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Abstract

We study a Stackelberg game in which a government positions rapid response teams and
thereafter a terrorist attacks a location on a line segment. We assume the damage associated
to such an attack to be time dependent. We show that there exists a subgame perfect Nash
equilibrium that balances the possible damage on all intervals of the line segment that result
from positioning the rapid response teams. We discuss implications for an instance of the
model.
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1. Introduction

In the last years, several games have been studied that optimize the location of defensive
resources against terrorism attacks (see, e.g., Berman and Gavious [2007],Bier et al. [2007],
Zhuang and Bier [2007], Powell [2009], Hausken and Zhuang [2011], van Aken et al. [2024]).
One of those papers, van Aken et al. [2024], introduce and analyze a so-called Stackelberg
protection location setting in which a government positions heavily-armed and highly-trained
response teams on a line segment. This line segment could, for instance, represent a long
boulevard. After the government positions response teams, a terrorist selects an attack
location on the line segment. The associated damage of the attack is determined by the
product of two components: (1) the time it takes the closest response team to arrive at the
attack location, and (2) the damage of an attack per time unit. An underlying situation
is formally defined by a line segment [0, 1], a number of response teams n ∈ N, and a
continuous damage rate function f : [0, 1] → R≥0. The associated game focuses on the
strategic positioning of the response teams, which is represented by d = (d1, . . . , dn) ∈ Dn,
where Dn = {d ∈ [0, 1]n | d1 ≤ d2 ≤ . . . ≤ dn}, and the location of the attack, given by
a ∈ A, where A = [0, 1]. Formally, for a given d ∈ D and a ∈ A, damage reads:

D(d, a) = min
i∈{1,..,n}

|di − a|
v

· f(a)

with v ∈ R>0 being the constant speed of the response teams. Van Aken et al. [2024] consider
the terrorist to be a maximizer of this damage and the government to be a minimizer of this
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damage. Hence, the government is interested in solving the following problem:

P := min
d∈D

max
a∈A

D(d, a). (1)

Van Aken et al. [2024] refer to a strategy d ∈ D leading to an optimal solution of P
as an optimal strategy, which we will continue to do in the remainder of this paper. Note
that an optimal strategy is not affected by v. For that reason, van Aken et al. [2024] assume
without loss of generality that v = 1. Below, we present an illustrative example of such a
game.

Example 1. Let n = 2 and f(x) = 1 for all x ∈ [0, 1]. Suppose the government po-
sitions its response teams at d = (0.2, 0.8) and the attacker attacks at a = 0.4. Then,
D((0.2, 0.8), 0.4) = min{|0.2 − 0.4|, |0.8 − 0.4|} · 1 = 0.2. This situation is visualized in
Figure 1.
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Figure 1: Visualization of a situation with n = 2, f(x) = 1 for all x ∈ [0, 1], d = (0.2, 0.8), and a = 0.4.

⋄

To identify an optimal strategy d ∈ D, van Aken et al. [2024] introduce local damage
problems. A local damage problem identifies the maximal damage in between two consecutive
response teams, to the left of the first response team, or to the right of the last response
team. Van Aken et al. [2024] show that there exists an optimal strategy for which the
maximal damage of all these local damage problems coincide. They refer to such a strategy
as a balanced strategy. Below, this is illustrated by an example.

Example 2. Reconsider Example 1. As we have n = 2 teams, there exist three local damage
problems: one to the left of the first response team, one in between the two response teams
and one to the right of the second response team. In Figure 2(a) we demonstrate the damage
for all a ∈ [0, 1] given that d = (0.2, 0.8). For this figure, we learn that the maximal damage
to the left of the first as well as to the right of the second response team equals 0.2, while the
maximal damage in between the two response teams equals 0.3. In Figure 2(b) we demonstrate
the damage for all a ∈ [0, 1] given strategy d = (0.25, 0.75). This time, all three maximal
local damages coincide (0.25). This implies that d = (0.25, 0.75) is a balanced strategy, and,
hence, optimal.
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(a) d = (0.2, 0.8).
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(b) d = (0.25, 0.75).

Figure 2: The damage of an attack for a setting with n− 2, f(x) = 1 for all x ∈ [0, 1] and a given d.

⋄

Van Aken et al. [2024] assume that the damage per time unit remains constant until
the closest response team arrives at the attack location. In our opinion, this is a restrictive
assumption. For instance, think of a terrorist who decides to start a shooting somewhere
at a market place. Then, the damage rate function could represent the expected number of
victims per time unit, but this number will typically decrease over time as people run away
once a shooting starts. Moreover, it is also likely that some local police teams are close by.
In case of a terrorist attack, such teams will also respond and, although they are most likely
unable to neutralize the threat, they can hinder it and consequently lower the damage per
time unit. Oppositely, it is also possible that the damage rate function increases for a certain
amount of time. For instance, think of a terrorist who after attacking people on the street
decides to enter a shop, restaurant or museum where (still) many people may be around.

In summary, we believe that the implicit assumption of a constant damage rate function
over time by van Aken et al. [2024] is restrictive and for that reason we will investigate and
study a generalized version of the Stackelberg protection location game in this paper. More
precisely, we formulate a generalized time-dependent damage rate function and show that,
even in this case, a balanced strategy is optimal. In doing so, we make use of the continuity
and the non-increasing/non-decreasing behavior of local damage problems defined for our
generalized version of the Stackelberg protection location game. After that, we discuss
implications for a specific type of time-dependent damage rate function and discuss the
impact of time-dependency in the damage rate function on the results.

