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Abstract

In this paper, we study a class of deterministically constrained stochastic optimization problems.
Existing methods typically aim to find an ǫ-stochastic stationary point, where the expected viola-
tions of both constraints and first-order stationarity are within a prescribed accuracy ǫ. However,
in many practical applications, it is crucial that the constraints be nearly satisfied with certainty,
making such an ǫ-stochastic stationary point potentially undesirable due to the risk of significant
constraint violations. To address this issue, we propose single-loop variance-reduced stochastic
first-order methods, where the stochastic gradient of the stochastic component is computed us-
ing either a truncated recursive momentum scheme or a truncated Polyak momentum scheme for
variance reduction, while the gradient of the deterministic component is computed exactly. Under
the error bound condition with a parameter θ ≥ 1 and other suitable assumptions, we establish
that the proposed methods achieve a sample complexity and first-order operation complexity of
Õ(ǫ−max{4,2θ}) 1 for finding a stronger ǫ-stochastic stationary point, where the constraint violation
is within ǫ with certainty, and the expected violation of first-order stationarity is within ǫ. To the
best of our knowledge, this is the first work to develop methods with provable complexity guaran-
tees for finding an approximate stochastic stationary point of such problems that nearly satisfies
all constraints with certainty.

Keywords: stochastic optimization, Polyak momentum, recursive momentum, variance reduction,
quadratic penalty, sample complexity

Mathematics Subject Classification: 90C15, 90C26, 90C30, 65K05

1 Introduction

In this paper, we consider constrained stochastic nonconvex optimization problems in the form of

min
x∈X

f(x) := E[f̃(x, ξ)]

s.t. c(x) = 0,
(1)

where X ⊆ R
n is a simple closed convex set,2 ξ is a random variable with sample space Ξ, f̃(·, ξ)

is continuously differentiable for each ξ ∈ Ξ, and c : Rn → R
m is a deterministic smooth mapping.

∗Department of Industrial and Systems Engineering, University of Minnesota, USA (email: zhaosong@umn.edu,
mei00035@umn.edu, xiao0414@umn.edu). This work was partially supported by the National Science Foundation Award
IIS-2211491 and the Office of Naval Research Award N00014-24-1-2702.

1The symbol Õ(·) denotes the asymptotic upper bound that ignores logarithmic factors.
2The set X is said to be simple if the projection of any point onto X can be computed exactly.
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Problem (1) arises in a variety of important areas, including energy systems [33], healthcare [34],
image processing [26], machine learning [9, 20], network optimization [5], optimal control [6], PDE-
constrained optimization [31], resource allocation [16], and transportation [27]. More applications can
be found, for example, in [7, 8, 19, 23], and references therein.

Numerous stochastic gradient methods have been developed for solving specific instances of prob-
lem (1) with c = 0 (e.g., see [13, 14, 17, 18, 36, 38, 39]). Notably, when f is Lipschitz smooth
(see Assumption 3), the methods in [17, 18] achieve a sample complexity of O(ǫ−4) for finding an
ǫ-stochastic stationary point x satisfying

E[dist (0,∇f(x) +NX(x))] ≤ ǫ.

Furthermore, when f̃(·, ξ) is Lipschitz smooth on average (see Assumption 2), the methods in [13, 14,
36, 38, 39] improve this sample complexity to O(ǫ−3) for finding an ǫ-stochastic stationary point.

Additionally, various methods have been proposed for problem (1) with X = R
n and c 6= 0. For

instance, [37] developed a stochastic penalty method that applies a stochastic gradient method to
solve a sequence of quadratic penalty subproblems. Stochastic sequential quadratic programming
(SQP) methods have also been proposed in [2, 3, 4, 11, 12, 15, 28, 29], which modify the classical SQP
framework by using stochastic approximations of f and by appropriately selecting step sizes. Under
suitable assumptions, these methods ensure the asymptotic convergence of the expected violations of
feasibility and first-order stationarity to zero. Moreover, the methods in [10, 29] guarantee almost-
sure convergence of these quantities. Besides, the sample complexity of Õ(ǫ−4) for finding an ǫ-
stochastic stationary point is achieved by methods in [11, 29]. It is worth mentioning that their
operation complexity is often higher than the sample complexity, due to the need to solve linear
systems. Additionally, these methods may not be applicable to problem (1) when X 6= R

n.
Recently, several methods have been proposed for solving problem (1) with X 6= R

n and c 6= 0.
For instance, [35] proposed a momentum-based linearized augmented Lagrangian method for this
problem, achieving a sample complexity of Õ(ǫ−5) for finding an ǫ-stochastic stationary point that
satisfies

E[‖c(x)‖] ≤ ǫ, E[dist (0,∇f(x) +∇c(x)λ+NX(x))] ≤ ǫ (2)

for some Lagrangian multiplier λ. This sample complexity improves to Õ(ǫ−4) when a nearly feasible
point of (1) is available. More recently, [1] proposed a stochastic quadratic penalty method that
iteratively applies a single stochastic gradient descent step to a sequence of quadratic penalty functions
Qρk(x), where ρk is a penalty parameter, and Qρ is defined as

Qρ(x) := f(x) +
ρ

2
‖c(x)‖2. (3)

In this method, the stochastic gradient is computed using the recursive momentum scheme introduced
in [13], treating ρ as part of the variables (see Section 2 for more detailed discussions). Under the
error bound condition (5) with θ = 1 and other suitable assumptions, this method achieves a sample
and first-order operation complexity of Õ(ǫ−4) for finding an ǫ-stochastic stationary point satisfying
(2).

In many applications such as energy systems [33], machine learning [9, 20], resource allocation [16],
and transportation [27], all or some of the constraints in problem (1) are hard constraints representing
imperative requirements. Consequently, any desirable approximate solution must (nearly) satisfy
these constraints. As mentioned above, the ǫ-stochastic stationary point x found by existing methods
[1, 3, 11, 12, 35, 37] satisfies E[‖c(x)‖] ≤ ǫ, guaranteeing that ‖c(x)‖ ≤ δ with probability at least
1 − ǫ/δ for any δ ≥ ǫ. However, it is possible that ‖c(x)‖ may still be excessively large, leading
to significant constraint violations, which is undesirable in applications where practitioners require
nearly exact constraint satisfaction.

To address the aforementioned issue, we propose single-loop variance-reduced stochastic first-order
methods for solving problem (1), inspired by the framework of [1, Algorithm 2], but with a significantly
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different approach to constructing the stochastic gradient. Specifically, starting from any initial point
x0 ∈ X, we iteratively solve a sequence of quadratic penalty problems minx∈X Qρk(x) by performing
only a single stochastic gradient descent step

xk+1 = ΠX(xk − ηkGk),

where ηk > 0 is a step size, Gk is a variance-reduced estimator of ∇Qρk(xk), and ΠX denotes the
projection operator onto the set X. In our methods, Gk is constructed by handling the stochastic
part f(x) and the deterministic part ρk‖c(x)‖2/2 of Qρk(x) separately. More precisely, ∇f(xk) is
approximated by a stochastic estimator gk, obtained via a truncated recursive momentum scheme
or a truncated Polyak momentum scheme for f(x), while ∇(ρk‖c(x)‖2/2)|x=xk

is computed exactly
as ρk∇c(xk)c(xk). Combining these two components gives Gk = gk + ρk∇c(xk)c(xk), which serves
as a stochastic estimator of ∇Qρk(xk) (see Algorithms 1 and 2 for details). Under the error bound
condition (5) with θ ≥ 1 and other suitable assumptions, our methods achieve a sample complexity
of Õ

(
ǫ−max{4,2θ}

)
for finding an ǫ-stochastic stationary point x that satisfies

‖c(x)‖ ≤ ǫ, E[dist (0,∇f(x) +∇c(x)λ+NX(x))] ≤ ǫ (4)

for some λ. This ǫ-stochastic stationary point nearly satisfies all the constraints with certainty and is
stronger than the one found by existing methods. Furthermore, when θ = 1, our methods enjoy the
best-known sample complexity and first-order operation complexity, which is however achieved in [1]
for finding a weaker ǫ-stochastic stationary point satisfying (4). In addition, for θ > 1, our methods
exhibit provable convergence rate, while the convergence of existing methods remains unknown.

The main contributions of our paper are summarized as follows.

• We propose single-loop variance-reduced stochastic first-order methods with a truncate recursive
momentum or a truncated Polyak momentum for solving problem (1).

• We show that under the error bound condition (5) with θ ≥ 1 and other suitable assumptions,
our proposed methods achieve a sample complexity and first-order operation complexity of
Õ
(
ǫ−max{4,2θ}

)
for finding an ǫ-stochastic stationary point of problem (1) satisfying (4), which

is stronger than the one found by existing methods.

To the best of our knowledge, this is the first work to develop methods with provable complexity
guarantees for finding an approximate stochastic stationary point of problem (1) that nearly satisfies
all constraints with certainty.

The rest of this paper is organized as follows. In Subsection 1.1, we introduce some notation,
terminology, and assumption. In Sections 2 and 3, we propose stochastic first-order methods with a
truncated recursive momentum or a truncated Polyak momentum for problem (1) and analyze their
convergence. We provide the proof of the main results in Section 4. Finally, concluding remarks are
given in Section 5.

1.1 Notation, terminology, and assumption

The following notation will be used throughout this paper. Let R>0 denote the set of positive real
numbers, and R

n denote the Euclidean space of dimension n. The standard inner product and
Euclidean norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. For any r > 0, let B(r) represent the
Euclidean ball centered at the origin with radius r, that is, B(r) = {x : ‖x‖ ≤ r}. For any t ∈ R, let
⌈t⌉ denote the least integer greater than or equal to t.

A mapping φ is said to be Lφ-Lipschitz continuous on a set Ω if ‖φ(x) − φ(x′)‖ ≤ Lφ‖x − x′‖
for all x, x′ ∈ Ω. Also, it is said to be L∇φ-smooth on Ω if ‖∇φ(x) −∇φ(x′)‖ ≤ L∇φ‖x − x′‖ for all
x, x′ ∈ Ω, where ∇φ denotes the transpose of the Jacobian of φ. Given a nonempty closed convex set
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Ω, dist(x,Ω) denotes the Euclidean distance from x to Ω, and ΠΩ(x) denotes the Euclidean projection
of x onto Ω. In addition, the normal cone of Ω at any x ∈ Ω is denoted by NΩ(x). Finally, we use
Õ(·) to denote the asymptotic upper bound that ignores logarithmic factors.

Throughout this paper, we make the following assumptions for problem (1).

Assumption 1. (i) The optimal value f∗ of problem (1) and Q∗
1 := minx∈X{f(x)+‖c(x)‖2/2} are

finite.

(ii) f is differentiable and Lf -Lipschitz continuous on X.

(iii) For each ξ ∈ Ξ, f̃(·, ξ) is differentiable on X and satisfies the following conditions:

E[∇f̃(x, ξ)] = ∇f(x), E[‖∇f̃(x, ξ)−∇f(x)‖2] ≤ σ2 ∀x ∈ X

for some constant σ ≥ 0.

(iv) The mapping c is Lc-Lipschitz continuous and L∇c-smooth on X. Additionally, ‖c(x)‖ ≤ Cc for
all x ∈ X, and there exist constants γ > 0 and θ ≥ 1 such that

dist (0,∇c(x)c(x) +NX(x)) ≥ γ‖c(x)‖θ ∀x ∈ X. (5)

In addition, for notational convenience, we define

L := L2
c + CcL∇c. (6)

It follows from this and Assumption 1 that ‖c(x)‖2/2 is L-smooth on X, and

‖∇f(x)‖ ≤ Lf , ‖∇c(x)‖ ≤ Lc ∀x ∈ X. (7)

Before ending this subsection, we make some remarks on Assumption 1.

