scheduling has been a key focus worldwide. The unpredictable nature of appointment durations,

∗Department of Econometrics and Operations Research, Tilburg University, j.m.brugman@uvt.nl
†Amsterdam Business School, University of Amsterdam, d.denhertog@uva.nl
‡Department of Econometrics and Operations Research, Tilburg University, j.s.h.vanleeuwaarden@uvt.nl

1

from medical consultations to surgical procedures, can lead to extended waits and idle times if
not properly managed. A comprehensive discussion of these challenges is provided in Gupta and
Denton (2008).

Classic setting. The literature on optimal appointment scheduling for systems with uncertain
services is deeply rooted in queueing theory (Bailey 1952, Mercer 1960, Wang 1993, Kaandorp and
Koole 2007, Green and Savin 2008, Hassin and Mendel 2008, Zacharias and Pinedo 2014, Liu 2016,
Kuiper et al. 2017, Zacharias and Yunes 2020, Zhou et al. 2021). In particular, the Appointment
Scheduling Problem (ASP), introduced in the work of Bailey (1952), is a well-studied problem that
has received considerable attention from researchers and practitioners. The classic ASP considers
a finite number of customers with uncertain service times, which are served consecutively by a
single server during a fixed time horizon. The primary objective is to devise a schedule that
assigns a time slot to each customer in such a way that it minimizes the total weighted costs of
customers’ waiting time and server’s idle and overtime. These scheduling decisions must be made
well ahead of time, despite incomplete knowledge of service durations, which adds high complexity
to the problem. Allocating overly short time slots can cause delays in subsequent appointments
and increased customer wait times, reducing service quality. Conversely, overly long slots may lead
to periods of underutilization and potentially unnecessary overtime, indicating system inefficiency.
The classic ASP is thus a stochastic optimization problem balancing these two opposing goals. It
typically requires distributions for a finite number of service times, a linear cost function penalizing
both expected wait and idle time, and queue dynamics describing waiting and idle times as functions
of the appointment and service times.

Limitations of stochastic optimization. The classic ASP thus searches for optimal ways of
scheduling a finite number of customers by solving a stochastic optimization problem. Extensions
of the ASP include considerations for no-shows, multiple servers, and customer preferences. For
comprehensive literature reviews, see Cayirli and Veral (2003), Gupta and Denton (2008), Ahmadi-
Javid et al. (2017), and Ala and Chen (2022), which focus primarily on healthcare services. Various
methods, including sample average approximation (SAA), quasi-gradient methods, and sequential
bounding approaches, have been employed to solve the ASP (Robinson and Chen 2003, Denton
and Gupta 2003b, Shapiro et al. 2009, Birge and Louveaux 2011, Begen et al. 2012). SAA, for
instance, reformulates the problem into a linear program for a given scenario of service times
and considers average costs over a large number of sampled scenarios. These traditional methods
typically operate under the assumption of precise input data, including a full specification of the
service time distribution. As an alternative, Distributionally Robust Optimization (DRO) only
requires partial information of the distributions, including metrics like the mean, moments, and
range. DRO then finds schedules that minimize the worst-case expected costs among all possible
distributions that comply with this partial information. Several papers solve some version of the
distributionally robust ASP (Kong et al. 2013, Mak et al. 2015, Qi 2016, Bertsimas et al. 2018,
Padmanabhan et al. 2021, van Eekelen et al. 2024). Despite the effectiveness of SAA and related
DRO techniques in developing schedules while facing uncertainties, they are not without limitations.
Both approaches encounter what is commonly referred to as the “curse of dimensionality”, since the
complexity of the problem increases exponentially with the number of customers. Consequently,
existing literature typically restricts the application of these methods to problems with at most 20
customers, highlighting a significant challenge in extending these models to larger-scale problems.
These severe computational restrictions motivated us to develop new methods based on robust
optimization, ensuring efficiency and scalability for larger problem instances.

2

Robust optimization. In recent years, Robust Optimization (RO) has emerged as a promising
paradigm for addressing complex optimization problems, notable for its computational tractability
and high modeling power. The concept of RO was first mentioned in the early 1970s in Soyster
(1973), and has gained significant attention from researchers particularly since the 2000s. It has been
used in many applications, such as energy, logistics, finance and health care; for literature reviews
we refer to Beyer and Sendhoff (2007) and Gabrel et al. (2014). Furthermore, the foundational
principles for different categories of RO problems are comprehensively detailed in the books Ben-
Tal et al. (2009) and Bertsimas and den Hertog (2022). Unlike traditional stochastic methods, RO
addresses uncertainty by defining an uncertainty set in which the uncertain parameters are assumed
to reside. Choosing the type of uncertainty, often based on a box, ellipsoidal or polyhedral set, is
delicate, therefore a practical guide is given in Gorissen et al. (2015). Note that RO does not rely on
probability distributions, but the uncertainty sets can be designed building upon asymptotic results
of probability theory, such as the central limit theorem (Bandi and Bertsimas 2012). The objective
of RO is to identify solutions that are resilient, performing optimally in the worst-case scenarios
within this uncertainty set. The essence of RO lies in its ability to transform problems with robust
constraints, which must hold for every possible value within the set, into tractable deterministic
equivalents known as robust counterparts. This transformation allows RO to efficiently handle
larger-scale problem instances and potentially address the challenges of high dimensionality.

Robust optimization for ASP. Although there have been notable attempts in applying RO to
the ASP, these have often necessitated restrictive choices regarding uncertainty sets to preserve
tractability. Mittal et al. (2014) explore the stochastic linear ASP model with service times con-
fined to specific intervals, known as box uncertainty. By recognizing that the worst-case scenario
consistently selects one of the extreme points of these intervals, they manage to derive closed-form
optimal schedules that effectively balance the maximum underage and overage cost. Expanding on
this idea, Schulz and Udwani (2019) allow for heterogeneous underage costs, yielding approximate
solutions instead. Further developments by Bauerhenne et al. (2024) also embrace box uncertainty,
including no-show probabilities, to minimize idle and overtime costs while ensuring waiting time
guarantees. They tackle this by analytically determining worst-case scenarios for the service times
and no-shows, and subsequently solving a mixed-integer linear program. Bandi and Gupta (2020)
examine surgical scheduling within hospitals using a polyhedral uncertainty set. Their model man-
ages staffing and sequencing constraints to optimize surgery schedules, but a critical analysis reveals
two significant misconceptions in their approach, suggesting they inadvertently simplify the prob-
lem to box uncertainty. Note that initially, uncertainty was only present in the objective function,
affecting the waiting times, idle times, and overtime. However, their implementation considers
two sets of robust constraints involving the durations, meaning it spreads the uncertainty across
multiple inequalities. In general, even though two nominal problems are equivalent, their resulting
robust problems, as explained in Chapter 12 of Bertsimas and den Hertog (2022), could be different.
Indeed, that is also the case for the robust ASP, due to the non-disjoint nature of the uncertainty.
This modification becomes apparent when recognizing that each uncertain duration is now involved
in several constraints, so each time the worst-case can be selected differently, and being the only
uncertain parameter in the constraint, it can fluctuate between its minimum and maximum value
in the polyhedron (independent of the other parameters). This contradicts the principles of poly-
hedral uncertainty, where the possible scenarios for each parameter are interdependent. Further
complicating the issue, when their work introduces the dual variables to obtain the robust counter-
part, these are uniformly chosen over all constraints, imposing an unnecessary restriction. These
critical points underline that the approach taken by Bandi and Gupta (2020) aligns more with the

3

f0

U0

(a) Step 0

f1

U1

(b) Step 1

f1

U2

(c) Step 2

Figure 1: Visualization of the steps in the method for robust convex optimization

principles of box uncertainty, as previously explored by Mittal et al. (2014), instead of polyhedral
uncertainty. This clearly highlights the challenges in applying RO to the ASP when dealing with
more complex uncertainty sets. We will address these challenges by implementing and extending
state-of-the-art RO methods that are suitable for general convex uncertainty sets.

Robust convex optimization. We conclude that the primary challenge in developing a com-
putationally tractable RO framework for ASP stems from the convex nature of the cost objective,
with respect to the uncertain parameters. In contrast to robust concave optimization, for which
tractable equivalent reformulations can be derived as demonstrated by Ben-Tal et al. (2015), ro-
bust convex optimization presents greater complexity, making such reformulations generally out
of reach. Note that with robust convex optimization, we imply both convexity in the uncertain
parameters and variables (contrary to Ben-Tal et al. (1998), that can only deal with convexity in
the decision variables), as well as a convex uncertainty set. The complexity largely comes from the
initial step that involves identifying the worst-case scenario within the uncertainty set, essentially
maximizing a convex function. Finding a global maximum is known to be hard in this case. For
example, for polyhedral uncertainty we could exhaustively explore all corner points of the uncer-
tainty set, with the understanding that the function reaches its maximum at one of these points,
but this quickly becomes computationally too expensive. Overcoming this challenge involves not
only advanced mathematical techniques but also innovative reformulations to ensure scalability and
general applicability. Nevertheless, recent advancements by Bertsimas et al. (2023) give rise to new
opportunities, unifying and extending the existing approaches from the literature for robust convex
optimization. This novel RO approach consists of four steps:

(0) The starting point is a robust convex optimization problem as in Figure 1a.

(1) Transform this robust convex problem into an equivalent bilinear problem with a nonconvex
uncertainty set, see Figure 1b, making the function computationally tractable but complicat-
ing the uncertainty set.

(2) Use the Reformulation-Perspectification Technique (RPT) from Zhen et al. (2021) to generate
a convex outer approximation of this nonconvex set; see Figure 1c, simplifying it into a robust
concave optimization problem.

(3) Solve this robust concave problem using either the support function or via the dual problem,
as demonstrated in the work of Ben-Tal et al. (2015), yielding a conservative approximation
for the optimal objective value and thereby establishing an upper bound in the context of
minimization problems.

4

Additionally, the work of Bertsimas et al. (2023) proposes a procedure to derive a lower bound, by
intelligently selecting a finite scenario set from the uncertainty set and optimizing the correspond-
ing linear program exclusively over this subset. While promising, several challenges persist when
applying this framework to obtain lower and upper bounds. Given its generality, each step must
be carefully tailored to the specific objective and uncertainty set in question. This task will prove
to be very complex, as it requires e.g. fitting the problem setting in the notation of the framework,
applying RPT to convex uncertainty sets, and deriving support functions. Moreover, obtaining
exact robust solutions remains critical in many applications, which is where we extend their work
by adopting a cutting-set approach.

