15
16

32
33
34
35
36
37

Probabilistic Iterative Hard Thresholding for Sparse Learning *

Matteo Bergamaschif, Andrea Cristofarit, Vyacheslav Kungurtsev®, and Francesco Rinaldif

Abstract. For statistical modeling wherein the data regime is unfavorable in terms of dimensionality relative to
the sample size, finding hidden sparsity in the ground truth can be critical in formulating an accurate
statistical model. The so-called “fy norm”, which counts the number of non-zero components in a
vector, is a strong reliable mechanism of enforcing sparsity when incorporated into an optimization
problem. However, in big data settings wherein noisy estimates of the gradient must be evaluated
out of computational necessity, the literature is scant on methods that reliably converge. In this
paper we present an approach towards solving expectation objective optimization problems with
cardinality constraints. We prove convergence of the underlying stochastic process, and demonstrate
the performance on two Machine Learning problems.
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1 Introduction In this paper we consider the cardinality constrained expectation objec-
tive problem,

(1.1) min  f(z) = E[F(z, )]
s.t. H:L‘HO < K,

where f(-) is L(f) continuously differentiable. We say that x € Ck if ||z||p < K and thus a
feasible = corresponds to x € Ck.

This optimization problem is particularly important in applications of data science. In
particular, the expectation objective serves to quantify the minimization of some empirical
loss function that enforces the fit of a statistical model fit to empirical data. Cardinality
constraints enforce sparsity in the model, enabling the discovery of the most salient features
as far as prediction accuracy.

Cardinality constraints present a significant challenge to optimization solvers. The so-
called (as it is not, formally) zero norm is a discontinuous function that results in a highly
nonconvex and disconnected feasible set, as well as an unusual topology of stationary points
and minimizers [21, 22]. Algorithmic development has been, as similar to many such prob-
lems, a parallel endeavor from the mathematical optimization and the machine learning com-
munities. When dealing with a deterministic objective function, procedures attuned to the
structure of the problem and seeking stationary points of various strength are presented, for
instance, in [3]. Methods for deterministic optimization problems with sparse symmetric sets
are proposed in, e.g., [4, 18], while methods for deterministic optimization problems with both
cardinality and nonlinear constraints are described in, e.g., [8, 9, 10, 14, 24, 23, 25]. Simulta-
neously works appearing in machine learning conferences, e.g., [31, 30, 27, 19], exhibit weak
theoretical convergence guarantees, but appear to scale more adequately as far as numerical
experience. Thus, an algorithm that enjoys both reliable performance together with strong
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2 M. BERGAMASCHI, A. CRISTOFARI, V. KUNGURTSEV, AND F. RINALDI

theoretical guarantees, as sought for the high dimensional high data volume model fitting
problems in contemporary data science, is as of yet unavailable.

In this paper we attempt to reconcile these two and present an algorithm that is associated
with reasonably strong theoretical convergence guarantees, while at the same time able to
solve large scale problems of interest in statistics and machine learning. To this end we
present a procedure under the framework of Probabilistic Models, which can be understood as
a sequential linear Sample Average Approximation (SAA) scheme for solving problems with
statistics in the objective function. First introduced in [2], then rediscovered with extensive
analysis in [1, 15], this approach can exhibit asymptotic (and even worst case complexity)
results to a local minimizer of the original problem, while still allowing the use of Newton-
type second order iterations of subproblem solutions, and thus faster convergence as far as
iteration count. The use of probabilistically accurate estimates within a certain bound in these
methods permit a rather flexible approach to estimating the gradient, including techniques
that introduce bias, while foregoing the necessity of a stepsize asymptotically diminishing to
zero. However, asymptotic accurate convergence still requires increasing the batch size, so the
tradeoffs in precision and certainty relative to computation become apparent, and adaptive
for the user, in deciding at which point to stop the algorithm and return the current iterate
as an estimate of the solution.

As contemporary Machine Learning applications, we shall consider Adversarial Attacks
(see, e.g., [11, 16, 26] and references therein for further details), and Probabilistic Graphical
Model training (see, e.g., [5, 28] and references therein for further details). In this paper we
shall see how the use of a stochastic gradient and hard sparsity constraint can improve the
performance and model quality in the considered problems.

The paper is organized as follows: In Section 2, we introduce some basic definitions and
preliminary results related to optimality conditions of problem (1.1) that ease the theoretical
analysis. We then describe the details of the proposed algorithmic scheme in Section 3. We
then prove almost sure convergence to suitable stationary points in Section 4. Numerical
results on some relevant Machine Learning applications are reported Section 5. Finally, we
draw some conclusions and discuss some possible extensions in Section 6.

2 Background Cardinality constrained optimization presents an extensive hierarchy of
stationarity conditions, as due to the geometric complexity of the feasible set. This neces-
sitates specialized notions of projection, and presents complications due to the projection
operation’s generic non-uniqueness.

