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Abstract

We propose a projective splitting type method to solve the problem of �nding a zero of the sum of two
maximal monotone operators. Our method considers inertial and relaxation steps, and also allows inexact
solutions of the proximal subproblems within a relative-error criterion. We study the asymptotic conver-
gence of the method, as well as its iteration-complexity. We also discuss how the inexact computations of
the proximal subproblems can be carried out when the operators are Lipschitz continuous. In addition,
we provide numerical experiments comparing the computational performance of our method with previous
(inertial and non-inertial) projective splitting methods.
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1 Introduction

We are concerned with the monotone inclusion problem (MIP) of �nding z ∈ X such that

0 ∈ G∗A(Gz) +B(z), (1)

where X ,Y are real Hilbert spaces, A : Y ⇒ Y and B : X ⇒ X are maximal monotone point-to-set operators,
and G : X → Y is a bounded linear operator. Problem (1) provides a framework for studying a broad class of
problems [21]. In particular, an important instance of (1) is the optimization problem

min
z∈X

f(Gz) + g(z) (2)

where f : Y → (−∞,∞] and g : X → (−∞,+∞] are proper, convex and lower-semicontinuous functions. It
is well-known that under appropriate assumptions, (2) is equivalent to (1) when A = ∂f and B = ∂g are the
subdi�erentials of the functions f and g.

Splitting methods (or decomposition methods) are a powerful tool for solving the structured monotone
inclusion problem (1) (and (2)). The Peaceman-Rachford and Douglas-Rachford methods, �rst introduced in
[30, 16] for the case of linear mappings and later generalized in [24] to address MIPs, are examples of this kind
of algorithm. Other well-known examples are the forward-backward methods [24, 31, 36], which generalize
gradient projection methods, and double-backward methods [8].

A relatively new class of splitting algorithms is the projective splitting method. This class has its origins
in the works [18, 19] and since then, a great e�ort has been devoted to the design and study of the projective
splitting methods due to their �exibility in the selection of the stepsizes, compositions with linear operators,
and the possibility of block-iterative and asynchronous implementations, see [1, 20, 15, 26, 22, 32, 23] and
references therein. Projective splitting methods can be seen as separator-projection methods. Indeed, they
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work by (inexactly) solving proximal subproblems, each of which involves a single operator, to construct a
separating hyperplane between the current iterate and an extended solution set of (1). Then, the next iterate
is taken as a relaxed projection of the current one onto this separating hyperplane.

In this work, we propose an inertial projective splitting method to solve (1). Inertial algorithms for
monotone inclusion problems de�ned by one operator were �rst analyzed in [2], where the authors studied the
inertial proximal point (PP) method. Later, the inertial PP method was used to develop inertial versions of
inexact PP algorithms, Douglas-Rachford and ADMM methods, among others, see [3, 5, 6, 10, 14, 25] and
references therein.

Our main goal is to study a projective splitting method that combines inertial steps, relaxed projections and
inexact calculations of the proximal subproblems within relative-error criteria. To the best of our knowledge,
the only work that studies inertial projective methods is [4], where a relative-error inertial-relaxed inexact
projective splitting algorithm is developed for solving structured monotone inclusion problems involving the
sum of �nitely many maximal monotone operators. For the case n = 2, the method of [4] is di�erent from
ours, as it only considers handling the operators in a parallel manner. In contrast, we allow treating the
operators sequentially, which, as shown in our preliminary numerical experiments, could be advantageous in
practice since the second proximal subproblem to be solved uses the more recent information generated at
the iteration. The inertial and relaxation parameters of the proposed projective splitting method follow the
mutual constraint of [3, 4], improving the usual 1/3 upper bound for the sequence of inertial parameters. To
approximately solve the proximal subproblems, we consider the relative-error criterion proposed in [34] that
allows the use of the ε-enlargements of the operators. We observe that this criterion is slightly more �exible
than the one used in [4], which does not consider elements of the enlargements of the maximal monotone
operators.

For our inertial projective splitting method, we �rst establish the weak convergence of the generated
sequences to a solution of (1). To do this, we show that it can be recast as the inertial-relaxed separator-
projection method proposed in [4], and we use the convergence properties of this latter method. Also, we
study the iteration-complexity of the proposed inertial projective splitting method. By considering a notion
of approximate solution for problem (1) in terms of the ε-enlargements of the operators A and B, we obtain
O(1/

√
k) pointwise and O(1/k) ergodic convergence rates (iteration-complexity) for our method. Up to our

knowledge, this is the �rst time that iteration complexities of inertial projective splitting-like algorithms are
analyzed.

One of the main questions regarding inexact projective splitting methods is how to inexactly calculate at
each iteration the proximal subproblems associated with each operator. Typically, some computational scheme
is used to solve the corresponding problem iteratively until the imposed error criterion is satis�ed. However,
for the case where the operators are Lipschitz continuous and an estimation of the Lipschitz constants is
available, the subproblem calculations can be replaced by two appropriate evaluations of the operators. These
evaluations, also called forward-steps, were proposed in [23] for handling any Lipschitz continuous operator
in the non-inertial (parallel) projective splitting method. We extend this procedure to our inertial (non-
parallel) projective splitting algorithm for solving (1). Also, if the Lipschitz constant is unknown, we discuss
a backtracking procedure that can be used, which returns an inexact solution of the proximal subproblems in
the sense we consider here.

The remainder of this paper is organized as follows. Section 2 reviews the de�nitions and some basic
properties of maximal monotone operators and their ε-enlargements. This section also introduces the inertial-
relaxed separator projection algorithm of [4] and discusses its convergence properties. Section 3 presents
our inertial inexact projective splitting method for solving (1) and establishes its convergence and iteration-
complexity. Section 4 discusses how to compute inexact solutions of the proximal subproblems in our projective
splitting method for the case where the operators are Lipschitz continuous. Finally, Section 5 applies our
method to two common test problems and exhibits its computational performance. The main goal of these
numerical experiments is to compare the inertial and the non-inertial projective splitting methods.
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2 Mathematical preliminaries

2.1 Notation and basic results

Let E denote a real Hilbert space with inner product and induced norm denoted by 〈·, ·〉 and ‖·‖, respectively.
The convergence in the weak topology of E is denoted by ⇀. The orthogonal projection of a point x ∈ E onto
a closed convex set S ⊂ E is denoted by PS(x) := argmin {‖x− y‖ | y ∈ S}, and the distance from x to S is
denoted by d(x, S) := ‖x− PS(x)‖. We indicate by R+ the set of non-negative real numbers.

A point-to-set operator T : E ⇒ E is a function of E into the family ℘(E) = 2E of subsets of E . An operator
T : E ⇒ E is monotone if

〈x′ − x, v′ − v〉 ≥ 0, ∀ v ∈ T (x), v′ ∈ T (x′).

On the other hand, T ismaximal monotone if it is monotone and its graph Gr (T ) := {(x, v) ∈ E × E | v ∈ T (x)}
is not properly contained in the graph of any other monotone operator. The inverse of T is the point-to-set
operator T−1 : E ⇒ E , de�ned at any v ∈ E by x ∈ T−1(v) if and only if v ∈ T (x). If T is maximal monotone
and λ > 0, the resolvent mapping (or proximal mapping) associated with T , (λT + I)−1 : E → E where I is
the identity mapping, is everywhere de�ned and single-valued [28]. It follows directly from the de�nition that
z′ = (λT + I)−1(z) if and only if z′ is the solution of the proximal subproblem

0 ∈ λT (z′) + (z′ − z). (3)

If T : E ⇒ E is maximal monotone and ε ≥ 0, the ε-enlargement [11, 29] of T is the operator T ε : E ⇒ E
de�ned by

T ε(x) := {v ∈ E | 〈x− x̃, v − ṽ〉 ≥ −ε, ∀(x̃, ṽ) ∈ Gr (T )}, ∀x ∈ E .

The following proposition presents some useful and well-known properties of monotone operators and their
ε-enlargements (see, for example, [11, 12]).