Remark 1. (i) The assumption on the finiteness of Q∗
1 is generally weaker than the condition

minx∈X f(x) ≥ 0, which is imposed in related work such as [1]. Moreover, this assumption is
quite mild. Specifically, since the optimal value f∗ of (1) is finite and

lim
ρ→∞

min
x∈X

{f(x) + ρ‖c(x)‖2/2} = f∗,

there exists some ρ > 0 such that minx∈X{f(x)+ρ‖c(x)‖2/2} and consequently minx∈X{ρ−1f(x)+
‖c(x)‖2/2} are finite for all ρ ≥ ρ. Therefore, if Assumption 1(i) does not hold, one can replace
f with ρ−1f for some ρ ≥ ρ, ensuring the resulting problem (1) satisfies Assumption 1(i).

(ii) Assumption 1(iii) is standard and implies that ∇f̃(x, ξ) is an unbiased estimator of ∇f(x) with
a bounded variance for all x ∈ X.

(iii) Assumption 1(iv) with θ = 1 is commonly used in the literature to develop algorithms for op-
timization problems involving nonconvex functional constraints (e.g., see [1, 21, 22, 32]). In
contrast, our assumption is more general, as it covers a broader range of θ ∈ [1,∞). The er-
ror bound condition in Assumption 1(iv) plays a crucial role in designing algorithms that yield
nearly feasible solutions to problem (1).
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2 A stochastic first-order method with a truncated recursive mo-

mentum for problem (1)

In this section, we propose a stochastic first-order method with a truncated recursive momentum
for solving problem (1), inspired by the framework of [1, Algorithm 2], but employing a significantly
different approach to constructing the stochastic gradient. Moreover, the proposed method exhibits
stronger convergence properties compared to existing methods (see Remark 2).

Specifically, starting from any initial point x0 ∈ X, we approximately solve a sequence of quadratic
penalty problems minx∈X Qρk(x) by performing only a single stochastic gradient descent step xk+1 =
ΠX(xk−ηkGk), where ρk is a penalty parameter, ηk > 0 is a step size, Gk is a variance-reduced estima-
tor of ∇Qρk(xk), and Qρk is given in (3). Notice from (3) that ∇Qρk(xk) = ∇f(xk) + ρk∇c(xk)c(xk).
Based on this, we particularly choose Gk = gk + ρk∇c(xk)c(xk), where gk is a variance-reduced
estimator of ∇f(xk), computed recursively as follows:

gk = ΠB(Lf )

(
∇f̃(xk, ξk) + (1− αk−1)(gk−1 −∇f̃(xk−1, ξk))

)
(8)

for some αk−1 ∈ (0, 1] and a randomly drawn sample ξk. This scheme is a slight modification of
the recursive momentum scheme introduced in [13], incorporating a truncation operation via the
projection operator ΠB(Lf ) to ensure the boundedness of {gk}, which is crucial for the subsequent
analysis. Interestingly, despite this truncation, the modified scheme preserves a variance-reduction
property similar to the original scheme in [13] (see Lemma 4).

The proposed stochastic first-order method with a truncated recursive momentum for solving
problem (1) is presented in Algorithm 1 below.

Algorithm 1 A stochastic first-order method with a truncated recursive momentum for problem (1)

Input: x1 ∈ X, {αk} ⊂ (0, 1], {ρk}, {ηk} ⊂ R>0, and Lf given in Assumption 1.
1: Sample ξ1 and set g1 = ΠB(Lf )(∇f̃(x1, ξ1)).
2: for k = 1, 2, . . . do

3: Gk = gk + ρk∇c(xk)c(xk).
4: xk+1 = ΠX(xk − ηkGk).
5: Sample ξk+1 and set gk+1 = ΠB(Lf )

(
∇f̃(xk+1, ξk+1) + (1− αk)(gk −∇f̃(xk, ξk+1))

)
.

6: end for

The parameters {αk}, {ρk} and {ηk} will be specified in Theorem 1 for Algorithm 1 to achieve a
desirable convergence rate. While Algorithm 1 shares a similar framework with [1, Algorithm 2], the
construction of the variance-reduced estimator Gk of ∇Qρk(xk) differs significantly between the two
algorithms. In particular, Gk in [1, Algorithm 2] is obtained by applying the recursive momentum
scheme introduced in [13] to the entire function Qρ(x), treating ρ as part of the variables, and it is
given by

Gk = ∇̃Qρk(xk, ξk) + (1− αk−1)(Gk−1 − ∇̃Qρk−1
(xk−1, ξk)),

where ∇̃Qρ(x, ξ) = ∇f̃(x, ξ)+ ρ∇c(x)c(x). In contrast, Gk in Algorithm 1 is constructed by handling
the stochastic part f(x) and the deterministic part ρk‖c(x)‖2/2 of Qρk(x) separately. Specifically,
∇f(xk) is approximated by a stochastic estimator gk, obtained via truncated recursive momentum
scheme as given in (8), while ∇(ρk‖c(x)‖2/2)|x=xk

is computed exactly as ρk∇c(xk)c(xk). Combining
these two components gives Gk = gk + ρk∇c(xk)c(xk) for Algorithm 1.

Due to this significant difference in the choice of Gk, [1, Algorithm 2] and Algorithm 1 exhibit
vastly different convergence properties. Specifically, under Assumptions 1 and 2 with θ = 1, [1,
Algorithm 2] generate a sequence {x̃k} satisfying

E[‖c(x̃ιk)‖2] = Õ(k−1/2), E

[
dist2

(
0,∇f(x̃ιk) +∇c(x̃ιk)λ̃ιk +NX(x̃ιk)

)]
= Õ(k−1/2)

5



for some sequence {λ̃k}. In contrast, Algorithm 1 generates a sequence {xk} that satisfies

‖c(xιk )‖2 = Õ(k−1/2), E
[
dist2 (0,∇f(xιk) +∇c(xιk)λιk +NX(xιk))

]
= Õ(k−1/2)

for some sequence {λk}, where ιk is uniformly drawn from {⌈k/2⌉ + 1, . . . , k} for k ≥ 2 (see Theorem
1 and [1, Theorem 4.2]). Clearly, the sequence {xk} generated by Algorithm 1 exhibits a stronger
convergence property, since ‖c(xιk )‖2 = Õ(k−1/2) implies E[‖c(xιk)‖2] = Õ(k−1/2), while the reverse
implication generally does not hold. Moreover, under Assumptions 1 and 2 with θ > 1, the convergence
of [1, Algorithm 2] remains unknown, while the sequence {xk} generated by Algorithm 1 satisfies

‖c(xιk )‖2 = Õ(k−ν), E
[
dist2 (0,∇f(xιk) +∇c(xιk)λιk +NX(xιk))

]
= Õ(k−ν)

with ν = min{1/2, θ−1} for some sequence {λk}.
Before presenting convergence results for Algorithm 1, we make the following assumption regarding

the average smoothness condition for problem (1).

Assumption 2. The function f̃(x, ξ) satisfies the average smoothness condition:

E[‖∇f̃(u, ξ)−∇f̃(v, ξ)‖2] ≤ L̄2
∇f‖u− v‖2 ∀u, v ∈ X.

Assumption 2 is commonly imposed in the literature to design algorithms for solving problems of
the form minx E[f̃(x, ξ)] + P (x), where P is either zero or a simple but possibly nonsmooth function
(e.g., see [13, 14, 36, 38, 39]). It can be observed that Assumption 2 implies that ∇f is L̄∇f -smooth
on X, that is,

‖∇f(u)−∇f(v)‖ ≤ L̄∇f‖u− v‖ ∀u, v ∈ X. (9)

However, the reverse implication does not hold in general (e.g., see [18]).
We are now ready to present the convergence results for Algorithm 1, with the proof deferred to

Subsection 4.1. Specifically, we will present convergence rates for the following two quantities:

‖c(xιk )‖2 and E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]
, (10)

where ιk is uniformly drawn from {⌈k/2⌉ + 1, . . . , k}. These quantities measure the constraint viola-
tion and the expected stationarity violation at xιk .

Theorem 1. Suppose that Assumptions 1 and 2 hold, and {xk} is generated by Algorithm 1. Let L
be defined in (6), Lf , L̄∇f , Lc, Cc, σ, γ, θ and Q∗

1 be given in Assumptions 1 and 2, g1 be given in
Algorithm 1, and ιk be the random variable uniformly generated from {⌈k/2⌉ + 1, . . . , k} for k ≥ 2.
Then the following statements hold.

(i) Suppose that θ ∈ [1, 2) and its actual value is known. Let ρk, ηk and αk be chosen as

ρk = k
θ
4 , ηk = k−

1

2 , αk = k−
1

2 . (11)

Then for all k ≥ 2K̃1, we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]

≤ 51

2(k − 1)
1

2

(
f(x1) +

1

2
‖c(x1)‖2 −Q∗

1 + ‖g1 −∇f(x1)‖2 +
θ(6− θ)C1

4(2 − θ)
+

1

2

(
K̃

θ
4

1 − 1
)
C2
c

+ 3σ2(1 + log k) + (1 + log K̃1)
(
L̄∇f + K̃

θ
4

1 L+ 12L̄2
∇f

)(
L2
f + C2

cL
2
cK̃

θ
2

1

))
,

‖c(xιk)‖2 ≤ 2
√
2C1k

− 1

2 ,

where

K̃1 =

⌈
max

{
1, 64L̄2

∇f , (48L̄
2
∇f )

2, (8L)
4

2−θ ,
(
22−

θ
2 γ−2

) 4

4−θ

}⌉
, (12)

C1 = max
{
1, K̃

1/2
1 C2

c /2, 2
2−θ/2L2

fγ
−2
}
. (13)

6



(ii) Suppose that θ ≥ 1 and its actual value is unknown. Let ρk, ηk and αk be chosen as

ρk = k
1

2 , ηk = k−
1

2 / log(k + 2), αk = k−
1

2 . (14)

Then for all k ≥ 2K̃2, we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk ) +NX(xιk))

]

≤ 51 log(k + 2)

2(k − 1)
1

2

(
f(x1) +

1

2
‖c(x1)‖2 −Q∗

1 + ‖g1 −∇f(x1)‖2 +
1

2
C2k

1

2
−ν(1 + log k)

+
1

2

(
K̃

1

2

2 − 1
)
C2
c + 3σ2(1 + log k) + (1 + log K̃2)

(
L̄∇f + K̃

1

2

2 L+ 12L̄2
∇f

)(
L2
f + C2

cL
2
cK̃2

))
,

‖c(xιk)‖2 ≤ 21+νC2k
−ν ,

where

K̃2 =

⌈
max

{
64L̄2

∇f , (48L̄
2
∇f )

2, e8L, e2θ,
(
e−1γ−222−θ/2 log(e2θ + 2)

)2θ}⌉
, (15)

ν = min{1/2, θ−1}, C2 = max
{
1, K̃ν

2C
2
c /2, 2

2−θ/2L2
fγ

−2
}
. (16)

Remark 2. (i) As shown in Theorem 1, when θ ∈ [1, 2) and its actual value is known, the choice
of ρk, ηk, and αk in (11) ensures an Õ(k−1/2) convergence rate for the quantities in (10).
Additionally, if ρk, ηk, and αk are chosen according to (14), an Õ(k−min{1/2,θ−1}) convergence
rate is guaranteed for the same quantities.

(ii) For θ ∈ [1, 2), the choices of ρk, ηk, and αk provided in (11) and (14) ensure the same order
of convergence rates for the quantities in (10), regardless of whether the actual value of θ is
known. However, the constant K̃1 generally depends less on L compared to K̃2. Therefore, when
θ ∈ [1, 2) and its actual value is known, the parameters ρk, ηk, and αk specified in (11) are
typically the better choice.