Structural properties of optimal schedules. As mentioned, a key methodological motivation
for this study is to design a computationally efficient robust optimization framework, capable of
handling general characterizations of uncertainty and large problem instances. Equally important
is our goal to assess the interplay between uncertainty and optimal schedules, providing valuable
guidance for practitioners looking to implement these robust scheduling solutions. Earlier studies
revealed several structural features of optimal schedules. For i.i.d. service times with known dis-
tributions, studies by Wang (1993), Denton and Gupta (2003a), Robinson and Chen (2003), and
Kuiper and Lee (2022), using various stochastic programs and optimization methods observed a
typical ‘dome-shaped’ pattern. In these schedules, time slots first increase and then decrease, allo-
cating more time for customers in the middle of the day and less at the beginning and end. This can
be explained by non-stationary queueing theory: early delays cause further delays, necessitating
longer appointment slots early on. However, longer slots risk idleness, so shorter slots at the start
and end can prevent idling and overtime. Consequently, longer slots are best placed in the middle,
balancing idling and waiting times. This dome-shaped pattern is a common feature in ASP liter-
ature assuming independent service times. In contrast, literature on distributionally robust ASP
with partially known service time distributions often finds ‘decreasing’ schedules, where slot lengths
shorten over time. This is due to worst-case scenarios grouping long service times early on, requiring
more time allocation for initial jobs to mitigate delays. This decreasing schedule contrasts with Bai-
ley’s scheduling rule, which uses increasing schedules to balance idle and waiting times effectively.
Recent research by van Eekelen et al. (2024) using DRO methods that assume independent service
times found structures resembling Bailey’s rule, with minimal early slots. These optimal schedules
shift from dome-shaped to increasing when overtime costs are high. Additionally, Benjaafar et al.
(2023) found optimal increasing schedules when incorporating service level constraints.

This paper’s contributions. In this paper, we develop a general comprehensive framework for
appointment scheduling to determine robust schedules under service time uncertainty. Our key
contributions can be divided into two sets:

• Methodological innovations: The first set of contributions revolves around introducing a new
framework for studying the robust ASP, by applying the method of Bertsimas et al. (2023) for
robust convex optimization to this particular problem to obtain lower and upper bounds, and
enhancing it with a cutting-set approach to obtain exact solutions. Our framework is designed
to determine schedules that minimize the worst-case weighted sum of waiting time, idle time,
and overtime, while accounting for uncertainty in service durations. It is capable of handling
larger-scale instances and can provide optimal robust schedules for problems involving more
than 50 customers. The framework is applicable for general convex uncertainty sets, and is
illustrated through implementation for both polyhedral and ellipsoidal uncertainty.

5

• Practical implications and insights: The second set of contributions is of a more practi-
cal nature and explores the implications of uncertainty within the ASP and its impact on
scheduling decisions. Our comprehensive analysis of the ASP highlights the intricate inter-
actions between the type and size of uncertainty of service times, the cost function, and the
structural characteristics of optimal schedules and worst-case scenarios. We demonstrate for
budget and ellipsoidal uncertainty in particular, that a diverse array of optimal robust sched-
ules can emerge and provide insights into the conditions under which schedules are decreasing,
dome-shaped or increasing.

Outline. The remainder of this paper is structured as follows. Section 2 formally outlines the robust
Appointment Scheduling Problem. In Section 3, we introduce the general framework developed to
solve the robust ASP, by discussing subsequently the generation of the upper bound, lower bound
and exact solution. The application of this framework to polyhedral and ellipsoidal uncertainty sets
is demonstrated in Sections 4.1 and 4.2, respectively. Section 5 analyzes the optimal robust schedules
and worst-case scenarios that emerge from specific settings for budget uncertainty and ellipsoidal
uncertainty, together with some computational results, including cost bounds and running times.
Finally, Section 6 concludes the paper with a summary of our findings and an outlook on promising
directions for future research.

2 Robust appointment scheduling

Consider a service system with a single server that needs to serve N customers within a fixed
planning horizon T . Customers arrive punctually and are served in order of arrival. Let xn denote
the service time of customer n, collectively represented by the vector x = (x1, . . . , xN). Prior to
service, x is unknown and is constrained within a predefined convex uncertainty set U , i.e. x ∈ U .
This set is defined by inequalities gi(x) ≤ 0 for i = 1, . . . ,K, where each gi is convex. The goal
is to determine the optimal schedule s = (s1, . . . , sN), with sn denoting the allocated time slot for

customer n. The appointment time for the n-th customer is thus an =
∑n−1

i=1 si. The schedule
must ensure that each sn is nonnegative and the total time does not exceed T (equivalently, we can

condition that
∑N

n=1 sn = T , as w.l.o.g. we can assign the remaining time to the last customer).

This specifies the feasible schedule set as S = {s : s ≥ 0,
∑N

n=1 sn = T}.

The cost function f(s,x), aimed at minimization, depends on both the schedule s and the service
durations x. It includes the weighted sum of total waiting time W , server’s idle time I, and overtime
O, with respective weights cW , cI and cO. Unlike stochastic models where typically only idle time
or overtime is included as their expectations differ only by a constant (Proposition 1 in Denton and
Gupta (2003b)), our robust setting necessitates considering all three components explicitly.

Let wn denote the waiting time of customer n, so that the total waiting time is W =
∑N

n=1 wn.
These waiting times can be calculated recursively starting with w1 = 0 and for n = 2, . . . , N using

wn = (wn−1 + xn−1 − sn−1)
+, leading to wn = max1≤l≤n−1

{
0,
∑n−1

j=n−l(xj − sj)
}
. The total

waiting time W is the sum over all customer waiting times. The total idle time I reflects the gaps
between consecutive services and can be calculated as the difference between the starting time of
the last appointment (wN +

∑N−1
j=1 sj) and the cumulative service time of all customers before that

(
∑N−1

j=1 xj). Lastly, the overtime O is calculated as the excess working time beyond T . This can
be conceptualized as the waiting time of a last hypothetical customer N + 1 scheduled at time T .

6

Hence,

W =

N∑
n=1

max
1≤l≤n−1

{
0,

n−1∑
j=n−l

(xj − sj)
}

I = max
1≤l≤N−1

{
0,

l∑
j=1

(sj − xj)
}

O = max
1≤l≤N

{
0,

N∑
j=(N+1)−l

(xj − sj)
}

Combining these expressions, we define the cost objective of the robust ASP as

f(s,x) = cWW + cII + cOO. (1)

Note that this cost function is the sum of the maximum of linear functions, and is therefore convex
with respect to the uncertain parameters xn and the decision variables sn.

Thus, the goal of the robust ASP is to identify a feasible schedule that minimizes the worst-case
costs across all potential outcomes of the service times within the uncertainty set, which can be
restated using epigraph notation:

min
s∈S

max
x∈U

f(s,x) ⇐⇒
min
s∈S, τ

τ

s.t. f(s,x) ≤ τ ∀x ∈ U
(2)

As extensively discussed in Section 1, this robust ASP, including a robust constraint that is convex
in the uncertain parameters, is very difficult to solve.

3 General robust framework

This section proposes a general robust framework for the robust ASP as described in (2). This
framework provides upper and lower bounds on worst-case costs, and ultimately identifies an optimal
robust schedule.

3.1 Upper bound

To derive an upper bound, we reformulate (2) into a tractable approximate problem. This involves
modifying the robust constraint by enlarging the uncertainty set, following the methodology of
Bertsimas et al. (2023) for handling robust convex constraints. We outline the three primary steps
of their framework (visualized in Figure 1), and tailor them to the robust ASP constraint.

Step 1: Exact bilinear reformulation

We begin by reformatting the robust ASP constraint in (2) to the robust convex optimization
framework. We identify the sum-of-max of linear (SML) structure in the cost function in (1), where
each of the N + 1 terms represents the maximum of a set of linear functions with indices denoted
by the set In. The function can be represented as:

f(s,x) = h(y) =

N+1∑
n=1

max
l∈In

ynl. (3)

7

In this formulation, the terms ynl = aTnlx + bnl(s) are affine, defined by constant vectors anl
and functions bnl(s) depending linearly on decision variables s. This structural information is
encapsulated in the matrix A ∈ RM×N and avector function b(s) ∈ RM , where M = O(N2)
reflects the total number of linear terms. Detailed constructions of A and b(s), including the
relationship b(s) = −As, are further elaborated in Appendix B.1, with an illustrative example for
clarity.

The reformatted ASP constraint now complies with the general robust convex constraint in Bert-
simas et al. (2023):

h(A(s)x+ b(s)) ≤ 0 ∀x ∈ U , (4)

where h (the SML function) is a proper, closed and convex function, the functions A(s)(= A) and
b(s)(= −As) are affine in s, and U is a convex set.

Now, let h∗ and h∗∗ denote the first and second convex conjugate of function h, respectively.
Utilizing the property that h = h∗∗ for closed and convex functions, we can take the supremum of
h∗∗(A(s)x+ b(s)) over x ∈ U . By rearranging and substituting the resulting terms, Proposition 5
in Bertsimas et al. (2023) demonstrates that the general constraint in (4) is equivalent to

sup
(w,w0,x,V,v0)∈Θ

{
Tr(A(s)TV) + b(s)Tw − w0

}
≤ 0, (5)

where Tr denotes the trace of the matrix. The corresponding uncertainty set is defined as

Θ = {(w, w0,x,V,v0) | x ∈ U , w ∈ dom h∗, h∗(w) ≤ w0, V = wxT , v0 = w0x},

which introduces new uncertain parameters w ∈ RM and w0 ∈ R, along with their product terms
V ∈ RM×N and v0 ∈ RN multiplying by x.

For the robust ASP where h(y) represents the SML function, the convex conjugate is h∗(w) = 0
with domain dom h∗ =

{
w | w ≥ 0, HTw = 1

}
(proof in Appendix A.1). Here, matrix H ∈

{0, 1}M×(N+1) is used, where each entry hmn corresponds to whether linear function m belongs
to the maximum operator n, with hmn = 1 for m ∈ In and 0 otherwise. Considering w0 appears
negatively in the supremum and the constraint is simplified to w0 ≥ 0, the optimal solution is
w0 = 0. Consequently, also v0 = w0x = 0, allowing us to omit these two variables.