2. Model

As in a Stackelberg protection location setting, we consider an underlying situation and
the associated game. However, this time, we consider a time-dependent damage rate function
h : [0, 1]2 → R≥0 where the first argument resembles the location of the attack and the second
argument the time. Similar to van Aken et al. [2024] we set the speed v equal to 1, implying
that we can restrict ourselves to a time range of 1. If speed is not restricted to 1, the time
domain needs to be scaled accordingly. The damage of an attack is given by

D(d, a) =

∫ t= min
i∈{1,...,n}

|di−a|

t=0

h(a, t)dt for all a ∈ A and all d ∈ Dn.
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As before, the attacker tries to maximize this damage, while the government tries to
minimize this damage. Hence, the government is interested in solving optimization problem:

P∗ := min
d∈D

max
a∈A

D(d, a). (2)

We will refer to a strategy d ∈ D leading to an optimal solution of P∗ as an optimal
strategy in the remaining of the paper. We denote a specific time-dependent protection
location situation (TPL situation) by θ = (n, h) with n the number of response teams and
h the time-dependent damage rate function, and we focus on the analysis of the associated
time-dependent protection location Stackelberg game which we call a TPLS game. We limit
ourselves to the set of TPL situations for which D as well as optimization problem (2) is
well-defined and denote this set by Θ. We now identify three relevant subclasses of Θ. The
first subclass that we identify is the class for which the damage rate function is constant
over time and continuous on a closed interval, and thus, uniformly continuous. We denote
this class of TPL situations by ΘC . An example of a situation in this class is given below.

Example 3. Let θ ∈ ΘC with n = 2 and h(a, t) = 1 for all (a, t) ∈ [0, 1]2. Suppose the
government positions its response teams at d = (0.2, 0.8) and the attacker attacks at a = 0.4.

Then, D((0.2, 0.8), 0.4) =
∫ t=min{|0.2−0.4|,|0.8−0.4|}
t=0

1dt = 0.2. The situation is visualized in
Figure 3. Note that damage function D coincides with the damage function given in Example
1. Moreover, as the damage rate function is constant over time, the visual representation of
Figure 1 can be recognized as an alternative representation of θ.
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Figure 3: Visual representation of θ of Example 3 with d = (0.2, 0.8) and a = 0.4.

⋄

Note that there exists a bijection between ΘC and the set of Stackelberg protection loca-
tion situations in van Aken et al. [2024]. Therefore, whenever we consider class ΘC , we have
in mind a Stackelberg protection location situation and its associated game. Consequently,
with a slight abuse of notation, we will denote the set of situations studied in van Aken et al.
[2024] by ΘC .
The second subclass of TPL situations that we identify is the class for which the damage
rate function is uniformly continuous. We denote this class of TPL situations by ΘU . An
example of such a situation is given below.

Example 4. Let θ ∈ ΘU with n = 2 and h(a, t) = 1 − t for all (a, t) ∈ [0, 1]2. Suppose the
government positions its response teams at d = (0.2, 0.8) and the attacker attacks at a = 0.4.
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Then, D((0.2, 0.8), 0.4) =
∫ t=min{|0.2−0.4|,|0.8−0.4|}
t=0

1− tdt = 9
50
. This situation is visualized in

Figure 4. The damage of the attack is given by the area within the dotted quadrangle.
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Figure 4: Visual representation of θ of Example 4 with d = (0.2, 0.8) and a = 0.4. ⋄

The third subclass of TPL situations that we identify is the class for which there exists a
possible ”jump” in the damage rate function. Such a jump could, for instance, represent the
effect of police arriving at the scene. Formally, for a TPL situation in this class, we introduce
a uniformly continuous function f : [0, 1]2 → R≥0, which represents a time-dependent damage
rate function before the jump. Additionally, we introduce a uniformly continuous function
l : [0, 1]2 → R≥0, which represents a time dependent damage rate function after the jump.
Moreover, continuously differentiable function p : [0, 1] → [0, 1] indicates the time it takes
the police team to be present at the location of the attack. Then, function h reads:

h(a, t) =

{
f(a, t) if t ≤ p(a)

l(a, t) otherwise

for all (a, t) ∈ [0, 1]2. We denote this class of specific TPL situations by ΘJ . An example of
such a situation is given below.

Example 5. Let θ ∈ ΘJ with n = 2 and h(a, t) =

{
1− t if t ≤ 0.3

0 otherwise
for all (a, t) ∈ [0, 1]2.

Suppose the government positions the response teams at d = (0, 0.8) and the attacker attacks

at a = 0.4. Then, D((0, 0.8), 0.4) =
∫ t=min{0.4−0,0.8−0.4}
t=0

h(0.4, t)dt = 0.255. The situation is
visualized in Figure 5.
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Figure 5: Visual representation of θ of Example 5 with d = (0, 0.8) and a = 0.4. ⋄

Note that the introduced subclasses can be categorized as subsets of each other, more specif-
ically as ΘC ⊆ ΘU ⊆ ΘJ ⊆ Θ. In the next sections we will focus on class ΘJ .
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3. Analysis of TPL situations and games

In this section, we will show that for all TPL situations that belong to class ΘJ a balanced
strategy is optimal in the TPLS game. In doing so, we first need to introduce some new
definitions and notation. Similar to the paper of van Aken et al. [2024], we start by separating
the maximization problem of the terrorist, i.e., the inner maximization problem in equation
(2), into n+1 local maximization problems. We refer to them as local damage problems and
call their optimal values the local damages. The first local damage problem, which identifies
the maximal damage to the left of the first response team, is denoted by L : [0, 1] → R with

L (d1) = max
a∈[0,d1]

∫ t=d1−a

t=0

h(a, t)dt for all d1 ∈ [0, 1].

