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Abstract. For statistical modeling wherein the data regime is unfavorable in terms of dimensionality relative to4
the sample size, finding hidden sparsity in the ground truth can be critical in formulating an accurate5
statistical model. The so-called “ℓ0 norm”, which counts the number of non-zero components in a6
vector, is a strong reliable mechanism of enforcing sparsity when incorporated into an optimization7
problem. However, in big data settings wherein noisy estimates of the gradient must be evaluated8
out of computational necessity, the literature is scant on methods that reliably converge. In this9
paper we present an approach towards solving expectation objective optimization problems with10
cardinality constraints. We prove convergence of the underlying stochastic process, and demonstrate11
the performance on two Machine Learning problems.12
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1 Introduction In this paper we consider the cardinality constrained expectation objec-15

tive problem,16

(1.1)
min
x∈Rn

f(x) := E[F (x, ξ)]

s.t. ∥x∥0 ≤ K,
17

where f(·) is L(f) continuously differentiable. We say that x ∈ CK if ∥x∥0 ≤ K and thus a18

feasible x corresponds to x ∈ CK .19

This optimization problem is particularly important in applications of data science. In20

particular, the expectation objective serves to quantify the minimization of some empirical21

loss function that enforces the fit of a statistical model fit to empirical data. Cardinality22

constraints enforce sparsity in the model, enabling the discovery of the most salient features23

as far as prediction accuracy.24

Cardinality constraints present a significant challenge to optimization solvers. The so-25

called (as it is not, formally) zero norm is a discontinuous function that results in a highly26

nonconvex and disconnected feasible set, as well as an unusual topology of stationary points27

and minimizers [21, 22]. Algorithmic development has been, as similar to many such prob-28

lems, a parallel endeavor from the mathematical optimization and the machine learning com-29

munities. When dealing with a deterministic objective function, procedures attuned to the30

structure of the problem and seeking stationary points of various strength are presented, for31

instance, in [3]. Methods for deterministic optimization problems with sparse symmetric sets32

are proposed in, e.g., [4, 18], while methods for deterministic optimization problems with both33

cardinality and nonlinear constraints are described in, e.g., [8, 9, 10, 14, 24, 23, 25]. Simulta-34

neously works appearing in machine learning conferences, e.g., [31, 30, 27, 19], exhibit weak35

theoretical convergence guarantees, but appear to scale more adequately as far as numerical36

experience. Thus, an algorithm that enjoys both reliable performance together with strong37
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theoretical guarantees, as sought for the high dimensional high data volume model fitting38

problems in contemporary data science, is as of yet unavailable.39

In this paper we attempt to reconcile these two and present an algorithm that is associated40

with reasonably strong theoretical convergence guarantees, while at the same time able to41

solve large scale problems of interest in statistics and machine learning. To this end we42

present a procedure under the framework of Probabilistic Models, which can be understood as43

a sequential linear Sample Average Approximation (SAA) scheme for solving problems with44

statistics in the objective function. First introduced in [2], then rediscovered with extensive45

analysis in [1, 15], this approach can exhibit asymptotic (and even worst case complexity)46

results to a local minimizer of the original problem, while still allowing the use of Newton-47

type second order iterations of subproblem solutions, and thus faster convergence as far as48

iteration count. The use of probabilistically accurate estimates within a certain bound in these49

methods permit a rather flexible approach to estimating the gradient, including techniques50

that introduce bias, while foregoing the necessity of a stepsize asymptotically diminishing to51

zero. However, asymptotic accurate convergence still requires increasing the batch size, so the52

tradeoffs in precision and certainty relative to computation become apparent, and adaptive53

for the user, in deciding at which point to stop the algorithm and return the current iterate54

as an estimate of the solution.55

As contemporary Machine Learning applications, we shall consider Adversarial Attacks56

(see, e.g., [11, 16, 26] and references therein for further details), and Probabilistic Graphical57

Model training (see, e.g., [5, 28] and references therein for further details). In this paper we58

shall see how the use of a stochastic gradient and hard sparsity constraint can improve the59

performance and model quality in the considered problems.60

The paper is organized as follows: In Section 2, we introduce some basic definitions and61

preliminary results related to optimality conditions of problem (1.1) that ease the theoretical62

analysis. We then describe the details of the proposed algorithmic scheme in Section 3. We63

then prove almost sure convergence to suitable stationary points in Section 4. Numerical64

results on some relevant Machine Learning applications are reported Section 5. Finally, we65

draw some conclusions and discuss some possible extensions in Section 6.66

2 Background Cardinality constrained optimization presents an extensive hierarchy of67

stationarity conditions, as due to the geometric complexity of the feasible set. This neces-68

sitates specialized notions of projection, and presents complications due to the projection69

operation’s generic non-uniqueness.70

Definitions and Preliminaries The active and inactive set of a vector x ∈ Rn are respectively71

denoted by72

IA(x) := {i ∈ {1, ..., n}, xi = 0}, II(x) := {i ∈ {1, ..., n}, xi ̸= 0}.73

A set T is a super-support of x ∈ CK if IA(x) ⊆ T and |T | = s. Let the permutation group74

of {1, ..., n} be denoted as Σn and for a permutation σ ∈ Σn, we write (xσ)i = xσ(i). For a75

vector x ∈ Rn we denote with Mi(x) the i-th largest absolute-value component of x, thus we76

have M1(x) ≤M2(x) ≤ · · · ≤Mn(x).77

We finally define the orthogonal projection as78

PCK
(x) = argmin{∥z − x∥2, z ∈ CK},79

that is, an n-length vector consisting of the s components of x with the largest absolute value.80