So, the reformulated constraint in (5) for the ASP is

sup
(w,x,V)∈Θ

{
Tr(ATV) + b(s)Tw

}
≤ τ, (6)

and the uncertainty set is simplified to

Θ =
{
(w,x,V) | x ∈ U , w ≥ 0, HTw = 1, V = wxT

}
.

Hence, the resulting robust constraint is linear in terms of both x and s, yet now the uncertainty
set is nonconvex due to the bilinear equality constraints.

Step 2: Convex outer approximation

In the second step, we create a safe approximation of this robust constraint by taking a convex
outer approximation of the uncertainty set. Initially, we define a preliminary uncertainty set Θ0,
by excluding the nonconvex bilinear constraints V = wxT from Θ:

Θ0 =
{
(w,x,V) | x ∈ U , w ≥ 0, HTw = 1

}
.

8

Using Θ0 in (6) yields an upper bound by safely expanding the original set, as Θ ⊂ Θ0. However,
this approximation might not be tight due to the removal of the bilinear equality constraints,
resulting in a significant loss of information.

To enhance this approximation while preserving convexity, we then apply the Reformulation-
Perspectification Technique (RPT) from Zhen et al. (2021), introducing additional linear constraints
that recapture some lost information. This technique involves multiplying each constraint in U ,
gi(x) ≤ 0 for i = 1, . . . ,K, with the non-negativity constraints wj ≥ 0 for j = 1, . . . ,M . From this
nonconvex result, the RPT produces a convex constraint by considering the perspective function and
replacing the terms V = wxT . The exact implementation of the RPT depends on the form of this
function gi(x). Furthermore, we multiply the parameter x directly with the constraint HTw = 1
and perform the same substitution. Hence, this yields the following convex constraints:

(wj ≥ 0)× (gi(x) ≤ 0) → wjgi(x) ≤ 0 ∀i, j
(HTw = 1) × x → HTV = 1xT .

This leads to an improved convex uncertainty set Θ1, integrating Θ0 with the new constraints

Θ1 =
{
(w,x,V) | (w,x,V) ∈ Θ0, wjgi(x) ≤ 0 ∀i, j, HTV = 1xT

}
.

Employing Θ1 in (6) allows for a tighter safe approximation than using Θ0, as Θ ⊆ Θ1 ⊆ Θ0:

sup
(w,x,V)∈Θ1

Tr(ATV) + b(s)Tw ≤ τ. (7)

So, the second step results in an approximate linear constraint with a convex uncertainty set.

Step 3: Solving robust linear problem

Incorporating the robust constraint (7) into (2) leads to the following robust problem:

min
s∈S, τ

τ (8)

s.t. Tr(ATV) + b(s)Tw ≤ τ ∀(w,x,V) ∈ Θ1.

Note that this problem is linear and the uncertainty set is convex, therefore there are two simple
non-iterative approaches: computing the support function of the uncertainty set (Ben-Tal et al.
2015) and deriving the dual formulation of the problem (Gorissen and den Hertog 2013).

Support function: To solve the problem using the support function, we first consolidate all decision
variables into the vector z = (w;x;v1; . . . ;vN), where vn is the n-th column of V. We define vector
y(s) =

[
b(s); 0; a1; · · · ; aN

]
, allowing us to reformulate the robust constraint as

sup
(w,x,V)∈Θ1

{
Tr(ATV) + b(s)Tw

}
≤ τ ⇐⇒ sup

z∈Θ1

y(s)T z ≤ τ ⇐⇒ δ∗(y(s) |Θ1) ≤ τ,

where δ∗ is the support function of Θ1 (the convex conjugate of the indicator function). The
simplified version of the upper bound problem in (8) is therefore

min
s∈S, τ

τ (9)

s.t. δ∗(y(s) |Θ1) ≤ τ.

9

This model can be easily solved using standard solvers, its complexity depending on the structure of
δ∗, which is further detailed in Bertsimas and den Hertog (2022) for various uncertainty sets.

Dual problem: Alternatively, we can solve the robust problem using its dual formulation. We
begin by ensuring that the optimization variables s and τ are explicitly defined in the problem,
incorporating that b(s) = −As. We also introduce a constant variable ϕ = 1, so that the uncertainty
is only in the left-hand side of the first constraint. The primal formulation is structured as

max
s,τ,ρ

− τ (10)

s.t. −wTAs− τ + ρ Tr(ATV) ≤ 0 ∀(w,x,V) ∈ Θ1

1T s ≤ T

ϕ = 1

s ≥ 0.

Beck and Ben-Tal (2009) demonstrate that the dual of a robust problem can be derived by dualizing
the deterministic problem and then substituting the ∀-quantifier in the primal with an ∃-quantifier
in the dual. So, to obtain the dual problem, we introduce dual variables y1, y2 and y3 corresponding
to the primal constraints. Quickly identifying that y1 = 1 and y3 = −Tr(ATV), we can eliminate
these variables and focus on y2 = y. This leads to the alternative version of (8):

min
y,w,x,V

Ty − Tr(ATV) (11)

s.t. −ATw + 1y ≥ 0

y ≥ 0

x ∈ U
w ≥ 0

HTw = 1

wjgi(x) ≤ 0 ∀i = 1, . . . ,K, j = 1, . . . ,M

HTV = 1xT .

This problem is readily solved by standard optimization solvers. The complexity largely depends on
the structure of the functions g′i, and the number of variables and constraints increased to O(N3)
and O(KN2), respectively. This method is particularly useful when the support function is difficult
to derive. Note that the problem in (9) is equivalent to the dual of this dual problem in (11).

To determine the optimal schedule s∗, we reference the dual variables associated with the first
constraint in the dual problem (see Theorem 2.3 in Bertsimas and den Hertog (2022)).

3.2 Lower bound

To establish a lower bound for the robust problem (2), we first select a finite subset of scenarios Ũ
from the full uncertainty set U . The selection of Ũ leverages information of dual problem’s optimal
solutions, specifically V∗, x∗ and w∗. Note that x∗ may not represent a worst-case scenario
directly, due to its absence in the dual problem’s objective. Instead, we extract potential scenarios
by ensuring the optimal relationship V∗ = w∗x∗T is maintained, even though this is not explicitly

10

enforced by the model. Each row of V∗, v∗T
m , should theoretically satisfy v∗T

m = wmx∗T . From
this, candidates for x∗ are deduced by dividing each row of v∗T

m by its corresponding wm, yielding
multiple scenario candidates x̃m. Only those that lie within U and are unique are kept in Ũ .

Imposing a constraint for each scenario in Ũ , we solve the deterministic problem:

min
s,τ

τ (12)

s.t. f(s,x) ≤ τ ∀x ∈ Ũ
s ∈ S.

This problem features up to M convex constraints and is straightforward to solve. Given Ũ ⊂ U ,
the solution provides a conservative estimate, thus establishing a lower bound.

To derive a tighter lower bound, we employ an adversarial approach for scenario selection combined
with a hill climbing method for scenario improvement. Starting with an empty set, Ũ0, we initially
select the highest-cost scenario from Ũ given the upper bound schedule. For subsequent iterations,
we recalculate the optimal schedule based on the updated Ũ0 and continue to add scenarios that
yield the highest costs under this new schedule. This iterative process continues until adding more
scenarios does not increase the resulting costs.

Subsequently, we apply hill climbing on these selected scenarios in Ũ0 to refine them into Ũ1. Inspired
by Zhen et al. (2021) and Bertsimas et al. (2023), we fix the schedule s′ from the adversarial phase
and address the following bilinear form of the problem (6):

sup
x∈U,w∈domh∗

{
wTAx+ b(s′)Tw

}
.

Initially, we fix scenario x′ as one of the candidates in Ũ0 and aim to find an optimal w within the
domain dom h∗. Therefore, we solve the following linear problem:

max
w∈domh∗

wT (Ax′ + b(s′)) =

N∑
n=1

max
{wn: wn≥0,1Twn=1}

wT
n (Ax′ + b(s′))n.

For all n, optimal allocation is achieved by assigning wni = 1 to the index that maximizes the value
of (Ax′ + b(s′))n, and wni = 0 otherwise. Hence, when ei denotes the unit vector, we set

w′
n = ei∗ with i∗ = argmax(Ax′ + b(s′))n. (13)

With this w′ established, we next seek an improved x′′ by optimizing the linear problem over the
convex set U :

x′′ = arg max
x∈U

w′TAx+ b(s′)Tw′ = arg max
x∈U

w′TAx. (14)

This problem can be efficiently solved. However, whether this problem also has an explicit solution,
depends on the choice of the uncertainty set.

This iterative process alternates between refining w and x until no further improvements are ob-
served in the objective value. Each scenario in Ũ0 is processed in this manner, producing an
improved scenario to include in Ũ1. This refined set is then utilized to solve the deterministic
problem (12), providing a tighter lower bound.

11

3.3 Exact solution

To obtain the exact robust bound and corresponding optimal robust schedule for problem (2), we
use a cutting-set approach to iteratively refine the lower bound by expanding the scenario set Ũ1

one-by-one (Bienstock and Özbay (2008), Bertsimas et al. (2016)). The method starts with a fixed
schedule s′, derived from the lower bound calculations, and identifies the corresponding worst-case
scenario x from the uncertainty set to add to the expanded set Ũ2:

max
x∈U

f(s′,x). (15)

This maximization problem, due to containing max operators, requires transforming into a mixed
integer linear optimization problem, introducing binary variables and additional constraints. Given
the potential time intensity of this task, particularly for large customer sets, we may impose a limit
on this optimization and incorporate the current, possibly sub-optimal, value of x into Ũ2.

Next, we recompute the optimal schedule s and associated costs for the expanded set Ũ2:

min
s∈S

max
x∈Ũ2

f(s,x), (16)

which is then used as the basis for the subsequent iteration of (15).

For each iteration, (15) and (16) result in a new upper and lower bound, respectively. The lower
bound progressively increases as scenarios are added to Ũ2. Simultaneously, the cost of the worst-
case scenario, derived from a feasible but potentially non-optimal schedule, establishes an upper
bound, but on the contrary this does not necessarily decrease with each iteration. The process
terminates once the gap between these two bounds narrows below a predefined precision level ϵ.
Convergence is guaranteed by Section 5.2 in Mutapcic and Boyd (2009), given that:

• The master problem (16) is solved exactly.