Definitions and Preliminaries The active and inactive set of a vector x € R™ are respectively
denoted by

Ip(x):={ie{l,..,n}, z; =0}, Iz(z):={ie{l,...,n}, x; #0}.

A set T is a super-support of x € Ck if Ix(x) C T and |T| = s. Let the permutation group
of {1,...,n} be denoted as ¥,, and for a permutation o € %, we write (27); = 7,(;. For a
vector z € R™ we denote with M;(z) the i-th largest absolute-value component of z, thus we
have Mi(x) < Ma(z) < --- < M, ().

We finally define the orthogonal projection as

Pc, (r) = argmin{||z — z||?, 2 € Ck},

that is, an n-length vector consisting of the s components of x with the largest absolute value.
Such operator, as already highlighted in the previous section, is not single-valued due to the
inherent non-convexity of the set Cx and plays a critical role in the development of algorithms
for sparsity constrained optimization (see, e.g., [3, Section 2| for a discussion on this matter).
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PROBABILISTIC ITERATIVE HARD THRESHOLDING 3

Optimality Conditions Now we define several optimality conditions for (1.1), borrowing
heavily from [3]. Observe that a notable characteristic of cardinality constrained optimization
is the presence of a hierarchy of optimality conditions, that is, a number of conditions that
hold at optimal points that range across levels of restriction.

When restricted to a specific support, the "no descent directions” rule still provides a
necessary optimality condition, which is referred to as basic feasibility. For a full support,
this condition aligns with the standard stationarity condition, but only applies within the
support set. If the support is not full, the stationarity condition must hold for any potential
full support set that includes the given support, that is the gradient needs to be zero.

Definition 2.1. z* € Ck is Basic Feasibile (BF) for problem (1.1) when
Vi(x*) =0, ||lz*)o < K,
Vifi(z*) =0 for all i € Iz(x*), if |x*||o = K.

We thus have that when a point x* € C is optimal for problem (1.1), then x* is a BF point
(see Theorem 1 in [3]). The BF property is however a relatively weak necessary condition
for optimality. Consequently, stronger necessary conditions are required to achieve higher
quality solutions. This is why we use L-stationarity, an extension of the stationarity concept
for convex constrained problems.

Definition 2.2. z* € Ck is L - stationary for problem (1.1) when

(2.1) € P, <:c _ in(a:*)) .

An equivalent analytic property of L-stationarity is given by the following lemma.

Lemma 2.3. [3, Lemma 2.2] L-stationarity at x* is equivalent to ||z*|lo < K and

e L S EMi() i L)
v = s

The next result relates L-stationarity and Basic Feasibility:

Corollary 2.4. [3, Corollary 2.1] Suppose that x* € Cy, is an L-stationary of problem (1.1)
for some L. Then x* is BF for problem (1.1).

In addition, the likely intuition that the L-stationarity is related to the gradient Lispchitz
constant is correct:

Theorem 2.5. [3, Theorem 2.2] If x* is an optimal solution for problem (1.1) then it is
L-stationary for all L > L(f).

To see the distinction between BF and L-stationary, we can consider that if the Lipschitz
constant of f is 1, then z* = (1,0) with V f(z*) = (—10, 1) satisfies BF but not L-stationarity.
In particular it is clear from a linearization that f((0,y)) < f(z*) for y small.

In this sense L-stationarity is stronger than a linearized feasible direction stationarity
measure, as constructed in [20]. This is because any feasible path for an active component,
that is a direction from which a zero component becomes non-zero, would require a discrete
jump from another component, that is the assignment of zero to a different component, in
order to maintain the constraint. Thus there is no feasible linearized direction in which a zero
component becomes non-negative on which to consider possible descent when the cardinality
constraint is active. L-stationarity enables a relaxation of this by considering Lipschitz bounds
on how much the function value can change along various directions depending on the gradient
vector components.
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Iterative Hard Thresholding. An important component of particularly machine learning
literature procedures to solve (1.1) is the Hard Thresholding Operator (see, e.g., [3, 7] for
further details). Consider the operator HT*(v) applied to a vector v as one that projects v
onto the sparsity constraint, i.e.,

(2.2) HT*(v) € argmin {[lv — wl], [ullo < K} = Pe, (v).

3 Algorithm

Rolling Projection Estimator Recall that, the sparse projection operation Pc, (v) for a
vector v amounts to performing a sorting operation ¢ € X(v) on ¢(v), and then keeping the
K largest magnitude components of v while setting the rest to zero.

Observe that an algorithmic iterative descent procedure would involve the negative of the
gradient of f or an estimate thereof. Indeed, as the objective function is an expectation, we
do not have access to the exact value of the V f(x) and hence the magnitude ranking of the
its components. Thus, we must by necessity use noisy gradient estimates VF'(z, f ) to attempt
to estimate the actual ranking of component magnitudes.