(iii) Under Assumptions 1 and 2 with θ = 1, [1, Algorithm 2] can generate a sequence {x̃k} satisfying

E[‖c(x̃ιk)‖2] = Õ(k−1/2), E

[
dist2

(
0,∇f(x̃ιk) +∇c(x̃ιk)λ̃ιk +NX(x̃ιk)

)]
= Õ(k−1/2)

for some sequence {λ̃k}. In contrast, under the same assumptions, Algorithm 1 generates a
sequence {xk} that satisfies

‖c(xιk)‖2 = Õ(k−1/2), E
[
dist2 (0,∇f(xιk) +∇c(xιk)λιk +NX(xιk))

]
= Õ(k−1/2)

with λk = ρk−1c(xk) for all k ≥ 2. Clearly, the sequence {xk} generated by Algorithm 1 exhibits
a stronger convergence property, since ‖c(xιk)‖2 = Õ(k−1/2) implies E[‖c(xιk )‖2] = Õ(k−1/2),
while the reverse implication generally does not hold. Moreover, under Assumptions 1 and 2
with θ > 1, the convergence of [1, Algorithm 2] remains unknown, while Algorithm 1 enjoys an
Õ(k−min{1/2,θ−1}) convergence rate for the quantities in (10).

(iv) To the best of our knowledge, no prior algorithm was developed for problem (1) that guarantees
constraint violations converge to zero with certainty at a provable rate.

The following result is an immediate consequence of Theorem 1. It provides iteration complexity
results for Algorithm 1 to find an ǫ-stochastic stationary point xιk of problem (1) satisfying (17) below.
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Corollary 1. Suppose that Assumptions 1 and 2 hold, and {xk} is generated by Algorithm 1. Let θ
be given in Assumption 1, and ιk be the random variable uniformly generated from {⌈k/2⌉ + 1, . . . , k}
for k ≥ 2. Then the following statements hold.

(i) Suppose that θ ∈ [1, 2) and its actual value is known. Let ρk, ηk and αk be chosen as in (11).
Then for any ǫ > 0, there exists some T1 = Õ(ǫ−4) such that

‖c(xιk )‖ ≤ ǫ, E [dist (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk ) +NX(xιk))] ≤ ǫ (17)

hold for all k ≥ T1.

(ii) Suppose that θ ≥ 1 and its actual value is unknown. Let ρk, ηk and αk be chosen as in (14).
Then for any ǫ > 0, there exists some T2 = Õ

(
ǫ−max{4,2θ}

)
such that (17) holds for all k ≥ T2.

Since Algorithm 1 requires one sample, one gradient evaluation of c, and two gradient evaluations
of f̃ per iteration, its sample complexity and first-order operation complexity3 are of the same order
as its iteration complexity. It follows from Corollary 1 that Algorithm 1 achieves a sample complexity
and first-order operation complexity of Õ

(
ǫ−max{4,2θ}

)
for finding an ǫ-stochastic stationary point

xιk for problem (1) that satisfies (17). To the best of our knowledge, no algorithm prior to our work
achieved these results except in the case where θ = 1. In that case, [1, Algorithm 2] achieves a sample
complexity and first-order operation complexity of Õ(ǫ−4) for finding an ǫ-stochastic stationary point
x̃ιk for problem (1) that satisfies:

E[‖c(x̃ιk)‖] ≤ ǫ, E

[
dist

(
0,∇f(x̃ιk) +∇c(x̃ιk)λ̃ιk +NX(x̃ιk)

)]
≤ ǫ

for some sequence λ̃k. Although this algorithm achieves the same order of complexity as Algorithm
1, the ǫ-stochastic stationary point it finds is weaker than that obtained by Algorithm 1, since
E[‖c(x̃ιk)‖] ≤ ǫ does not imply ‖c(x̃ιk )‖ ≤ ǫ in general, whereas the reverse implication always holds.

3 A stochastic first-order method with a truncated Polyak momen-

tum for problem (1)

In this section, we propose a stochastic first-order method with a truncated Polyak momentum for
solving problem (1). This method modifies Algorithm 1, with gk being recursively generated using
the following truncated Polyak momentum scheme:

gk = ΠB(Lf )

(
αk−1∇f̃(xk, ξk) + (1− αk−1)gk−1

)

for some αk−1 ∈ (0, 1] and a randomly drawn sample ξk, where Lf is given in Assumption 1. This
scheme is a slight modification of the well-known Polyak momentum scheme [17, 30, 40], incorpo-
rating a truncation operation via the projection operator ΠB(Lf ) to ensure the boundedness of the
sequence {gk}. This boundedness is crucial for our subsequent analysis. Despite the truncation, the
modified scheme preserves the variance-reduction property of the original Polyak momentum scheme
(see Lemma 10).

The proposed stochastic first-order method with a truncated Polyak momentum is presented in
Algorithm 2.

3Sample complexity and first-order operation complexity refer to the total number of samples and gradient evaluations
of f̃ used throughout the algorithm, respectively.
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Algorithm 2 A stochastic first-order method with a truncated Polyak momentum for (1)

Input: x1 ∈ X, {αk} ⊂ (0, 1], and {ρk}, {ηk} ⊂ R>0, and Lf given in Assumption 1.
1: Sample ξ1 and set g1 = ΠB(Lf )

(
∇f̃(x1, ξ1)

)
.

2: for k = 1, 2, . . . do

3: Gk = gk + ρk∇c(xk)c(xk).
4: xk+1 = ΠX(xk − ηkGk).
5: Sample ξk+1 and set gk+1 = ΠB(Lf )

(
(1− αk)gk + αk∇f̃(xk+1, ξk+1)

)
.

6: end for

Algorithm 2 will be shown to achieve the same order of convergence rate as Algorithm 1, but
under weaker assumptions (see Theorem 2). This result is somewhat surprising because when c = 0,
Algorithms 1 and 2 reduce to special cases of [39, Algorithm 1] and [17, Algorithm 1], respectively,
where Algorithm 1 achieves a better convergence rate. Additionally, if the set {∇f̃(x, ξ) : x ∈
X, ξ ∈ Ξ} is bounded, the recursion of gk+1 in step 5 of Algorithm 2 can be replaced with gk+1 =
(1 − αk)gk + αk∇f̃(xk+1, ξk+1). This clearly guarantees the boundedness of gk, and the resulting
algorithm enjoys the same rate of convergence as Algorithm 2.

To present the convergence results for Algorithm 2, we make the following assumption regarding
the Lipschitz smoothness condition for problem (1).

Assumption 3. The function f is L∇f -smooth on X, that is,

‖∇f(u)−∇f(v)‖ ≤ L∇f‖u− v‖ ∀u, v ∈ X.

As remarked in Section 2, the average smoothness condition implies the Lipschitz smoothness
condition, but the reverse implication generally does not hold. Therefore, Assumption 3 is weaker
than Assumption 2 in general.

We are now ready to present the convergence results for Algorithm 2, with the proof deferred to
Subsection 4.2. Specifically, we will establish convergence rates for the quantities introduced in (10).

Theorem 2. Suppose that Assumptions 1 and 3 hold, and {xk} is generated by Algorithm 2. Let L
be defined in (6), Lf , L∇f , Lc, Cc, σ, γ, θ and Q∗

1 be given in Assumptions 1 and 3, g1 be given in
Algorithm 2, and ιk be the random variable uniformly generated in {⌈k/2⌉ + 1, . . . , k} for k ≥ 2. Then
the following statements hold.

(i) Suppose that θ ∈ [1, 2) and its actual value is known. Let ρk, ηk and αk be chosen as

ρk = k
θ
4 , ηk = k−

1

2/ log(k + 2), αk = k−
1

2 . (18)

Then for all k ≥ 2K̃3, we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]

≤ 51 log(k + 2)

2(k − 1)
1

2

(
f(x1) +

1

2
‖c(x1)‖2 −Q∗

1 + ‖g1 −∇f(x1)‖2 +
θ(6− θ)

4(2− θ)
C3 +

1

2
(K̃

θ
4

3 − 1)C2
c

+ σ2(1 + log k) + (1 + log K̃3)
(
L∇f + K̃

θ
4

3 L+ 2K̃
1

2

3 L
2
∇f

)(
L2
f + C2

cL
2
cK̃

θ
2

3

)
)
,

‖c(xιk )‖2 ≤ 2C3(k/2)
− 1

2 ,

where

K̃3 =



max



e2, 64L2

∇f , e
8L2

∇f , (8L)
4

2−θ ,

(
22−

θ
2 log(e2 + 2)

eγ2

) 4

2−θ







, (19)

C3 = max
{
1, K̃

1/2
3 C2

c /2, 2
2−θ/2L2

fγ
−2
}
. (20)
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(ii) Suppose that θ ≥ 1 and its actual value is unknown. Let ρk, ηk and αk be chosen as

ρk = k
1

2 , ηk = k−
1

2 / log(k + 2), αk = k−
1

2 . (21)

Then for all k ≥ 2K̃4, we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]

≤ 51 log(k + 2)

2(k − 1)
1

2

(
f(x1) +

1

2
‖c(x1)‖2 −Q∗

1 + ‖g1 −∇f(x1)‖2 +
1

2
C4k

1

2
−ν(1 + log k)

+
1

2

(
K̃

1

2

4 − 1
)
C2
c + σ2(1 + log k) + (1 + log K̃4)

(
L∇f + K̃

1

2

4 L+ 2K̃
1

2

4 L
2
∇f

)(
L2
f + C2

cL
2
cK̃4

)
)
,

‖c(xιk )‖2 ≤ 2C4(k/2)
−ν ,

where

K̃4 =



max



64L2

∇f , e
8L2

∇f , e8L, e2θ,

(
22−

θ
2 log(e2θ + 2)

eγ2

)2θ






, (22)

ν = min{1/2, θ−1}, C4 = max
{
1, K̃ν

4C
2
c /2, 2

2−θ/2L2
fγ

−2
}
. (23)

The following result is an immediate consequence of Theorem 2. It provides iteration complexity
results for Algorithm 2 to find an ǫ-stochastic stationary point xιk of problem (1) that satisfies (17).

Corollary 2. Suppose that Assumptions 1 and 3 hold, and {xk} is generated by Algorithm 2. Let θ
be given in Assumption 1, and ιk be the random variable uniformly generated from {⌈k/2⌉ + 1, . . . , k}
for k ≥ 2. Then the following statements hold.

(i) Suppose that θ ∈ [1, 2) and its actual value is known. Let ρk, ηk and αk be chosen as in (18).
Then for any ǫ > 0, there exists some T3 = Õ

(
ǫ−4
)
such that (17) holds for all k ≥ T3.

(ii) Suppose that θ ≥ 1 and its actual value is unknown. Let ρk, ηk and αk be chosen as in (21).
Then for any ǫ > 0, there exists some T4 = Õ

(
ǫ−max{4,2θ}

)
such that (17) holds for all k ≥ T4.

Since Algorithm 2 requires one sample, one gradient evaluation of c, and one gradient evaluation of
f̃ per iteration, its sample complexity and first-order operation complexity are of the same order as its
iteration complexity. It follows from Corollary 2 that Algorithm 2 achieves both a sample complexity
and a first-order operation complexity of Õ

(
ǫ−max{4,2θ}

)
to find an ǫ-stochastic stationary point xιk

for problem (1) that satisfies (17). Although Algorithms 1 and 2 achieve the same order of complexity,
Algorithm 2 operates under weaker assumptions, as Assumption 3 is less restrictive than Assumption
2. Additionally, Algorithm 2 requires only one gradient evaluation of f̃ per iteration, while Algorithm
1 requires two.