Proposition 1. Let T, T ′ : E ⇒ E be maximal monotone operators, then

(i)
(
T−1

)ε
= (T ε)

−1
for all ε ≥ 0;

(ii) T ε(x) + (T ′)ε
′
(x) ⊂ (T + T ′)ε+ε

′
(x) for every x ∈ E and ε, ε′ ∈ R+;

(iii) if v ∈ T ε(x) and v′ ∈ (T ′)ε
′
(x′), then (v, v′) ∈ (T × T ′)ε+ε′(x, x′);

(iv) if {(pk, vk, εk)} is such that vk ∈ T εk(pk) for each k, and pk ⇀ p, lim
k→+∞

vk = v and lim
k→+∞

εk = ε, then

v ∈ T ε(p).

We now state a weak transportation formula for computing points in the graph of T ε. A proof of the
following result can be found in [12].

Theorem 1. Suppose that T : E ⇒ E is maximal monotone. Let xl ∈ E, vl ∈ E, and εl, αl ∈ R+, l = 1, . . . , k,
be such that

vl ∈ T εl(xl), l = 1, . . . , k,

k∑
l=1

αl = 1,

and de�ne

x̂ :=

k∑
l=1

αlx
l, v̂ :=

k∑
l=1

αlv
l, ε̂ :=

k∑
l=1

αl
(
εl +

〈
xl − x̂, vl − v̂

〉)
=

k∑
l=1

αl
(
εl +

〈
xl − x̂, vl

〉)
.

Then, ε̂ ≥ 0 and v̂ ∈ T ε̂(x̂).

The following technical results will be useful in our work.
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Lemma 1. Consider the symmetric matrix

M =

(
a11 a12
a12 a22

)
and assume that trace(M) > 0. If τ is the smallest eigenvalue of M , then τ ≥ det(M)

trace(M)
.

Proof. Simple calculations show that trace(M)2 − 4det(M) = (a11 − a22)2 + 4a212 ≥ 0. Therefore, it is clear
that

τ =
1

2

(
trace(M)−

√
trace(M)2 − 4det(M)

)
. (4)

Applying the inequality
√
a+ b ≤

√
a+

b

2
√
a
for a > 0, we obtain

√
trace(M)2 − 4det(M) ≤ trace(M)− 2det(M)

trace(M)
.

Thus, substituting the above equation into (4), we conclude the proof.

Lemma 2. [3, Lemma 7] Let {hk}, {sk}, {ηk} and {δk} be sequences in [0,+∞) such that there exists η ∈ R
with 0 ≤ ηk ≤ η < 1, h0 = h−1 and

hk+1 − hk + sk+1 ≤ ηk(hk − hk−1) + δk, ∀k ≥ 0.

Then, the following hold:

(i) For all k ≥ 1,

hk +

k∑
j=1

sj ≤ h0 +
1

1− η

k−1∑
j=0

δj . (5)

(ii) If
∑∞
k=0 δk ≤ +∞, then limk→∞ hk exists.

For all p, q ∈ E and t ∈ R, it holds that

‖tp+ (1− t)q‖2 = t ‖p‖2 + (1− t) ‖q‖2 − t(1− t) ‖p− q‖2 . (6)

2.2 An inertial-relaxed separator-projection method

In this section, we review the separator projection framework (Algorithm 1 below) presented in [4] and its
convergence properties. Algorithm 1 is a general-separator projection method for �nding a point in some closed
and convex subset of a Hilbert space, with the feature of considering inertial steps. Hence, by reformulating
problem (1) as the convex feasibility problem de�ned by a certain closed and convex extended solution set,
this framework can be used to study inertial algorithms for solving (1). In particular, Algorithm 1 will be used
in Section 3 to analyze the inertial-relaxed projective splitting method proposed in this work to solve (1).

Algorithm 1. Let E be a Hilbert space and S ⊂ E be some closed and convex subset. Start with
an arbitrary p0 = p−1 ∈ E , η ∈ [0, 1) and 0 < β < β < 2. For k = 0, 1, . . .

1. Choose ηk ∈ [0, η] and set
pk = pk + ηk(pk − pk−1). (7)

2. Find an a�ne function ϕk such that ∇ϕk 6= 0 and ϕk(p) ≤ 0 for all p ∈ S.

3. Choose βk ∈ [β, β] and set

pk+1 = pk − βk
max{0, ϕk(pk)}
‖∇ϕk‖2

∇ϕk.
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Remark 1.

(i) The inertial e�ect of Algorithm 1 is produced by the extrapolation step in (7), where ηk ≥ 0 controls the
magnitude of the extrapolation in the direction of the vector pk − pk−1. If ηk ≡ 0, Algorithm 1 reduces
to a generic linear separator-projection method for �nding a point in S ⊂ E [7].

(ii) The update in step 3 is the βk-relaxed projection onto the halfspace {p ∈ E : ϕk(p) ≤ 0}. That is, if
p̃k+1 is the orthogonal projection of pk onto this halfspace:

p̃k+1 = pk − max{0, ϕk(pk)}
‖∇ϕk‖2

∇ϕk, (8)

then the update is pk+1 = (1− βk)pk + βkp̃
k+1.

The following lemma will be useful in our convergence and complexity analyses. For its proof we refer the
reader to [4, Lemma 2.1].

Lemma 3. [4, Lemma 2.1(a)] Let {pk}, {pk}, {ηk}, {βk} be the sequences generated by Algorithm 1. For any
p∗ ∈ S and k ≥ −1 de�ne

hk :=
∥∥pk − p∗∥∥2 . (9)

Then, for all k ≥ 0
hk+1 − hk − ηk(hk − hk−1) ≤ δk − sk+1, (10)

where

sk+1 := βk(2− βk)
∥∥pk − p̃k+1

∥∥2 and δk := ηk(1 + ηk)
∥∥pk − pk−1∥∥2 . (11)

Inequality (10) plays a role in the convergence analysis of inertial proximal algorithms similar to that
played by Fejér-monotonicity in the analysis of standard proximal algorithms. Further, we observe that if
ηk ≡ 0, in which case Algorithm 1 is a generic linear-separator projection method for �nding a point in S ⊂ E ,
then equation (10) reduces to∥∥pk+1 − p∗

∥∥2 − ∥∥pk − p∗∥∥2 ≤ −βk(2− βk)
∥∥pk − p̃k+1

∥∥2 ,
which indeed guarantees the Fejér-monotonicity of Algorithm 1.

Next, we present the main results on the asymptotic convergence of Algorithm 1 obtained in [4]. The
key assumption is the summability condition (12) below, for which su�cient conditions (13) and (14) on the
inertial and relaxation parameters ηk and βk are given in Theorem 3.

Theorem 2. [4, Theorem 2.2] Let {pk}, {pk}, {ϕk}, {ηk}, {βk} be generated by Algorithm 1 and assume that

∞∑
k=0

ηk
∥∥pk − pk−1∥∥2 <∞. (12)

Then, the following hold:

(i) {pk} and {pk} are bounded sequences;

(ii) if every cluster point of {pk} belongs to S, then {pk} converges weakly to an element of S;

(iii)
max{0, ϕk(pk)}
‖∇ϕk‖

→ 0.

Theorem 3. [4, Theorem 2.3] Let {pk} and {ηk} be generated by Algorithm 1. Suppose that η ∈ [0, 1),
β ∈ (0, 2), the sequence {ηk} satis�es, for some η > 0,

0 ≤ ηk ≤ ηk+1 ≤ η < η < 1 (13)
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and

β = β(η) :=
2(η − 1)2

2(η − 1)2 + 3η − 1
. (14)

Then, we have for any p∗ ∈ S and all k ≥ 0

k∑
j=0

∥∥pj+1 − pj
∥∥2 ≤ 2− η

q(η)(1− η)

∥∥p0 − p∗∥∥2 , (15)

where q(η) := 2(β
−1 − 1)η2 − (4β

−1 − 1)η + 2β − 1 > 0. In particular, we have that

∞∑
k=0

∥∥pk − pk−1∥∥2 <∞.
The inequality in (15) can be obtained as a consequence of the proof of Theorem 2.3 in [4]. Conditions (13)

and (14) guarantee that the summability condition (12) is satis�ed, thus Theorem 2 holds. Since Algorithm
1 is the basis for studying the properties of the inertial projective splitting method developed in this work,
these conditions will also play an important role in its convergence analysis.