Asymptotically, we want to ensure that this sparse projector estimates the true ranking
at any limit point. Given the natural source of asymptotically increasing sample sizes, this
present a natural opportunity to use the Algorithm iterate sequence itself to perform this
estimate, ultimately relying on consistency for statistical guarantees on accurate identification.

Let zj, correspond to the current iterate. Now we define our particular sequential estimate
of the ranking of the magnitude of the vector components of the gradient of f(zy). Specifically,
we are given a noisy evaluation g ~ V f(x), and an application

(3.1) or(gr) €2 <azk — amin {1 O }gk) .

"o gl
At the same time, there exists a set of permutations Sy = {O'(j)}je[J], oU) € 3, with coefficient
weights {w(j)}jem, weA.
We now perform exponential smoothing (exponential moving average) on the estimate,
with smoothing parameter ag:

w <+ (1 — as)w,
W@ wl) 4+ ay,
(3.2) Sk < Sk U{ow},
o & Sp =< w+ (1 —as)w,
w('&c‘) — Q.

This accomplishes the following: We maintain a set of possible permutations with associ-
ated mixture weights. With each new iteration, we sort the components of the noisy gradient
estimate. If this sorting permutation has been found before, then we add to a weight corre-
sponding to that permutation and lower the weights of others. Otherwise, i.e. this is a new
permutation, we add it to the list of options.

Now, let 6% be such that

(3.3) & = o) € ), with wl) = arg max w®.
lG[Sk]

Thus, rather than taking the maximal components based on the current sorting, we use the
moving average historical estimate. Then, taking

(3.4) I, = supp (m}gx &k) )
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PROBABILISTIC ITERATIVE HARD THRESHOLDING 5

that is, the set of indices whose components are largest, we present the Pseudo Hard
Thresholding operator corresponding to iteration k, defined as follows:

(3.5) HT**(v) € arg min {|jv — wl|, w7, =0, [lw — x| < 5}

We take a clipped step, wherein we step in the negative direction of the scaled negative gra-

dient —amin<1 } gi., with a being a positive constant. The Pseudo-Hard Thresholding

g
? allgkll
algorithm can be computed in a straightforward closed form expression:

) 0 i ¢ I
(3.6) [Zx]i = { [l’k—amin{l’ﬁin}gk]i i€ Iy

From (3.6), observe that

)
(3.7) T = P, <:L’k - amin{l, k}gk>.
allgr|

This presents an opportunity to get a sort of descent lemma in the context of cardinality
constrained optimization problems. To this end, define

(3-8) hi(y) = fxr) + gi (y — =),
so that

ol gl
O,

. R 1 R 1, .
(3.9) hp(zk) — hg(zr) = g,{(:ck —xp) < - max{l, }ka — kaQ < —aka — CCk||2,

where the first inequality follows from known results on the projection operator [6].

Accuracy Estimates

Definition 3.1. Define s = I — x. The function estimates fl? and f; are €g-accurate
estimates of f(xy) and f(xy + s), respectively, for a given oy if

(3.10) [ — flar)| <epdp and |fi — flog+ si)| < 567
Definition 3.2. The model for generating the iterate is k-0i, or (kf, kq)-0k accurate, when
(3.11) IVF(y) = gill < kgdr and | f(y) = f(zx) — i (v — 2x)| < wylly — 2116

for ally € B(xy, o).
Note that this implies:

(3.12)  [[[VF(y) — gkln |l < kgdr and | f(y) — f(ax) — [gx]7, [v — zln,| < rplly — zllo7
for all y € B(xg, o).

4 Convergence Theory Now we develop our argument for justifying the long term con-
vergence of the Algorithm based on classic arguments on probabilistic models given in [15](see
also [1, 13]). To this end, we remark that the iterates, being dependent on random function
and gradient estimates, define a stochastic process Xi. The Algorithm itself is a realization,
thus denoting = = Xg(w), d0p = Ag(w), etc. for w the random element defining the realiza-
tion. Similar as to the original, we can consider a filtration with the sigma algebra F, defining
the start of the iteration, and F; 1 defining the algebra after the minibatch has been sampled
and g computed. This filtration will be implicit in the statements of the convergence results.

We begin with a standard assumption on a probability bound on the accuracy of the
conditions given by Definition 3.1 and 3.2. To this end define 0, 5 to be the probability that
a given sample of gp.
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Algorithm 3.1 Probabilistic Iterative Hard Thresholding

1. Initialization: z¢ € Cfk, 0y € (0, dynaz], Parameters 0, > 0, v € (0,1).
2: for k=0,1,2,... do
3:  Sample a minibatch & ~ = and compute g = VF(xg, &)

4:  Compute o by (3.1) and update w by (3.2)
5. Compute 6% from (3.3) and use it to define Ij, by (3.4).
6:  Compute 2, from the Pseudo-Hard-Thresholding (3.6)
7. Compute stochastic estimates ff ~ f(&%), f) ~ f(xk)
0 s
8 if it > m and ||[gk]z, || = 720k then
1[gk] 1, 1|0k
9: Set 0k1+1 = min{Y0k, Omaz }, let Trr1 = Tk
10: else
11: Set dpr1 = v L6k, let zpyy = 24
12 end if
13: end for

Assumption 4.1. Given 0,3 € (0,1) and ey, there exist ky, k5 such that the sequence of {g}
s such that with probability 0, k-0r-accuracy holds as per Definition 3.2, and with probability
B, € accuracy holds as by Definition 3.1.