4 Proof of the main results

In this section we provide a proof of our main results presented in Sections 2 and 3, which are
particularly Theorems 1 and 2.
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4.1 Proof of the main result in Section 2

In this subsection we first establish several technical lemmas and then use them to prove Theorem 1.
For notational convenience, we define

h(x) :=
1

2
‖c(x)‖2. (24)

One can observe from Assumption 1(iv) that h is L-smooth on X, where L is given in (6).
The following lemma establishes a relationship between h(xk+1) and h(xk), which will be used to

derive bounds for ‖c(xk)‖2.
Lemma 1. Suppose that Assumption 1 holds, and xk+1 is generated by Algorithm 1 for some k ≥ 1
with ρkηk ≤ (

√
5− 1)/(2L). Then we have

h(xk+1) + 2θ−2γ2ρkηk[h(xk+1)]
θ ≤ h(xk) + L2

fρ
−1
k ηk/2,

where ρk and ηk are given in Algorithm 1, Lf , γ and θ are given in Assumption 1, and L and h are
defined in (6) and (24), respectively.

Proof. Let Gk be given in Algorithm 1. For convenience, we define

G̃k = ρ−1
k Gk, η̃k = ρkηk. (25)

It then follows from these, (24), and the expression of xk+1 in Algorithm 1 that

xk+1 = ΠX(xk − ηkGk) = ΠX(xk − η̃kG̃k), (26)

which implies that

0 ∈ xk+1−xk+η̃kG̃k+NX(xk+1) ⇒ ∇h(xk+1)+η̃−1
k (xk−xk+1)−G̃k ∈ ∇h(xk+1)+NX(xk+1). (27)

Using this, (24) and Assumption 1(iv), we have

2θγ2[h(xk+1)]
θ = γ2‖c(xk+1)‖2θ ≤ dist2 (0,∇c(xk+1)c(xk+1) +NX(xk+1))

(24)
= dist2 (0,∇h(xk+1) +NX(xk+1))

(27)

≤ ‖∇h(xk+1) + η̃−1
k (xk − xk+1)− G̃k‖2

≤ 2‖η̃−1
k (xk − xk+1) +∇h(xk)− G̃k‖2 + 2‖∇h(xk+1)−∇h(xk)‖2

= 2η̃−2
k ‖xk+1 − xk‖2 + 4η̃−1

k 〈G̃k −∇h(xk), xk+1 − xk〉+ 2‖G̃k −∇h(xk)‖2

+ 2‖∇h(xk+1)−∇h(xk)‖2

≤ 2(η̃−2
k + L2)‖xk+1 − xk‖2 + 4η̃−1

k 〈G̃k −∇h(xk), xk+1 − xk〉+ 2‖G̃k −∇h(xk)‖2,
(28)

where the first inequality follows from Assumption 1(iv), the second inequality is due to the convexity
of ‖ · ‖2, and the last inequality follows from the L-smoothness of h. In addition, by (26) and xk ∈ X,
one has

〈xk+1 − xk + η̃kG̃k, xk − xk+1〉 ≥ 0 ⇒ 〈G̃k, xk+1 − xk〉 ≤ −η̃−1
k ‖xk+1 − xk‖2.

This together with the L-smoothness of h yields

h(xk+1) ≤ h(xk) + 〈∇h(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= h(xk) + 〈G̃k, xk+1 − xk〉+ 〈∇h(xk)− G̃k, xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

≤ h(xk)− η̃−1
k ‖xk+1 − xk‖2 + 〈∇h(xk)− G̃k, xk+1 − xk〉+

L

2
‖xk+1 − xk‖2.

11



Using this and (28), we obtain that

h(xk+1) + 2θ−2γ2η̃k[h(xk+1)]
θ ≤ h(xk) +

1

2
(L2η̃k − η̃−1

k + L)‖xk+1 − xk‖2 +
η̃k
2
‖G̃k −∇h(xk)‖2. (29)

Observe from (25) and ρkηk ≤ (
√
5− 1)/(2L) that Lη̃k = Lρkηk ≤ (

√
5− 1)/2, which implies that

L2η̃k − η̃−1
k + L = η̃−1

k (L2η̃2k + Lη̃k − 1) ≤ 0. (30)

Notice from the expression of gk in Algorithm 1 that gk ∈ B(Lf ) and hence ‖gk‖ ≤ Lf . Also, observe
from Algorithm 1 and (24) that Gk = gk + ρk∇h(xk). Using these and (25), we have

‖G̃k −∇h(xk)‖ = ‖ρ−1
k Gk −∇h(xk)‖ = ‖ρ−1

k (gk + ρk∇h(xk))−∇h(xk)‖ = ρ−1
k ‖gk‖ ≤ ρ−1

k Lf .

It then follows from this, (29) and (30) that

h(xk+1) + 2θ−2γ2η̃k[h(xk+1)]
θ ≤ h(xk) + L2

f η̃k/(2ρ
2
k).

This and the definition of η̃k in (25) imply that the conclusion of this lemma holds.

The next two lemmas derive bounds for ‖c(xk)‖2 under two different choices of ρk, ηk and αk in
Algorithm 1.

Lemma 2. Let K̃1 and C1 be given in (12) and (13), respectively. Suppose that Assumption 1 holds
with θ ∈ [1, 2) and {xk} is generated by Algorithm 1 with {ρk}, {ηk} and {αk} given in (11). Then
we have ‖c(xk)‖2 ≤ 2C1k

−1/2 for all k ≥ K̃1.

Proof. Let h be defined in (24). To prove this lemma, it is equivalent to show that h(xk) ≤ C1k
−1/2

for all k ≥ K̃1. We now prove this by induction. Indeed, notice from Algorithm 1 that x
K̃1

∈ X. It
then follows from (13), (24) and Assumption 1(iv) that

h(x
K̃1

)
(24)
=

1

2
‖c(x

K̃1
)‖2 ≤ 1

2
C2
c

(13)

≤ C1K̃
−1/2
1 .

Hence, the conclusion holds for k = K̃1. Now, suppose for induction that h(xk) ≤ C1k
−1/2 holds for

some k ≥ K̃1. Recall that θ ∈ [1, 2) and ρk, ηk and K̃1 are given in (11) and (12). In view of these,
one can observe that

ρkηk
(11)
= k

θ−2

4 ≤ K̃
θ−2

4

1

(12)

≤ 1

8L
<

√
5− 1

2L
,

and hence Lemma 1 holds for such k. Using Lemma 1 with the choice of ρk and ηk given in (11), we
obtain that

h(xk+1) + 2θ−2γ2k
θ−2

4 [h(xk+1)]
θ ≤ h(xk) + L2

fk
− θ+2

4 /2. (31)

Further, let

φ(t) = t+ 2θ−2γ2k
θ−2

4 tθ. (32)

Notice from (13) that C1 ≥ 1. Using this and (32), we have

φ(C1(k + 1)−1/2)− C1k
−1/2 − L2

fk
− θ+2

4 /2

(32)
= Cθ

12
θ−2γ2k

θ−2

4 (k + 1)−
θ
2 + C1(k + 1)−1/2 − C1k

−1/2 − L2
fk

− θ+2

4 /2

≥ Cθ
12

θ−2γ2k
θ−2

4 (k + 1)−
θ
2 −C1k

− 3

2/2 − L2
fk

− θ+2

4 /2

= k−
θ+2

4

(
Cθ
12

θ−2γ2
(

k

k + 1

) θ
2

− C1k
θ−4

4 /2 − L2
f/2

)

≥ k−
θ+2

4

(
C12

θ
2
−2γ2 − C1k

θ−4

4 /2− L2
f/2
)
, (33)
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where the first inequality follows from (k + 1)−1/2 − k−1/2 ≥ −k−3/2/2 thanks to the convexity of
t−1/2, and the second inequality is due to θ ≥ 1, C1 ≥ 1 and k/(k + 1) ≥ 1/2. In addition, it follows
from (12), 1 ≤ θ < 2 and k ≥ K̃1 that

k
θ−4

4 ≤ K̃
θ−4

4

1 ≤ 2
θ
2
−2γ2.

By this and (13), one has

C12
θ
2
−2γ2 − C1k

θ−4

4 /2− L2
f/2 ≥ C12

θ
2
−2γ2/2− L2

f/2
(13)

≥ 0,

which together with (33) implies that

φ(C1(k + 1)−1/2)− C1k
−1/2 − L2

fk
− θ+2

4 /2 ≥ 0.

Using this, (31), (32) and the induction hypothesis that h(xk) ≤ C1k
−1/2, we obtain that

φ(C1(k + 1)−1/2) ≥ C1k
−1/2 + L2

fk
− θ+2

4 /2 ≥ h(xk) + L2
fk

− θ+2

4 /2
(31)(32)

≥ φ(h(xk+1)).

It then follows from this inequality and the strict monotonicity of φ on [0,∞) that h(xk+1) ≤ C1(k +
1)−1/2. Hence, the induction is completed and the conclusion of this lemma holds.

Lemma 3. Let K̃2, ν and C2 be given in (15) and (16), respectively. Suppose that Assumption 1
holds, and {xk} is generated by Algorithm 1 with {ρk}, {ηk} and {αk} given in (14). Then we have
‖c(xk)‖2 ≤ 2C2k

−ν for all k ≥ K̃2.

Proof. Let h be defined in (24). To prove this lemma, it is equivalent to show that h(xk) ≤ C2k
−ν

for all k ≥ K̃2. We now prove this by induction. Indeed, notice from Algorithm 1 that xK̃2
∈ X. It

then follows from (16), (24) and Assumption 1(iv) that

h(x
K̃2

)
(24)
=

1

2
‖c(x

K̃2
)‖2 ≤ 1

2
C2
c

(16)

≤ C2K̃
−ν
2 .

Hence, the conclusion holds for k = K̃2. Now, suppose for induction that h(xk) ≤ C2k
−ν holds for

some k ≥ K̃2. Recall that ρk, ηk and K̃2 are given in (14) and (15). In view of these, one can observe
that

ρkηk
(14)
=

1

log(k + 2)
≤ 1

log(K̃2 + 2)

(15)

≤ 1

8L
≤

√
5− 1

2L
,

and hence Lemma 1 holds for such k. Using Lemma 1 with the choice of ρk and ηk given in (14), we
obtain that

h(xk+1) + 2θ−2γ2[h(xk+1)]
θ/ log(k + 2) ≤ h(xk) + L2

fk
−1/(2 log(k + 2)). (34)

Further, let
φ(t) = t+ 2θ−2γ2tθ/ log(k + 2). (35)
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Notice from (16) that ν = min {1/2, 1/θ} and C2 ≥ 1. Using these and (35), we have

φ(C2(k + 1)−ν)− C2k
−ν − L2

fk
−1/(2 log(k + 2))

(35)
= Cθ

22
θ−2γ2(k + 1)−θν/ log(k + 2) + C2(k + 1)−ν − C2k

−ν − L2
fk

−1/(2 log(k + 2))

≥ Cθ
22

θ−2γ2(k + 1)−θν/ log(k + 2)− νC2k
−ν−1 − L2

fk
−1/(2 log(k + 2))

=
k−θν

log(k + 2)

(
Cθ
22

θ−2γ2
(

k

k + 1

)θν

− νC2k
(θ−1)ν−1 log(k + 2)− L2

fk
θν−1/2

)

≥ k−θν

log(k + 2)

(
Cθ
22

θ−θν−2γ2 − νC2k
− 1

θ log(k + 2)− L2
f/2
)

≥ k−θν

log(k + 2)

(
C22

θ
2
−2γ2 − C2k

− 1

θ log(k + 2)/2 − L2
f/2
)
, (36)

where the first inequality follows from (k+1)−ν − k−ν ≥ −νk−ν−1 thanks to the convexity of t−ν, the
second inequality is due to θ ≥ 1, ν ≤ 1/θ and k/(k + 1) ≥ 1/2, and the last inequality follows from

θ ≥ 1, C2 ≥ 1 and ν ≤ 1/2. In addition, one can verify that t−
1

2θ log(t + 2) is decreasing on [e2θ,∞).
Using this, (15) and k ≥ K̃2 ≥ e2θ, we obtain that

k−
1

2θ log(k + 2) ≤ log(e2θ + 2)/e, k−
1

2θ ≤ K̃
− 1

2θ
2 ≤ eγ2/(22−

θ
2 log(e2θ + 2)).