• The subproblem (15) of finding the worst-case is solved exactly.

• The function f(s,x) is uniformly Lipschitz continuous in s (see proof in Appendix A.2).

• The feasible set S is bounded.

In summary, the method outlined above applies for any convex uncertainty set, though a particular
uncertainty set requires several specific steps. For the upper bound, particularly, the RPT technique
in Step 2 must be tailored to the convex constraints in the set. This adaptation directly influences
Step 3, where both the support function derivation and the constraint formulation in the dual
problem are affected. For the lower bound, the complexity of the hill-climbing method varies with
the type of uncertainty, occasionally permitting an analytical solution. The duration to determine
the exact solution also greatly depends on the complexity and dimensions of the uncertainty set.
The next section will illustrate how these methods are specifically adapted for polyhedral and
ellipsoidal uncertainty sets.

4 Application to uncertainty sets

In this section, we apply the general robust ASP framework to both the polyhedral and ellipsoidal
uncertainty set, and detail the steps that need to be adapted to these specific constraints. Both
sets are widely applied in RO; see Bertsimas and den Hertog (2022).

12

4.1 Polyhedral uncertainty

Here, we assume polyhedral uncertainty for x, defined by a series of K linear inequalities: x ∈ U =
{x : Dx ≤ d} with D ∈ RK×N and d ∈ RK .

For the upper bound, we start with the reformulated constraint (6), and consider the preliminary

uncertainty set: Θpol
0 = {(w,x,V) | Dx ≤ d, w ≥ 0, HTw = 1}. To refine this, we apply RPT by

multiplying the linear inequalities in Dx ≤ d with w ≥ 0, and the equality HTw = 1 with x, and
then substituting V = wxT :

(w ≥ 0) × (Dx− d ≤ 0) → VDT −wdT ≤ 0

(HTw = 1) × x → HTV = 1xT .

This results in an improved convex uncertainty set:

Θpol
1 = {(w,x,V) | (w,x,V) ∈ Θpol

0 , VDT −wdT ≤ 0, HTV = 1xT }.

We then use this refined set to solve (8) by applying the two methods based on either the support
function or the dual formulation.

Given the polyhedral nature of the set Θpol
1 , that can be expressed as Θpol

1 = {z | D̃z ≤ d̃}, where
z = (w; x; v1; . . . ; vN) includes all decision variables, we derive its support function. The details
of D̃ and d̃ are outlined in Appendix B.2. The support function then simplifies to a linear system
(Bertsimas and den Hertog 2022):

δ∗(y(s) |Θpol
1) = max

z
{y(s)T z | D̃z ≤ d̃} = min

u
{d̃Tu | D̃Tu = y(s), u ≥ 0}.

Integrating this into our optimization problem (9) and using the structure of D̃, d̃ and y(s),
Appendix B.2 demonstrates how we obtain the following result:

min
s,τ,w1,w2,w3,W4,W5

τ (17)

s.t. dTw1 + 1Tw3 ≤ τ

−w2 +Hw3 −W4d = b(s)

DTw1 −WT
5 1 = 0

W4D+HW5 = A

w1,w2,W5 ≥ 0

1T s = T

s ≥ 0.

This linear optimization problem is characterized by O(KN2) decision variables and O(N3) linear
constraints, which are addressed directly through standard optimization techniques.

The dual approach incorporates the constraints from Θpol
1 into (11), leading to the following linear

13

optimization problem:

min
y,w,x,V

Ty − (Tr(ATV) + α(w)) (18)

s.t. θ(w) + 1y ≥ 0

y2 ≥ 0

Dx ≤ d

w ≥ 0

HTw = 1

wdT −VDT ≥ 0

HTV = 1xT .

The generation of a lower bound adheres to the general framework, with the scenario set Ũ being
refined to to ensure all candidates meet the criteria Dx ≤ d. Transitioning from Ũ0 to Ũ1 through
hill climbing involves iterative computation of (13) and (14). While this last optimization lacks an
explicit solution for polyhedral uncertainty, finding a numerical solution remains easy due to the
linearly of the problem over a polyhedron.

The exact solution is derived using the cutting set as described in the general framework, which
converges without specific requirements on the set U . Theoretically, an optimal solution could be
obtained by evaluating all extreme points of the polyhedron {x : Dx ≤ d} as the optimum is
always attained at one of those points, and using these points as the scenario set in model (12).
Nonetheless, the exponential growth in the number of extreme points with N renders this approach
impractical, and therefore we use the iterative process described in the general framework.

4.2 Ellipsoidal uncertainty

Here, we define an ellipsoidal uncertainty set for the service times as x ∈ U = {x : (x−x̄)TQ(x−x̄) ≤
ρ2} = {x : ||Q 1

2 (x − x̄)|| ≤ ρ}, where x̄ represents the nominal service times, and Q is a positive
definite symmetric matrix.

For the upper bound, we integrate the ellipsoidal constraint into (6), so we formulate the preliminary

uncertainty set as Θell
0 = {(w,x,V) | ∥Q 1

2 (x− x̄)∥ ≤ ρ,w ≥ 0, HTw = 1}. Progressing to the RPT

application, we multiply the ellipsoidal constraint ∥Q 1
2 (x − x̄)∥ ≤ ρ with w ≥ 0, and HTw = 1

with x, and substitute V = wxT , resulting in convex constraints:

(w ≥ 0) ×
(
∥Q 1

2 (x− x̄)∥ − ρ ≤ 0
)

→
(
∥Q 1

2 (Vm − wmx̄)∥
)M

m=1
− ρw ≤ 0

(HTw = 1) × x → HTV = 1Tx,

where Vm denotes the m-th row of V. Consequently, the revised uncertainty set, Θ1, is

Θell
1 = {(w,x,V) | (w,x,V) ∈ Θell

0 ,
(
∥Q 1

2 (Vm − wmx̄)∥
)M

m=1
− ρw ≥ 0, HTV = 1Tu}.

We then solve (8) using this defined uncertainty set to identify the optimal robust schedule.

14

To address this simpler robust problem, we look into the two approaches suggested in Section 3.1.
The first involves the computation of the support function of Θ1, which in this case entails delving
into the complexities of matrix-valued support functions (as discussed in Section 13.2 of Bertsimas
and den Hertog (2022)), along with the associated composition rules. The second method utilizing
the dual problem, offers a more straightforward implementation that directly incorporates Θell

1 into
the model in (11), obtaining the following conic quadratic optimization problem:

min
y,w,x,V

Ty − Tr(ATV) (19)

s.t. −ATw + 1y ≥ 0

y ≥ 0

∥Q 1
2 (x− x̄)∥ ≤ ρ

w ≥ 0

HTw = 1

ρw −
(
∥Q 1

2 (Vm − wmx̄)∥
)M

m=1
≥ 0

HTV = 1xT .

This yields a tractable problem with variables and constraints scaling as O(N3) and O(N2), respec-
tively, making it feasible for conventional optimization solvers for a practical range of N .

For ellipsoidal uncertainty, deriving a lower bound mirrors the general framework outlined earlier.
Notably, the hill climbing technique is enhanced by the known solution for maximizing a linear
function over a norm-constrained sphere, as detailed in Section 2.3 in Bertsimas and den Hertog
(2022) using the Karush-Kuhn-Tucker optimality conditions. This provides an explicit formula for
updating x′′ under the ellipsoidal norm constraint:

x′′ = arg max
{x:∥Q

1
2 (x−x̄)∥≤ρ}

w′TAx = arg max
{x:∥Q

1
2 (x−x̄)∥≤ρ}

w′TAQ− 1
2Q

1
2 (x−x̄) = ρ

Q−1ATw′

||Q− 1
2ATw′||

+x̄.

This eliminates the need for iterative optimization, significantly boosting efficiency.

For exact solutions under ellipsoidal uncertainty, the procedure aligns with the established frame-
work. Nonetheless, identifying the worst-case scenario in (15) now involves solving a conic quadratic
optimization problem due to optimization over the ellipsoidal set, which is tractable but generally
more expensive than solving the linear problem for polyhedral uncertainty.

5 Computational results

We now apply the general framework described in Section 3 to problem instances with polyhedral
and ellipsoidal uncertainty sets (for which detailed steps were given in Sections 4.1 and 4.2, respec-
tively). We discuss characteristics of worst-case scenarios, qualitative features of optimal schedules,
scalability and running times. Numerical experiments are performed on an Intel(R) Core(TM)
i7-1165G7 2.80GHz Windows computer with 16GB of RAM. All computations are conducted with
MOSEK (10.0.27) and implemented using YALMIP (R20210331) in MATLAB (R2023b).

15

5 10 15 20 25 30 35 40 45 50

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

Robust

Stochastic

Nominal

(a) Budget uncertainty

5 10 15 20 25 30 35 40 45 50

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

Robust

Stochastic

Nominal

(b) Ball uncertainty

Figure 2: Optimal robust schedules for N = 50 customers, with the stochastic and nominal schedule
for comparison

5.1 Set-up of numerical experiment

We illustrate the functionality of the robust ASP framework under budget uncertainty. This specific
type of uncertainty set constrains each service duration within an interval while imposing a bound
on the total permissible (absolute) deviation from the nominal values. So, budget uncertainty
combines the ∞-norm and 1-norm constraints with parameters ρ and B, respectively. Note that
this is a special case of polyhedral uncertainty U = {x : Dx ≤ d} with 2N uncertain parameters,
by introducing an auxiliary variable w to represent the absolute deviations:

U = {x : ||x− x̄||∞ ≤ ρ, ||x− x̄||1 ≤ B}
= {x : x ≤ ρ1+ x̄, −x ≤ ρ1− x̄, x−w ≤ x̄, −x−w ≤ −x̄, 1Tw ≤ B}.

In our numerical experiment, we considerN = 50 customers, each with a nominal service duration of
x̄ = 3. The uncertainty bound ρ = 1 allows the durations to vary between 2 and 4. The total budget
B = ρN/2.5 = 20 implies that no more than 40% of customers can deviate to either the highest or
lowest duration simultaneously. The total available time for appointments, T = x̄N = 150, ensures
a full schedule under nominal conditions without uncertainty. Cost parameters are set as cO = 3,
cW = 0.2 and cI = 1 for overtime, waiting time and idle time, respectively.