Such operator, as already highlighted in the previous section, is not single-valued due to the81

inherent non-convexity of the set CK and plays a critical role in the development of algorithms82

for sparsity constrained optimization (see, e.g., [3, Section 2] for a discussion on this matter).83
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PROBABILISTIC ITERATIVE HARD THRESHOLDING 3

Optimality Conditions Now we define several optimality conditions for (1.1), borrowing84

heavily from [3]. Observe that a notable characteristic of cardinality constrained optimization85

is the presence of a hierarchy of optimality conditions, that is, a number of conditions that86

hold at optimal points that range across levels of restriction.87

When restricted to a specific support, the ”no descent directions” rule still provides a88

necessary optimality condition, which is referred to as basic feasibility. For a full support,89

this condition aligns with the standard stationarity condition, but only applies within the90

support set. If the support is not full, the stationarity condition must hold for any potential91

full support set that includes the given support, that is the gradient needs to be zero.92

Definition 2.1. x∗ ∈ CK is Basic Feasibile (BF) for problem (1.1) when93

1. ∇f(x∗) = 0, if ∥x∗∥0 < K,94

2. ∇fi(x∗) = 0 for all i ∈ II(x
∗), if ∥x∗∥0 = K.95

We thus have that when a point x∗ ∈ CK is optimal for problem (1.1), then x∗ is a BF point96

(see Theorem 1 in [3]). The BF property is however a relatively weak necessary condition97

for optimality. Consequently, stronger necessary conditions are required to achieve higher98

quality solutions. This is why we use L-stationarity, an extension of the stationarity concept99

for convex constrained problems.100

Definition 2.2. x∗ ∈ CK is L - stationary for problem (1.1) when101

(2.1) x∗ ∈ PCK

(
x∗ − 1

L
∇f(x∗)

)
.102

An equivalent analytic property of L-stationarity is given by the following lemma.103

Lemma 2.3. [3, Lemma 2.2] L-stationarity at x∗ is equivalent to ∥x∗∥0 ≤ K and104

|∇if(x
∗)|
{
≤ LMK(x∗) i ∈ IA(x

∗)
= 0 i ∈ II(x

∗)
.105

The next result relates L-stationarity and Basic Feasibility:106

Corollary 2.4. [3, Corollary 2.1] Suppose that x∗ ∈ Ck is an L-stationary of problem (1.1)107

for some L. Then x∗ is BF for problem (1.1).108

In addition, the likely intuition that the L-stationarity is related to the gradient Lispchitz109

constant is correct:110

Theorem 2.5. [3, Theorem 2.2] If x∗ is an optimal solution for problem (1.1) then it is111

L-stationary for all L > L(f).112

To see the distinction between BF and L-stationary, we can consider that if the Lipschitz113

constant of f is 1, then x∗ = (1, 0) with ∇f(x∗) = (−10, 1) satisfies BF but not L-stationarity.114

In particular it is clear from a linearization that f((0, y)) < f(x∗) for y small.115

In this sense L-stationarity is stronger than a linearized feasible direction stationarity116

measure, as constructed in [20]. This is because any feasible path for an active component,117

that is a direction from which a zero component becomes non-zero, would require a discrete118

jump from another component, that is the assignment of zero to a different component, in119

order to maintain the constraint. Thus there is no feasible linearized direction in which a zero120

component becomes non-negative on which to consider possible descent when the cardinality121

constraint is active. L-stationarity enables a relaxation of this by considering Lipschitz bounds122

on how much the function value can change along various directions depending on the gradient123

vector components.124
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Iterative Hard Thresholding. An important component of particularly machine learning125

literature procedures to solve (1.1) is the Hard Thresholding Operator (see, e.g., [3, 7] for126

further details). Consider the operator HTx(v) applied to a vector v as one that projects v127

onto the sparsity constraint, i.e.,128

(2.2) HTx(v) ∈ argmin
w
{∥v − w∥, ∥w∥0 ≤ K} := PCK

(v) .129

3 Algorithm130

Rolling Projection Estimator Recall that, the sparse projection operation PCK
(v) for a131

vector v amounts to performing a sorting operation σ ∈ Σ̃(v) on σ(v), and then keeping the132

K largest magnitude components of v while setting the rest to zero.133

Observe that an algorithmic iterative descent procedure would involve the negative of the134

gradient of f or an estimate thereof. Indeed, as the objective function is an expectation, we135

do not have access to the exact value of the ∇f(x) and hence the magnitude ranking of the136

its components. Thus, we must by necessity use noisy gradient estimates ∇F (x, ξ̂) to attempt137

to estimate the actual ranking of component magnitudes.138

Asymptotically, we want to ensure that this sparse projector estimates the true ranking139

at any limit point. Given the natural source of asymptotically increasing sample sizes, this140

present a natural opportunity to use the Algorithm iterate sequence itself to perform this141

estimate, ultimately relying on consistency for statistical guarantees on accurate identification.142

Let xk correspond to the current iterate. Now we define our particular sequential estimate143

of the ranking of the magnitude of the vector components of the gradient of f(xk). Specifically,144

we are given a noisy evaluation gk ≈ ∇f(xk), and an application145

(3.1) σk(gk) ∈ Σ̃

(
xk − αmin

{
1,

δk
α ∥gk∥

}
gk

)
.146

At the same time, there exists a set of permutations Sk = {σ(j)}j∈[J ], σ(j) ∈ Σn with coefficient147

weights {ω(j)}j∈[J ], ω ∈ ∆J .148

We now perform exponential smoothing (exponential moving average) on the estimate,149

with smoothing parameter αs:150

(3.2)

σk = σ(j) ∈ Sk,=⇒
{

ω ← (1− αs)ω,

ω(j) ← ω(j) + αs,

σk /∈ Sk =⇒


Sk ← Sk ∪ {σk},
ω ← (1− αs)ω,

ω(|Sk|) ← αs.