Multiplying both sides of these inequalities yields k−1/θ log(k + 2) ≤ 2θ/2−2γ2, which together with
(16) implies that

C22
θ
2
−2γ2 −C2k

− 1

θ log(k + 2)/2 − L2
f/2 ≥ C22

θ
2
−2γ2/2− L2

f/2
(16)

≥ 0.

Using this, (34), (35), (36), and the induction hypothesis that h(xk) ≤ C2k
−ν , we obtain that

φ(C2(k + 1)−ν) ≥ C2k
−ν + L2

fk
−1/(2 log(k + 2)) ≥ h(xk) + L2

fk
−1/(2 log(k + 2))

(34)(35)

≥ φ(h(xk+1)).

It then follows from this inequality and the strict monotonicity of φ on [0,∞) that h(xk+1) ≤ C2(k +
1)−ν . Hence, the induction is completed and the conclusion of this lemma holds.

The following lemma provides a relationship between E
[
‖gk+1 −∇f(xk+1)‖2

]
and E

[
‖gk −∇f(xk)‖2

]
.

Lemma 4. Suppose that Assumptions 1 and 2 hold, and {gk} and {xk} are generated by Algorithm
1. Then for all k ≥ 1, we have

E
[
‖gk+1 −∇f(xk+1)‖2

]
≤ (1− αk)

2
E
[
‖gk −∇f(xk)‖2

]
+ 6L̄2

∇fE
[
‖xk+1 − xk‖2

]
+ 3σ2α2

k,

where {αk} is given in Algorithm 1, and σ and L̄∇f are given in Assumptions 1 and 2, respectively.

Proof. Notice from (7) that ∇f(xk+1) ∈ B(Lf ) and hence ∇f(xk+1) = ΠB(Lf )(∇f(xk+1)). By this,
the expression of gk+1, and the nonexpansiveness of the projection operator ΠB(Lf ), one has

‖gk+1 −∇f(xk+1)‖2 = ‖ΠB(Lf )(∇f̃(xk+1, ξk+1) + (1− αk)(gk −∇f̃(xk, ξk+1)))−ΠB(Lf )(∇f(xk+1))‖2

≤ ‖∇f̃(xk+1, ξk+1) + (1− αk)(gk −∇f̃(xk, ξk+1))−∇f(xk+1)‖2

= ‖∇f̃(xk+1, ξk+1)−∇f(xk+1) + (1− αk)(gk −∇f(xk) +∇f(xk)−∇f̃(xk, ξk+1))‖2

= ‖∇f̃(xk+1, ξk+1)−∇f(xk+1) + (1− αk)(∇f(xk)−∇f̃(xk, ξk+1))‖2 + (1− αk)
2‖gk −∇f(xk)‖2

+ 2(1− αk)〈gk −∇f(xk),∇f̃(xk+1, ξk+1)−∇f(xk+1)〉
+ 2(1− αk)

2〈gk −∇f(xk),∇f(xk)−∇f̃(xk, ξk+1)〉. (37)
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Let Ξk = {ξ1, . . . , ξk} denote the collection of samples drawn up to iteration k − 1 in Algorithm 1. It
then follows from Assumption 1(iii) that

E[∇f̃(xk+1, ξk+1)−∇f(xk+1)|Ξk] = 0, E[∇f(xk)−∇f̃(xk, ξk+1)|Ξk] = 0,

which imply that

E[〈gk −∇f(xk),∇f̃(xk+1, ξk+1)−∇f(xk+1)〉|Ξk] = 〈gk −∇f(xk),E[∇f̃(xk+1, ξk+1)−∇f(xk+1)|Ξk]〉 = 0,

E[〈gk −∇f(xk),∇f(xk)−∇f̃(xk, ξk+1)〉|Ξk] = 〈gk −∇f(xk),E[∇f(xk)−∇f̃(xk, ξk+1)|Ξk]〉 = 0.

Using these and taking a conditional expectation on both sides of (37), we have

E[‖gk+1 −∇f(xk+1)‖2|Ξk] ≤E[‖∇f̃(xk+1, ξk+1)−∇f(xk+1) + (1− αk)(∇f(xk)−∇f̃(xk, ξk+1))‖2|Ξk]

+ (1− αk)
2‖gk −∇f(xk)‖2. (38)

In addition, it follows from Assumption 1 that

E[‖∇f̃(xk+1, ξk+1)−∇f(xk+1) + (1− αk)(∇f(xk)−∇f̃(xk, ξk+1))‖2|Ξk]

= E[‖∇f̃(xk+1, ξk+1)−∇f̃(xk, ξk+1) +∇f(xk)−∇f(xk+1)− αk(∇f(xk)−∇f̃(xk, ξk+1))‖2|Ξk]

≤ 3E[‖∇f̃(xk+1, ξk+1)−∇f̃(xk, ξk+1)‖2|Ξk] + 3‖∇f(xk+1)−∇f(xk)‖2

+ 3α2
kE[‖∇f(xk)−∇f̃(xk, ξk+1)‖2|Ξk] ≤ 6L̄2

∇f‖xk+1 − xk‖2 + 3σ2α2
k,

where the first inequality follows from the convexity of ‖ · ‖2, and the last inequality is due to (9) and
Assumptions 1(iii) and 2. By this and (38), one has

E[‖gk+1 −∇f(xk+1)‖2|Ξk] ≤ (1− αk)
2‖gk −∇f(xk)‖2 + 6L̄2

∇f‖xk+1 − xk‖2 + 3σ2α2
k.

The conclusion of this lemma follows from taking expectation on both sides of this inequality.

The next lemma provides an upper bound on E[Qρk(xk) + ‖gk −∇f(xk)‖2].

Lemma 5. Suppose that Assumptions 1 and 2 hold, and {gk} and {xk} are generated by Algorithm
1 with ηk ≤ αk ≤ 1. Then for all k ≥ 1, we have

E
[
Qρk(xk) + ‖gk −∇f(xk)‖2

]
≤ Qρ1(x1) + ‖g1 −∇f(x1)‖2 +

1

2

k−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]

+
1

2

k−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]
+ 3σ2

k−1∑

i=1

α2
i ,

(39)

where {αk}, {ρk} and {ηk} are given in Algorithm 1, Qρ and L are respectively defined in (3) and
(6), and σ and L̄∇f are given in Assumptions 1 and 2, respectively.

Proof. Observe from Assumptions 1 and 2 and the definition of Qρ in (3) that Qρk is (L̄∇f + ρkL)-
smooth on X, where L is defined in (6). Notice from Algorithm 1 that xk ∈ X and xk+1 = ΠX(xk −
ηkGk), which imply that

〈xk+1 − xk + ηkGk, xk − xk+1〉 ≥ 0 ⇒ 〈Gk, xk+1 − xk〉 ≤ −η−1
k ‖xk+1 − xk‖2. (40)

Also, notice from Algorithm 1 and (3) that

Gk = gk + ρk∇c(xk)c(xk), ∇Qρk(xk) = ∇f(xk) + ρk∇c(xk)c(xk),
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and hence ∇Qρk(xk)−Gk = gk −∇f(xk). In addition, by Young’s inequality, one has

〈∇Qρk(xk)−Gk, xk+1 − xk〉 ≤
1

2ηk
‖xk+1 − xk‖2 +

ηk
2
‖∇Qρk(xk)−Gk‖2 (41)

Using the last two relations, (40), and the (L̄∇f + ρkL)-smoothness of Qρk , we obtain that

Qρk(xk+1) ≤ Qρk(xk) + 〈∇Qρk(xk), xk+1 − xk〉+
1

2
(L̄∇f + ρkL)‖xk+1 − xk‖2

= Qρk(xk) + 〈Gk, xk+1 − xk〉+ 〈∇Qρk(xk)−Gk, xk+1 − xk〉+
1

2
(L̄∇f + ρkL)‖xk+1 − xk‖2

(41)

≤ Qρk(xk) + 〈Gk, xk+1 − xk〉+
1

2

(
L̄∇f + ρkL+ η−1

k

)
‖xk+1 − xk‖2 +

ηk
2
‖∇Qρk(xk)−Gk‖2

≤ Qρk(xk) +
1

2

(
L̄∇f + ρkL− η−1

k

)
‖xk+1 − xk‖2 +

ηk
2
‖gk −∇f(xk)‖2,

where the first inequality is due to the (L̄∇f +ρkL)-smoothness of Qρk , and the last inequality follows
from (40) and the relation ∇Qρk(xk)−Gk = gk −∇f(xk). By this and (3), we further have

Qρk+1
(xk+1) ≤ Qρk(xk) +

1

2

(
L̄∇f + ρkL− η−1

k

)
‖xk+1 − xk‖2 +

ηk
2
‖gk −∇f(xk)‖2

+Qρk+1
(xk+1)−Qρk(xk+1)

(3)
= Qρk(xk) +

1

2

(
L̄∇f + ρkL− η−1

k

)
‖xk+1 − xk‖2 +

ηk
2
‖gk −∇f(xk)‖2 +

1

2
(ρk+1 − ρk)‖c(xk+1)‖2.

(42)

Recall from the assumption that 0 < ηk ≤ αk ≤ 1, which implies that (1−αk)
2+ηk ≤ 1−αk+ηk ≤ 1.

Using this, taking expectation on both sides of (42), and summing the resulting inequality with the
inequality in Lemma 4, we obtain that

E
[
Qρk+1

(xk+1) + ‖gk+1 −∇f(xk+1)‖2
]

≤ E
[
Qρk(xk) +

(
(1− αk)

2 + ηk
)
‖gk −∇f(xk)‖2

]
+

1

2

(
L̄∇f + ρkL− η−1

k + 12L̄2
∇f

)
E
[
‖xk+1 − xk‖2

]

− ηk
2
E
[
‖gk −∇f(xk)‖2

]
+

1

2
(ρk+1 − ρk)E

[
‖c(xk+1)‖2

]
+ 3σ2α2

k

≤ E
[
Qρk(xk) + ‖gk −∇f(xk)‖2

]
+

1

2

(
L̄∇f + ρkL− η−1

k + 12L̄2
∇f

)
E
[
‖xk+1 − xk‖2

]

− ηk
2
E
[
‖gk −∇f(xk)‖2

]
+

1

2
(ρk+1 − ρk)E

[
‖c(xk+1)‖2

]
+ 3σ2α2

k. (43)

The conclusion of this lemma follows by replacing k with i in the above inequalities and summing
them up for all 1 ≤ i ≤ k − 1.

The following lemma provides an upper bound on dist2 (0,∇Qρk(xk+1) +NX(xk+1)).

Lemma 6. Suppose that Assumptions 1 and 2 hold, and {gk} and {xk} are generated by Algorithm
1. Then for all k ≥ 1, we have

dist2 (0,∇Qρk(xk+1) +NX(xk+1)) ≤ 3
(
η−2
k + (L̄∇f + ρkL)

2
)
‖xk+1 − xk‖2 + 3‖gk −∇f(xk)‖2, (44)

where {ρk} and {ηk} are given in Algorithm 1, L̄∇f is given in Assumption 2, and L and Qρ are
defined in (6) and (3), respectively.
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Proof. By the expression of xk+1 in Algorithm 1, one has

0 ∈ xk+1 − xk + ηkGk +NX(xk+1) ⇒ η−1
k (xk − xk+1)−Gk ∈ NX(xk+1). (45)

Notice from the definition of Qρ in (3) that ∇Qρk(x) = ∇f(x)+ρk∇c(x)c(x), which together with (6),
(9) and Assumption 1(iv) implies that Qρk is (L̄∇f + ρkL)-smooth on X. Using (45), the expression
of ∇Qρk , and Gk = gk + ρk∇c(xk)c(xk) (see Algorithm 1), we have

η−1
k (xk − xk+1) +∇f(xk)− gk −∇Qρk(xk) = η−1

k (xk − xk+1)− gk − ρk∇c(xk)c(xk) ∈ NX(xk+1).