We can consider that [3, Lemma 3.1] provides for the enforcement of function decrease
in the favorable probabilistic cases in the convergence theory. Indeed, one can derive the
following lemma which also functionally corresponds to [15, Lemma 4.5].

Lemma 4.2. If the model for generating the iterate k is k-0 accurate according to Defini-
tion 3.2, with T and 0 being such that

4.1 < -1
(4.) Gt S G llon =l
then
. 1.
(4.2) Flar) = f(@r) = o M1k — ||

Proof. Using the definition of hj given in (3.8), we can write

@) — () = (@) — hie(Zk) + hie(Zk) — hie(@p) + (k) — f2k)
= (@) — i (Zx) + I (Zx) — P ()
= f(&) = f(zr) — g§ &k — z1) + g (&) — 1)
< Kgllwk — &6} + gi (2, — 1),

where the inequality follows from the second condition in (3.11). Using (3.9), we also have
that

. ..
gi (& — @) < — e = ||
Then, we obtain
. R 1, . R 1, .
(4.3) f(@r) = f(an) < wgllaw — 2xl16F — Sl - 2k||* < KgOmaz |z — 2|0k — Sl = k||,
where the last inequality follows from the fact that d; < dpaq. Moreover, (4.1) implies that
S 2 — 4165 < o~ 2 — 2
K T — & — & — 2|”.
g9max || Lk klIIOk > 20 k k

Using this inequality in (4.3), the desired result follows. [ |
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PROBABILISTIC ITERATIVE HARD THRESHOLDING 7

Now, taking inspiration from [15, Lemma 4.6, we can bound the decrease with respect to
the projected real gradient.

Lemma 4.3. If the model for generating the iterate k is k-0 accurate according to Defini-
tion 3.2 and

(4.4) 0 <a xk—P[k<xk—amin{1,(MHV?W}VJC(:U;CO ,
where
1
(4.5)  208g0mar + 2VE
and
VK
(4.6) a > P
then
5 2

(4.7) f(zg) — f(Zx) > cl|lzk — P, <:L"k — amin {1, OZHka(CL‘k)H} Vf(l’k)> ,
with

_ 1-4aVK 0

—720[ > 0.

Proof. We can write
. Ok
o= 1 (o= cmin {1 o 0o )| <
”l‘k — i'k” + ||Zr — P[k (xk — amin {1, OzHVij(xk)H} Vf(a:k)) H
Using (3.7), we get
xp — P, (m —amin{ Ok }fo
A En] *
. . Ok
T e R O‘mm{l’ st}
. [ gkl } gkln, . {OéHVf(ka)H } [V f(z1)]1
_ 5 _
o= 2+ 0 min { <L 1} % s VGl

2k — k)| + 2V Ky,

where the last inequality follows from the fact that ||u — v|| < VK|ju — v||le < 2V K for all
u,v € RE such that ||u|| = ||v|]| = 1. From (4.4), the first term in (4.8) is greater of equal to
0/ a, leading to

B
Ek < ek — &l + 2V K6y



239

240
241

249

254

8 M. BERGAMASCHI, A. CRISTOFARI, V. KUNGURTSEV, AND F. RINALDI

Using the definition of a given in (4.5), it follows that (4.1) is satisfied and we can apply
Lemma 4.2, obtaining

(19) Flow) — Fla) > gl — mill

Finally, in order to lower bound the right-hand side term in the above inequality, using (4.8)
we can write

e — 2k > (

2
xk—PIk(xk—amin{ 6}Vf:13k H 2\/>5k>

oV f (@)l
2
> xk—P1k<:Uk—amin{1,M}Vf(xk)> -+
_4\/f?5k xr — Pr, (xk_amin{LOéHV?z%k)H}Vf(xk)>H
2
2(1—4m/[?) xk—P1k<xk—amin{1,a”v?w}Vf(xk)) ,

where the last inequality follows from (4.4). From (4.6), it also follows that ¢ > 0, thus leading
to the desired result. |

The next lemma states conditions on d; to guarantee that an iteration is successful,
similarly as in [15, Lemma 4.7].

Lemma 4.4. If, at iteration k, the estimates f,?,f,j are €¢-accurate according to Defini-
tion 3.1 and the model is k-0 accurate according to Definition 3.2, with

1 1-—
O < mln{ m}“[gk]lk||7

n2’ 26 + KOmag

then the step is accepted.