151

This accomplishes the following: We maintain a set of possible permutations with associ-152

ated mixture weights. With each new iteration, we sort the components of the noisy gradient153

estimate. If this sorting permutation has been found before, then we add to a weight corre-154

sponding to that permutation and lower the weights of others. Otherwise, i.e. this is a new155

permutation, we add it to the list of options.156

Now, let σ̂k be such that157

(3.3) σ̂k = σ(j) ∈ Sk with ω(j) = arg max
l∈[Sk]

ω(l).158

Thus, rather than taking the maximal components based on the current sorting, we use the159

moving average historical estimate. Then, taking160

(3.4) Ik = supp

(
max
K

σ̂k

)
,161
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PROBABILISTIC ITERATIVE HARD THRESHOLDING 5

that is, the set of indices whose components are largest, we present the Pseudo Hard162

Thresholding operator corresponding to iteration k, defined as follows:163

(3.5) HTx,δ,k(v) ∈ argmin
w

{
∥v − w∥, w[n]\Ik = 0, ∥w − x∥ ≤ δ

}
.164

We take a clipped step, wherein we step in the negative direction of the scaled negative gra-165

dient −αmin
{
1, δk

α∥gk∥

}
gk, with α being a positive constant. The Pseudo-Hard Thresholding166

algorithm can be computed in a straightforward closed form expression:167

(3.6) [x̂k]i =

{
0 i /∈ Ik[
xk − αmin

{
1, δk

α∥gk∥

}
gk

]
i

i ∈ Ik.
168

From (3.6), observe that169

(3.7) x̂k = PIk

(
xk − αmin

{
1,

δk
α∥gk∥

}
gk

)
.170

This presents an opportunity to get a sort of descent lemma in the context of cardinality171

constrained optimization problems. To this end, define172

(3.8) hk(y) = f(xk) + gTk (y − xk),173

so that174

(3.9) hk(x̂k)− hk(xk) = gTk (x̂k − xk) ≤ −
1

α
max

{
1,

α∥gk∥
δk

}
∥x̂k − xk∥2 ≤ −

1

α
∥x̂k − xk∥2,175

where the first inequality follows from known results on the projection operator [6].176

Accuracy Estimates177

Definition 3.1. Define sk = x̂k − xk. The function estimates f0
k and fs

k are εf -accurate178

estimates of f(xk) and f(xk + sk), respectively, for a given δk if179

(3.10) |f0
k − f(xk)| ≤ εfδ

2
k and |fs

k − f(xk + sk)| ≤ εfδ
2
k.180

Definition 3.2. The model for generating the iterate is κ-δk, or (κf , κg)-δk accurate, when181

(3.11) ∥∇F (y)− gk∥ ≤ κgδk and
∣∣f(y)− f(xk)− gTk (y − xk)

∣∣ ≤ κf∥y − xk∥δ2k182

for all y ∈ B(xk, δk).183

Note that this implies:184

(3.12) ∥[∇F (y)− gk]Ik∥ ≤ κgδk and
∣∣f(y)− f(xk)− [gk]

T
Ik
[y − xk]Ik

∣∣ ≤ κf∥y − xk∥δ2k185

for all y ∈ B(xk, δk).186

4 Convergence Theory Now we develop our argument for justifying the long term con-187

vergence of the Algorithm based on classic arguments on probabilistic models given in [15](see188

also [1, 13]). To this end, we remark that the iterates, being dependent on random function189

and gradient estimates, define a stochastic process Xk. The Algorithm itself is a realization,190

thus denoting xk = Xk(ω), δk = ∆k(ω), etc. for ω the random element defining the realiza-191

tion. Similar as to the original, we can consider a filtration with the sigma algebra Fk defining192

the start of the iteration, and Fk+ 1
2
defining the algebra after the minibatch has been sampled193

and gk computed. This filtration will be implicit in the statements of the convergence results.194

We begin with a standard assumption on a probability bound on the accuracy of the195

conditions given by Definition 3.1 and 3.2. To this end define θ, β to be the probability that196

a given sample of gk.197
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Algorithm 3.1 Probabilistic Iterative Hard Thresholding

1: Initialization: x0 ∈ CK , δ0 ∈ (0, δmax], Parameters δmax > 0, γ ∈ (0, 1).
2: for k = 0, 1, 2, . . . do
3: Sample a minibatch ξk ∼ Ξ and compute gk = ∇F (xk, ξk)
4: Compute σk by (3.1) and update ω by (3.2)
5: Compute σ̂k from (3.3) and use it to define Ik by (3.4).
6: Compute x̂k from the Pseudo-Hard-Thresholding (3.6)
7: Compute stochastic estimates fs

k ≈ f(x̂k), f
0
k ≈ f(xk)

8: if
f0
k − fs

k

∥[gk]Ik∥δk
≥ η1 and ∥[gk]Ik∥ ≥ η2δk then

9: Set δk+1 = min{γδk, δmax}, let xk+1 = x̂k
10: else
11: Set δk+1 = γ−1δk, let xk+1 = xk
12: end if
13: end for