We observe that if we set η = 1/3 in (13), then by (14) it follows that β = 1. Conversely, the overrelaxation
e�ects in Algorithm 1 can be achieved at the price of choosing the inertial parameter upper bound η strictly
smaller than 1/3. For more details on the relation between inertial and relaxation parameters we refer the
reader to [6, 3, 4].

3 An inertial projective splitting algorithm

In this section, we present an inertial projective splitting method to solve the monotone inclusion problem
(1). It is well known [18] that (1) can be reformulated in terms of the convex feasibility problem of �nding a
point in the extended solution set

Se := {(z, w) ∈ X × Y | −G∗w ∈ B(z), w ∈ A(Gz)} .

Indeed, z ∈ X is a solution of (1) if and only if there exists w ∈ Y such that (z, w) ∈ Se [18, Lemma 1]. And
also, Se is a closed and convex subset of X × Y [18, Lemma 1]. Therefore, to �nd a solution to (1), we can
apply the framework presented in Algorithm 1. To do this, we need to construct at each iteration an a�ne
function ϕk in X × Y such that ϕk(z, w) ≤ 0 for all (z, w) ∈ Se. We perform this construction by inexactly
solving two proximal subproblems subject to a relative-error criterion, each involving only one of the operators
A or B, ensuring the splitting nature of the method. The resulting scheme is Algorithm 2 below, which is a
relative-error inertial-relaxed projective splitting algorithm for solving (1).

We now present the notion of approximate solution of a proximal subproblem used in our inertial projective
splitting algorithm, which was introduced in [34]. For this purpose, we �rst observe that given a Hilbert space
H a maximal monotone operator T : H⇒ H, λ > 0 and z ∈ H, the proximal subproblem (3) is equivalent to
the proximal system {

w ∈ T (z′),
λw + z′ − z = 0.

(16)

De�nition 1. Given σ ∈ [0, 1), a triplet (z′, w, ε) ∈ H ×H × R+ is called a σ-approximate solution of (16)
at (λ, z), if

w ∈ T ε(z′) and ‖λw + z′ − z‖2 + 2λε ≤ σ2
(
‖λw‖2 + ‖z′ − z‖2

)
. (17)

We note that if (z′, w) is the exact solution of (16), then, taking ε = 0, the triplet (z′, w, ε) satis�es the
approximation criterion (17) for all σ ∈ [0, 1). On the other hand, if σ = 0, only the exact solution of (16),
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with ε = 0, will satisfy (17). Additionally, we observe that the equality in (16) is relaxed by introducing a
relative-error condition and the inclusion is relaxed by means of the ε-enlargement of T .

The following lemma presents some basic properties of the inexact solutions of the proximal system (16)
in the sense of De�nition 1 that will be useful in our work.

Lemma 4. [34, Lemma 2] Let z ∈ H, λ > 0 and σ ∈ [0, 1) be given. The triplet (z′, w, ε) is a σ-approximate

solution of the proximal system (16) at (z, λ) if and only if

ε ≥ 0, w ∈ T ε(z′), 〈w, z − z′〉 − ε ≥ 1− σ2

2λ

(
‖z′ − z‖2 + ‖λw‖2

)
. (18)

In addition, we have (
1− σ2

1 + σ̄

)
‖z′ − z‖ ≤ ‖λw‖ ≤

(
1 + σ̄

1− σ2

)
‖z′ − z‖ , (19)

where σ̄ :=
√

1− (1− σ2)2.

From now on, we consider the Hilbert space E = X × Y with the inner product and associated norm

〈(z, w), (z′, w′)〉 = 〈z, z′〉+ 〈w,w′〉 , ‖(z, w)‖2 = ‖z‖2 + ‖w‖2 .

Next, we present our relative-error inertial-relaxed projective splitting algorithm to solve (1).

Algorithm 2. Start with an arbitrary (z0, w0) = (z−1, w−1) ∈ E , η ∈ [0, 1), 0 < β < β < 2 and
σ ∈ [0, 1). For k = 0, 1, . . .

1. Choose ηk ∈ [0, η] and set

zk = zk + ηk(zk − zk−1),

wk = wk + ηk(wk − wk−1).
(20)

2. Choose λk > 0 and �nd (xk, bk, εxk) such that

bk ∈ Bε
x
k (xk), λkb

k + xk = zk − λkG∗wk + rx,k,∥∥rx,k∥∥2 + 2λkε
x
k ≤ σ2

(∥∥xk − zk∥∥2 +
∥∥λk(bk +G∗wk)

∥∥2) . (21)

3. Choose µk > 0, αk ∈ R, and �nd (yk, ak, εyk) such that

ak ∈ Aε
y
k(yk), µka

k + yk = G((1− αk)zk + αkx
k) + µkw

k + ry,k,∥∥ry,k∥∥2 + 2µkε
y
k ≤ σ

2
(∥∥yk −Gzk∥∥2 +

∥∥αkG(zk − xk) + µk(ak − wk)
∥∥2) . (22)

4. If
∥∥yk −Gxk∥∥ =

∥∥bk +G∗ak
∥∥ = 0 stop. Otherwise, set

γk =

〈
zk − xk, bk +G∗wk

〉
+
〈
Gzk − yk, ak − wk

〉
− εxk − ε

y
k

‖bk +G∗ak‖2 + ‖yk −Gxk‖2
. (23)

5. Choose βk ∈ [β, β] and set

zk+1 = zk − βkγk(bk +G∗ak),

wk+1 = wk − βkγk(yk −Gxk).
(24)
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Remark 2.

(i) Similar to Algorithm 1, Algorithm 2 includes inertial and relaxation e�ects. The inertial step is performed
in (20) and controlled by the parameter ηk, whereas the relaxation step takes place in (24) and is
controlled by βk.

(ii) At each iteration k, the triplet (xk, bk, εxk) calculated in step 2 of Algorithm 2 is a σ-approximate solution
of (16) at (λk, zk), where T = B+G∗wk. Similarly, (yk, ak, εyk) is a σ-approximate solution of (16) (with
T = A + αk/µkG(zk − xk) − wk) at (µk, Gz

k). Therefore, from the comments after De�nition 1, there
exists at least one triplet satisfying (21) (resp. (22)). Also, by Lemma 4, for each k ≥ 0, the error
criteria (21) and (22) imply, respectively,

1− σ2

1 + σ

∥∥zk − xk∥∥ ≤ λk ∥∥bk +G∗wk
∥∥ ≤ 1 + σ

1− σ2

∥∥zk − xk∥∥ (25)

and
1− σ2

1 + σ

∥∥Gzk − yk∥∥ ≤ ∥∥αkG(zk − xk) + µk(ak − wk)
∥∥ ≤ 1 + σ

1− σ2

∥∥Gzk − yk∥∥ . (26)

(iii) Algorithm 2 does not specify how to �nd the triplets (xk, bk, εxk) and (yk, ak, εyk) satisfying steps 2 and 3,
respectively. The procedures used to carry out these computations will depend on the implementation of
the method and the properties of the operators A and B. Usually, the error conditions (21) and (22) can
be used as stopping criteria for some computational scheme used to iteratively solving the corresponding
proximal subproblem. In the case where the operators are Lipschitz continuous, we discuss in Section 4
below how steps 2 and 3 could be implemented in order to produce such triplets.

We refer the reader to [27, Section 4], where the calculation of inexact solutions of proximal subproblems
in the sense of De�nition 1 is discussed in the context of optimization, i.e. when each operator is the
subdi�erential of a proper convex lower-semicontinuous function.

(iv) If ηk ≡ 0 (that is, there is no inertia), then Algorithm 2 is an inexact version of the projective splitting
method proposed in [18]. We observe that for this case, Algorithm 2 is di�erent from the inexact
projective splitting method studied in [19] when n = 2. Indeed, the error criterion used in that work
is a generalization for the case of n ≥ 2 maximal monotone operators of the relative error tolerance
of the hybrid proximal extragradient method [33] (without the use of ε-enlargements), while we used
the more �exible error condition introduced in [34]. Also, for n = 2, the projective splitting method
proposed in [32] is di�erent from Algorithm 2 without inertia, even for the case αk ≡ 0, see [32, Section
4]. Furthermore, the convergence and complexity analyses of [32] are based on the approximate proximal
point method of [34] whereas the convergence and complexity properties of Algorithm 2 are derived using
Algorithm 1, a separator projection method.