Then, we introduce n − 1 local damage problems that each identify the maximal dam-
age between two adjacent response teams. Let i ∈ {1, 2, ..., n − 1} and denote Di,i+1 =
{(di, di+1) ∈ [0, 1]2 | di ≤ di+1}, which is the set of feasible locations of response teams i
and i + 1. Then, the local damage problem between response team i and i + 1 is given by
I i : Di,i+1 → R with

I i(di, di+1) = max
a∈[di,di+1]

∫ t=min{a−di,di+1−a}

t=0

h(a, t)dt for all (di, di+1) ∈ Di,i+1.

The last local damage problem, which identifies the maximal damage to the right of the
last response team, is denoted by R : [0, 1] → R with

R(dn) = max
a∈[dn,1]

∫ t=a−dn

t=0

h(a, t)dt for all dn ∈ [0, 1].

Van Aken et al. [2024] show that if the functions L , I i for all i ∈ {1, . . . , n− 1} and R
satisfy some desirable properties, then there exists an optimal balanced strategy. That is,
there exists a balanced strategy d∗ that minimizes P and for which:

L (d∗1) = I 1(d∗1, d
∗
2) = I 2(d∗2, d

∗
3) = . . . = R(d∗n),

and hence, is optimal. The properties that van Aken et al. [2024] need are as follows:

(i) L , I i for all i ∈ {1, . . . , n− 1} and R are continuous

(ii) L is non-decreasing

(iii) R is non-increasing

(iv) For all i ∈ {1, . . . , n− 1}, I i(·, di+1) is non-increasing for all di+1 ∈ [0, 1] and I i(di, ·)
is non-decreasing for all di ∈ [0, 1].

It turns out that these properties are also sufficient in ΘJ to prove the existence of an optimal
balanced strategy. That is, although van Aken et al. [2024] formulate its proof for ΘC , their
arguments can still be used to prove the existence of an optimal balanced strategy in ΘJ .
This is captured in the following lemma.
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Lemma 3.1. Let θ = (n, h) ∈ ΘJ . If L , R and I i for all i ∈ {1, . . . , n−1} are continuous
and L is non-decreasing, R is non-increasing and for all i ∈ {1, . . . , n − 1} the following
holds:
(i) I i(·, di+1) is non-increasing for all di+1 ∈ [0, 1]
(ii) I i(di, ·) is non-decreasing for all di ∈ [0, 1],
then there exists a balanced strategy and any balanced strategy is optimal.

Proof. By applying Lemma 4.3 until Lemma 4.8 of van Aken et al. [2024] to θ and the
associated TPLS game, we are able to conclude that there exists a balanced strategy and
any balanced strategy is optimal. Note that we can directly apply Lemma 4.3 until Lemma
4.8 of van Aken et al. [2024] as the proofs of these Lemmas only use the continuity of L ,
I i for all i ∈ {1, . . . , n− 1} and R and the non-increasing/non-decreasing behavior of these
damage rate functions.

In what follows, we will show that L , I i for all i ∈ {1, . . . , n − 1} and R satisfy the
sufficient conditions of Lemma 3.1. We start by showing continuity. Note that the functions
L , I i for all i ∈ {1, . . . , n−1} and R all include a maximization term. In order to prove the
continuity of such maximization functions, we will make use of Berge’s maximum theorem.

Theorem 3.2 (Berge’s maximum theorem (Herings [1996])). Let S ⊆ Rm, let T ⊆ Rn, and
let φ : S → T be a continuous, compact-valued correspondence. Let h : S × T → R be a
continuous function and let the relation g : S → R be defined by g(x) = max

y∈φ(x)
h(x, y), for all

x ∈ S. Then g is a continuous function.

To apply Berge’s maximum theorem, we first show continuity of the argument of the
maximization functions. The results are presented in Lemma 3.3, Lemma 3.4 and Lemma
3.5.

Lemma 3.3. Let θ = (n, h) ∈ ΘJ . Let D = {(d1, a) ∈ [0, 1]2 | a ≤ d1} and g : D → R be a

function with g(d1, a) =
∫ t=d1−a

t=0
h(a, t)dt for all (d1, a) ∈ D. Function g is continuous.

Proof. Let (d1, a) ∈ D and let ϵ > 0. Take a δ′ > 0 such that |f(a, t)− f(a′, t′)| < 1
6
ϵ for all

(a, t), (a′, t′) ∈ [0, 1]2 with ||(a, t)− (a′, t′)|| < δ′. Note that such a δ′ exists as f is uniformly
continuous. Take a δ′′ > 0 such that |l(a, t) − l(a′, t′)| < 1

6
ϵ for all (a, t), (a′, t′) ∈ [0, 1]2

with ||(a, t) − (a′, t′)|| < δ′′. Note that such a δ′′ exists as l is uniformly continuous. Let
M = max{ max

(a,t)∈[0,1]2
f(a, t), max

(a,t)∈[0,1]2
l(a, t), 1}. Note that M is well-defined as f and l are

continuous and thus the maximum on a closed rectangle for both functions exists. Choose
δ = min{ 1

6·M ·( max
a∈[0,1]

|p′(a)|+1)
· ϵ, δ′, δ′′}. Note that δ is well defined as M > 0 by definition and

max
a∈[0,1]

|p′(a)|+ 1 > 0.

Choose a (d′1, a
′) ∈ D such that ||(d′1, a′)− (d1, a)|| < δ.