Assumption 4.1. Given θ, β ∈ (0, 1) and εf , there exist κg, κf such that the sequence of {gk}198

is such that with probability θ, κ-δk-accuracy holds as per Definition 3.2, and with probability199

β, εf accuracy holds as by Definition 3.1.200

We can consider that [3, Lemma 3.1] provides for the enforcement of function decrease201

in the favorable probabilistic cases in the convergence theory. Indeed, one can derive the202

following lemma which also functionally corresponds to [15, Lemma 4.5].203

Lemma 4.2. If the model for generating the iterate k is κ-δk accurate according to Defini-204

tion 3.2, with x̂k and δk being such that205

(4.1) δk ≤
1

2ακgδmax
∥xk − x̂k∥,206

then207

(4.2) f(xk)− f(x̂k) ≥
1

2α
∥x̂k − xk∥2.208

Proof. Using the definition of hk given in (3.8), we can write209

f(x̂k)− f(xk) = f(x̂k)− hk(x̂k) + hk(x̂k)− hk(xk) + hk(xk)− f(xk)

= f(x̂k)− hk(x̂k) + hk(x̂k)− hk(xk)

= f(x̂k)− f(xk)− gTk (x̂k − xk) + gTk (x̂k − xk)

≤ κg∥xk − x̂k∥δ2k + gTk (x̂k − xk),

210

where the inequality follows from the second condition in (3.11). Using (3.9), we also have
that

gTk (x̂k − xk) ≤ −
1

α
∥x̂k − xk∥2.

Then, we obtain211

(4.3) f(x̂k)− f(xk) ≤ κg∥xk − x̂k∥δ2k −
1

α
∥x̂k − xk∥2 ≤ κgδmax∥xk − x̂k∥δk −

1

α
∥x̂k − xk∥2,212

where the last inequality follows from the fact that δk ≤ δmax. Moreover, (4.1) implies that213

κgδmax∥xk − x̂k∥δk ≤
1

2α
∥x̂k − xk∥2.214

Using this inequality in (4.3), the desired result follows.215
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Now, taking inspiration from [15, Lemma 4.6], we can bound the decrease with respect to216

the projected real gradient.217

Lemma 4.3. If the model for generating the iterate k is κ-δk accurate according to Defini-218

tion 3.2 and219

(4.4) δk ≤ a

∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥,220

where221

(4.5) a =
1

2ακgδmax + 2
√
K

222

and223

(4.6) α >

√
K

κgδmax
,224

then225

(4.7) f(xk)− f(x̂k) ≥ c

∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥
2

,226

with227

c =
1− 4a

√
K

2α
> 0.228

Proof. We can write229 ∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥ ≤
∥xk − x̂k∥+

∥∥∥∥∥x̂k − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥.
230

Using (3.7), we get231 ∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥ =

∥xk − x̂k∥+

∥∥∥∥∥αmin

{
1,

δk
α∥gk∥

}
[gk]Ik − αmin

{
1,

δk
α∥∇f(xk)∥

}
[∇f(xk)]Ik

∥∥∥∥∥ =

∥xk − x̂k∥+ δk

∥∥∥∥∥min

{
α∥gk∥
δk

, 1

}
[gk]Ik
∥gk∥

−min

{
α∥∇f(xk)∥

δk
, 1

}
[∇f(xk)]Ik
∥∇f(xk)∥

∥∥∥∥∥ ≤
∥xk − x̂k∥+ 2

√
Kδk,

(4.8)232

where the last inequality follows from the fact that ∥u − v∥ ≤
√
K∥u − v∥∞ ≤ 2

√
K for all233

u, v ∈ RK such that ∥u∥ = ∥v∥ = 1. From (4.4), the first term in (4.8) is greater of equal to234

δk/a, leading to235

δk
a
≤ ∥xk − x̂k∥+ 2

√
Kδk.236
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Using the definition of a given in (4.5), it follows that (4.1) is satisfied and we can apply237

Lemma 4.2, obtaining238

(4.9) f(xk)− f(x̂k) ≥
1

2α
∥x̂k − xk∥2.239

Finally, in order to lower bound the right-hand side term in the above inequality, using (4.8)240

we can write241

∥xk − x̂k∥2 ≥

(∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥− 2
√
Kδk

)2

≥

∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥
2

+

− 4
√
Kδk

∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥
≥
(
1− 4a

√
K
)∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥
2

,

242

where the last inequality follows from (4.4). From (4.6), it also follows that c > 0, thus leading243

to the desired result.244

The next lemma states conditions on δk to guarantee that an iteration is successful,245

similarly as in [15, Lemma 4.7].246

Lemma 4.4. If, at iteration k, the estimates f0
k , f

s
k are εf -accurate according to Defini-247

tion 3.1 and the model is κ-δk accurate according to Definition 3.2, with248

δk ≤ min

{
1

η2
,

1− η1
2εf + κδmax

}
∥[gk]Ik∥,249

then the step is accepted.250

Proof. Define251

ρk =
f0
k − fs

k

∥[gk]Ik∥δk
.252

Using (3.10) and (3.11), we can write253

ρk =
f0
k − f(xk)

∥[gk]Ik∥δk
+

f(xk)− f(x̂k)

∥[gk]Ik∥δk
+

f(x̂k)− fs
k

∥[gk]Ik∥δk

≤
2εfδk
∥[gk]Ik∥

+
[gk]