(v) When αk ≡ 0, Algorithm 2 is a parallel inexact inertial projective method, since at each iteration it
could process the operators independently. For this case, Algorithm 2 is closely related to the inertial
projective splitting method proposed in [4] (for n = 2). The main di�erence between both methods
is that Algorithm 2 allows the use of elements in the ε-enlargements of the operators for the inexact
computation of the proximal subproblems, di�erent from the algorithm studied in [4].

(vi) It will be proven (see Remark 3 below) that if Algorithm 2 stops in step 4, then (xk, ak) ∈ Se and
therefore xk is a solution of (1). Hence, from now on, we assume that Algorithm 2 never stops in step
4, generating an in�nite sequence of iterates.

Next, we show that Algorithm 2 is an instance of Algorithm 1 in the sense that any sequence generated by
the �rst method can be seen as a sequence generated by the second method for �nding a point in Se. For this
purpose, we �rst construct the nonconstant a�ne functions ϕk such that ϕk(z∗, w∗) ≤ 0 for all (z∗, w∗) ∈ Se
required in step 2 of Algorithm 1.
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Lemma 5. Consider the sequences {(xk, bk, εxk)} and {(yk, ak, εyk)} generated by Algorithm 2, and for each

k ≥ 0 de�ne the function ϕk : E → R by

ϕk(z, w) :=
〈
z − xk, bk +G∗w

〉
+
〈
Gz − yk, ak − w

〉
− εxk − ε

y
k. (27)

Then, the following hold:

(i) ϕk is a�ne in E and ∇ϕk = (bk +G∗ak, yk −Gxk);

(ii) ϕk(p∗) ≤ 0 for all p∗ ∈ Se.

Proof. By adding and subtracting
〈
Gxk, ak − w

〉
on the right-hand side of (27), we can rewrite ϕk(z, w) as

ϕk(z, w) =
〈
z − xk, bk +G∗ak

〉
+
〈
Gxk − yk, ak − w

〉
− εxk − ε

y
k. (28)

From above it is easy to see that ϕk is a�ne in E and ∇ϕk = (bk + G∗ak, yk −Gxk), proving item (i). Item
(ii) is a direct consequence of (27) and the de�nitions of the ε-enlargement of a point-to-set operator and the
set Se.

Proposition 2. Let the sequences {(zk, wk)}, {(zk, wk)}, {ηk} and {βk} be generated by Algorithm 2 and

{ϕk} given in (27). De�ne, for each k ≥ −1,

pk =
(
zk, wk

)
and pk =

(
zk, wk

)
. (29)

Then, the following hold:

(i) for all k ≥ 0, ∇ϕk 6= 0 and ϕk(p∗) ≤ 0 for all p∗ ∈ Se;
(ii) for all k ≥ 0, pk = pk + ηk(pk − pk−1) and

pk+1 = pk − βk
max{0, ϕk(pk)}
‖∇ϕk‖2

∇ϕk. (30)

As a consequence, Algorithm 2 is a special instance of Algorithm 1 for �nding a point in Se.

Proof. Item (i) is a direct consequence of the assumption that Algorithm 2 does not stop at step 4 (see Remark
2(vi)) and Lemma 5. The fact that pk = pk + ηk(pk − pk−1) is due to the de�nitions of pk and pk in (29), and
step 1 of Algorithm 2. Equation (30) follows combining (23) with (27), Lemma 5(i), (24) and (29).

Finally, the last statement of the proposition is a consequence of items (i) and (ii), and the de�nition of
Algorithm 1.

From now on, we consider the following assumptions on Algorithm 2:

(A1) the extended solution set Se is nonempty;

(A2) there exist λ and λ such that λ ≥ λ > 0 and λk, µk ∈ [λ, λ] for all k ≥ 0;

(A3) ν := inf
k≥0

{(
1− σ2

1 + σ

)2

· µk
λk
−
(
αk ‖G‖

2

)2
}
> 0, where σ is as in Lemma 4.

We observe that if σ = 0, X = Y and G = I, condition (A3) is the same hypothesis considered in [18]
for proving the convergence of the non-inertial projective splitting method. Also, if αk ≡ 0, in which case
Algorithm 2 is reduced to a parallel inertial projective splitting method, then (A.3) trivially holds. In general,
(A.3) may be ensured by any su�cient condition bounding the absolute values |αk|. For example, if there
exists α > 0 such that |αk| ≤ α for all k ≥ 0, then taking λ and λ in (A2) such that√

λ

λ
>

(1 + σ)α ‖G‖
2(1− σ2)

,

we have that (A3) holds.
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3.1 Convergence analysis

In this section, we study the asymptotic behavior of the sequences generated by Algorithm 2. Because of
Proposition 2, Algorithm 2 is an instance of Algorithm 1. Therefore, by Theorem 2, under assumption (12), we
will obtain the global convergence of Algorithm 2 by guaranteeing that every cluster point of the sequence {pk}
de�ned in (29) belongs to Se. Before establishing these convergence results, we need the following proposition,
which presents several lower bounds for ϕk(zk, wk).

Proposition 3. Consider the sequences {(zk, wk)}, {(xk, bk, εxk)} and {(yk, ak, εyk)} generated by Algorithm 2
and {ϕk} given in (27). Then, the following inequalities hold:

ϕk(zk, wk) ≥ ζ
(∥∥zk − xk∥∥2 +

∥∥Gzk − yk∥∥2) ; (31)

ϕk(zk, wk) ≥ ζ

C

(∥∥bk +G∗wk
∥∥2 +

∥∥ak − wk∥∥2) ; (32)

ϕk(zk, wk) ≥ ζλ(1− σ2)2

σ2(1 + σ)
(εxk + εyk) ; (33)

ϕk(zk, wk) ≥ ζ

2D(C + 1)
‖∇ϕk‖2 ; (34)

where ζ :=
(1 + σ)λν

2(1− σ2)λ
2 , C :=

2

λ2

[(
1 + σ

1− σ2

)2

+
4λ

λ

]
, and D := max{1, ‖G‖2}.

Proof. First, we use the de�nition of ϕk in (27) and perform simple manipulations to obtain

ϕk(zk, wk) =
1

2λk

[
2λk

〈
zk − xk, bk +G∗wk

〉
− 2λkε

x
k

]
+

1

2µk

[
2µk

〈
Gzk − yk, ak − wk

〉
− 2µkε

y
k

]
=

1

2λk

[∥∥zk − xk∥∥2 +
∥∥λk(bk +G∗wk)

∥∥2 − ∥∥rx,k∥∥2 − 2λkε
x
k

]
+

1

2µk

[
2
〈
Gzk − yk, αkG(zk − xk) + µk(ak − wk)

〉
− 2αk

〈
Gzk − yk, G(zk − xk)

〉
− 2µkε

y
k

]
=

1

2λk

∥∥zk − xk∥∥2 +
1

2λk

∥∥λk(bk +G∗wk)
∥∥2 − 1

2λk

[∥∥rx,k∥∥2 + 2λkε
x
k

]
− αk
µk

〈
Gzk − yk, G(zk − xk)

〉
+

1

2µk

∥∥Gzk − yk∥∥2 +
1

2µk

∥∥αkG(zk − xk) + µk(ak − wk)
∥∥2 − 1

2µk

[∥∥ry,k∥∥2 + 2µkε
y
k

]
.

Now, by the error criteria (21) and (22), we have

ϕk(zk, wk) ≥1− σ2

2λk

∥∥zk − xk∥∥2 +
1− σ2

2λk

∥∥λk(bk +G∗wk)
∥∥2 − αk

µk

〈
Gzk − yk, G(zk − xk)

〉
+

1− σ2

2µk

∥∥Gzk − yk∥∥2 +
1− σ2

2µk

∥∥αkG(zk − xk) + µk(ak − wk)
∥∥2 .