By this and the (L̄∇f + ρkL)-smoothness of Qρk , one has

dist2 (0,∇Qρk(xk+1) +NX(xk+1)) ≤ ‖∇Qρk(xk+1) + (η−1
k (xk − xk+1) +∇f(xk)− gk −∇Qρk(xk))‖2

≤ 3
(
‖∇Qρk(xk+1)−∇Qρk(xk)‖2 + η−2

k ‖xk+1 − xk‖2 + ‖gk −∇f(xk)‖2
)

≤ 3
(
η−2
k + (L̄∇f + ρkL)

2
)
‖xk+1 − xk‖2 + 3‖gk −∇f(xk)‖2,

where the second inequality follows from the convexity of ‖ · ‖2, and the last inequality is due to the
(L̄∇f + ρkL)-smoothness of Qρk . Hence, the conclusion of this lemma holds.

We are now ready to prove the main result in Section 2, which is particularly Theorem 1.

Proof of Theorem 1. (i) It follows from (11), (12) and the assumption 1 ≤ θ < 2 that for all i ≥ K̃1,

L̄∇f + ρiL = L̄∇f i
− 1

2 η−1
i + Li

θ−2

4 η−1
i ≤ L̄∇fK̃

− 1

2

1 η−1
i + LK̃

θ−2

4

1 η−1
i ≤ η−1

i /4, (46)

12L̄2
∇f = 12L̄2

∇f i
− 1

2 η−1
i ≤ 12L̄2

∇f K̃
− 1

2

1 η−1
i ≤ η−1

i /4,

which imply that
L̄∇f + ρiL+ 12L̄2

∇f ≤ η−1
i /2 ∀i ≥ K̃1. (47)

In addition, observe from (11) that ηk ≤ αk ≤ 1 for all k ≥ 1. It then follows from the proof of Lemma
5 that (43) holds. Using (47) and rearranging the terms of (43) with k replaced by i, we obtain that
for all i ≥ K̃1,

1

4ηi
E
[
‖xi+1 − xi‖2

]
+

ηi
2
E
[
‖gi −∇f(xi)‖2

]

(43)

≤ E
[
Qρi(xi) + ‖gi −∇f(xi)‖2

]
− E

[
Qρi+1

(xi+1) + ‖gi+1 −∇f(xi+1)‖2
]

+
1

2

(
L̄∇f + ρiL+ 12L̄2

∇f − η−1
i /2

)
E
[
‖xi+1 − xi‖2

]
+

1

2
(ρi+1 − ρi)E

[
‖c(xi+1)‖2

]
+ 3σ2α2

i

(47)

≤ E
[
Qρi(xi) + ‖gi −∇f(xi)‖2

]
− E

[
Qρi+1

(xi+1) + ‖gi+1 −∇f(xi+1)‖2
]

+
1

2
(ρi+1 − ρi)E

[
‖c(xi+1)‖2

]
+ 3σ2α2

i . (48)

Recall that ιk is the random variable uniformly generated in {⌈k/2⌉ + 1, . . . , k}. In addition, observe
from (11) that η−1

i < η−1
k−1 for all ⌈k/2⌉ ≤ i ≤ k − 1. By these, (3), (11), (39), (44), (46) and (48),
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one has that for all k ≥ 2K̃1,

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]
= E

[
dist2

(
0,∇Qριk−1

(xιk) +NX(xιk)
)]

=
1

k − ⌈k/2⌉
k−1∑

i=⌈k/2⌉

E
[
dist2 (0,∇Qρi(xi+1) +NX(xi+1))

]

(44)

≤ 3

k − ⌈k/2⌉
k−1∑

i=⌈k/2⌉

((
η−2
i + (L̄∇f + ρiL)

2
)
E
[
‖xi+1 − xi‖2

]
+ E

[
‖gi −∇f(xi)‖2

])

(46)

≤ 3

k − ⌈k/2⌉
k−1∑

i=⌈k/2⌉

(
(η−2

i + η−2
i /16)E

[
‖xi+1 − xi‖2

]
+ E

[
‖gi −∇f(xi)‖2

])

≤ 51

8(k − 1)

k−1∑

i=⌈k/2⌉

(
η−2
i E

[
‖xi+1 − xi‖2

]
+ 2E

[
‖gi −∇f(xi)‖2

])

≤ 51

2(k − 1)ηk−1

k−1∑

i=⌈k/2⌉

(
1

4ηi
E
[
‖xi+1 − xi‖2

]
+

ηi
2
E
[
‖gi −∇f(xi)‖2

])

(48)

≤ 51

2(k − 1)ηk−1

k−1∑

i=⌈k/2⌉

(
E
[
Qρi(xi) + ‖gi −∇f(xi)‖2

]
− E

[
Qρi+1

(xi+1) + ‖gi+1 −∇f(xi+1)‖2
]

+
1

2
(ρi+1 − ρi)E

[
‖c(xi+1)‖2

]
+ 3σ2α2

i

)

=
51

2(k − 1)ηk−1

(
E

[
Qρ⌈k/2⌉(x⌈k/2⌉) + ‖g⌈k/2⌉ −∇f(x⌈k/2⌉)‖2

]
− E

[
Qρk(xk) + ‖gk −∇f(xk)‖2

]

+
1

2

k−1∑

i=⌈k/2⌉

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
+ 3σ2

k−1∑

i=⌈k/2⌉

α2
i

)

≤ 51

2(k − 1)ηk−1

(
Q1(x1)−Q∗

1 + ‖g1 −∇f(x1)‖2 +
1

2

k−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
+ 3σ2

k−1∑

i=1

α2
i

+
1

2

⌈k/2⌉−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]
)
, (49)

where the first equality is due to (3), the first inequality follows from taking expectation on both sides
of (44), the third inequality is due to the fact that ⌈k/2⌉ ≤ (k + 1)/2, the fourth inequality follows
from the relation η−1

i < η−1
k−1 for all ⌈k/2⌉ ≤ i ≤ k − 1, and the last inequality follows from (39) with

k replaced by ⌈k/2⌉, ρ1 = 1, and the fact that Qρk(xk) ≥ Q1(xk) ≥ Q∗
1.

We next bound each summation term in (49). Indeed, it follows from (7), Assumption 1(iv), the
nonexpansiveness of ΠX , and the expressions of xk+1, gk and Gk in Algorithm 1 that

‖xk+1 − xk‖2 = ‖ΠX(xk − ηkGk)−ΠX(xk)‖2 ≤ η2k‖Gk‖2 = η2k‖gk + ρk∇c(xk)c(xk)‖2

≤ 2η2k
(
‖gk‖2 + ρ2k‖∇c(xk)c(xk)‖2

)
≤ 2η2k

(
L2
f + C2

cL
2
cρ

2
k

)
. (50)

Recall that 1 ≤ θ < 2 and ‖c(xi)‖ ≤ Cc for all i. Using these, (11), (47), (50), and Lemma 2, we have
that for all k ≥ 2K̃1,

K̃1−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ C2

c

K̃1−1∑

i=1

(
(i+ 1)

θ
4 − i

θ
4

)
= C2

c

(
K̃

θ
4

1 − 1
)
, (51)
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k−1∑

i=K̃1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ 2C1

k−1∑

i=K̃1

((i+ 1)
θ
4 − i

θ
4 )(i+ 1)−

1

2 (52)

≤ 1

2
C1θ

k−1∑

i=K̃1

i
θ−4

4 (i+ 1)−
1

2 ≤ 1

2
C1θ

k−1∑

i=K̃1

i
θ−6

4 ≤ C1θ(6− θ)

2(2 − θ)
, (53)

k−1∑

i=1

α2
i
(11)
=

k−1∑

i=1

i−1 = 1 +
k−1∑

i=2

i−1 ≤ 1 +

∫ k−1

1
t−1dt ≤ 1 + log k, (54)

⌈k/2⌉−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]

=

K̃1−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]
+

⌈k/2⌉−1∑

i=K̃1

(
(L̄∇f + ρiL− η−1

i + 12L̄2
∇f )

× E
[
‖xi+1 − xi‖2

] )

(47)

≤
K̃1−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]

(50)

≤ 2

K̃1−1∑

i=1

(
L̄∇f + ρiL+ 12L̄2

∇f

)
η2i
(
L2
f + C2

cL
2
cρ

2
i

)

(11)

≤ 2(1 + log K̃1)
(
L̄∇f + K̃

θ
4

1 L+ 12L̄2
∇f

)(
L2
f + C2

cL
2
cK̃

θ
2

1

)
, (55)

where the inequality in (51) follows from (11) and ‖c(xi)‖ ≤ Cc for all i, (52) is due to (11) and
Lemma 2, the first inequality in (53) follows from (i + 1)θ/4 − iθ/4 ≤ θi(θ−4)/4/4 for all i ≥ 1 thanks
to the concavity of tθ/4 with 1 ≤ θ < 2, the third inequality in (53) is due to

k−1∑

i=K̃1

i(θ−6)/4 ≤
k−1∑

i=1

i(θ−6)/4 = 1 +

k−1∑

i=2

i(θ−6)/4 ≤ 1 +

∫ ∞

1
t(θ−6)/4dt = 1 +

4

2− θ
,

and the last inequality in (55) follows from the relations ρi ≤ K̃
θ/4
1 for 1 ≤ i ≤ K̃1−1 and

∑K̃1−1
i=1 η2i =

∑K̃1−1
i=1 i−1 ≤ 1 + log K̃1 due to the choice of ρi and ηi in (11).
Using (11), (49), (51), (52), (54) and (55), we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]

≤ 51

2(k − 1)
1

2

(
Q1(x1)−Q∗

1 + ‖g1 −∇f(x1)‖2 +
C1θ(6− θ)

4(2 − θ)
+

1

2
C2
c

(
K̃

θ
4

1 − 1
)
+ 3σ2(1 + log k)

+ (1 + log K̃1)
(
L̄∇f + K̃

θ
4

1 L+ 12L̄2
∇f

)(
L2
f + C2

cL
2
cK̃

θ
2

1

)
)

∀k ≥ 2K̃1.

By this, (3), ιk > ⌈k/2⌉ ≥ K̃1 for all k ≥ 2K̃1, and Lemma 2 with k replaced by ιk, one can see that
statement (i) of Theorem 1 holds.
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(ii) It follows from (14) and (15) that for all i ≥ K̃2,

L̄∇f + ρiL = L̄∇f i
− 1

2 η−1
i / log(i+ 2) + Lη−1

i / log(i+ 2)

≤ L̄∇fK̃
− 1

2

2 η−1
i + Lη−1

i / log(K̃2 + 2) ≤ η−1
i /4,

12L̄2
∇f = 12L̄2

∇f i
− 1

2 η−1
i / log(i+ 2) ≤ 12L̄2

∇f K̃
− 1

2

2 η−1
i ≤ η−1

i /4,

which imply that
L̄∇f + ρiL+ 12L̄2

∇f ≤ η−1
i /2 ∀i ≥ K̃2. (56)

By this, Lemma 3, (14), (50), ν ≤ 1/2, and ‖c(xi)‖ ≤ Cc for all i, one has that for all k ≥ 2K̃2,

K̃2−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ C2

c

K̃2−1∑

i=1

(
(i+ 1)

1

2 − i
1

2

)
= C2

c

(
K̃

1

2

2 − 1
)
, (57)

k−1∑

i=K̃2

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ 2C2

k−1∑

i=K̃2

((i+ 1)
1

2 − i
1

2 )(i+ 1)−ν (58)

≤ C2

k−1∑

i=K̃2

i−
1

2 (i+ 1)−ν ≤ C2

k−1∑

i=K̃2

i−1(i+ 1)
1

2
−ν ≤ C2k

1

2
−ν

k−1∑

i=K̃2

i−1 ≤ C2k
1

2
−ν(1 + log k), (59)

⌈k/2⌉−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]

=

K̃2−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]
+

⌈k/2⌉−1∑

i=K̃2

(
(L̄∇f + ρiL− η−1

i + 12L̄2
∇f )

× E
[
‖xi+1 − xi‖2

] )

(56)

≤
K̃2−1∑

i=1

(
L̄∇f + ρiL− η−1

i + 12L̄2
∇f

)
E
[
‖xi+1 − xi‖2

]

(50)

≤ 2

K̃2−1∑

i=1

(
L̄∇f + ρiL+ 12L̄2

∇f

)
η2i
(
L2
f + C2

cL
2
cρ

2
i

)

(14)

≤ (1 + log K̃2)
(
L̄∇f + K̃

1

2

2 L+ 12L̄2
∇f

)
(L2

f + C2
cL

2
cK̃2), (60)

where the inequality in (57) follows from (14) and ‖c(xi)‖ ≤ Cc for all i, (58) is due to (14) and
Lemma 3, the first inequality in (59) follows from (i + 1)1/2 − i1/2 ≤ i−1/2/2 for all i ≥ 1 thanks to
the concavity of t1/2, the third inequality in (59) is due to ν ≤ 1/2, the last inequality in (59) follows

from
∑k−1

i=K̃2

i−1 ≤ 1 + log k, and the last inequality in (60) is due to the relations ρi ≤ K̃
1/2
2 for

1 ≤ i ≤ K̃2 − 1 and
∑K̃2−1

i=1 η2i ≤∑K̃2−1
i=1 i−1 ≤ 1 + log K̃2 thanks to the choice of ρi and ηi in (14).