Proof. Define
-1
Pk =
]z M0k

Using (3.10) and (3.11), we can write

I — flap) n fzg) — f(3g) n f(&) = fi

Pk =
| lgw] 1, | O% | lgw] 1, || 0% | lgx] 1,11 0%
20, okl (B — xiln, + rglldr — 21|07
= lowln |l {9k 1, 1| Ok
2
< Ef(sk +14 "196771(1966167
| lgx] 1, I I lgx]z, I

where the last inequality follows from the fact that |2 — x| < 6 and 6 < dmaz. Then

(26 + KgOmaz)Ok

lor — 1] <
I lgr]z,

§1_7717

where we have used the assumption on d in the last inequality. Hence, pr > n1. Since we
have also assumed that ||[gx]z, || > 720k, from the instructions of the algorithm (see line 8 of
Algorithm 3.1) it follows that the step is accepted. |
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PROBABILISTIC ITERATIVE HARD THRESHOLDING 9

Lemma 4.5. If the estimates f,g,f,j at iteration k are €g-accurate according to Defini-
tion 3.1 with €5 < (mn2)/2 and the step is accepted, then

Flarer) — Flan) < —C16%,

with C = mnz — 2¢; > 0.

Proof. Since the step is accepted, from the instructions of the algorithm (see line 8 of
Algorithm 3.1) we can write

(4.10) 12 = 18 = mlllgr)n |0k = mn267.

Moreover,

Flag +sk) — flan) = fzr +s) — [+ fi — fo + fo — Faw) < 2¢467 — mn267,

where the inequality follows from (3.10) and (4.10). Then, using the definition of C' given in
the assertion, the desired result follows. |

Now we define the stochastic process
(4.11) Oy = vf(z) + (1 —v)os.

The next Theorem is along the lines of Theorem 4.11 in [15]. The result requires a
compactness assumption, which we present first.

Assumption 4.6. Let L be the level set of the iterates generated by the algorithm, that is,

L=Az: f(z) < f(zk)}, ¥ zp

noting that this depends on the stochastic realization of the iterates and gradient estimates.
Assume that L is bounded below and that f is L-Lipschitz and its gradient is L-Lipschitz
continuous on L.

Theorem 4.7. Let {x} be the sequence of iterates generated by the Probabilistic Iterative
Hard Thresholding Algorithm (Algorithm 3.1) under Assumption J.1, and moreover assume
that the function and iterates are such that Assumption /.6 holds. Also assume that the step
acceptance parameter ny satisfies

(4.12) N2 > 3Kfor
and the function accuracy parameter €y satisfying,
(4.13) er <min{rg, mna2}.

Then it holds that the sequence of trust region radii {0y} satisfy the summability condition

(4.14) Z 62 < 00
k=0

almost surely.

Proof. We define the constants ¢ together with v appearing in (4.11) as satisfying,

2 1)
(4.15) ¢ Zmax{a_l,/fg+max {nQ’W}}’
-
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where we recall that

1
B 2060 mar + 2VEK
and
4 2 4 2 2
(4.16) > max{v”Y’V}’
1—-v Cc mmn2 Ky

with ¢ defined by Lemma 4.3.
We observe that on successful, or accepted, iterations,

(4.17) Bpost — B, < v(f(wpsr) — Flaw) + (1= v)(32 = 1)

and on unsuccessful iterations,

1
(4.18) Py — P < (1-v) (72 — 1) 62 < 0.

Let us define the event sequence [ as the satisfaction of model accuracy according to
Definition 3.2:

IVE(y) — gkl < K6k, and  |f(y) — f(zx) — gl (y — z)| < klly — 2xl|0f Yy € By, 0k).

And Jj, is defined as the satisfaction of function evaluation accuracy according to Defini-
tion 3.1:

fe — flze)| < epdi, and  |ff — f(zr+ si)| < ef6;.

Now we break down the different cases of an approximate stationarity condition denoted
as:

IV (Rl < e

Case 1 [[(Vf(wi))r, |l = ¢
We examine the following subcases based on different events:

Ii; N Ji: The model g, satisfies the k-J;, accuracy condition as well as having ¢y accurate

function evaluations. Applying (4.15),

IV f ()l = 0k /a.

Rearranging, we obtain

o < all(Vf(zp))r |l <

amax {&, | (V f(zx)) 1, ||}

Notice that this implies (4.4), that is,

= (o —amin {1 S L9 S@0) |

and so we can apply Lemma 4.3 to conclude that

6k§a

Flaw) = f@r) 2 5 o 12k — el

Moreover, due to model accuracy it holds that

1 1 — 771
gkl = IV f(zr)ll — kgl > (¢ — ”g)‘sk > mm{ﬁz 25f+/€5rmx}5k
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PROBABILISTIC ITERATIVE HARD THRESHOLDING 11

As such, we can apply Lemma 4.5 to conclude that the step is accepted and Lemma 4.3 to
conclude that the stochastic process proceeds as
(4.19)

Qi1 — P < —vedy ||z — P, <xk — amin {1, m} Vf(xk)>

<[~vel+(1—-v)(*-1)] 62 <0

(1= v)(y? = 1)

where the second inequality uses the case assumption.