The following holds:

|g(d′1, a′)− g(d1, a)| =

∣∣∣∣∣
∫ t=d′

1−a′

t=0

h(a′, t)dt−
∫ t=d1−a

t=0

h(a, t)dt

∣∣∣∣∣
7



=

∣∣∣∣∣
∫ t=d1−a

t=0

h(a′, t)− h(a, t)dt+

∫ t=d′
1−a′

t=d1−a

h(a′, t)dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t=d1−a

t=0

h(a′, t)− h(a, t)dt

∣∣∣∣∣+
∣∣∣∣∣
∫ t=d′

1−a′

t=d1−a

h(a′, t)dt

∣∣∣∣∣
≤

∫ t=d1−a

t=0

|h(a′, t)− h(a, t)| dt+

∣∣∣∣∣
∫ t=d′

1−a′

t=d1−a

h(a′, t)dt

∣∣∣∣∣
≤

∫ t=1

t=0

|h(a′, t)− h(a, t)| dt+

∣∣∣∣∣
∫ t=d′

1−a′

t=d1−a

h(a′, t)dt

∣∣∣∣∣
≤

∫ t=min{p(a′),p(a)}

t=0

1

6
ϵdt+

∫ t=max{p(a′),p(a)}

t=min{p(a′),p(a)}
Mdt+

∫ t=1

t=max{p(a′),p(a)}

1

6
ϵdt+

∣∣∣∣∣
∫ t=d′

1−a′

t=d1−a

h(a′, t)dt

∣∣∣∣∣
≤ 1

6
ϵ+M · |a′ − a| · max

a∈[0,1]
|p′(a)|+ 1

6
ϵ+

∣∣∣∣∣
∫ t=d′

1−a′

t=d1−a

h(a′, t)dt

∣∣∣∣∣
≤ 1

3
ϵ+M · max

a∈[0,1]
|p′(a)| · δ +

∣∣∣∣∣
∫ t=d′

1−a′

t=d1−a

h(a′, t)dt

∣∣∣∣∣
=

1

3
ϵ+M · max

a∈[0,1]
|p′(a)| · δ +

∫ max{d1−a,d′
1−a′}

min{d1−a,d′
1−a′}

h(a′, t)dt

≤ 1

3
ϵ+M · max

a∈[0,1]
|p′(a)| · δ +M · |(d′1 − a′)− (d1 − a)|

≤ 1

3
ϵ+M · max

a∈[0,1]
|p′(a)| · δ +M · 2 · δ

≤ 1

3
ϵ+

1

6
ϵ+

1

3
ϵ

< ϵ.

Where the second equality holds as
∫ t=d′1−a′

t=0
h(a′, t)dt =

∫ t=d1−a

t=0
h(a′, t)dt+

∫ t=d′1−a′

t=d1−a
h(a′, t)dt

and as −
∫ t=d1−a

t=0
h(a, t)dt =

∫ t=d1−a

t=0
−h(a, t)dt. The first inequality holds by the triangle in-

equality. The second inequality holds by the continuous version of the triangle inequality
(Dragomir [2007]). The third inequality holds as d1 − a ≤ 1. The fourth inequality holds
as for t ∈ [0, 1] we can distinguish between three cases: (1) if t ∈ [0,min{p(a′), p(a)}] it
holds that |h(a, t)− h(a′, t)| < 1

6
ϵ (2) if t ∈ [min{p(a′), p(a)},max{p(a′), p(a)}] it holds that

|h(a, t)−h(a′, t)| ≤ M and (3) if t ∈ [max{p(a′), p(a)}, 1] it holds that |h(a, t)−h(a′, t)| < 1
6
ϵ.

The fifth inequality holds as for the first integral it is true that min{p(a′), p(a)} ≤ 1 and∫ t=1

t=0
1
6
ϵdt = 1

6
ϵ. For the second integral, note that |p(a′) − p(a)| ≤ |a′ − a| · max

a∈[0,1]
|p′(a)|

holds, consequently it is true that
∫ t=max{p(a′),p(a)}
t=min{p(a′),p(a)} Mdt ≤ M · |a′ − a| · max

a∈[0,1]
|p′(a)|. For the

third integral note that max{p(a′), p(a)} ≥ 0 holds, and we have
∫ t=1

t=0
1
6
ϵdt = 1

6
ϵ. The sixth

inequality holds as |a′− a| ≤ ||(d′1, a′)− (d1, a)|| ≤ δ. The third equality holds as h(a′, t) ≥ 0
for all t ∈ [0, 1] and max{d1−a, d′1−a′} ≥ min{d1−a, d′1−a′}. The seventh inequality holds
as M ≥ h(a′, t) for all t ∈ [0, 1]. The eighth inequality holds as we have chosen (d′1, a

′) in
such a way that ||(d′1, a′)− (d1, a)|| < δ. Because of this, |d′1 − d1| < δ and |a− a′| < δ, and
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consequently |d′1 − d1 + a − a′| < 2δ. The ninth inequality holds as δ ≤ 1
6·M ·( max

a∈[0,1]
|p′(a)|+1)

ϵ,

and thus δ ≤ 1
6·M ϵ. The tenth inequality holds as ϵ > 0.

Lemma 3.4. Let θ = (n, h) ∈ ΘJ . Let D = {(dn, a) ∈ [0, 1]2 | dn ≤ a} and g : D → R be a

function with g(dn, a) =
∫ t=a−dn
t=0

h(a, t)dt for all (dn, a) ∈ D. Function g is continuous.

Proof. Let h∗ : [0, 1]2 → R be described by

h∗(a, t) =

{
f(1− a, t) if t ≤ p(1− a)

l(1− a, t) otherwise.

Note that h∗(1−a, t) = h(a, t) for all (a, t) ∈ [0, 1]2. Let g∗(1−dn, 1−a) =
∫ t=1−dn−(1−a)

t=0
h∗(1−

a, t)dt for all (1− dn, 1− a) ∈ D∗ where D∗ = {(1− dn, 1− a) ∈ [0, 1]2 | 1− a ≤ 1− dn}.
Take a (dn, a) ∈ D. We derive the following:

g(dn, a) =

∫ t=a−dn

t=0

h(a, t)dt =

∫ t=1−dn−(1−a)

t=0

h∗(1− a, t)dt = g∗(1− dn, 1− a).

As g(dn, a) = g∗(1− dn, 1− a) for all (dn, a) ∈ D and g∗ is continuous according to Lemma
3.3, it holds that g is continuous.