In addition, observe from (14) that ηk ≤ αk ≤ 1 for all k ≥ 1. Using this, (56), and similar
arguments as in the proof of statement (i) of this theorem, we can see that (49) holds for all k ≥ 2K̃2.
Also, by (14) and (54), one has

∑k−1
i=1 α2

i ≤ 1 + log k for all k ≥ 1. Using this, (14), (49), (57), (59)
and (60), we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]

≤ 51 log(k + 2)

2(k − 1)
1

2

(
Q1(x1)−Q∗

1 + ‖g1 −∇f(x1)‖2 +
1

2
C2k

1

2
−ν(1 + log k) +

1

2
C2
c

(
K̃

1

2

2 − 1
)
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+ 3σ2(1 + log k) + (1 + log K̃2)
(
L̄∇f + K̃

1

2

2 L+ 12L̄2
∇f

)(
L2
f + C2

cL
2
cK̃2

)
)

∀k ≥ 2K̃2.

By this, (3), ιk > ⌈k/2⌉ ≥ K̃2 for all k ≥ 2K̃2, and Lemma 3 with k replaced by ιk, one can see that
statement (ii) of Theorem 1 holds.

4.2 Proof of the main result in Section 3

In this subsection we first establish several technical lemmas and then use them to prove Theorem 2.
The following lemma establishes a relationship between h(xk+1) and h(xk), which will be used to

derive bounds for ‖c(xk)‖2, where h is defined in (24).

Lemma 7. Suppose that Assumption 1 holds, and xk+1 is generated by Algorithm 2 for some k ≥ 1
with ρkηk ≤ (

√
5− 1)/(2L). Then we have

h(xk+1) + 2θ−2γ2ρkηk[h(xk+1)]
θ ≤ h(xk) + L2

fρ
−1
k ηk/2,

where ρk and ηk are given in Algorithm 2, Lf , γ and θ are given in Assumption 1, and L and h are
defined in (6) and (24), respectively.

Proof. The proof of this lemma follows from similar arguments as in the proof of Lemma 1.

The next two lemmas derive bounds for ‖c(xk)‖2 under two different choices of ρk, ηk and αk in
Algorithm 2.

Lemma 8. Let K̃3 and C3 be given in (19) and (20), respectively. Suppose that Assumption 1 holds
with θ ∈ [1, 2) and {xk} is generated by Algorithm 2 with {ρk}, {ηk} and {αk} given in (18). Then
we have ‖c(xk)‖2 ≤ 2C3k

−1/2 for all k ≥ K̃3.

Proof. Let h be defined in (24). To prove this lemma, it is equivalent to show that h(xk) ≤ C3k
−1/2

for all k ≥ K̃3. We now prove this by induction. Indeed, notice from Algorithm 2 that xK̃3
∈ X. It

then follows from (20), (24) and Assumption 1(iv) that

h(xK̃3
)
(24)
=

1

2
‖c(xK̃3

)‖2 ≤ 1

2
C2
c

(20)

≤ C3K̃
−1/2
3 .

Hence, the conclusion holds for k = K̃3. Now, suppose for induction that h(xk) ≤ C3k
−1/2 holds for

some k ≥ K̃3. Recall that θ ∈ [1, 2) and ρk, ηk and K̃3 are given in (18) and (19). In view of these,
one can observe that

ρkηk
(18)
=

k
θ−2

4

log(k + 2)
≤ k

θ−2

4 ≤ K̃
θ−2

4

3

(19)

≤ 1

8L
≤

√
5− 1

2L
,

and hence Lemma 7 holds for such k. Using Lemma 7 with the choice of ρk and ηk given in (18), we
obtain that

h(xk+1) + 2θ−2γ2k
θ−2

4 [h(xk+1)]
θ/ log(k + 2) ≤ h(xk) + L2

fk
− θ+2

4 /(2 log(k + 2)). (61)

Further, let

φ(t) = t+ 2θ−2γ2k
θ−2

4 tθ/ log(k + 2). (62)
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Notice from (20) that C3 ≥ 1. Using this and (62), we have

φ(C3(k + 1)−
1

2 )− C3k
− 1

2 − L2
fk

− θ+2

4 /(2 log(k + 2))

(62)
= Cθ

32
θ−2γ2k

θ−2

4 (k + 1)−
θ
2 / log(k + 2) + C3(k + 1)−

1

2 − C3k
− 1

2 − L2
fk

− θ+2

4 /(2 log(k + 2))

≥ Cθ
32

θ−2γ2k
θ−2

4 (k + 1)−
θ
2 / log(k + 2)− C3k

− 3

2/2− L2
fk

− θ+2

4 /(2 log(k + 2))

=
k−

θ+2

4

log(k + 2)

(
Cθ
32

θ−2γ2
(

k

k + 1

) θ
2

− C3k
θ−4

4 log(k + 2)/2 − L2
f/2

)

≥ k−
θ+2

4

log(k + 2)

(
C32

θ
2
−2γ2 − C3k

θ−4

4 log(k + 2)/2 − L2
f/2
)
. (63)

where the first inequality follows from (k + 1)−1/2 − k−1/2 ≥ −k−3/2/2 thanks to the convexity of
t−1/2, and the second inequality is due to θ ≥ 1, C3 ≥ 1 and k/(k + 1) ≥ 1/2. In addition, one can
verify that t−1/2 log(t+ 2) is decreasing on [e2,∞). Using this, (19), 1 ≤ θ < 2 and k ≥ K̃3 ≥ e2, we
obtain that

k−
1

2 log(k + 2) ≤ log(e2 + 2)/e, k
θ−2

4 ≤ K̃
θ−2

4

3

(19)

≤ eγ2/(22−
θ
2 log(e2 + 2)).

Multiplying both sides of these two inequalities yields k
θ−4

4 log(k +2) ≤ 2
θ
2
−2γ2, which together with

(20) implies that

C32
θ
2
−2γ2 − C3k

θ−4

4 log(k + 2)/2 − L2
f/2 ≥ C32

θ
2
−2γ2/2− L2

f/2
(20)

≥ 0.

Using this, (61), (62), (63), and the induction hypothesis that h(xk) ≤ C3k
−1/2, we obtain that

φ(C3(k + 1)−1/2) ≥ C3k
−1/2 +

L2
fk

− θ+2

4

2 log(k + 2)
≥ h(xk) +

L2
fk

− θ+2

4

2 log(k + 2)

(61)(62)

≥ φ(h(xk+1)).

It then follows from this inequality and the strict monotonicity of φ on [0,∞) that h(xk+1) ≤ C3(k +
1)−1/2. Hence, the induction is completed and the conclusion of this lemma holds.

Lemma 9. Let K̃4, ν and C4 be given in (22) and (23), respectively. Suppose that Assumption 1
holds, and {xk} is generated by Algorithm 2 with {ρk}, {ηk} and {αk} given in (21). Then we have
‖c(xk)‖2 ≤ 2C4k

−ν for all k ≥ K̃4.

Proof. The proof of this lemma follows from similar arguments as in the proof of Lemma 3 with K̃2

and C2 replaced with K̃4 and C4, respectively.

The following lemma provides a relationship between E
[
‖gk+1 −∇f(xk+1)‖2

]
and E

[
‖gk −∇f(xk)‖2

]
.

Lemma 10. Suppose that Assumption 1 and 3 hold, and {gk} and {xk} are generated by Algorithm
2. Then for all k ≥ 1, we have

E
[
‖gk+1 −∇f(xk+1)‖2

]
≤ (1− αk)E

[
‖gk −∇f(xk)‖2

]
+ L2

∇fα
−1
k E

[
‖xk+1 − xk‖2

]
+ σ2α2

k,

where {αk} is given in Algorithm 2, and σ and L∇f are given in Assumptions 1 and 2, respectively.

Proof. Let Ξk = {ξ1, . . . , ξk} denote the collection of samples drawn up to iteration k−1 in Algorithm
2. It then follows from Assumption 1(iii) that

E[∇f̃(xk+1, ξk+1)−∇f(xk+1)|Ξk] = 0, E[‖∇f̃(xk+1, ξk+1)−∇f(xk+1)‖2|Ξk] ≤ σ2.
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Also, notice from (7) that ∇f(xk+1) ∈ B(Lf ) and hence ∇f(xk+1) = ΠB(Lf )(∇f(xk+1)). By these,
the expression of gk+1 in Algorithm 2, and the nonexpansiveness of the projection operator ΠB(Lf ),
one has

E[‖gk+1 −∇f(xk+1)‖2|Ξk] = E[‖ΠB(Lf )

(
(1− αk)gk + αk∇f̃(xk+1, ξk+1)

)
−ΠB(Lf )(∇f(xk+1))‖2|Ξk]

≤ E[‖(1− αk)gk + αk∇f̃(xk+1, ξk+1)−∇f(xk+1)‖2|Ξk]

= E[‖(1− αk)(gk −∇f(xk+1)) + αk(∇f̃(xk+1, ξk+1)−∇f(xk+1))‖2|Ξk]

= (1− αk)
2‖gk −∇f(xk+1)‖2 + α2

kE[‖∇f̃(xk+1, ξk+1)−∇f(xk+1)‖2|Ξk]

+ 2αk(1− αk)〈gk −∇f(xk+1),E[∇f̃(xk+1, ξk+1)−∇f(xk+1)|Ξk]〉
≤ (1− αk)

2‖gk −∇f(xk+1)‖2 + σ2α2
k.

Taking expectation on both sides of this inequality yields

E[‖gk+1 −∇f(xk+1)‖2] ≤ (1− αk)
2
E[‖gk −∇f(xk+1)‖2] + σ2α2

k. (64)

We divide the remainder of the proof by considering two separate cases: αk = 1 and 0 < αk < 1.
Case 1) αk = 1. It follows from this and (64) that E[‖gk+1 −∇f(xk+1)‖2] ≤ σ2α2

k and hence the
conclusion of this lemma clearly holds.