Ii; N Jg: The function values f,?, fi; do not satisfy the es-accuracy condition, while model
accuracy still holds. In this case the same argument as part a holds, with the caveat that
erronous function estimates could lead to a step rejection. In that case, the change in the
stochastic process is bounded by (4.18), that is,

1
By — O = (1—v) (72—1>5,2<0.

I N Jj: If the step is unsuccessful then again we can apply (4.18). Otherwise, with accurate
function estimates, we know from Lemma 4.5 together with (4.13) that in this case

Dpy1 — P < [—vmme + (1 —v)(* — 1)] 6,

which is still bounded by (4.18) on account of (4.16).
I7 N J; In this case, standard Lipschitz arguments give the following bound on the increase
in the value of ®:

Ppi1 — P S VCL| (VS (@), 10k + (1= v)(y* = 1)é;, Cp = <1 - 2?) '

We can finally combine these results to obtain, using the definitions of the probabilities 8
and S,

E (@1 — Okl Fi] <OB[—vellll(Vf(Xp)r 1Ak + (1 —v)(v* — 1)A]
+[6(1—B) + (1 —0)B](1 —v) (712 - 1) A

+ (1= 0)(1 = B) | CLll (VS (Xi))y, 19 + (1= v)(* = 1)AF] -

We can observe that we can proceed along the same lines as the proof of Case 1 in [15,
Theorem 4.11] to conclude that with 6, 8 chosen to satisfy

(05-1/2) _ C1
1-01-8" ¢’

we can apply (4.16) to obtain that both

(4.20)

(@20) B[ @ — 8T (] (Vi) | > A < e VAX)]A
and

(122) B [®i BT (L (TF )y, |2 CA] < 5 (- )7~ DAY
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Case 2+ [[(Vf(@x))r, | < ¢
If ||gk|| < ndx then (4.18) holds. Now assume that ||gx| > 720x. We again examine the

following subcases based on different events:

Ii; N Ji: The model g;, satisfies the k-0, accuracy condition as well as having €y accurate

function evaluations. In this case, since it cannot be ensured that the step is accepted, we

can apply the argument of Case 1c¢ to conclude that again (4.18) holds.

Ii; N Ji: The function values f,g, fi; do not satisfy the es-accuracy condition, while model

accuracy still holds. An unsucessful iteration yields (4.18) a successful iteration satisfies

F@r) = f(xrar) = flan) —he(an) +he(ar) — he(@r) +he(Er) — f () < (n2/a—265)07 > Ko,

with (4.12) responsible for the last inequality. Finally (4.16) implies (4.18) holds again.
I N Jg: It is the same as Case 1c .

I N Jg: It is the same as Case 1d.

Now, with 8, 8 chosen such that

-1
(4.23) (1-0)(1-p5) < Y —142920(1%

we follow similar arguments to obtain

1 1
420 BB - oA (VS < cadd] < 50— (1- ) A2
Finally, combining the two cases yields that
E([®py1 — Pp|Fi] < —0AZ
with ¢ > 0, and the theorem has been proven. [ ]

We may proceed now to the main and final result. The rest of the original convergence
argument can be applied directly to ||(V f(xr))r, ||. However, recall that this is not the object
that is of primary interest. We are indeed interested in proving that the proposed algorithm
gives us a point satisfying some suitable optimality condition with high probability.

Theorem 4.8. Almost surely,
(4.25) lim [|(V f(zx))r|| = 0.
k—o00

Moreover, for 8 sufficiently large, if it holds that, almost surely, for any limit point =* of a
realization of iterates {xy} satisfying

(4.26) V(@) o) 2 V(@) o 41) + X5 with x >0,

it holds that, for some S, for all k > S,

(4.27) Iy =I7(z") = Iz (x - in(x*)>

and x* satisfies L-stationarity. Moreover at least one such limit point exists.

Proof. The first part of the statement follows directly from the identical arguments in [15,
Theorem 16, Lemma 17, Theorem 18].

For the second statement: first observe that Ay — 0 almost surely and thus || X541 — Xi||
almost surely, and so on a set of dense probability, { X%} is a Cauchy sequence. As such, for
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any realization there exists a limit point z* satisfying x;, — x*. Now fix the realization for
the remainder of the proof.

We compare the ranking of the gradient components, that is o({|g:|}), ¢ € Z({|[gx]:|})
to o({{(Vf(x*))i|}). To begin with we see that for the subsequence S, wherein the model is
k — 0 accurate we have that k € S, iterations satisfy

(lgrli = [V f(@i)]i) + ([Vf (@r))i = [V F(@7)]i) = 0

where the first summand goes to zero from J; — 0 and the second from the continuity of V f
and the convergence of x; — x*. Thus for sufficiently large S, for k > S and k € S, it holds
that

lgklli > IV F (@) o (r41) + x/2
for i € Iz(z*), and
[lgklle < IV f(@)laem) +x/2

for i € I4(x*). Thus, with probability 0, o), € 3 satisfies that o[l : K] = I7(z*).