Combining the above equation with the �rst inequalities in (25) and (26), we obtain

ϕk(zk, wk) ≥1− σ2

2λk

∥∥zk − xk∥∥2 +
(1− σ2)3

2λk(1 + σ)2
∥∥zk − xk∥∥2 − αk

µk

〈
Gzk − yk, G(zk − xk)

〉
+

1− σ2

2µk

∥∥Gzk − yk∥∥2 +
(1− σ2)3

2µk(1 + σ)2
∥∥Gzk − yk∥∥2

=
1− σ2

λk(1 + σ)

∥∥zk − xk∥∥2 − αk
µk

〈
Gzk − yk, G(zk − xk)

〉
+

1− σ2

µk(1 + σ)

∥∥Gzk − yk∥∥2
≥ 1− σ2

λk(1 + σ)

∥∥zk − xk∥∥2 − |αk| ‖G‖
µk

∥∥Gzk − yk∥∥∥∥zk − xk∥∥+
1− σ2

µk(1 + σ)

∥∥Gzk − yk∥∥2 ,
(35)
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where the equality above follows from simple calculations and the de�nition of σ in Lemma 4, and the last
inequality is a consequence of the Cauchy-Schwartz inequality.

Next, for each k ≥ 0, we de�ne the symmetric matrix

Mk :=


1− σ2

λk(1 + σ)
−|αk| ‖G‖

2µk

−|αk| ‖G‖
2µk

1− σ2

µk(1 + σ)


and let τk be the smallest eigenvalue of Mk. By interpreting the last expression in (35) as a quadratic form
applied to

(∥∥zk − xk∥∥ ,∥∥Gzk − yk∥∥) ∈ R2, we have

ϕk(zk, wk) ≥
( ∥∥zk − xk∥∥∥∥Gzk − yk∥∥

)T
Mk

( ∥∥zk − xk∥∥∥∥Gzk − yk∥∥
)
≥ τk

(∥∥zk − xk∥∥2 +
∥∥Gzk − yk∥∥2) . (36)

Since trace(Mk) > 0, applying Lemma 1 to the matrix Mk, we obtain

τk ≥
det(Mk)

trace(Mk)
.

Further, assumptions (A2) and (A3) imply

det(Mk) =

(
1− σ2

1 + σ

)2
1

λkµk
− α2

k ‖G‖
2

4µ2
k

=
1

µ2
k

((
1− σ2

1 + σ

)2
µk
λk
− α2

k ‖G‖
2

4

)
≥ 1

λ
2 ν

and

trace(Mk) =
1− σ2

1 + σ

(
1

λk
+

1

µk

)
≤
(

1− σ2

1 + σ

)
2

λ
.

Thus, combining the three equations above and using the de�nition of ζ, we have τk ≥ ζ for all k ≥ 0, which
together with (36) implies (31).

Next, we use the second inequality in (25) to obtain

∥∥bk +G∗wk
∥∥2 ≤ 1

λ2

(
1 + σ

1− σ2

)2 ∥∥zk − xk∥∥2 .
By the triangle inequality for norms and the second inequality in (26), we have

µk
∥∥ak − wk∥∥ ≤ ∥∥µk(ak − wk) + αkG(zk − xk)

∥∥+
∥∥αkG(zk − xk)

∥∥
≤
(

1 + σ

1− σ2

)∥∥Gzk − yk∥∥+ |αk| ‖G‖
∥∥zk − xk∥∥ .

Hence, squaring the inequality above, combining with the previous equation and performing simple manipu-
lations yield

∥∥bk +G∗wk
∥∥2 +

∥∥ak − wk∥∥2 ≤ 1

λ2

[(
1 + σ

1− σ2

)2

+ 2α2
k ‖G‖

2

]∥∥zk − xk∥∥2 +
2

λ2

(
1 + σ

1− σ2

)2 ∥∥Gzk − yk∥∥2
≤ 2

λ2

[(
1 + σ

1− σ2

)2

+
4λ

λ

](∥∥zk − xk∥∥2 +
∥∥Gzk − yk∥∥2) ,

where in the second inequality above we used that α2
k ‖G‖

2 ≤ 4λ/λ, which is a consequence of assumptions
(A2) and (A3), and the facts that σ ∈ [0, 1) and σ > 0. Equation above, together with the de�nition of C and
(31), now implies (32).
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To prove (33), we observe that the error criterion in step 2 of Algorithm 2, together with the second
inequality in (25) and the de�nition of σ, yields

εxk ≤
σ2

2λk

(∥∥xk − z2∥∥2 +
(1 + σ)2

(1− σ2)2
∥∥xk − zk∥∥2) ≤ σ2(1 + σ)

λ(1− σ2)2
∥∥xk − zk∥∥2 .

Using the error criterion in step 3 of Algorithm 2 and the second inequality in (26), by a similar reasoning to
the above, we obtain

εyk ≤
σ2(1 + σ)

λ(1− σ2)2
∥∥yk −Gzk∥∥2 .

Thus, adding the two equations above and using (31), we deduce (33).
Now, we proceed to prove (34). First, we observe that

‖∇ϕk‖2 =
∥∥bk +G∗ak

∥∥2 +
∥∥yk −Gxk∥∥2 .

Then, using the triangle inequality for norms and the de�nition of D, we have∥∥bk +G∗ak
∥∥2 ≤ (∥∥bk +G∗wk

∥∥+
∥∥G∗(ak − wk)

∥∥)2 ≤ 2
∥∥bk +G∗wk

∥∥2 + 2 ‖G∗‖2
∥∥ak − wk∥∥2

≤ 2D
(∥∥bk +G∗wk

∥∥2 +
∥∥ak − wk∥∥2)

Similarly, from the triangle inequality it follows∥∥yk −Gxk∥∥2 ≤ 2
(∥∥Gzk − yk∥∥2 +

∥∥Gzk −Gxk∥∥2) ≤ 2
(∥∥Gzk − yk∥∥2 + ‖G‖2

∥∥zk − xk∥∥2)
≤ 2D

(∥∥Gzk − yk∥∥2 +
∥∥zk − xk∥∥2) .

Adding the two inequalities above, and using (31) and (32), we conclude (33).

Remark 3. If Algorithm 2 stops at step 4, then ∇ϕk = 0 and by (28), it follows that ϕk(zk, wk) = −εxk− ε
y
k,

which combined with (33) and the fact that εxk, ε
y
k ≥ 0 implies εxk = εyk = 0. Therefore, we have that Gxk = yk,

bk = −G∗ak, bk ∈ B(xk), ak ∈ A(yk), and consequently (xk, ak) ∈ Se. Hence, when Algorithm 2 stops at step
4, it has found a solution of (1).

We are now ready to establish the global convergence of Algorithm 2.

Theorem 4. Let the sequences {(zk, wk)}, {(xk, bk)}, {(yk, ak)} and {ηk} be generated by Algorithm 2.
Assume that

∞∑
k=0

ηk
∥∥(zk, wk)− (zk−1, wk−1)

∥∥2 <∞. (37)

Then, {(zk, wk)} converges weakly to some (z∗, w∗) ∈ Se. Furthermore, we have xk ⇀ z∗, yk ⇀ Gz∗,
bk ⇀ −G∗w∗ and ak ⇀ w∗.

Proof. By Proposition 2, Algorithm 2 is a special instance of Algorithm 1 for �nding a point in Se, with {pk},
{pk} as in (29) and {ϕk} given in (27). Thus, the relation (37) implies condition (12), and we have that
Theorem 2 holds.