Lemma 3.5. Let θ = (n, h) ∈ ΘJ . Let D = {(di, di+1, a) ∈ [0, 1]3 | di ≤ a ≤ di+1} and g :

D → R be a function with g(di, di+1, a) =
∫ t=min{a−di,di+1−a}
t=0

h(a, t)dt for all (di, di+1, a) ∈ D
and for all i ∈ {1, . . . , n− 1}. Function g is continuous.

Proof. Note that the following holds for all i ∈ {1, . . . , n− 1}:

g(di, di+1, a) =

∫ t=min{a−di,di+1−a}

t=0

h(a, t)dt = min

{∫ t=a−di

t=0

h(a, t)dt,

∫ t=di+1−a

t=0

h(a, t)dt

}
.

Here the second equality holds as h is a non-negative function. Additionally, note that
according to Lemma 3.4 g(di, a) for all (di, a) ∈ D with D = {(di, a) ∈ [0, 1]2 | di ≤ a}
is continuous. Thus,

∫ t=a−di
t=0

h(a, t)dt is continuous in di and a. Additionally, note that
according to Lemma 3.3 g(di+1, a) for all (di+1, a) ∈ D with D = {(di+1, a) ∈ [0, 1]2 | a ≤
di+1} is continuous. Thus,

∫ t=di+1−a

t=0
h(a, t)dt is continuous in di+1 and a. As the minimum

of two continuous functions is continuous, we have proven that function g is continuous.

As it is now proven that the arguments of L , R and I i for all i ∈ {1, . . . , n − 1} are
continuous, we can directly apply Berge’s maximum theorem to show that L , R and I i

for all i ∈ {1, . . . , n− 1} are continuous. This is shown in Lemma 3.6.

Lemma 3.6. Let θ = (n, h) ∈ ΘJ . L , I i for all i ∈ {1, 2, . . . , n−1} and R are continuous.

9



Proof. First, we focus on L , then on I i for all i ∈ {1, 2, . . . , n− 1} and finally on R.
Let φ : [0, 1] → [0, 1] be a correspondence with φ(d1) = [0, d1] for all d1 ∈ [0, 1]. Let

r : [0, 1] → R be a function with r(d1) = 0 for all d1 ∈ [0, 1] and let q : [0, 1] → R be
a function with q(d1) = d1 for all d1 ∈ [0, 1]. Let g : [0, 1]2 → R be a function with

g(d1, a) =
∫ t=d1−a

t=0
h(a, t)dt for all (d1, a) ∈ [0, 1]2 with a ≤ d1. Lemma 3.3 states that

g is continuous. Since r and q are continuous and bounded functions and r(d1) ≤ q(d1)
for all d1 ∈ [0, 1], by Lemma 2.3 of van Aken et al. [2024] it is true that φ is continuous
and compact-valued. Moreover, g is continuous and thus by Theorem 3.2 it is true that
L (d1) = max

a∈[0,d1]
g(d1, a) is continuous for all d1 ∈ [0, 1].

If n ≥ 2, let φ : D1,2 → [0, 1] be a correspondence with φ(d1, d2) = [d1, d2] for all
(d1, d2) ∈ D1,2. Let r : D1,2 → R be a function with r(d1, d2) = d1 for all (d1, d2) ∈ D1,2 and
let q : D1,2 → R be a function with q(d1, d2) = d2 for all (d1, d2) ∈ D1,2. Let g : D1,2 → R
be a function defined by g(d1, d2) = max

a∈[d1,d2]

∫ t=min{a−d1,d2−a}
t=0

h(a, t)dt for all (d1, d2) ∈ D1,2.

Lemma 3.5 states that g is a continuous function. Since r and q are continuous and bounded
functions and r(d1, d2) ≤ q(d1, d2) for all (d1, d2) ∈ D1,2, by Lemma 2.3 of van Aken et al.
[2024] is is true that φ is continuous and compact-valued. Moreover, g is continuous and thus
by Theorem 3.2 it is true that I 1(d1, d2) = max

a∈[d1,d2]
g(d1, d2) is continuous for all (d1, d2) ∈

D1,2. As I i+1(di, di+1) = I i(di, di+1) for all (di, di+1) ∈ Di,i+1 for all i ∈ {1, 2, . . . , n − 2},
we conclude that I i is continuous for all i ∈ {1, .., n− 1}.

Let φ : [0, 1] → [0, 1] be a correspondence with φ(dn) = [dn, 1] for all dn ∈ [0, 1]. Let
r : [0, 1] → R be a function with r(dn) = dn for all dn ∈ [0, 1] and let q : [0, 1] → R
be a function with q(dn) = 1 for all dn ∈ [0, 1]. Let g : [0, 1]2 → R be a function with

g(dn, a) =
∫ t=a−dn
t=0

h(a, t)dt for all (dn, a) ∈ [0, 1]2 with dn ≤ a. Lemma 3.4 states that
g is continuous. Since r and q are continuous and bounded functions and r(dn) ≤ q(dn)
for all dn ∈ [0, 1], by Lemma 2.3 of van Aken et al. [2024] it is true that φ is continuous
and compact-valued. Moreover, g is continuous and thus by Theorem 3.2 it is true that
R(dn) = max

a∈[dn,1]
g(dn, a) is continuous for all dn ∈ [0, 1].

Next, in order to prove that all conditions in Lemma 3.1 are satisfied, we show the non-
increasing/non-decreasing behavior of L , R, and I i for all i ∈ {1, . . . , n−1}. This is shown
in Lemma 3.7.

Lemma 3.7. Let θ = (n, h) ∈ ΘJ . L is non-decreasing, R is non-increasing, and for all
i ∈ {1, ..., n− 1} the following holds

(i) I i(·, di+1) is non-increasing for all di+1 ∈ [0, 1]

(ii) I i(di, ·) is non-decreasing for all di ∈ [0, 1].