Case 2) 0 < αk < 1. By this, (64) and Assumption 3, one has

E[‖gk+1 −∇f(xk+1)‖2]
(64)

≤ (1− αk)
2
E
[
‖gk −∇f(xk) +∇f(xk)−∇f(xk+1)‖2

]
+ σ2α2

k

= (1− αk)
2
E
[
‖gk −∇f(xk)‖2

]
+ (1− αk)

2
E
[
‖∇f(xk)−∇f(xk+1)‖2

]

+ 2(1− αk)
2
E [〈gk −∇f(xk),∇f(xk)−∇f(xk+1)〉] + σ2α2

k

≤ (1− αk)
2
E
[
‖gk −∇f(xk)‖2

]
+ (1− αk)

2
E
[
‖∇f(xk)−∇f(xk+1)‖2

]

+ (1− αk)
2

(
αk

1− αk
E
[
‖gk −∇f(xk)‖2

]
+

1− αk

αk
E
[
‖∇f(xk)−∇f(xk+1)‖2

])
+ σ2α2

k

= (1− αk)E
[
‖gk −∇f(xk)‖2

]
+ (1− αk)

2α−1
k E

[
‖∇f(xk)−∇f(xk+1)‖2

]
+ σ2α2

k

≤ (1− αk)E
[
‖gk −∇f(xk)‖2

]
+ L2

∇fα
−1
k E

[
‖xk+1 − xk‖2

]
+ σ2α2

k,

where the second inequality follows from 0 < αk < 1 and Young’s inequality, and the last inequality is
due to Assumption 3 and 0 < αk < 1. Hence, the conclusion of this lemma also holds in this case.

The next lemma provides an upper bound on E[Qρk(xk) + ‖gk −∇f(xk)‖2].

Lemma 11. Suppose that Assumptions 1 and 3 hold, and {gk} and {xk} are generated by Algorithm
1 with ηk ≤ αk ≤ 1. Then for all k ≥ 1, we have

E
[
Qρk(xk) + ‖gk −∇f(xk)‖2

]
≤Qρ1(x1) + ‖g1 −∇f(x1)‖2 +

1

2

k−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]

+
1

2

k−1∑

i=1

(
L∇f + ρiL− η−1

i + 2L2
∇fα

−1
k

)
E
[
‖xi+1 − xi‖2

]
+ σ2

k−1∑

i=1

α2
i .

where {αk}, {ρk} and {ηk} are given in Algorithm 2, Qρ and L are respectively defined in (3) and
(6), and σ and L∇f are given in Assumptions 1 and 3, respectively.
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Proof. Observe from (3), (6), and Assumptions 1 and 3 that Qρk is (L∇f + ρkL)-smooth. By this and
similar arguments as for deriving (42), one has that for all k ≥ 1,

Qρk+1
(xk+1) ≤ Qρk(xk) +

1

2

(
L∇f + ρkL− η−1

k

)
‖xk+1 − xk‖2 +

ηk
2
‖gk −∇f(xk)‖2

+
1

2
(ρk+1 − ρk)‖c(xk+1)‖2. (65)

Notice from the assumption that 1 − αk + ηk ≤ 1. Using this, taking expectation on both sides of
(65), and summing the resulting inequality with the inequality in Lemma 10, we obtain that

E
[
Qρk+1

(xk+1) + ‖gk+1 −∇f(xk+1)‖2
]

≤ E
[
Qρk(xk) + (1− αk + ηk) ‖gk −∇f(xk)‖2

]
+

1

2

(
L∇f + ρkL− η−1

k + 2L2
∇fα

−1
k

)
E
[
‖xk+1 − xk‖2

]

− ηk
2
E
[
‖gk −∇f(xk)‖2

]
+

1

2
(ρk+1 − ρk)E

[
‖c(xk+1)‖2

]
+ σ2α2

k

≤ E
[
Qρk(xk) + ‖gk −∇f(xk)‖2

]
+

1

2

(
L∇f + ρkL− η−1

k + 2L2
∇fα

−1
k

)
E
[
‖xk+1 − xk‖2

]

− ηk
2
E
[
‖gk −∇f(xk)‖2

]
+

1

2
(ρk+1 − ρk)E

[
‖c(xk+1)‖2

]
+ σ2α2

k. (66)

The conclusion of this lemma follows by replacing k with i in the above inequalities and summing
them up for all 1 ≤ i ≤ k − 1.

The following lemma provides an upper bound on dist2 (0,∇Qρk(xk+1) +NX(xk+1)).

Lemma 12. Suppose that Assumptions 1 and 3 hold, and {gk} and {xk} are generated by Algorithm
2. Then for all k ≥ 1, we have

dist2 (0,∇Qρk(xk+1) +NX(xk+1)) ≤ 3
(
η−2
k + (L∇f + ρkL)

2
)
‖xk+1 − xk‖2 + 3‖gk −∇f(xk)‖2.

where {ρk} and {ηk} are given in Algorithm 2, L∇f is given in Assumption 3, and L and Qρ are
defined in (6) and (3), respectively.

Proof. Recall from the proof of Lemma 11 that Qρk is (L∇f + ρkL)-smooth. The proof of this lemma
follows from this and similar arguments as in the proof of Lemma 6.

Proof of Theorem 2. (i) It follows from (18), (19) and the assumption 1 ≤ θ < 2 that for all i ≥ K̃3,

L∇f + ρiL = L∇f i
− 1

2 η−1
i / log(i+ 2) + Li

θ−2

4 η−1
i / log(i+ 2) ≤ L∇fK̃

− 1

2

3 η−1
i + LK̃

θ−2

4

3 η−1
i ≤ η−1

i /4,

(67)

2L2
∇fα

−1
i = 2L2

∇fη
−1
i / log(i+ 2) ≤ 2L2

∇fη
−1
i / log(K̃3 + 2) ≤ η−1

i /4,

which imply that
L∇f + ρiL+ 2L2

∇fα
−1
i ≤ η−1

i /2 ∀i ≥ K̃3. (68)

In addition, observe from (18) that ηk ≤ αk ≤ 1 for all k ≥ 1. It then follows from the proof of
Lemma 11 that (66) holds. By (3), (66), (67), (68), Lemmas 11 and 12, and similar arguments as for
deriving (49), one can show that for all k ≥ 2K̃3,

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]

≤ 51

2(k − 1)ηk−1

(
Q1(x1)−Q∗

1 + ‖g1 −∇f(x1)‖2 +
1

2

k−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
+ σ2

k−1∑

i=1

α2
i

+
1

2

⌈k/2⌉−1∑

i=1

(
L∇f + ρiL− η−1

i + 2L2
∇fα

−1
i

)
E
[
‖xi+1 − xi‖2

]
)
. (69)
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Further, one can observe that (50) also holds. Using (18), (50), (68), 1 ≤ θ < 2, ‖c(xi)‖ ≤ Cc for all
i, Lemma 8, and similar arguments as for deriving (51), (53), (54) and (55), we can show that for all
k ≥ 2K̃3,

k−1∑

i=K̃3

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ C3θ(6− θ)

2(2− θ)
,

K̃3−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ C2

c

(
K̃

θ
4

3 − 1
)
,

k−1∑

i=1

α2
i ≤ 1 + log k,

⌈k/2⌉−1∑

i=1

(
L∇f + ρiL− η−1

i + 2α−1
i L2

∇f

)
E
[
‖xi+1 − xi‖2

]

≤ 2(1 + log K̃3)
(
L∇f + LK̃

θ
4

3 + 2L2
∇fK̃

1

2

3

)(
L2
f + C2

cL
2
cK̃

θ
2

3

)
.

Using these, (18) and (69), we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk) +NX(xιk))

]

≤ 51 log(k + 2)

2(k − 1)
1

2

(
Q1(x1)−Q∗

1 + ‖g1 −∇f(x1)‖2 +
C3θ(6− θ)

4(2− θ)
+

1

2
C2
c

(
K̃

θ
4

3 − 1
)

+ σ2(1 + log k) + (1 + log K̃3)
(
L∇f + LK̃

θ
4

3 + 2L2
∇f K̃

1

2

3

)(
L2
f + C2

cL
2
cK̃

θ
2

3

)
)

∀k ≥ 2K̃3.

By this, (3), ιk > ⌈k/2⌉ ≥ K̃1 for all k ≥ 2K̃1, and Lemma 8 with k replaced by ιk, one can see that
statement (i) of Theorem 2 holds.

(ii) It follows from (21) and (22) that for all i ≥ K̃4,

L∇f + ρiL = L∇f i
− 1

2 η−1
i / log(i+ 2) + Lη−1

i / log(i+ 2)

≤ L∇fK̃
− 1

2

4 η−1
i + Lη−1

i / log(K̃4 + 2) ≤ η−1
i /4,

2α−1
i L2

∇f = 2L2
∇fη

−1
i / log(i+ 2) ≤ 2L2

∇fη
−1
i / log(K̃4 + 2) ≤ η−1

i /4,

which imply that
L∇f + ρiL+ 2L2

∇fα
−1
i ≤ η−1

i /2 ∀i ≥ K̃4. (70)

By this, Lemma 8, (21), (50), ν ≤ 1/2, ‖c(xi)‖ ≤ Cc for all i, and similar arguments as for deriving
(57), (58) and (60), one can show that for all k ≥ 2K̃4,

k−1∑

i=K̃4

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ C4k

1

2
−ν(1 + log k),

K̃4−1∑

i=1

(ρi+1 − ρi)E
[
‖c(xi+1)‖2

]
≤ C2

c

(
K̃

1

2

4 − 1
)
,

⌈k/2⌉−1∑

i=1

(
L∇f + ρiL− η−1

i + 2L2
∇fα

−1
i

)
E
[
‖xi+1 − xi‖2

]

≤ 2(1 + log K̃4)
(
L∇f + LK̃

1

2

4 + 2L2
∇f K̃

1

2

4

)(
L2
f + C2

cL
2
cK̃4

)
.

In addition, observe from (21) that ηk ≤ αk ≤ 1 for all k ≥ 1. Using this, (70), and similar arguments
as in the proof of statement (i) of this theorem, we can see that (69) holds for all k ≥ 2K̃4. Also, by
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(21) and (54), one has
∑k−1

i=1 α2
i ≤ 1 + log k for all k ≥ 1. Using this, (21), (69), and the above three

inequalities, we have

E
[
dist2 (0,∇f(xιk) + ριk−1∇c(xιk)c(xιk ) +NX(xιk))

]

≤ 51 log(k + 2)

2(k − 1)
1

2

(
Q1(x1)−Q∗

1 + ‖g1 −∇f(x1)‖2 +
1

2
C4k

1

2
−ν(1 + log k) +

1

2
C2
c

(
K̃

1

2

4 − 1
)

+ σ2(1 + log k) + (1 + log K̃4)
(
L∇f + LK̃

1

2

4 + 2L2
∇f K̃

1

2

4

)(
L2
f +C2

cL
2
cK̃4

)
)

∀k ≥ 2K̃4.

By this, (3), ιk > ⌈k/2⌉ ≥ K̃4 for all k ≥ 2K̃4, and Lemma 9 with k replaced by ιk, one can see that
statement (ii) of Theorem 2 holds.

5 Concluding remarks

In this paper, we studied a class of deterministically constrained stochastic optimization problems.
Existing methods typically aim to find an ǫ-stochastic stationary point, where the expected violations
of both constraints and first-order stationarity are within a prescribed accuracy ǫ. However, in many
practical applications, it is crucial that the constraints be nearly satisfied with certainty, making such
an ǫ-stochastic stationary point potentially undesirable due to the risk of significant constraint viola-
tions. To address this issue, we proposed single-loop variance-reduced stochastic first-order methods
with provable guarantees on both sample complexity and first-order operation complexity to find a
stronger ǫ-stochastic stationary point, where the constraint violation is within ǫ with certainty, and
the expected violation of first-order stationarity is within ǫ.

For future work, we plan to conduct computational studies on the proposed methods and compare
their performance with existing approaches. Additionally, we are extending these methods to deter-
ministically constrained stochastic convex optimization in [25], as well as to stochastic optimization
with both stochastic objective functions and stochastic constraints in [24].
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