5.2 Analysis of schedules

5.2.1 Base case

The optimal robust schedule from our numerical experiment is depicted in Figure 2a. Clearly,
we find a dome-shaped schedule that aligns with those often seen for stochastic models, but with
additional strategic scheduling nuances that enhance performance under budget uncertainty:

• Increasing time slots for initial customers: The early part of the schedule shows progressively
increasing time slots for the first 30 customers. Allocating slightly more time than the nominal

16

(a) Heatmap of the service duration per customer
in each scenario

0 50 100

Percentage of total cost (%)

45

40

35

30

25

20

15

10

5

S
c
e

n
a

ri
o

Waiting Time

Idle Time

Overtime

(b) Distribution of worst-case costs across the three
cost components in each scenario

Figure 3: Visualization of the worst case scenarios for budget uncertainty

duration at the beginning helps in absorbing the unpredictability without causing significant
idle times. The (increasingly) longer time slots ensure that early slight delays do not snowball
into significant waiting times for later customers.

• Stabilization phase: At customer 31, there is a noticeable increase in the time slots, which
then stabilize for the next ten customers. This plateau can handle any accumulated delays
that might have surpassed the buffers provided earlier in the schedule.

• Reduction towards the end: As the schedule nears its end (after customer 40), there is a
reduction in the time slots allocated, crucial to mitigate the risk of incurring overtime.

• Zero allocation for final customers: From customer 45 onwards, the time slots are set to
zero, effectively scheduling these appointments at day’s end. This decision recognizes and
strategically plans for unavoidable overtime due to the combined impact of budget uncertainty
and the fixed time constraint.

Our analysis identifies 45 critical worst-case scenarios in the final scenario set Ũ1, all resulting
in costs of 131.52. The first 37 scenarios were identified early in the formation of Ũ1, while the
remaining 8 emerged during the iterative cutting-set approach. Despite the multitude of worst-case
scenarios, a relatively small subset suffices to determine the optimal schedule.

The heatmap in Figure 3a illustrates the service durations for customers across these scenarios,
where darker colors indicate longer durations. Additionally, Figure 3b shows the distribution of
total costs across the three components: waiting time, idle time and overtime. The heatmap reveals
a tendency for service times to be close to the maximal duration, contributing to a significant portion
of the costs being attributed to overtime. Over half of the scenarios show these longer service times
clustering, affecting the cost component balance: early clusters increase waiting times, while later
ones contribute to more idle and overtime costs. In the last scenarios, extended service times
dominate the end of the day, combined with multiple short service periods throughout the day,

17

budget uncertainty ball uncertainty
worst-case average worst-case average

nominal 218.00 24.87 193.90 30.48
SAA 217.38 23.33 194.33 28.67
robust 131.52 89.88 112.32 79.22

Table 1: Comparison of the nominal, stochastic and robust schedule in terms of the worst-case costs
over the budget and ball uncertainty set and the average costs over 50,000 uniform scenarios

leading to a significant rise in idle time costs. However, idle time generally incurs the least expense,
underscoring that the server’s time is effectively optimized within the robust schedule.

5.2.2 Comparison with stochastic solution

We now compare the robust schedule’s performance against two other scheduling approaches: the
nominal schedule, which assigns the nominal service time of 3 to each to each customer, hence
ignoring the uncertainty, and a stochastic schedule based on Sample Average Approximation (SAA)
using a small set of scenarios (10,000) to maintain computational feasibility, uniformly distributed
over the support of the uncertainty set. Both alternative schedules are depicted in Figure 2a.
To evaluate these strategies, we generate 50,000 new scenarios from the same distribution and
determine the average cost. Additionally, we compute the exact worst-case costs for each schedule
over the full uncertainty as in (15). The results are reported in Table 1.

The robust schedule significantly outperforms the others in worst-case scenarios, capping the worst-
case costs at 131.52, compared to 218.00 for the nominal schedule (found in the single worst-case
scenario in which all maximal durations are for first 20 appointments) and 217.38 for the stochastic
schedule. This demonstrates its effectiveness in managing the risks associated with uncertainty.
However, this comes at a cost: the average cost of the robust schedule (89.88) is considerably higher
than both the nominal (24.87) and stochastic schedules (23.33). This indicates a trade-off between
robustness and cost-efficiency, highlighting that preparing for worst-case scenarios can significantly
increase average costs, particularly when guarding against extensive budget uncertainties.

5.2.3 Budget parameter

To study how the uncertainty budget B influences appointment scheduling, Figure 4a presents
schedules for under different budget levels, yielding the following insights:

• B = 50: This setting, essentially box uncertainty, allows maximum deviation for each dura-
tion. It leads to a decreasing schedule, allocating longer initial time slots to mitigate accu-
mulation of waiting times throughout the day. This pattern aligns with findings from Mittal
et al. (2014) under similar uncertainty. Notably, if overtime costs are disregarded (cO = 0
and T = ∞), this approach directly yields their optimal schedule.

• B ∈ {40, 30, 20, 10}: As Γ decreases, indicating a tighter budget, there is less room for
uncertainty in the durations. The optimal schedule responds by progressively reducing the
time slots, starting from the earlier ones to align more closely with the nominal value. This
adjustment introduces the dome-shaped schedule. Changes in the later slots are influenced
by the remaining time available in the day.

18

5 10 15 20 25 30 35 40 45 50

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

B=50

B=40

B=30

B=20

B=10

B=0

(a) Budget uncertainty with varying B

5 10 15 20 25 30 35 40 45 50

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

L=25

L=20

L=15

L=10

L=5

L=0

(b) Ball uncertainty with varying L

Figure 4: Optimal robust schedules for N = 50 customers with varying level of uncertainty

• B = 0: With no budget for deviations from the nominal service time, this setting removes all
uncertainty, leading to the straightforward optimal schedule where each customer is allocated
their exact nominal service duration.

The overall trend is clear: higher uncertainty budgets require longer time slots early in the day to
buffer against excessive waiting times, reducing time available for later appointments. Conversely,
a lower budget leads to a compact schedule closer to the nominal values.

5.2.4 Cost parameters

To examine the impact of cost parameters, we start with the baseline values of cO = 3, cW = 0.2
and cI = 1. We then modify each parameter independently to observe the effects on the optimal
robust schedules. The results of these variations are displayed in Figure 5, and the corresponding
worst-case scenarios are detailed in Appendix C.2.

Overtime. Figure 5a demonstrates how varying the overtime cost parameter cO influences the
scheduling pattern. At cO = 0, the schedule exhibits a classical dome-shape. Increasing cO to
3 (the base case), leads to shorter time slots for early customers, reserving more time for later
appointments. For cO = 15, there is a flattened distribution of initial time slots and a sharp
increase later in the schedule. At cO = 75, this flattening extends throughout the entire schedule.
This pattern progressively shifts towards assigning nominal values of 3 to the first 30 customers and
maximal values of 4 for the subsequent customers, leaving zero allocations at the end of day. This
becomes even more evident when letting cO → ∞ (see Figure 10a for the schedule with N = 25
and cO = 3000), resulting in the stark time slot pattern 3 → 4 → 0.

Figure 11 displays the worst-case scenarios for these schedules. For cO = 0, similar patterns to
the base case (cO = 3) emerge, with more occurrences of short service times, due to the lack of
overtime penalties. Increasing cO to 15 results in scenarios that predominantly feature maximal
service times, typically towards the day’s end. For cO = 75, all scenarios extend service times to

19

5 10 15 20 25 30 35 40 45 50

Customer

0

1

2

3

4
T

im
e
 S

lo
t

co=0

co=3

co=15

co=75

(a) Overtime cost cO

5 10 15 20 25 30 35 40 45 50

Customer

0

1

2

3

4

T
im

e
 S

lo
t

cw=0.001

cw=0.2

cw=1

cw=5

(b) Waiting time cost cW

5 10 15 20 25 30 35 40 45 50

Customer

0

1

2

3

4

T
im

e
 S

lo
t

ci=0

ci=1

ci=5

ci=25

(c) Idle time cost cI

Figure 5: Optimal robust schedules for varying cost parameters

their maximum, spread out over the day, since this leads to the heavy-weighted overtime.

Waiting time. In Figure 5b, the schedules for varying waiting time costs are given. Starting with
cW = 0.001, which is a near-negligible cost (choosing cW = 0 results in highly irregular schedules
due to the absence of a trade-off in the cost function), the schedule for the first 30 customers remains
consistent, each receiving the nominal time slot, followed by an increase to 3.5 until the day ends.
At cW = 0.2, the base case, the schedule allocates increasingly more time to early customers. When
increasing cW to 1 and then to 5 result in similar scheduling patterns, where even more time is
allocated to the earliest appointments. Both start with a slight reduction in time slots, followed by
a steady increase that peaks at the 30th customer and then declines sharply.

Figure 12 shows how the worst-case scenarios adapt to changes in waiting time costs. With cW =
0.001, scenarios feature either extended service times in concentrated blocks or a combination of
short service times during the day and long ones towards the end. When comparing cW = 1 with
the base case cW = 0.2, scenarios with short service times vanish, replaced by ones with maximal
service times at both the start and end of the day, thereby increasing waiting and overtime. This
trend intensifies at cW = 5, where waiting time becomes the dominating cost component.

Idle time. Figure 5c shows a large variability in the optimal schedule depending on the idle time
costs. Compared to the base case with cI = 1, for cI = 0 the schedule features a more pronounced
peak at customer 31 due to the absence of idle time penalties, followed by a sharper decrease in
time slots. When cI increases to 5, the schedule becomes more uniform, softening the extreme
allocations and achieving a balance in the three cost factors, assigning time slots close to 3 as seen
in the case without uncertainty. At cI = 25, the early slots are significantly reduced as idle time is
costly, and the schedule standardizes the remaining slots at the nominal value. Note that the last
receives the residual day time. When cI goes to infinity, the schedule converges to slots of 2 for the
first 20 customers and slots of 3 for the last customers, with the last one receiving the residual time
(see Figure 10b for N = 25 and cI = 1000).