Proof. First we focus on L , then on R and finally on I i for all i ∈ {1, 2, . . . , n− 1}.
Let d1 ∈ [0, 1] and d′1 ∈ [0, 1] such that d′1 > d1. Let a

∗ ∈ argmax
a∈[0,d1]

∫ t=d1−a

t=0
h(a, t). We derive

the following:

L (d1) =

∫ t=d1−a∗

t=0

h(a∗, t)dt ≤
∫ t=d′1−a∗

t=0

h(a∗, t)dt ≤ max
a∈[0,d′1]

∫ t=d′1−a

t=0

h(a, t)dt = L (d′1).
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The first inequality holds as d′1 > d1 and h is a non-negative function. The second in-
equality holds as we know that a∗ ∈ [0, d1]. Consequently, a∗ is a feasible solution to the

optimization problem max
a∈[0,d′1]

∫ t=d′1−a

t=0
h(a, t). Hence, L is non-decreasing.

Let dn ∈ [0, 1] and d′n ∈ [0, 1] such that d′n < dn. Let a∗ ∈ argmax
a∈[dn,1]

∫ t=a−dn
t=0

h(a, t)dt.

We derive the following:

R(dn) =

∫ t=a∗−dn

t=0

h(a∗, t)dt ≤
∫ t=a∗−d′n

t=0

h(a∗, t)dt ≤ max
a∈[d′n,1]

∫ t=a−d′n

t=0

h(a, t)dt = R(d′n).

The first inequality holds as d′n < dn and h is a non-negative function. The second in-
equality holds as we know that a∗ ∈ [dn, 1]. Consequently, a∗ is a feasible solution to the

optimization problem max
a∈[d′n,1]

∫ t=a−dn
t=0

h(a, t)dt. Hence, R is non-increasing.

Let i ∈ {1, . . . , n − 1} and di+1 ∈ [0, 1]. First, we prove that I 1(·, di+1) is non-increasing.
Let di ∈ [0, di+1] and d′i ∈ [0, di+1] such that di < d′i.

Let a∗ ∈ argmax
a∈[d′i,di+1]

∫ t=min{di+1−a,a−d′i}
t=0

h(a, t)dt. We derive the following:

I 1(d′i, di+1) = max
a∈[d′i,di+1]

∫ t=min{di+1−a,a−d′i}

t=0

h(a, t)dt

=

∫ t=min{di+1−a∗,a∗−d′i}

t=0

h(a∗, t)dt

≤
∫ t=min{di+1−a∗,a∗−di}

t=0

h(a∗, t)dt

≤ max
a∈[di,di+1]

∫ t=min{di+1−a,a−di}

t=0

h(a, t)dt

= I 1(di, di+1).

The first inequality holds as di < d′i. The second inequality holds as we know that
a∗ ∈ [d′i, di+1]. Consequently, a

∗ is a feasible solution to the optimization problem

max
a∈[di,di+1]

∫ t=min{di+1−a,a−di}
t=0

h(a, t)dt. Hence, I 1(·, di+1) is non-increasing. As by definition it

holds that I i(di, di+1) = I 1(di, di+1) for all i ∈ {1, . . . , n− 1}, it follows that I i(·, di+1) is
non-increasing for all i ∈ {1, . . . , n− 1}.
Let i ∈ {1, . . . , n − 1} and di ∈ [0, 1]. First, we prove that I 1(di, ·) is non-decreasing. Let

di+1 ∈ [di, 1] and d′i+1 ∈ [di, 1] such that di+1 < d′i+1. Let a
∗ ∈ argmax

a∈[di,di+1]

∫ t=min{di+1−a,a−di}
t=0

h(a, t)dt.

We derive the following:

I 1(di, di+1) = max
a∈[di,di+1]

∫ t=min{di+1−a,a−di}

t=0

h(a, t)dt

=

∫ t=min{di+1−a∗,a∗−di}

t=0

h(a∗, t)dt

≤
∫ t=min{d′i+1−a∗,a∗−di}

t=0

h(a∗, t)dt

11



≤ max
a∈[di,d′i+1]

∫ t=min{d′i+1−a,a−di}

t=0

h(a, t)dt

= I 1(di, d
′
i+1).

The first inequality holds as di+1 < d′i+1. The second inequality holds as we know that
a∗ ∈ [di, di+1]. Consequently, a

∗ is a feasible solution to the optimization problem

max
a∈[di,d′i+1]

∫ t=min{d′i+1−a,a−di}
t=0

h(a, t)dt. Hence, I 1(di, ·) is non-decreasing. As by definition it

holds that I i(di, di+1) = I 1(di, di+1) for all i ∈ {1, . . . , n − 1}, it follows that I i(di, ·) is
non-decreasing for all i ∈ {1, . . . , n− 1}.

We have proven that L , I i for all i ∈ {1, . . . , n− 1} and R satisfy the properties given
in the beginning of this section. By applying Lemma 3.1, in combination with Lemma 3.6
and Lemma 3.7, it follows that there exists a balanced strategy and any balanced strategy
is optimal. This is formalized in Theorem 3.8.

Theorem 3.8. Let θ = (n, h) ∈ ΘJ . There exists a balanced strategy and any balanced
strategy is optimal.

Proof. By Lemma 3.6 it holds that L , I i for all i ∈ {1, 2, . . . , n−1} and R are continuous.
Additionally, by Lemma 3.7 it holds that L is non-decreasing, R is non-increasing, and for
all i ∈ {1, . . . , n− 1}:
(i) I i(·, di+1) is non-increasing for all di+1 ∈ [0, 1]
(ii) I i(di, ·) is non-decreasing for all di ∈ [0, 1].