T
Ik
[x̂k − xk]Ik + κg∥x̂k − xk∥δ2k

∥[gk]Ik∥δk

≤
2εfδk
∥[gk]Ik∥

+ 1 +
κgδmaxδk
∥[gk]Ik∥

,

254

where the last inequality follows from the fact that ∥x̂k − xk∥ ≤ δk and δk ≤ δmax. Then255

|ρk − 1| ≤
(2εf + κgδmax)δk

∥[gk]Ik∥
≤ 1− η1,256

where we have used the assumption on δk in the last inequality. Hence, ρk ≥ η1. Since we257

have also assumed that ∥[gk]Ik∥ ≥ η2δk, from the instructions of the algorithm (see line 8 of258

Algorithm 3.1) it follows that the step is accepted.259
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Lemma 4.5. If the estimates f0
k , f

s
k at iteration k are εf -accurate according to Defini-260

tion 3.1 with ϵf < (η1η2)/2 and the step is accepted, then261

f(xk+1)− f(xk) ≤ −C∥δk∥2,262

with C = η1η2 − 2ϵf > 0.263

Proof. Since the step is accepted, from the instructions of the algorithm (see line 8 of264

Algorithm 3.1) we can write265

(4.10) f0
k − fs

k ≥ η1∥[gk]Ik∥δk ≥ η1η2δ
2
k.266

Moreover,267

f(xk + sk)− f(xk) = f(xk + sk)− fs
k + f s

k − f0
k + f0

k − f(xk) ≤ 2ϵfδ
2
k − η1η2δ

2
k,268

where the inequality follows from (3.10) and (4.10). Then, using the definition of C given in269

the assertion, the desired result follows.270

Now we define the stochastic process271

(4.11) Φk := νf(xk) + (1− ν)δ2k.272

The next Theorem is along the lines of Theorem 4.11 in [15]. The result requires a273

compactness assumption, which we present first.274

Assumption 4.6. Let L be the level set of the iterates generated by the algorithm, that is,275

L = {x : f(x) ≤ f(xk)}, ∀ xk276

noting that this depends on the stochastic realization of the iterates and gradient estimates.277

Assume that L is bounded below and that f is L-Lipschitz and its gradient is L-Lipschitz278

continuous on L.279

Theorem 4.7. Let {xk} be the sequence of iterates generated by the Probabilistic Iterative280

Hard Thresholding Algorithm (Algorithm 3.1) under Assumption 4.1, and moreover assume281

that the function and iterates are such that Assumption 4.6 holds. Also assume that the step282

acceptance parameter η2 satisfies283

(4.12) η2 ≥ 3κfα284

and the function accuracy parameter εf satisfying,285

(4.13) εf ≤ min {κf , η1η2} .286

Then it holds that the sequence of trust region radii {δk} satisfy the summability condition287

288

(4.14)
∞∑
k=0

δ2k <∞289

almost surely.290

Proof. We define the constants ζ together with ν appearing in (4.11) as satisfying,291

(4.15) ζ ≥ max

{
a−1, κg +max

{
η2,

2ϵf + κgδmax

1− η1

}}
,292
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where we recall that293

a =
1

2ακδmax + 2
√
K

294

and295

(4.16)
ν

1− ν
> max

{
4γ2

ζc
,
4γ2

η1η2
,
γ2

κf

}
,296

with c defined by Lemma 4.3.297

We observe that on successful, or accepted, iterations,298

(4.17) Φk+1 − Φk ≤ ν(f(xk+1)− f(xk)) + (1− ν)(γ2 − 1)δ2k299

and on unsuccessful iterations,300

(4.18) Φk+1 − Φk ≤ (1− ν)

(
1

γ2
− 1

)
δ2k < 0.301

Let us define the event sequence Ik as the satisfaction of model accuracy according to302

Definition 3.2:303

∥∇F (y)− gk∥ ≤ κδk, and |f(y)− f(xk)− gTk (y − xk)| ≤ κ∥y − xk∥δ2k ∀y ∈ B(xk, δk).304

And Jk is defined as the satisfaction of function evaluation accuracy according to Defini-305

tion 3.1:306

|f0
k − f(xk)| ≤ εfδ

2
k, and |fs

k − f(xk + sk)| ≤ εfδ
2
k.307

Now we break down the different cases of an approximate stationarity condition denoted308

as:309

∥(∇f(xk))Ik∥ ≤ ϵ,310

Case 1 ∥(∇f(xk))Ik∥ ≥ ζδk311

We examine the following subcases based on different events:312

(a) Ik ∩ Jk: The model gk satisfies the κ-δk accuracy condition as well as having εf accurate313

function evaluations. Applying (4.15),314

∥(∇f(xk))Ik∥ ≥ δk/a.315

Rearranging, we obtain316

δk ≤ a∥(∇f(xk))Ik∥ ≤
amax {δk, α∥(∇f(xk))Ik∥}

α
317

Notice that this implies (4.4), that is,318

δk ≤ a

∥∥∥∥∥xk − PIk

(
xk − αmin

{
1,

δk
α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥,319

and so we can apply Lemma 4.3 to conclude that320

f(xk)− f(x̂k) ≥
1

2α
∥x̂k − xk∥2.321

Moreover, due to model accuracy it holds that322

∥gk∥ ≥ ∥∇f(xk)∥ − κgδk ≥ (ζ − κg)δk ≥ min

{
1

η2
,

1− η1
2εf + κδmax

}
δk.323
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As such, we can apply Lemma 4.5 to conclude that the step is accepted and Lemma 4.3 to324

conclude that the stochastic process proceeds as325

(4.19)

Φk+1 − Φk ≤ −νcδk

∥∥∥∥∥xk − PIk

(
xk − αmin

{
1, δk

α∥∇f(xk)∥

}
∇f(xk)