In Figure 13, for analyze the worst-case scenarios for these values of cI . When cI = 0 and there is
no penalty for idle time, scenarios maximize service durations within the budget constraint, which
appear variably throughout the day, contrary to base case (cI = 1) that does include scenarios
with shorter service times. Increasing cI to 5 leads to a marked increase in the frequency of shorter

20

0 0.2 0.4 0.6 0.8 1

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

N=60

N=50

N=40

N=30

N=20

N=10

(a) Budget uncertainty

0 0.2 0.4 0.6 0.8 1

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

N=60

N=50

N=40

N=30

N=20

N=10

(b) Ball uncertainty

Figure 6: Optimal robust schedule with budget uncertainty for varying N , where the horizontal axis
represents the fraction of the total number of customers

service times, now predominating in the scenarios, particularly among the first 40 customers. These
durations are either evenly spread throughout this initial segment or appear in a random pattern.
The highest examined value, cI = 25, shows an even more distinct pattern, with short service times
concentrated early in the day when there is no backlog, directly contributing to idle time. Longer
durations are less frequent and occur mainly early on, resulting in prolonged waiting times as the
day progresses.

5.2.5 Number of customers

Figure 6a illustrates how the optimal scheduling pattern adjusts with varying the number of cus-
tomers, considering N = 10, 20, 30, 40, 50, 60. On the horizontal axis we show the fraction of
customers, effectively normalizing the schedules across different customer counts to facilitate a fair
comparison of schedule characteristics, independent of the absolute number of customers.

The schedules display a striking ‘scale invariance’, suggesting that the overall pattern remains
relatively consistent despite changes in customer numbers. However, notable shifts in the structure
of the schedules occur, particularly at larger values of N . For these values, the initial customers
are allocated longer slots, which increase more rapidly early in the schedule, to absorb potential
delays that could now effect many subsequent customers. As N increases, the plateau in the time
slots is reached progressively earlier and more abruptly in the sequence. This transition is followed
by a steeper and earlier decline towards zero as the fraction of served customers approaches 1,
accommodating the decreasing amount of remaining time in the day for later customers.

5.2.6 Comparison with ball uncertainty

In this section, we examine the differences and implications of adopting budget uncertainty versus
ball uncertainty for modeling service times within the context of robust scheduling.

21

The comparison focuses on aligning the geometric interpretations of these uncertainty sets by equat-
ing their volumes under similar constraints. First, we estimate the volume of the budget uncertainty
set via Monte Carlo simulation using the hit-or-miss estimator. We generate Z = 107 random points
within a hypercube defined by the interval constraints of the nominal value x̄ and maximal devi-
ation ρ, spanning the space [2, 4]50. We count the number of points that comply with the budget
constraint, which limits the sum of deviations to B = 20. The fraction of points satisfying this
constraint, multiplied by the hypercube’s volume (250), gives us an estimated volume for the budget
uncertainty set, Vbudget ≈ 7.90× 1012.

For a comparable ellipsoidal uncertainty set, we define a simple ball with ρ = 1 and Q = 1
LI, where

L is a scaling factor to be determined and I is the identity matrix. Since det(Q) = LN , the volume
formula for this ball, given by Vball = πN/2LN/2/Γ(N/2 + 1), with Γ the gamma function, allows
us to match the volume of the ball to that of the budget set by adjusting L. This gives

L =

(
Γ(N/2 + 1) · Vbudget

πN/2

)2/N

≈ 10.63,

defining a ball uncertainty set with Q ≈ 0.094I and ρ = 1.

The robust schedule for this ball uncertainty set, depicted in Figure 2b, displays an increasing
pattern. Starting with time slots of 3.3 and gradually increasing to 3.5 by the 44th customer, it
abruptly drops to zero. Comparing this to the budget uncertainty schedule in Figure 2a, both
schedules initially follow a very similar trajectory. However, while the budget schedule reaches a
plateau and then decreases, the ball schedule steadily rises throughout.

This difference stems from the intrinsic characteristics of the uncertainty sets. Ellipsoidal sets are
inherently smooth, and therefore tend to generate worst-case scenarios without extremities, leading
to smoother schedules. These scenarios, as shown in Figure 7a, typically begin with uniformly short
service times and then make a clear jump to uniformly longer service times, which can happen at
any point throughout the day. Consequently, an increasing schedule is rational as it focuses on risk
mitigation in the latter half of the day where most extended service times occur. On the contrary,
the budget set is characterized by non-smooth boundaries and leads to worst-case scenarios at its
vertices, leading to more pronounced extremities in both the schedule and scenarios as discussed
before. However, both type of uncertainty sets feature an initial phase of shorter durations followed
by a sharp transition to longer ones, which also aligns with the results for box uncertainty in Mittal
et al. (2014), even though the optimal scheduling patterns differ.

The reduced extremity of the worst-case costs under ball uncertainty leads to a significant 15%
decrease in worst-case costs, totalling 112.32. Observing the division of cost components in Figure
7b, this cost reduction is largely attributable to lower waiting times, since the scenarios generally
feature shorter service durations, which also stabilizes overtime costs across scenarios. Table 1
compares the robust with the nominal and stochastic solutions, which are generated in the same
way as for budget uncertainty and are illustrated in Figure 2b. It reveals that the reduction in worst-
case costs of the nominal and stochastic solutions is of similar size as for the robust solution, making
the robust solution still superior in terms of robustness. Additionally, the robust solution under
ball uncertainty maintains better average cost performance than under budget uncertainty.

In Figure 4b, we observe the dynamic adjustment of the schedule as the uncertainty parameter L is
varied. Again, for L set to 0, so without uncertainty, an equidistant schedule emerges. Increasing

22

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

S
c
e

n
a

ri
o

2

2.5

3

3.5

4

4.5

(a) Heatmap of the service duration per customer
in each scenario

0 50 100

Percentage of total cost (%)

45

40

35

30

25

20

15

10

5

S
c
e

n
a

ri
o

Waiting Time

Idle Time

Overtime

(b) Distribution of worst-case costs across the three
cost components in each scenario

Figure 7: Visualization of the worst case scenarios for ball uncertainty

L then demonstrates similar behavior as for budget uncertainty, as it allocates more time to earlier
appointments, reflecting a protective response to the higher level of uncertainty. Unlike budget
uncertainty, the increment in time slots across nearly uniform across all customers. Notably, since
there is no upper bound on the value of L, this pattern can continue indefinitely, potentially
assigning progressively more time to the first few customers.

Appendix C, Figure 9, analyzes cost parameters under ellipsoidal uncertainty and draws many
parallels with the observations for budget uncertainty in Section 5.2.4 With zero overtime costs,
we observe a decreasing schedule, contrasting with the increasing schedule when overtime costs are
factored in. Higher overtime costs again result in marginally shorter appointments earlier in the day
to accommodate later ones in order to mitigate potential overtime, although these differences are
less pronounced compared to budget uncertainty. Changes in waiting time costs consistently yield
an overall increasing schedule. For lower costs, time slots sharply decline and approach the nominal
value of 3, with a slight peak towards the end, similar to what is seen with budget uncertainty.
Higher waiting time costs lead to very similar schedules across both types of uncertainty. The
response to idle time cost variations shows the most diversity but follows a pattern akin to budget
uncertainty. For low idle time costs, the schedule increases; for intermediate costs, it decreases; and
for higher costs, it increases again. With an idle time cost of 25, appointment lengths reduce to
below 3, although not to the extent of consistently converging to slots of 2.

5.3 Scalability and computational complexity

We assess the computational performance of our methods used to calculate the lower and upper
bounds, and the exact robust costs, for varying number of customers, N .

Cost bounds. In Figure 8a, we observe the percentage deviation of the upper and lower bounds
from the exact robust costs for N ranging from 1 to 60. The lower bound demonstrates remarkable

23

10 20 30 40 50 60

Customer

-6

-4

-2

0

2

4
D

e
v
ia

ti
o
n
 f
ro

m
 e

x
a
c
t
c
o
s
t
(%

)

upper

exact

lower

(a) Deviation of the upper and lower bound from the
exact value in %

10 20 30 40 50 60

Customer

10
-1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 s

e
c
o
n
d
s

ub dual

ub support

ex via lb

ex vertices

lb normal

(b) Running time of the five methods in seconds on
logarithmic scale

Figure 8: Results of the methods for budget uncertainty for varying N

accuracy, aligning precisely with the exact costs up to N = 25. Even as N increases further, the
disparity between the lower bound and exact costs remains minimal, with the gap staying well
below 1%. This underscores the effectiveness of this approach in closely approximating the true
robust costs. On the other hand, the upper bound beings showing greater deviation as N increases.
While the deviation remains relatively small up to N = 35, it grows more pronounced thereafter,
exceeding 1% and displaying a linear increase with N . This suggests that while the upper bound
provides a conservative estimate, its accuracy in tightly bracketing the exact costs diminishes as
the customer base expands.

Running times. We evaluate the running times of various methods, as illustrated in Figure 8b
(logarithmic scale). The methods include the upper bound calculated via the support function as
well as via the dual problem, the lower bound, and the exact method building upon this lower
bound. For comparison, we also include the exact method that explores all vertices of the budget
uncertainty set to demonstrate the effectiveness of our framework.

For N ≤ 20, the running times of the first four methods are comparably low, remaining under
two seconds. As N increases beyond this point, all methods experience almost exponential growth
in running times, though they remain computationally feasible up to N = 60. The upper bound
calculated via the dual problem shows a particularly erratic increase in running times starting
from N = 30, making it less efficient at larger scales compared to the more stable and faster
performance of the upper bound via the support function. The exact method that uses the lower
bound, exhibits the overall longest running times, with significant fluctuations due to the varying
number of scenarios to be added. In general, the lower bound method proves the most efficient
for larger customer sets. In contrast, the vertex exploration method for deriving exact values
quickly becomes impractical for instances exceeding 11 customers, emphasizing the computational
advantage of the developed methods in our framework, which can handle up to 60 customers
effectively.

24

In summary, the lower bound offers an accurate approximation of the robust costs, providing a
valuable and efficient alternative in case the exact method proves computationally too demanding. If
even the lower bound become too resource-intensive (since it relies on the output of the upper bound
via dual problem), the support function-based upper bound remains a viable option. Although it
provides a less precise cost approximation, it maintains validity as an upper bound, suitable for
cases where computational simplicity is prioritized.