When 6 is sufficiently large, it holds that for & > S sufficiently large, by smoothing
properties [17], % satisfies {&é“l), - ,&?K)) = Iz(x*).

This together with Lemma 2.3 proves the statement (4.27). |

The restriction on 6 is just that 6 > % if all the components are separated, i.e.,

(IVf@)loq > V@) o@) > V@) lo@) > - > V(@) om)

A larger # would be necessary otherwise, in case ties prevent a unique 6*.

5 Numerical Results In this section, we present two machine learning applications of
the algorithm 3.1: adversarial attacks on neural networks and the reconstruction of sparse
Gaussian graphical models. The implementation was carried out using the Python program-
ming language, using the NumPy, Keras, Tensorflow, scikit-learn, and Pandas libraries.
The hyperparameters were selected as follows: 171 = 1074, 1, = 1074, 6y = 1, dmax = 10,
and v = 2. All the experiments were conducted on a machine equipped with an 11th
Gen Intel(R) Core(TM) i7-1165G7 CPU @ 2.80GHz (1.69 GHz). The code is available at
https://github.com/Berga53/Probabilistic_iterative_hard_thresholding.

Both applications involve high-dimensional data, making the use of the Pseudo Hard
Thresholding operator, as defined in 3, computationally expensive. For practical implementa-
tion, we instead utilize the classic Hard Thresholding operator [3]. However, tests on smaller
instances have shown that the two operators perform similarly when a suitable value of ay is
chosen.

5.1 Adversarial Attacks on Neural Networks Adversarial attacks are techniques used
to craft imperceptible perturbations that, when added to regular data inputs, induce mis-
classifications in neural network models. These perturbations are typically designed to evade
human detection while successfully fooling the model’s classification process. One of the
most powerful type of adversarial attack is the Carlini and Wagner [12], characterized by the
following formulation:

min D(z,x 4+ d) + ¢ f(x +9)
(5.1) 0
such that =z + ¢ € [0,1]"

with ¢ being the perturbation, D being usually the ¢ or ¢y distance, and

i) = (max(Fe)) - F<x>t)+.
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Using our algorithm, we can incorporate the ¢g penalty directly in the constraint, so our
final formulation of the problem is

min_|[[6llz2 +c- f(x+46
o min (5l +c fa+ )
such that = + ¢ € [0,1]"

In practice, this allows us to decide how many pixels to perturb during the attack. While
usual attacks are trained against selected samples of the dataset, in this paper, we will demon-
strate a universal adversarial attack: the attack is performed against the entirety of the
dataset, producing only one global perturbation. We will show that, in both targeted and
untargeted attacks, we can significantly lower a model’s accuracy using very few pixels. We
tested the attack on the MNIST dataset, which consists of 60,000 images of handwritten digits
(0-9) that are 28 x 28 pixels in size. We performed both targeted and untargeted attacks.
In the targeted attack, we aimed to misclassify the images into a specific class, while in the
untargeted attack, we simply aimed to cause any misclassification. However, the untargeted
attack is generally a bit weaker in the context of the Carlini and Wagner Attack. We will show
that, in both targeted and untargeted attacks, we can significantly lower a model’s accuracy
using very few pixels. We gradually increase the sparsity constraint and observe that this
gradually increases the errors made by the model. In particular, in Figure 1, we can see both
the accuracy decreasing and the number of samples predicted as the attack target increasing,
indicating that the attack is performed as desired.
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Figure 1. Effect of increasing the sparsity constraint on accuracy and targeted attack predictions.
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5.2 Sparse Gaussian Graphical Models Probabilistic Graphical Models are a popular
tool in machine learning to model the relationships between random variables. The Gaussian
Graphical Model is an undirected graph with each edge corresponding to a Gaussian condi-
tional probability of one variable at the end of the edge to another. By learning the adjacency
matrix together with the model weights, we can infer the proximal physical, and possibly
causal, relationships between quantities.

This is of special importance in high dimensional settings (see, e.g., [29]). Whereas in many
contemporary “big data” approaches the sample size is many orders of magnitudes larger than
the dimensionality of feature space, there are a number of settings wherein obtaining data
samples is costly, and such a regime cannot be expected to hold. Indeed this is often the case
in medical applications, wherein recruiting volunteers for a clinical trial, or even obtaining
health records, presents formidable costs to significant scaling in sample size. On the other
hand, the precision of instrumentation has led to detailed “omics” data, yielding a very high
dimensional feature space. One associated observation is that in the underdetermined case,
when the dimensionality of the features exceeds the number of samples, some of the guarantees
associated with the ¢ proxy for sparsity are no longer applicable, bringing greater practical
salience to having a reliable algorithm enforcing sparsity explicitly.