As all the sufficient conditions in Lemma 3.1 are met, we are able to apply Lemma 3.1
and conclude that there exists a balanced strategy and any balanced strategy is optimal.

4. A police team scenario

In this section, we consider a specific instance of the model. We study a stylized busy
shopping avenue with a market square at the end of the street. The beginning of the shopping
avenue is still relatively quiet, but the more we move towards the market square, the busier
it gets. We can represent this setting by a linearly increasing damage rate function. Next
to the still to be located response teams, there is also a police office located at the busiest
location of the district, i.e., at a = 1. The police is capable to react to a terrorist attack and
hinder the attack. When the police arrives at the location of the attack, the damage per time
unit from that moment onwards will be cut in half. A damage rate function h : [0, 1]2 → R≥0

representing this setting is described by:

h(a, t) =

{
a if t ≤ 1− a
1
2
· a otherwise

(3)

for all (a, t) ∈ [0, 1]2 and a visual representation of function h is illustrated by Figure 7.

12
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Figure 6: Visual representation of the damage rate function h.

In Theorem 4.1, we describe how to optimally locate the response teams.

Theorem 4.1. Let θ = (n, h) ∈ Θ with h(a, t) =

{
a if t ≤ 1− a
1
2
a otherwise

for all (a, t) ∈ [0, 1]2.

An optimal location of the response teams is given by d∗i =
√

(2 + n) · i −
√
n · i for all

i ∈ {1, . . . , n}, with associated damage 1
2
(1−

√
2n+ n2 + n).

Proof. Let d∗i =
√

(2 + n) · i −
√
n · i for all i ∈ {1, . . . , n}. We show that L (d∗1) =

I 1(d∗1, d
∗
2) = I 2(d∗2, d

∗
3) = . . . = R(d∗n).

We derive the following:

L (d∗1) = max
a∈[0,d∗1]

∫ t=d∗1−a

t=0

h(a, t)dt = max
a∈[0,d∗1]

∫ t=d∗1−a

t=0

adt

= max
a∈[0,d∗1]

a · d∗1 − a2dt =
1

4
d∗21 =

1

2
· (1 + n−

√
n
√
2 + n).

The first equality follows by definition. The second equality follows by noting that
h(a, t) = a in the relevant domain as d∗1 − a ≤ 1 − a for all a ∈ [0, 1] and consequently
also for all a ∈ [0, d∗1]. The third equality follows by calculating the integral. The fourth

equality follows by noting that the maximum is attained at a∗ =
d∗1
2
. The fifth equality

results from substituting the optimal location for the response team into the equation.
We derive the following for I i(d∗i , d

∗
i+1) for all i ∈ {1, . . . , n− 1}:

I i(d∗i , d
∗
i+1) = max

a∈[d∗i ,d∗i+1]

∫ t=min{a−d∗i ,d
∗
i+1−a}

t=0

h(a, t)dt

= max
a∈[d∗i ,d∗i+1]

∫ t=min{a−d∗i ,d
∗
i+1−a}

t=0

adt

= max
a∈[d∗i ,d∗i+1]

a ·min{a− d∗i , d
∗
i+1 − a}dt

=
d∗2i+1 − d∗2i

4

=
1

4
(2 + 2n− 2

√
(2 + n)(i+ 1)

√
n(i+ 1) + 2

√
(2 + n)i

√
ni)

=
1

2
· (1 + n−

√
n
√
2 + n).
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The first equality follows by definition. The second equality follows by noting that
h(a, t) = a in the relevant domain as min{a − d∗i , d

∗
i+1 − a} ≤ d∗i+1 − a ≤ 1 − a for all

a ∈ [0, 1] and consequently also for all a ∈ [d∗i , d
∗
i+1]. The third equality follows by calcu-

lating the integral. The fourth equality follows by noting that the maximum is attained at
a∗ = 1

2
(di+1 + di). Note that the objective function is equal to a · (a− d∗i ) if a ∈ [d∗i ,

di+1+di
2

]

and is equal to a · (d∗i+1−a) if a ∈ [di+1+di
2

, d∗i+1]. Consequently a∗ = 1
2
(di+1+di) follows since

the objective function is increasing in a on the interval a ∈ [d∗i ,
di+1+di

2
] and the objective

function is decreasing in a on the interval a ∈ [di+1+di
2

, d∗i+1]. The fifth equality follows from
substituting the optimal location of the response team in to the equation and expanding the
squares. The sixth equality results from simplifying the expression.

We derive the following for R(d∗n):

R(d∗n) = max
a∈[d∗n,1]

∫ t=a−d∗n

t=0

h(a, t)dt

= max

{
max

a∈[d∗n, 12+
1
2
d∗n]

∫ t=a−d∗n

t=0

h(a, t)dt, max
a∈[ 1

2
+ 1

2
d∗n,1]

∫ t=a−d∗n

t=0

h(a, t)dt

}

= max

{
max

a∈[d∗n, 12+
1
2
d∗n]

∫ t=a−d∗n

t=0

adt, max
a∈[ 1

2
+ 1

2
d∗n,1]

∫ t=a−d∗n

t=0

h(a, t)dt

}

= max

{
max

a∈[d∗n, 12+
1
2
d∗n]

a2 − a · d∗n, max
a∈[ 1

2
+ 1

2
d∗n,1]

∫ t=a−d∗n

t=0

h(a, t)dt

}

= max

{
1

4
− 1

4
d∗2n , max

a∈[ 1
2
+ 1

2
d∗n,1]

∫ t=a−d∗n

t=0

h(a, t)dt

}

= max

{
1

4
− 1

4
d∗2n , max

a∈[ 1
2
+ 1

2
d∗n,1]

{∫ t=1−a

t=0

adt+

∫ t=a−d∗n

t=1−a

1

2
adt

}}

= max

{
1

4
− 1

4
d∗2n , max

a∈[ 1
2
+ 1

2
d∗n,1]

1

2
a− 1

2
a · d∗n

}

= max

{
1

4
− 1

4
d∗2n ,

1

2
− 1

2
d∗n

}
=

1

2
− 1

2
d∗n

=
1

2
· (1 + n−

√
n
√
2 + n).