Since we are assuming that Algorithm 2 never stops in step 4 (see Remark 2(vi)), (34) gives that ϕk(zk, wk) >
0 for all k ≥ 0, and Theorem 2(iii) implies

ϕk(zk, wk)

‖∇ϕk‖
→ 0. (38)

Moreover, from (34) it follows

ϕk(zk, wk)

‖∇ϕk‖
≥ ζ

2D(C + 1)
‖∇ϕk‖ and

ϕk(zk, wk)2

‖∇ϕk‖2
≥ ζ

2D(C + 1)
ϕk(zk, wk). (39)
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Hence, by the �rst inequality above and (38), we have ‖∇ϕk‖ → 0, which yields

bk +G∗ak → 0, yk −Gxk → 0. (40)

The second inequality in (39), together with (38), implies that ϕk(zk, wk)→ 0, and combining with (31) and
(32), we obtain

zk − xk → 0, Gzk − yk → 0, bk +G∗wk → 0, ak − wk → 0. (41)

Also, using the facts that ϕk(zk, wk)→ 0, εxk, ε
y
k ≥ 0, and equation (33), we have

lim
k→∞

εxk = lim
k→∞

εyk = 0.

Next, we prove that every cluster point of {pk} belongs to Se. To do this, let p∗ = (z∗, w∗) be any cluster
point of {pk} and observe that by (30) and (38), p∗ is also a cluster point of {pk}. Let {pkj} be a subsequence
such that pkj ⇀ p∗, then zkj ⇀ z∗ and wkj ⇀ w∗. Therefore, by the �rst and fourth limits in (41) one has
xkj ⇀ z∗ and akj ⇀ w∗.

Now we de�ne the operators F,Φ, T : E ⇒ E by

F (z, w) = (G∗w,−Gz), Φ(z, w) = B(z)×A−1(w), T = F + Φ

and observe that F,Φ, T are maximal monotone and Se = T−1(0, 0) (see [18, Lemma 2]). Also, note that
the inclusion in (22) and Proposition 1(i) imply yk ∈ (A−1)ε

y
k(ak), which combined with the inclusion in

(21) and Proposition 1(iii) gives (bk, yk) ∈ Φε
x
k+ε

y
k(xk, ak). Using the de�nitions of F,Φ, T and Proposition

1(ii) we now obtain (G∗ak + bk, yk − Gxk) ∈ T εxk+ε
y
k(xk, ak). Further, since (G∗akj + bkj , ykj − Gxkj ) → 0,

(xkj , akj ) ⇀ (z∗, w∗) and εxkj + εykj → 0, Proposition 1(iv) implies (0, 0) ∈ T (z∗, w∗). We thus deduce that

(z∗, w∗) ∈ Se, and by Theorem 2(ii) we conclude that {(zk, wk)} converges weakly to a point (z∗, w∗) in Se,
from which also follows that (zk, wk) ⇀ (z∗, w∗). The remaining statements of the theorem are a consequence
of this latter assertion and (41).

The next theorem gives the su�cient conditions (42) and (43) on {ηk}, η, and β that ensure the summability
condition (37) and, therefore, guarantee the convergence of Algorithm 2. We observe that these conditions
are the same as (13) and (14) of Theorem 3.

Theorem 5. Consider the sequences {(zk, wk)}, {(xk, bk)}, {(yk, ak)} generated by Algorithm 2 and assume

that η ∈ [0, 1), β ∈ (0, 2) and {ηk} satisfy, for some η > 0, that

0 ≤ ηk ≤ ηk+1 ≤ η < η < 1 (42)

and

β = β(η) :=
2(η − 1)2

2(η − 1)2 + 3η − 1
. (43)

Then, the relation in (37) holds. In particular, there is (z∗, w∗) in Se such that zk, xk ⇀ z∗, yk ⇀ Gz∗,
wk, ak ⇀ w∗ and bk ⇀ −G∗w∗.

Proof. In view of Proposition 2 and Theorem 3, assumptions (42) and (43) imply (37). Therefore, Theorem 4
holds and the statements of the theorem are satis�ed.

3.2 Complexity analysis

Our goal in this section is to study the iteration-complexity of Algorithm 2 for solving (1). For this
purpose, we consider the following notion of approximate solution for (1): for given tolerances ρ, ε > 0, �nd
(x, b, εx) ∈ X × X × R+ and (y, a, εy) ∈ Y × Y × R+ satisfying

b ∈ Bε
x

(x), a ∈ Aε
y

(y), max{‖G∗a+ b‖ , ‖Gx− y‖} ≤ ρ, max{εx, εy} ≤ ε. (44)
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We observe that if ρ = ε = 0, criterion (44) is reduced to εx = εy = 0, G∗a + b = 0, Gx = y, b ∈ B(x) and
a ∈ A(y), in which case (x, a) ∈ Se and x is a solution of (1).

In what follows, we prove iteration-complexity results for Algorithm 2 to obtain approximate solutions of
(1) according to (44). We �rst present pointwise complexity bounds, which estimate the quality of the best
iterates among the �rst k generated by the algorithm.

Theorem 6. Let the sequences {(xk, bk, εxk)} and {(yk, ak, εyk)}} be generated by Algorithm 2. Assume the

hypotheses of Theorem 5 and let d0 := d
(
(z0, w0), Se

)
. Then, for every k ∈ N, there exists an index j0 ∈

{1, . . . , k} such that

bj0 ∈ Bε
x
j0 (xj0), aj0 ∈ Aε

y
j0 (yj0)

and ∥∥G∗aj0 + bj0
∥∥ ≤ 2D(C + 1)d0

ζ(1− η)
√
k

√
η(1 + η)(2− η)

β(2− β)q(η)
,

∥∥Gxj0 − yj0∥∥ ≤ 2D(C + 1)d0

ζ(1− η)
√
k

√
η(1 + η)(2− η)

β(2− β)q(η)
,

εxj0 + εyj0 ≤
2D(C + 1)σ2(1 + σ)d20
ζ2λ(1− σ2)2β(2− β)k

· η(1 + η)(2− η)

(1− η)2q(η)
,

(45)

where ζ, C and D are as in Proposition 3 and q(η) is de�ned in Theorem 3.

Proof. The assertions that bj0 ∈ Bε
x
j0 (xj0) and aj0 ∈ Aε

y
j0 (yj0) are direct consequences of steps 2 and 3 of

Algorithm 2.
Proposition 2 implies that the sequences {pk} and {pk} in (29) satisfy Lemma 3 with p∗ := PSe

(z0, w0).
Therefore, by (10), the sequences {hk} given in (9), and {sk}, {δk} de�ned in (11) satisfy Lemma 2. Conse-
quently, (5), the de�nitions of these sequences, equation (8), and the assumption that ϕk(zk, wk) > 0 for all
k ≥ 0, give

∥∥pk − p∗∥∥2 +

k∑
j=0

βj(2− βj)
(
ϕj(z

j , wj)

‖∇ϕj‖

)2

≤ 1

1− η

k−1∑
j=0

ηj(1 + ηj)
∥∥pj − pj−1∥∥2 . (46)

We observe that assumptions (42) and (43), together with Proposition 2, imply that Theorem 3 holds.
Therefore, combining inequality (15) with (46) and using that

∥∥p0 − p∗∥∥ = d0, we obtain

∥∥pk − p∗∥∥2 +

k∑
j=0

βj(2− βj)
(
ϕj(z

j , wj)

‖∇ϕj‖

)2

≤ η(1 + η)(2− η)

(1− η)2q(η)
d20. (47)

From (47) and the choice βj ∈ [β, β] for all j ≥ 0, it follows that for every k ≥ 1 there exists an index
j0 ∈ {1, . . . , k} such that

β(2− β)k

(
ϕj0(zj0 , wj0)

‖∇ϕj0‖

)2

≤ η(1 + η)(2− η)

(1− η)2q(η)
d20. (48)

Now, equation (48), together with the �rst inequality in (39), gives

ζ2

4D2(C + 1)2

(∥∥G∗aj0 + bj0
∥∥2 +

∥∥Gxj0 − yj0∥∥2) ≤ d20
β(2− β)k

· η(1 + η)(2− η)

(1− η)2q(η)
,

from which the �rst two inequalities in (45) follow.
Finally, we combine (48) with the second inequality in (39) and (33) to obtain

ζ2λ(1− σ2)2

2D(C + 1)σ2(1 + σ)
(εxj0 + εyj0) ≤ d20

β(2− β)k
· η(1 + η)(2− η)

(1− η)2q(η)
,

which implies the last inequality in (45).
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We observe that Theorem 6 provides O(1/
√
k) pointwise convergence rate and guarantees that, for given

ρ, ε > 0, Algorithm 2 �nds triplets (x, b, εx) and (y, a, εy) satisfying (44) in at most

O
(

max

{
d20
ζ2 ρ2

,
d20
ζ2 ε

})
iterations.