6 Conclusions and outlook

We have presented a robust framework for ASP with uncertain durations, that can deal with general
convex uncertainty sets and larger problem instances. The framework is equipped to deal with the
convex cost function of ASP, and incorporates as key innovation a cutting-set approach, which
provably converges to the optimal robust schedule. Employing the framework for polyhedral and
ellipsoidal uncertainty sets, for instances with 50 customers, gave profound structural insights into
how uncertainty in service times impacts the optimal schedule. For budget uncertainty sets, optimal
schedules were shown to take a diverse array of dome-shaped patterns, which were confirmed for
comparable ball uncertainty sets. The robust schedules were also shown to respond to the degree
of uncertainty; conservative time allocations are preferred in settings with large uncertainty, to
prevent potential disruptions due to early delays.

Our robust framework was shown to be scalable, able to deal with large instances of 50+ customers,
and could be applied to real-world settings such as hospitals, as long as the available data on service
times is converted into convex uncertainty sets. These could be polyhedral or ellipsoidal sets,
but also general convex cones, information-based sets or intersections or sums of uncertainty sets.
Another promising direction is to incorporate additional features into the ASP, such as no-shows,
walk-ins, late arrivals, and variable capacity. Moreover, incorporating service levels constraints or
integrating appointment sequencing could optimize the efficiency and quality of the schedule even
further.

Crucial for our framework is that the ASP cost function takes the form of the sum-of-max of linear
functions. Comparable cost functions occur in inventory management (e.g. multi-item newsven-
dor problems), service operations management (e.g. queueing and staffing), and project planning.
Exploring whether our robust framework could be applied in these areas seems promising and
worthwhile.

Acknowledgements

This work is supported by an NWO Mathematics Clusters grant and an NWO VICI grant.

References
Ahmadi-Javid, A., Jalali, Z., and Klassen, K. J. (2017). Outpatient appointment systems in healthcare: A

review of optimization studies. European Journal of Operational Research, 258(1):3–34.

Ala, A. and Chen, F. (2022). Appointment scheduling problem in complexity systems of the healthcare
services: A comprehensive review. Journal of Healthcare Engineering, 2022.

25

Bailey, N. T. (1952). A study of queues and appointment systems in hospital out-patient departments,
with special reference to waiting-times. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 14(2):185–199.

Bandi, C. and Bertsimas, D. (2012). Tractable stochastic analysis in high dimensions via robust optimiza-
tion. Mathematical Programming, 134:23–70.

Bandi, C. and Gupta, D. (2020). Operating room staffing and scheduling. Manufacturing & Service
Operations Management, 22(5):958–974.

Bauerhenne, C., Kolisch, R., and Schulz, A. S. (2024). Robust appointment scheduling with waiting time
guarantees. arXiv preprint arXiv:2402.12561.

Beck, A. and Ben-Tal, A. (2009). Duality in robust optimization: primal worst equals dual best. Operations
Research Letters, 37(1):1–6.

Begen, M. A., Levi, R., and Queyranne, M. (2012). A sampling-based approach to appointment scheduling.
Operations Research, 60(3):675–681.

Ben-Tal, A., And, T., and Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations
Research - MOR, 23.

Ben-Tal, A., den Hertog, D., and Vial, J.-P. (2015). Deriving robust counterparts of nonlinear uncertain
inequalities. Mathematical Programming, 149(1-2):265–299.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust optimization, volume 28. Princeton university
press.

Benjaafar, S., Chen, D., Wang, R., and Yan, Z. (2023). Appointment scheduling under a service-level
constraint. Manufacturing & Service Operations Management, 25(1):70–87.

Bertsimas, D. and den Hertog, D. (2022). Robust and adaptive optimization. Dynamic Ideas, Belmont.

Bertsimas, D., den Hertog, D., Pauphilet, J., and Zhen, J. (2023). Robust convex optimization: A new
perspective that unifies and extends. Mathematical Programming, 200(2):877–918.

Bertsimas, D., Dunning, I., and Lubin, M. (2016). Reformulation versus cutting-planes for robust opti-
mization: A computational study. Computational Management Science, 13:195–217.

Bertsimas, D., Sim, M., and Zhang, M. (2018). Adaptive distributionally robust optimization. Management
Science, 65(2):604–618.

Beyer, H.-G. and Sendhoff, B. (2007). Robust optimization–a comprehensive survey. Computer Methods in
Applied Mechanics and Engineering, 196(33-34):3190–3218.

Bienstock, D. and Özbay, N. (2008). Computing robust basestock levels. Discrete Optimization, 5(2):389–
414.

Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming. Springer, New York.

Cayirli, T. and Veral, E. (2003). Outpatient scheduling in health care: a review of literature. Production
and Operations Management, 12(4):519–549.

Denton, B. and Gupta, D. (2003a). A sequential bounding approach for optimal appointment scheduling.
IIE Transactions, 35(11):1003–1016.

Denton, B. and Gupta, D. (2003b). A sequential bounding approach for optimal appointment scheduling.
IIE transactions, 35(11):1003–1016.

Gabrel, V., Murat, C., and Thiele, A. (2014). Recent advances in robust optimization: An overview.
European Journal of Operational Research, 235(3):471–483.

Gorissen, B. L. and den Hertog, D. (2013). Robust counterparts of inequalities containing sums of maxima
of linear functions. European Journal of Operational Research, 227(1):30–43.

Gorissen, B. L., Yanıkoğlu, İ., and den Hertog, D. (2015). A practical guide to robust optimization. Omega,
53:124–137.

26

Green, L. V. and Savin, S. (2008). Reducing delays for medical appointments: A queueing approach.
Operations Research, 56(6):1526–1538.

Gupta, D. and Denton, B. (2008). Appointment scheduling in health care: Challenges and opportunities.
IIE Transactions, 40(9):800–819.

Hassin, R. and Mendel, S. (2008). Scheduling arrivals to queues: A single-server model with no-shows.
Management Science, 54(3):565–572.

Hulshof, P. J., Kortbeek, N., Boucherie, R. J., Hans, E. W., and Bakker, P. J. (2012). Taxonomic clas-
sification of planning decisions in health care: a structured review of the state of the art in or/ms.
Health Systems, 1:129–175.

Kaandorp, G. C. and Koole, G. (2007). Optimal outpatient appointment scheduling. Health Care Manage-
ment Science, 10(3):217–229.

Kong, Q., Lee, C.-Y., Teo, C.-P., and Zheng, Z. (2013). Scheduling arrivals to a stochastic service delivery
system using copositive cones. Operations Research, 61(3):711–726.

Kuiper, A. and Lee, R. H. (2022). Appointment scheduling for multiple servers. Management Science,
68(10):7422–7440.

Kuiper, A., Mandjes, M., and de Mast, J. (2017). Optimal stationary appointment schedules. Operations
Research Letters, 45(6):549–555.

Liu, N. (2016). Optimal choice for appointment scheduling window under patient no-show behavior. Pro-
duction and Operations Management, 25(1):128–142.

Mak, H.-Y., Rong, Y., and Zhang, J. (2015). Appointment scheduling with limited distributional informa-
tion. Management Science, 61(2):316–334.

Mercer, A. (1960). A queueing problem in which the arrival times of the customers are scheduled. Journal
of the Royal Statistical Society. Series B (Methodological), pages 108–113.

Mittal, S., Schulz, A. S., and Stiller, S. (2014). Robust appointment scheduling. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Mutapcic, A. and Boyd, S. (2009). Cutting-set methods for robust convex optimization with pessimizing
oracles. Optimization Methods & Software, 24(3):381–406.

Padmanabhan, D., Natarajan, K., and Murthy, K. (2021). Exploiting partial correlations in distributionally
robust optimization. Mathematical Programming, 186:209–255.

Qi, J. (2016). Mitigating delays and unfairness in appointment systems. Management Science, 63(2):566–
583.

Robinson, L. W. and Chen, R. R. (2003). Scheduling doctors’ appointments: optimal and empirically-based
heuristic policies. IIE Transactions, 35(3):295–307.

Schulz, A. S. and Udwani, R. (2019). Robust appointment scheduling with heterogeneous costs. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2009). Lectures on Stochastic Programming: Modeling
and Theory. SIAM, Philadelphia.

Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear
programming. Operations Research, 21(5):1154–1157.

van Eekelen, W., den Hertog, D., and van Leeuwaarden, J. S. H. (2024). Distributionally ro-
bust appointment scheduling that can deal with independent service times. Working paper,
https://papers.ssrn.com/sol3/papers.cfm?abstract id=4892477.

Wang, P. P. (1993). Static and dynamic scheduling of customer arrivals to a single-server system. Naval
Research Logistics, 40(3):345–360.

27

Zacharias, C. and Pinedo, M. (2014). Appointment scheduling with no-shows and overbooking. Production
and Operations Management, 23(5):788–801.

Zacharias, C. and Yunes, T. (2020). Multimodularity in the stochastic appointment scheduling problem
with discrete arrival epochs. Management Science, 66(2):744–763.

Zhen, J., de Moor, D., and den Hertog, D. (2021). An extension of the reformulation-linearization technique
to nonlinear optimization. Available at Optimization Online.

Zhou, S., Ding, Y., Huh, W. T., and Wan, G. (2021). Constant job-allowance policies for appointment
scheduling: Performance bounds and numerical analysis. Production and Operations Management,
30(7):2211–2231.

28

A Proofs

A.1 Convex conjugate of SML function

Consider the maximum of linear functions, so f(y) = maxi yi, where each yi is a linear function. The
convex conjugate is defined as f∗(w) = supy{yTw −maxi yi}. When any wj ≤ 0, the supremum
becomes ∞ as yj → ∞. Similarly, when

∑
i wi < 1 or

∑
i wi > 1, the supremum reaches ∞ by

driving all yi towards −∞ or +∞, respectively. Otherwise, the supremum is 0, achievable by setting
all yi = 0. Consequently, the value and domain of the conjugate are given by

f∗(w) = 0 with dom f∗ = {w |w ≥ 0, 1Tw = 1}.

Extending this to the sum of the maximum of linear functions, denoted by h(y) =
∑

n fn(y) =∑
n maxi yni, the convex conjugate and its domain, by the convolution property (see Theorem 2.1c

in Bertsimas and den Hertog (2022)), are

h∗(w) = inf
{wn}

{
∑
n

f∗
n(w

n)|
∑
n

wn = w} = 0,

with dom h∗ = {w | wn ≥ 0,1Twn = 1 ∀n}.