The first equality follows by definition. The second equality follows by noting that it is
possible to split the maximization problem into separate maximization problems. The third
equality follows by noting that h(a, t) = a in the relevant domain for the integral in the first
maximization problem as a− d∗n ≤ 1−a for all a ∈ [d∗n,

1
2
+ 1

2
d∗n]. The fourth equality follows

from calculating the integral of the first maximization problem. The fifth equality follows by
noting that the maximum is attained at a∗ = 1

2
+ 1

2
d∗n in the first maximization problem and
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consequently that a2−a·d∗n = (1
2
+ 1

2
d∗n)

2−(1
2
+ 1

2
d∗n)·d∗n = 1

4
+ 1

2
d∗n+

1
4
d∗2n − 1

2
d∗n− 1

2
d∗2n = 1

4
− 1

4
d∗2n .

The sixth equality follows by noting that it is possible to split the integral into two sepa-
rate parts. In the relevant domain of the first integral h(a, t) = a as 1 − a ≤ 1 − a for all
a ∈ [0, 1] and consequently also for all a ∈ [1

2
+ 1

2
d∗n, 1]. In the relevant domain of the second

integral h(a, t) = 1
2
a as t > 1− a for all t ∈ (1− a, a− d∗n] and for all a ∈ [1

2
+ 1

2
d∗n, 1]. The

seventh equality follows from calculating the integrals, noting that
∫ t=1−a

t=0
adt = a− a2 and∫ t=a−d∗n

t=1−a
1
2
adt = a2 − 1

2
ad∗n − 1

2
a and adding the outcomes of these two integrals. The eighth

equality follows by noting that the maximum is attained at a∗ = 1. The ninth equality
follows by noting that 1

2
− 1

2
d∗n > 1

4
− 1

4
d∗n for all d∗n ∈ [0, 1]. The tenth equality results from

substituting the optimal location for the response team into the equation.

With these equalities we are able to conclude that the following holds:

L (d∗1) = I (d∗1, d
∗
2) = . . . = I (d∗n−1, d

∗
n) = R(d∗n)

and consequently this strategy is balanced. By theorem 3.8 we conclude that the location of
response teams is given by d∗i =

√
(2 + n) · i−

√
n · i for all i ∈ {1, . . . , n} and the associated

damage is 1
2
(1−

√
2n+ n2 + n).

By means of an example, we now investigate the impact on damage when the diminishing
effect of the police team on the damage function is neglected. That is, for a given θ ∈
ΘJ , we first calculate an optimal location of the response teams and associated damage.
Subsequently, using the model of van Aken et al. [2024], i.e., the model that ignores the
diminishing effect, we determine an optimal location of the response teams as well. We
stress that these locations are optimal for the incorrect model in which the effect of the police
team is neglected. Finally, we evaluate the damage when using these locations, i.e., the ones
derived from the model of van Aken et al. [2024], and study the relative increase in damage
compared to the setting where an optimal location (for the correct model, incorporating the
effect of the police team) of the teams is applied.

Example 6. Let us first consider the scenario in which we take the police office into account
in determining the location of the response teams. Let θ = (n, h) ∈ ΘJ with n = 4 and

h(a, t) =

{
a if t ≤ 1− a
1
2
a otherwise

for all (a, t) ∈ [0, 1]2. According to Theorem 4.1, an optimal

positioning of the response teams is d ≈ (0.45, 0.64, 0.78, 0.90)3, with associated damage be-
ing equal to 0.0505, rounded to four decimal places. The location of the response teams is
depicted in Figure 7 by the lower four arrows.

Let us now consider the scenario in which we neglect the diminishing effect of the police
on the damage per time unit when determining an optimal location of the response teams.
Thus, to determine an optimal location of the response teams, we consider θ = (n, ĥ) ∈ ΘC

3These expressions are rounded to two decimal places. The exact expressions of the location of the
response teams are given by d = (

√
6−

√
4,
√
12−

√
8,
√
18−

√
12,

√
24−

√
16). The exact associated damage

is equal to 1
2 (5−

√
24).
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with n = 4 and ĥ(a) = a for all (a, t) ∈ [0, 1]2. According to Theorem 5.3 of van Aken et al.
[2024], an optimal positioning of the response teams is given by d′ ≈ (0.47, 0.67, 0.82, 0.94)4

The location of the response teams is depicted in Figure 7 by the upper four arrows. We
evaluate this positioning in our original setting θ = (n, h). This leads to a damage of 0.0557,
rounded to four decimal places.

h(a, t)

t

0 0

1

1

1
d1 d2 d3 d4

d′1 d′2 d′3 d′4

Figure 7: Visual representation of the situation with damage rate function h(a, t) =

{
a if t ≤ 1− a
1
2a otherwise

for

all (a, t) ∈ [0, 1]2 and the location of the four response teams in both scenarios of the example.

It can be noted that when the diminishing effect of the police on the damage per time unit is
ignored, the response teams are located slightly more towards the end of the shopping avenue
compared to when this effect is taken into account. As a result, the actual damage increases
with more than 10% when, in positioning the response teams, one ignores the diminishing
effect of the police on the damage per time unit. ⋄

Example 6 shows that there is a significant impact by incorporating time-dependent effects
such as the presence of a police office. Therefore, it is worthwhile to consider these time-
dependent effects in the damage rate function and position the response teams according to
this time-dependent damage rate function.
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