The recent work [5] presented an integer programming formulation for training sparse
Gaussian graphical models. Prior to redefining the sparsity regularization using binary vari-
ables, their fp optimization problem is given as

p

1 -
: in Fy(0) := —log(6i) + — I X6:[1* ) + A A2[|©|f3
59 iy Fo®) = 3 (lostta) + g IS0 )+ olell + el

with © € SP being the weights associated with the graph and X = ﬁX the scaled feature
matrix, with X € RP*" consisting of p measures and n samples. Functionally, ©;; defines
an edge between node ¢ and j in the graph, with a nonzero indicating the presence of an
active edge, which corresponds to a direct link in the perspective of DAG structure of the
group. The value associated with the edge corresponds to the weight defining the strength of
the interaction between the features ¢ and j. We seek to regularize cardinality for the sake
of encouraging parsimonious models, as well as minimizing the total norm of the weights for
general regularization.

Due to the structure of our algorithm, we can modify the formulation of the problem by
incorporating the £0 constraint. The final formulation of the problem is then expressed as
follows:

5.4 i F@-—p log (0 L %02) + aal@)2
(5.4 ocs il <rc F©) =2 (- tow(6) + 5 1K612) + rall1
We also observed that the ¢y constraint in our formulation is very strong. In practical ap-
plications, we eliminate Ay penalty term, as the ¢y constraint was the dominant factor in the
model.

We applied the model to the GDS2910 dataset from the Gene Expression Omnibus (GEO).
This dataset consists of gene expression profiles, which naturally yield a high-dimensional
feature space, with 1900 features and 191 samples. Given this feature-to-sample ratio, we can
assume some level of sparsity in the final adjacency matrix. Since there is no ground truth
for the underlying structure, our goal is to investigate how changing the ¢y constraint affects
the results of our method, while also gathering information on the true sparsity nature of
the data. We performed the test by gradually increasing K, the ¢y constraint, from 5000 to
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15000. This range was previously determined to be optimal based on preliminary tests. Note
that the adjacency matrix we are searching for is of size 1900 x 1900, resulting in a total of
3,610,000 entries. To ensure the robustness of the results, for each value of K, we performed
ten runs starting from different randomly chosen feasible points, and the algorithm was given
a total of 1000 iteration for every run. We also decided to set the Ay parameter to zero, as
we observed that the strong ¢y constraint was dominant over the ¢5 penalty.

We also divided the dataset into training and validation sets to determine whether the
reconstructed matrix is a result of overfitting. In Figure 3, we show the effect of varying K,
which represents the number of nonzero entries that the matrix is allowed to have. The figure
on the left, which shows the average objective value found over the ten runs, demonstrates
that increasing K eventually stops being beneficial to the model’s performance. Additionally,
we observe that the number of mean accepted iterations also stops increasing, indicating that
the model cannot extract more information from the data. This suggests that the true sparsity
of the data can be estimated by identifying the point at which further increasing K no longer
improves the model’s results. In Figure 4, we present an example from our tests where the
objective function decreases over the successful iterations.
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Figure 3. Effect of increasing the sparsity constraint K.
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6 Conclusions In this paper, we addressed the stochastic cardinality-constrained op-
timization problem, providing a well defined algorithm, convergence theory and illustrative
experiments. Many contemporary machine learning applications involve scenarios where spar-



ot Ot Ot ¢

ot Ot Ot

ot Ot Ot

Ut Ot Ut Ut

W N -

v Ot Ot Ot Ot Ot Ot Ot Ot
QU O B B s s
O © 00O Ut = W

T Ot Ot
O

ot ot Ot

ot
at

PROBABILISTIC ITERATIVE HARD THRESHOLDING 17

sity is crucial for high-dimensional model fitting. We proposed an iterative hard-thresholding
like algorithm based on probabilistic models that nicely balances computational efficiency
and solution precision by allowing flexible gradient estimates while incorporating hard spar-
sity constraints.

We analyzed the theoretical properties of the method and proved almost sure convergence
to L-stationary points under mild assumptions. This extends previous work in the optimiza-
tion literature on finding solutions with strong stationarity guarantees together with machine
learning articles that perform iterative hard thresholding with stochastic gradients to achieve
a novel balance between ease of a fast implementation and formal guarantees of performance.
The numerical experiments confirmed the practical effectiveness of our method, showcasing
its potential in machine learning tasks such as adversarial attacks and probabilistic graphi-
cal model training. By enforcing explicit cardinality constraints, our approach was able to
produce models with enhanced sparsity and interpretability in the end.

Future work may involve extending the algorithm to accommodate additional nonlinear
constraints, exploring techniques to further improve scalability and performance, as well as
testing the algorithm on some other relevant Machine Learning applications, like, e.g., sparse
Dynamic Bayesian Network training.
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