)∥∥∥∥∥+ (1− ν)(γ2 − 1)δ2k

≤
[
−νcζ + (1− ν)(γ2 − 1)

]
δ2k < 0

326

where the second inequality uses the case assumption.327

(b) Ik ∩ Jc
k: The function values f0

k , f
s
k do not satisfy the εf -accuracy condition, while model328

accuracy still holds. In this case the same argument as part a holds, with the caveat that329

erronous function estimates could lead to a step rejection. In that case, the change in the330

stochastic process is bounded by (4.18), that is,331

Φk+1 − Φk = (1− ν)

(
1

γ2
− 1

)
δ2k < 0.332

(c) Ick ∩ Jk: If the step is unsuccessful then again we can apply (4.18). Otherwise, with accurate333

function estimates, we know from Lemma 4.5 together with (4.13) that in this case334

Φk+1 − Φk ≤
[
−νη1η2 + (1− ν)(γ2 − 1)

]
δ2k,335

which is still bounded by (4.18) on account of (4.16).336

(d) Ick ∩ Jc
k In this case, standard Lipschitz arguments give the following bound on the increase337

in the value of Φ:338

Φk+1 − Φk ≤ νCL∥ (∇f(xk))Ik ∥δk + (1− ν)(γ2 − 1)δ2k, CL :=

(
1 +

3L

2ζ

)
.339

We can finally combine these results to obtain, using the definitions of the probabilities θ340

and β,341

E [Φk+1 − Φk|Fk] ≤θβ[−νc∥∥(∇f(Xk))Ik∥]∆k + (1− ν)(γ2 − 1)∆k]342

+ [θ(1− β) + (1− θ)β](1− ν)

(
1

γ2
− 1

)
∆2

k343

+ (1− θ)(1− β)
[
CL∥ (∇f(Xk))Ik ∥δk + (1− ν)(γ2 − 1)∆2

k

]
.344

We can observe that we can proceed along the same lines as the proof of Case 1 in [15,345

Theorem 4.11] to conclude that with θ, β chosen to satisfy346

(4.20)
(θβ − 1/2)

(1− θ)(1− β)
≥ CL

c
,347

we can apply (4.16) to obtain that both348

(4.21) E
[
Φk+1 − Φk|Fk, {∥ (∇f(xk))Ik ∥ ≥ ζ∆k}

]
≤ −1

4
cν∥∇f(Xk)∥∆k349

and350

(4.22) E
[
Φk+1 − Φk|Fk, {∥ (∇f(xk))Ik ∥ ≥ ζ∆k}

]
≤ −1

2
(1− ν)(γ2 − 1)∆2

k.351
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Case 2: ∥(∇f(xk))Ik∥ < ζδk352

If ∥gk∥ < ηδk then (4.18) holds. Now assume that ∥gk∥ ≥ η2δk. We again examine the353

following subcases based on different events:354

(a) Ik ∩ Jk: The model gk satisfies the κ-δk accuracy condition as well as having εf accurate355

function evaluations. In this case, since it cannot be ensured that the step is accepted, we356

can apply the argument of Case 1c to conclude that again (4.18) holds.357

(b) Ik ∩ Jc
k: The function values f0

k , f
s
k do not satisfy the εf -accuracy condition, while model358

accuracy still holds. An unsucessful iteration yields (4.18) a successful iteration satisfies359

f(xk)−f(xk+1) = f(xk)−hk(xk)+hk(xk)−hk(x̂k)+hk(x̂k)−f(x̂k) ≤ (η2/α−2κf )δ
2
k ≥ κfδ

2
k360

with (4.12) responsible for the last inequality. Finally (4.16) implies (4.18) holds again.361

(c) Ick ∩ Jk: It is the same as Case 1c .362

(d) Ick ∩ Jc
k: It is the same as Case 1d.363

Now, with θ, β chosen such that364

(4.23) (1− θ)(1− β) ≤ γ2 − 1

γ4 − 1 + 2γ2CLζ
ν

1−ν

,365

we follow similar arguments to obtain366

(4.24) E
[
Φk+1 − Φk|Fk, {∥ (∇f(xk))Ik ∥ < ζ∆k}

]
≤ −1

2
(1− ν)

(
1− 1

γ2

)
∆2

k.367

Finally, combining the two cases yields that368

E [Φk+1 − Φk|Fk] ≤ −σ∆2
k369

with σ > 0, and the theorem has been proven.370

We may proceed now to the main and final result. The rest of the original convergence371

argument can be applied directly to ∥(∇f(xk))Ik∥. However, recall that this is not the object372

that is of primary interest. We are indeed interested in proving that the proposed algorithm373

gives us a point satisfying some suitable optimality condition with high probability.374

Theorem 4.8. Almost surely,375

(4.25) lim
k→∞

∥(∇f(xk))Ik∥ = 0.376

Moreover, for θ sufficiently large, if it holds that, almost surely, for any limit point x∗ of a377

realization of iterates {xk} satisfying378

(4.26) |∇f(x∗)|σ(K) ≥ |∇f(x∗)|σ(K+1) + χ, with χ > 0,379

it holds that, for some S, for all k ≥ S,380

(4.27) Ik = II(x
∗) = II

(
x∗ − 1

L
∇f(x∗)

)
381

and x∗ satisfies L-stationarity. Moreover at least one such limit point exists.382

Proof. The first part of the statement follows directly from the identical arguments in [15,383