Next, we derive alternative estimates for Algorithm 2, which we refer to as the ergodic iteration-complexity
bounds. To this end, we will consider the following ergodic sequences associated with the sequences generated
by Algorithm 2:

Γk =

k∑
l=0

βlγl, x̂k =
1

Γk

k∑
l=0

βlγlx
l, b̂k =

1

Γk

k∑
l=0

βlγlb
l, ŷk =

1

Γk

k∑
l=0

βlγly
l, âk =

1

Γk

k∑
l=0

βlγla
l

ε̂xk =
1

Γk

k∑
l=0

βlγl

(
εxl + 〈xl − x̂k, bl − b̂k〉

)
, ε̂yk =

1

Γk

k∑
l=0

βlγl
(
εyl + 〈yl − ŷk, al − âk〉

)
.

(49)

The theorem below estimates when the ergodic iterates above will meet the criterion (44).

Theorem 7. Assume the hypotheses of Theorem 6. Additionally, suppose that ηk ≡ η and consider the ergodic

iterates de�ned in (49). Then, for any k ∈ N, we have

b̂k ∈ Bε̂
x
k (x̂k), âk ∈ Aε̂

y
k(ŷk)

and ∥∥∥G∗âk + b̂k
∥∥∥ ≤ 4(1 + η)D(C + 1)d0

(k + 1)(1− η)βζ

√
η(1 + η)(2− η)

q(η)
,

∥∥Gx̂k − ŷk∥∥ ≤ 4(1 + η)D(C + 1)d0
(k + 1)(1− η)βζ

√
η(1 + η)(2− η)

q(η)
,

ε̂xk + ε̂yk ≤
4D(C + 1)d20

(k + 1)βζ

(
ξ

1 + η

1− η
+

1

4

)
η(1 + η)(2− η)

(1− η)q(η)
,

(50)

where ζ, C and D are the constants de�ned in Proposition 3, and ξ := 3 +
2CD(C + 1)

ζ2β(2− β)
.

Proof. The inclusions in the statement of the theorem follow from the de�nitions of the ergodic sequences in
(49) and Theorem 1.

By steps 5 and 1 of Algorithm 2 and the assumption that ηl ≡ η, we have, for each l ≥ 0,

βlγl(G
∗al + bl) = zl − zl+1 = zl + η(zl − zl−1)− zl+1 = zl − zl+1 + η(zl − zl−1).

Adding equality above from l = 0 to k, we obtain

k∑
l=0

βlγl(G
∗al + bl) = (z0 − zk+1) + η(zk − z0).

Therefore, the above equation, the linearity of G∗, and the de�nitions of âk and b̂k in (49) imply

Γk(G∗âk + b̂k) = (z0 − zk+1) + η(zk − z0). (51)

In the same way, we can prove

Γk(ŷk −Gx̂k) = (w0 − wk+1) + η(wk − w0). (52)
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Next, we use (47) and the de�nition of pk in (29) to obtain∥∥zj − z∗∥∥2 +
∥∥wj − w∗∥∥2 ≤ η(1 + η)(2− η)

(1− η)2q(η)
d20, ∀j ≥ 0. (53)

Equation (53), together with the triangle inequality and simple calculations, yields

∥∥zj − zl∥∥ ≤ ∥∥zj − z∗∥∥+
∥∥zl − z∗∥∥ ≤ 2

d0
1− η

√
η(1 + η)(2− η)

q(η)
, ∀j, l ≥ 0.

Hence, the inequality above with j = 0 and l = k, k + 1, and equality (51) give

Γk

∥∥∥G∗âk + b̂k
∥∥∥ ≤ 2

d0
1− η

√
η(1 + η)(2− η)

q(η)
+ 2η

d0
1− η

√
η(1 + η)(2− η)

q(η)
=

2(1 + η)d0
1− η

√
η(1 + η)(2− η)

q(η)
.

(54)
Similarly, we use (53), the triangle inequality, and (52) to deduce

Γk
∥∥ŷk −Gx̂k∥∥ ≤ 2(1 + η)d0

1− η

√
η(1 + η)(2− η)

q(η)
. (55)

From step 4 of Algorithm 2 and Lemma 5, it is easy to see that

γl =
ϕl(z

l, wl)

‖∇ϕl‖2
, ∀ l ≥ 0. (56)

Therefore, the de�nition of Γk, (56), the �rst inequality in (39), and the fact βl ≥ β imply

Γk =

k∑
l=0

βlγl =

k∑
l=0

βl
ϕl(z

l, wl)

‖∇ϕl‖2
≥

k∑
l=0

β
ζ

2D(C + 1)
= (k + 1)

βζ

2D(C + 1)
. (57)

Now, combining (57) with (54) and (55) we deduce the �rst two inequalities in (50).
To prove the last inequality in (50), we �rst note that the de�nition of ϕl in (27) and simple manipulations

yield

ϕl(x̂
k, âk) =

〈
x̂k − xl, bl +G∗âk

〉
+
〈
Gx̂k − yl, al − âk

〉
− εxl − ε

y
l

=
〈
x̂k − xl, bl − b̂k

〉
+
〈
x̂k − xl, b̂k +G∗âk

〉
+
〈
Gx̂k − ŷk, al − âk

〉
+
〈
ŷk − yl, al − âk

〉
− εxl − ε

y
l .

Multiplying the equation above by βlγl/Γk, adding from l = 0 to k, and using the de�nitions of x̂k and âk in
(49), we obtain

1

Γk

k∑
l=0

βlγlϕl(x̂
k, âk) =

1

Γk

k∑
l=0

βlγl

(〈
x̂k − xl, bl − b̂k

〉
+
〈
ŷk − yl, al − âk

〉
− εxl − ε

y
l

)
.

The equation above, together with the de�nitions of ε̂xk and ε̂yk in (49), now implies

ε̂xk + ε̂yk = − 1

Γk

k∑
l=0

βlγlϕl(x̂
k, âk). (58)

Next, we use the update rule (24) and perform straightforward calculations to obtain∥∥(x̂k, âk)− (zl+1, wl+1)
∥∥2 =

∥∥(x̂k, âk)− (zl, wl)
∥∥2 + β2

l γ
2
l ‖∇ϕl‖

2
+ 2βlγl

〈
(x̂k, âk)− (zl, wl),∇ϕl

〉
=
∥∥(x̂k, âk)− (zl, wl)

∥∥2 + β2
l γ

2
l ‖∇ϕl‖

2
+ 2βlγl

〈
(x̂k, âk)− (xl, al),∇ϕl

〉
+ 2βlγl

〈
(xl, al)− (zl, wl),∇ϕl

〉
.
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Adding and subtracting 2βlγl(ε
x
l + εyl ) on the right-hand side of the last equality above and using the identity

(28), we get∥∥(x̂k, âk)− (zl+1, wl+1)
∥∥2 =

∥∥(x̂k, âk)− (zl, wl)
∥∥2 + β2

l γ
2
l ‖∇ϕl‖

2
+ 2βlγlϕl(x̂

k, âk)− 2βlγlϕl(z
l, wl)

=
∥∥(x̂k, âk)− (zl, wl)

∥∥2 − βl(2− βl)γ2l ‖∇ϕl‖2 + 2βlγlϕl(x̂
k, âk),

where the second equality follows from the relation in (56). Rearranging the equation above and using the

fact that βl(2− βl)γ2l ‖∇ϕl‖
2 ≥ 0, we deduce

−2βlγlϕl(x̂
k, âk) ≤

∥∥(x̂k, âk)− (zl, wl)
∥∥2 − ∥∥(x̂k, âk)− (zl+1, wl+1)

∥∥2 .
Also, we use step 1 of Algorithm 2 and consider the relation (6) with p = (zl−1, wl−1) − (x̂k, âk), q =
(zl, wl)− (x̂k, âk) and t = −η to obtain∥∥(zl, wl)− (x̂k, âk)

∥∥2 = (1 + η)
∥∥(zl, wl)− (x̂k, âk)

∥∥2 − η ∥∥(zl−1, wl−1)− (x̂k, âk)
∥∥2 + δl,

where δl is as in (11) with pl given in (29). Thus, from the two equations above, it follows that

−2βlγlϕl(x̂
k, âk) ≤

∥∥(zl, wl)− (x̂k, âk)
∥∥2 − ∥∥(zl+1, wl+1)− (x̂k, âk)

∥∥2
+ η

(∥∥(zl, wl)− (x̂k, âk)
∥∥2 − ∥∥(zl−1, wl−1)− (x̂k, âk)

∥∥2)+ δl.