A.2 Lipschitz continuity sum-of-max

Here we prove that the function g(s) on S, being the sum of the maximum of linear functions in s,
is (uniformly) Lipschitz continuous. This function can generally be written as

g(s) =
∑
i

max
j

{aTijs+ bij}.

Then, for any s1, s2 ∈ S, we have that

|g(s1)− g(s2)| =
∣∣∣∑

i

(
max

j
{aTijs1 + bij} −max

k
{aTiks2 + bik}

) ∣∣∣
≤

∑
i

∣∣∣max
j

{aTijs1 + bij} −max
k

{aTiks2 + bik}
∣∣∣

≤
∑
i

max
j

{∣∣∣aTij(s1 − s2)
∣∣∣}

≤
∑
i

max
j

{∥aij∥} · ∥s1 − s2∥,

where we use the triangle inequality in the first inequality, the norm properties of the infinity norm
in the second inequality, and the Cauchy-Schwarz inequality in the last one.

Thus, g(s) is (uniformly) Lipschitz continuous with respect to s, with constant Lg =
∑

i maxj{∥aij∥}.

29

B Derivations upper bound

B.1 Cost function

Below, we define the matrix A and vector b for the SML formulation of the ASP costs as given in
(3), consisting of three different cost components:

1. For n = 1, . . . , N − 1: Waiting time of customer n + 1, and therefore involves n + 1 linear
functions. We have an0 = 0 and bn0(s) = 0 to ensure the inclusion of 0 in the max operator.
Furthermore, for l = 1, . . . , n, we set anl having zeros except for entries cW from n− l+ 1 to
n, and bnl(s) = −cW

∑n
j=n−l+1 sj .

2. For n = N : Idle time, so it involves N linear functions. Also here, an0 = 0 and bn0(s) = 0.
Then, for l = 1, . . . , N − 1, anl contains entries −cI in the first l positions, the rest are zeros,
and bnl(s) = cI

∑l
j=1 sj .

3. For n = N + 1: Overtime, consisting of N + 1 linear components. Again, an0 = 0 and
bn0(s) = 0. For entries l = 1, . . . , N , anl has zeros except for the last N − l + 1 to N entries

filled with cO, and bnl(s) = −cO
∑N

j=N−l+1 sj .

Matrix A ∈ RM×N and vector b(s) ∈ RM are then composed by concatenating all anl and bnl(s),
respectively, resulting in M = 1

2N
2 + 5

2N = O(N2) rows. Note that b(s) simplifies to −As.

Example: We consider N = 3 customers.

The first term (n = 1), corresponding to the waiting time of customer 2, is cW max{0, x1 − s1}.
We define a10 = [0, 0, 0] and b10 = 0 for the 0 in the max operator, and aT11 = [cW , 0, 0] and
b11(s) = −cW s1 for the linear function cW (x1− s1). For the second term (n = 2), corresponding to
the waiting time of customer 3, we have cW max{0, x2−s2, x1−s1+x2−s2}. We set aT20 = [0, 0, 0]
and b20 = 0, aT21 = [0, cW , 0] and b21 = −cW s2, and aT22 = [cW , cW , 0] with b22 = −cW (s1+s2). The
third term (n = 3), cI max{0, s1−x1, s2−x2+s1−x1}, corresponds to the idle time. Therefore, we
configure aT30 = [0, 0, 0] and b30 = 0, aT31 = [−cI , 0, 0] and b31 = cIs1, and aT32 = [−cI ,−cI , 0] with
b32 = cI(s1+s2). The last term (n = 4) captures the overtime cost, being cO max{0, x3−s3, x2−s2+
x3− s3, x1− s1+x2− s2+x3− s3}, so aT40 = [0, 0, 0] and b40 = 0, aT41 = [0, 0, cO] and b41 = −cOs3,
aT42 = [0, cO, cO] and b42 = −cO(s2+s3), and aT43 = [cO, cO, cO] with b43 = −cO(s1+s2+s3).

The matrix A and vector b(s) are constructed as follows, with M = 1
2 · 3

2 + 5
2 · 3 = 12 rows:

A =

0 0 0
cW 0 0
0 0 0
0 cW 0
cW cW 0
0 0 0

−cI 0 0
−cI −cI 0
0 0 0
0 0 cO
0 cO cO
cO cO cO

and b(s) =

0
−cW s1

0
−cW s2

−cW (s1 + s2)
0

cIs1
cI(s1 + s2)

0
−cOs3

−cO(s2 + s3)
−cO(s1 + s2 + s3)

= −As.

30

B.2 Support function polyhedral uncertainty

For polyhedral uncertainty, we consider the convex uncertainty set:

Θpol
1 = {(w,x,V) | Dx ≤ d,w ≥ 0,HTw = 1, VDT −wdT ≤ 0, HTV = 1xT }.

This set can be expressed as a polyhedral set Θpol
1 = {z | D̃z ≤ d̃}, where z = (w;x;v1; . . . ;vN),

and the matrix D̃ and vector d̃ are defined as:

D̃ =

0 D 0 · · · 0
−IM 0 0 · · · 0
HT 0 0 0 0
−HT 0 0 0 0
−d1IM 0 d11IM · · · d1NIM

...
...

...
. . .

...
−dKIM 0 dK1IM · · · dKNIM

0 −1NeT1 HT · · · 0
0 1NeT1 −HT · · · 0
...

...
...

. . .
...

0 −1NeTN 0 · · · HT

0 1NeTN 0 · · · −HT

and d̃ =

d
0M

1N

−1N

0M

...
0M

0N

0N

...
0N

0N

→ u1

→ u2

→ u3,1

→ u3,−1

→ u4,1

...
→ u4,K

→ u5,1

→ u5,−1

...
→ u5,N

→ u5,−N

(20)

To derive the upper bound, we consider the problem (9), employing the support function for the

polyhedral set δ∗(y(s) |Θpol
1) = minu{d̃Tu | D̃Tu = y(s), u ≥ 0}, leading to the formulation:

min
s,τ

τ

s.t. d̃Tu ≤ τ

D̃Tu = y(s)

u ≥ 0

s ∈ S.

The vector u is partitioned into five segments, u1 through u5, each corresponding to distinct sets of
constraints within Θ1. A secondary index is applied for further subdivision, as denoted alongside the
definitions of in (20). Utilizing the structure embedded within D̃ and d̃, we obtain the optimization

31

problem

min
s,τ

τ

s.t. dTu1 + 1Tu3,1 − 1Tu3,−1 ≤ τ

− u2 +Hu3,1 −Hu3,−1 − d1u4,1 − . . .− dKu4,K = b(s)

DTu1 − e11
Tu7,1 + e11

Tu7,−1 − . . .− eN1Tu7,N + eN1Tu7,−N = 0

d11u4,1 + . . .+ dK1u4,K +Hu5,1 −Hu5,−1 = a1

...

d1Nu4,1 + . . .+ dKNu4,K +Hu5,N −Hu5,−N = aN

u1,u2,u3,u4,u5 ≥ 0

s ∈ S.

For variables u3 and u5, initially associated with equality constraints, we exclude variables with
secondary index −1 and their corresponding constraints, retaining variables indexed with +1 and
omitting their nonnegativity constraints. This adjustment leads to reformulating the problem in
terms of variables v:

min
s,τ

τ

s.t. dTv1 + 1Tv3 ≤ τ

− v2 +Hv3 − d1v4,1 − . . .− dKv4,K = b(s)

DTv1 − e11
Tv5,1 − . . .− eN1Tv5,N = 0

d11v4,1 + . . .+ dK1v4,K +Hv5,1 = a1

...

d1Nv4,1 + . . .+ dKNv4,K +Hv5,N = aN

v1,v2,v5 ≥ 0

s ∈ S.

For further simplification, we introduce decision matrices W4 = (v4,1, . . . ,v4,K) ∈ RM×K and
W5 = (v5,1, . . . ,v5,N) ∈ RN×N . Finally, the resulting linear optimization problem is:

min
s,τ,w1,w2,w3,W4,W5

τ

s.t. dTw1 + 1Tw3 ≤ τ

−w2 +Hw3 −W4d = b(s)

DTw1 −WT
5 1 = 0

W4D+HW5 = A

w1,w2,W5 ≥ 0

s ∈ S.

32

C Figures

C.1 Analysis ball uncertainty

5 10 15 20 25

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

co=0

co=3

co=15

co=75

(a) Overtime cost cO

5 10 15 20 25

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

cw=0.001

cw=0.2

cw=1

cw=5

(b) Waiting time cost cW

5 10 15 20 25

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

ci=0

ci=1

ci=5

ci=25

(c) Idle time cost cI

Figure 9: Schedules for varying cost parameters for ball uncertainty

C.2 Analysis cost parameters budget uncertainty

5 10 15 20 25

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 S

lo
t

(a) cO = 3000

5 10 15 20 25

Customer

0

0.5

1

1.5

2

2.5

3

3.5

4
T

im
e

 S
lo

t

(b) cI = 1000

Figure 10: Schedule for N = 25 with extreme costs

33

(a) cO = 0 (b) cO = 3

(c) cO = 15

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(d) cO = 75

Figure 11: Worst case scenarios for varying cO

34

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(a) cW = 0.001

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(b) cW = 0.2

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(c) cW = 1

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(d) cW = 5

Figure 12: Worst case scenarios for varying cW

35

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(a) cI = 0

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(b) cI = 1

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

50

55

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(c) cI = 5

5 10 15 20 25 30 35 40 45 50

Customer

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

S
c
e
n
a
ri
o

2

2.5

3

3.5

4

(d) cI = 25

Figure 13: Worst case scenarios for varying cI

36

	Introduction
	Robust appointment scheduling
	General robust framework
	Upper bound
	Lower bound
	Exact solution

	Application to uncertainty sets
	Polyhedral uncertainty
	Ellipsoidal uncertainty

	Computational results
	Set-up of numerical experiment
	Analysis of schedules
	Base case
	Comparison with stochastic solution
	Budget parameter
	Cost parameters
	Number of customers
	Comparison with ball uncertainty

	Scalability and computational complexity

	Conclusions and outlook
	Proofs
	Convex conjugate of SML function
	Lipschitz continuity sum-of-max

	Derivations upper bound
	Cost function
	Support function polyhedral uncertainty

	Figures
	Analysis ball uncertainty
	Analysis cost parameters budget uncertainty