Theorem 16, Lemma 17, Theorem 18].384

For the second statement: first observe that ∆k → 0 almost surely and thus ∥Xk+1−Xk∥385

almost surely, and so on a set of dense probability, {Xk} is a Cauchy sequence. As such, for386
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any realization there exists a limit point x∗ satisfying xk → x∗. Now fix the realization for387

the remainder of the proof.388

We compare the ranking of the gradient components, that is σ({|gi|}), σ ∈ Σ̄({|[gk]i|})389

to σ({|(∇f(x∗))i|}). To begin with we see that for the subsequence Sg wherein the model is390

κ− δ accurate we have that k ∈ Sg iterations satisfy391

([gk]i − [∇f(xk)]i) + ([∇f(xk)]i − [∇f(x∗)]i)→ 0392

where the first summand goes to zero from δk → 0 and the second from the continuity of ∇f393

and the convergence of xk → x∗. Thus for sufficiently large S̄, for k ≥ S̄ and k ∈ Sg, it holds394

that395

[|gk|]i > |∇f(x∗)|σ(K+1) + χ/2396

for i ∈ II(x
∗), and397

[|gk|]i < |∇f(x∗)|σ(K) + χ/2398

for i ∈ IA(x
∗). Thus, with probability θ, σk ∈ Σ̄k satisfies that σk[1 : K] = II(x

∗).399

When θ is sufficiently large, it holds that for k ≥ S̄ sufficiently large, by smoothing400

properties [17], σ̂k satisfies {σ̂k
(1), · · · , σ̂

k
(K)) = II(x

∗).401

This together with Lemma 2.3 proves the statement (4.27).402

The restriction on θ is just that θ > 1
2 if all the components are separated, i.e.,403

[|∇f(x∗)|]σ(1) > [|∇f(x∗)|]σ(2) > [|∇f(x∗)|]σ(3) > · · · > [|∇f(x∗)|]σ(n)404

A larger θ would be necessary otherwise, in case ties prevent a unique σ̂k.405

5 Numerical Results In this section, we present two machine learning applications of406

the algorithm 3.1: adversarial attacks on neural networks and the reconstruction of sparse407

Gaussian graphical models. The implementation was carried out using the Python program-408

ming language, using the NumPy, Keras, Tensorflow, scikit-learn, and Pandas libraries.409

The hyperparameters were selected as follows: η1 = 10−4, η2 = 10−4, δ0 = 1, δmax = 10,410

and γ = 2. All the experiments were conducted on a machine equipped with an 11th411

Gen Intel(R) Core(TM) i7-1165G7 CPU @ 2.80GHz (1.69 GHz). The code is available at412

https://github.com/Berga53/Probabilistic iterative hard thresholding.413

Both applications involve high-dimensional data, making the use of the Pseudo Hard414

Thresholding operator, as defined in 3, computationally expensive. For practical implementa-415

tion, we instead utilize the classic Hard Thresholding operator [3]. However, tests on smaller416

instances have shown that the two operators perform similarly when a suitable value of αs is417

chosen.418

5.1 Adversarial Attacks on Neural Networks Adversarial attacks are techniques used419

to craft imperceptible perturbations that, when added to regular data inputs, induce mis-420

classifications in neural network models. These perturbations are typically designed to evade421

human detection while successfully fooling the model’s classification process. One of the422

most powerful type of adversarial attack is the Carlini and Wagner [12], characterized by the423

following formulation:424

min
δ

D(x, x+ δ) + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n
(5.1)425

with δ being the perturbation, D being usually the ℓ2 or ℓ0 distance, and426

f(x) =

(
max
i ̸=t

(F (x)i)− F (x)t

)+

.427
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Using our algorithm, we can incorporate the ℓ0 penalty directly in the constraint, so our428

final formulation of the problem is429

min
∥δ∥0≤K

∥δ∥2 + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n
(5.2)430

In practice, this allows us to decide how many pixels to perturb during the attack. While431

usual attacks are trained against selected samples of the dataset, in this paper, we will demon-432

strate a universal adversarial attack: the attack is performed against the entirety of the433

dataset, producing only one global perturbation. We will show that, in both targeted and434

untargeted attacks, we can significantly lower a model’s accuracy using very few pixels. We435

tested the attack on the MNIST dataset, which consists of 60,000 images of handwritten digits436

(0-9) that are 28 × 28 pixels in size. We performed both targeted and untargeted attacks.437

In the targeted attack, we aimed to misclassify the images into a specific class, while in the438

untargeted attack, we simply aimed to cause any misclassification. However, the untargeted439

attack is generally a bit weaker in the context of the Carlini and Wagner Attack. We will show440

that, in both targeted and untargeted attacks, we can significantly lower a model’s accuracy441

using very few pixels. We gradually increase the sparsity constraint and observe that this442

gradually increases the errors made by the model. In particular, in Figure 1, we can see both443

the accuracy decreasing and the number of samples predicted as the attack target increasing,444

indicating that the attack is performed as desired.445

Figure 1. Effect of increasing the sparsity constraint on accuracy and targeted attack predictions.

Figure 2. Example of perturbed images with ∥δ∥0 = 25 and target 5
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5.2 Sparse Gaussian Graphical Models Probabilistic Graphical Models are a popular446

tool in machine learning to model the relationships between random variables. The Gaussian447

Graphical Model is an undirected graph with each edge corresponding to a Gaussian condi-448

tional probability of one variable at the end of the edge to another. By learning the adjacency449

matrix together with the model weights, we can infer the proximal physical, and possibly450

causal, relationships between quantities.451

This is of special importance in high dimensional settings (see, e.g., [29]). Whereas in many452

contemporary “big data” approaches the sample size is many orders of magnitudes larger than453

the dimensionality of feature space, there are a number of settings wherein obtaining data454

samples is costly, and such a regime cannot be expected to hold. Indeed this is often the case455

in medical applications, wherein recruiting volunteers for a clinical trial, or even obtaining456

health records, presents formidable costs to significant scaling in sample size. On the other457

hand, the precision of instrumentation has led to detailed “omics” data, yielding a very high458

dimensional feature space. One associated observation is that in the underdetermined case,459

when the dimensionality of the features exceeds the number of samples, some of the guarantees460

associated with the ℓ1 proxy for sparsity are no longer applicable, bringing greater practical461

salience to having a reliable algorithm enforcing sparsity explicitly.462

The recent work [5] presented an integer programming formulation for training sparse463

Gaussian graphical models. Prior to redefining the sparsity regularization using binary vari-464

ables, their ℓ0 optimization problem is given as465

(5.3) min
Θ∈Sp

F0(Θ) :=

p∑
i=1

(
− log(θii) +

1

θii
∥X̃θi∥2

)
+ λ0∥Θ∥0 + λ2∥Θ∥22466

with Θ ∈ Sp being the weights associated with the graph and X̃ = 1√
n
X the scaled feature467

matrix, with X ∈ Rp×n consisting of p measures and n samples. Functionally, Θij defines468

an edge between node i and j in the graph, with a nonzero indicating the presence of an469

active edge, which corresponds to a direct link in the perspective of DAG structure of the470

group. The value associated with the edge corresponds to the weight defining the strength of471

the interaction between the features i and j. We seek to regularize cardinality for the sake472

of encouraging parsimonious models, as well as minimizing the total norm of the weights for473

general regularization.474

Due to the structure of our algorithm, we can modify the formulation of the problem by475

incorporating the ℓ0 constraint. The final formulation of the problem is then expressed as476

follows:477

(5.4) min
Θ∈Sp,∥Θ∥0≤K

F0(Θ) :=

p∑
i=1

(
− log(θii) +

1

θii
∥X̃θi∥2

)
+ λ2∥Θ∥22478

We also observed that the ℓ0 constraint in our formulation is very strong. In practical ap-479

plications, we eliminate λ2 penalty term, as the ℓ0 constraint was the dominant factor in the480

model.481

We applied the model to the GDS2910 dataset from the Gene Expression Omnibus (GEO).482

This dataset consists of gene expression profiles, which naturally yield a high-dimensional483

feature space, with 1900 features and 191 samples. Given this feature-to-sample ratio, we can484

assume some level of sparsity in the final adjacency matrix. Since there is no ground truth485

for the underlying structure, our goal is to investigate how changing the ℓ0 constraint affects486

the results of our method, while also gathering information on the true sparsity nature of487

the data. We performed the test by gradually increasing K, the ℓ0 constraint, from 5000 to488
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15000. This range was previously determined to be optimal based on preliminary tests. Note489

that the adjacency matrix we are searching for is of size 1900 × 1900, resulting in a total of490

3, 610, 000 entries. To ensure the robustness of the results, for each value of K, we performed491

ten runs starting from different randomly chosen feasible points, and the algorithm was given492

a total of 1000 iteration for every run. We also decided to set the λ2 parameter to zero, as493

we observed that the strong ℓ0 constraint was dominant over the ℓ2 penalty.494

We also divided the dataset into training and validation sets to determine whether the495

reconstructed matrix is a result of overfitting. In Figure 3, we show the effect of varying K,496

which represents the number of nonzero entries that the matrix is allowed to have. The figure497

on the left, which shows the average objective value found over the ten runs, demonstrates498

that increasing K eventually stops being beneficial to the model’s performance. Additionally,499

we observe that the number of mean accepted iterations also stops increasing, indicating that500

the model cannot extract more information from the data. This suggests that the true sparsity501

of the data can be estimated by identifying the point at which further increasing K no longer502

improves the model’s results. In Figure 4, we present an example from our tests where the503

objective function decreases over the successful iterations.504

Figure 3. Effect of increasing the sparsity constraint K.

Figure 4. Objective function over the iterations.

6 Conclusions In this paper, we addressed the stochastic cardinality-constrained op-505

timization problem, providing a well defined algorithm, convergence theory and illustrative506

experiments. Many contemporary machine learning applications involve scenarios where spar-507
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sity is crucial for high-dimensional model fitting. We proposed an iterative hard-thresholding508

like algorithm based on probabilistic models that nicely balances computational efficiency509

and solution precision by allowing flexible gradient estimates while incorporating hard spar-510

sity constraints.511

We analyzed the theoretical properties of the method and proved almost sure convergence512

to L-stationary points under mild assumptions. This extends previous work in the optimiza-513

tion literature on finding solutions with strong stationarity guarantees together with machine514

learning articles that perform iterative hard thresholding with stochastic gradients to achieve515

a novel balance between ease of a fast implementation and formal guarantees of performance.516

The numerical experiments confirmed the practical effectiveness of our method, showcasing517

its potential in machine learning tasks such as adversarial attacks and probabilistic graphi-518

cal model training. By enforcing explicit cardinality constraints, our approach was able to519

produce models with enhanced sparsity and interpretability in the end.520

Future work may involve extending the algorithm to accommodate additional nonlinear521

constraints, exploring techniques to further improve scalability and performance, as well as522

testing the algorithm on some other relevant Machine Learning applications, like, e.g., sparse523

Dynamic Bayesian Network training.524
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