Further, by adding the equation above from l = 0 to k and combining it with (58), we obtain

2Γk(ε̂xk + ε̂yk) ≤
∥∥(z0, w0)− (x̂k, âk)

∥∥2 + η
∥∥(zk, wk)− (x̂k, âk)

∥∥2 +

k∑
l=0

δl. (59)

We now proceed to �nd upper bounds for the �rst and second terms on the right-hand side of the equation
(59). To this end, we de�ne

(ẑ
k
, ŵ

k
) :=

1

Γk

k∑
l=0

βlγl(z
l, wl)

and use the de�nition of (x̂k, âk) and the convexity of ‖·‖2 to have, for all j ≥ 0,∥∥(zj , wj)− (x̂k, âk)
∥∥2 ≤ 2

∥∥∥(zj , wj)− (ẑ
k
, ŵ

k
)
∥∥∥2 + 2

∥∥∥(ẑ
k
, ŵ

k
)− (x̂k, âk)

∥∥∥2
≤ 2

1

Γk

k∑
l=0

βlγl
∥∥(zj , wj)− (zl, wl)

∥∥2 + 2
1

Γk

k∑
l=0

βlγl
∥∥(zl, wl)− (xl, al)

∥∥2 . (60)

Moreover, it is easy to see that∥∥(zj , wj)− (zl, wl)
∥∥2 ≤ 2

∥∥(zj , wj)− (z∗, w∗)
∥∥2 + 2

∥∥(zl, wl)− (z∗, w∗)
∥∥2 , ∀ j, l ≥ 0

and from (47) it follows ∥∥(zj , wj)− (z∗, w∗)
∥∥2 ≤ η(1 + η)(2− η)

(1− η)2q(η)
d20, ∀j ≥ 0.

On the other hand, considering the identity (6) with p = (zl−1, wl−1) − (z∗, w∗), q = (zl, wl) − (z∗, w∗)
and t = −η, (20), (47) and (15), we obtain∥∥(zl, wl)− (z∗, w∗)

∥∥2 ≤(1 + η)
∥∥(zl, wl)− (z∗, w∗)

∥∥2 + η(1 + η)
∥∥(zl, wl)− (zl−1, wl−1)

∥∥2
≤(1 + η)

η(1 + η)(2− η)

(1− η)2q(η)
d20 + η(1 + η)

(2− η)

(1− η)q(η)
d20

= 2
η(1 + η)(2− η)

(1− η)2q(η)
d20.
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Combining the three equations above gives∥∥(zj , wj)− (zl, wl)
∥∥2 ≤ 6

η(1 + η)(2− η)

(1− η)2q(η)
d20, ∀j ≥ 0.

We substitute the inequality above into (60) to have

∥∥(zj , wj)− (x̂k, âk)
∥∥2 ≤ 12

η(1 + η)(2− η)

(1− η)2q(η)
d20 + 2

1

Γk

k∑
l=0

βlγl
∥∥(zl, wl)− (xl, al)

∥∥2 .
Since C > 1, (31), together with (32), implies

ϕl(z
l, wl) ≥ ζ

2C

(∥∥zl − xl∥∥2 +
∥∥ak − wk∥∥2) =

ζ

2C

∥∥(zl, wl)− (xl, al)
∥∥2 .

Now, by the two equations above and (56), we obtain

∥∥(zj , wj)− (x̂k, âk)
∥∥2 ≤ 12

η(1 + η)(2− η)

(1− η)2q(η)
d20 + 4

C

ζΓk

k∑
l=0

βlγlϕl(z
l, wl)

= 12
η(1 + η)(2− η)

(1− η)2q(η)
d20 + 4

C

ζΓk

k∑
l=0

βl
ϕl(z

l, wl)2

‖∇ϕl‖2
.

From βl ≤ β, (47), (57) and the de�nition of ξ, it follows∥∥(zj , wj)− (x̂k, âk)
∥∥2 ≤ 12

η(1 + η)(2− η)

(1− η)2q(η)
d20 + 8

CD(C + 1)

ζ2β
· η(1 + η)(2− η)

(2− β)(1− η)2q(η)
d20

=
4ξη(1 + η)(2− η)

(1− η)2q(η)
d20.

Equation above with j = 0, k, (59), the de�nition of {δl} in (11), and relations (15) and (57) imply the last
inequality in (50).

We emphasize that the ergodic complexity bounds for Algorithm 2 are asymptotically better than the
pointwise complexity ones. Indeed, the bounds derived in Theorem 6 are O(1/

√
k), whereas in Theorem 7 the

bounds are O(1/k). However, we were only able to prove the results of this latter theorem in the case where
the inertial parameters ηk were constant.

4 Lipschitz continuous operators

On each iteration, Algorithm 2 has to solve inexactly two proximal subproblems within a relative error
criterion. In general, the procedure used to perform this computation will depend on the implementation of
the method and the properties of the operators. For the case where A and B are Lipschitz continuous, we
discuss in this section how approximate solutions of the proximal subproblems satisfying (21) and (22) can be
computed.

If only one of the operators is Lipschitz, we can consider the procedure presented below regarding only
this operator. Thus, from now on we assume that

(L1) A is LA-Lipschitz, B is LB-Lipschitz, and we de�ne L := max{LA, LB}.

We �rst show that if the Lipschitz constants of the operators are known, performing two appropriate
evaluations (forward steps) of each operator, we can obtain triplets that satisfy the error conditions (21) and
(22) in steps 2 and 3 of Algorithm 2. We observe that forward steps were proposed in [23] for handling
Lipschitz continuous operators in the non-inertial projective splitting method in the parallel case (αk ≡ 0),
and in [27], it was proved that they can be viewed as an inexact proximal update. Here, for the case n = 2,
we extend this procedure to any value of αk.
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Lemma 6. Assume that T : H ⇒ H is an L-Lipschitz continuous maximal monotone operator, 0 < c < 1/L
and z, v ∈ H. De�ne χ = z − c(Tz − v) and $ = Tχ, then for all σ ∈ (cL, 1) it holds

‖c($ − v) + χ− z‖2 ≤ σ2
(
‖χ− z‖2 + ‖c($ − v)‖2

)
. (61)

Proof. Using the de�nitions of χ and $ we have

‖c($ − v) + χ− z‖2 = ‖c(Tχ− Tz)‖2 ≤ c2L2 ‖χ− z‖2 ,

where the inequality above follows from the Lipschitz continuity of T . From the assumption that σ > cL, we
deduce

‖c($ − v) + χ− z‖2 ≤ σ2 ‖χ− z‖2 ,

from which (61) directly follows.

Proposition 4. For all k ≥ 0, take 0 < λk < 1/LB, 0 < µk < 1/LA, αk ∈ R and de�ne

xk = zk − λk(Bzk +G∗wk), bk = Bxk,

yk = G((1− αk)zk + αkx
k)− µk(Azk − wk), ak = Ayk.

(62)

Then, (xk, bk, 0) and (yk, ak, 0) satisfy, respectively, the relations in (21) and (22) for all σ ∈ (max{λkLB , µkLA}, 1).

Proof. It is clear that the inclusions in (21) and (22) hold. By applying Lemma 6 withH = X , T = B, L = LB ,
c = λk, z = zk and v = −G∗wk, we obtain equation (61) with χ = xk and $ = bk for all σ ∈ (λkLB , 1), and
thus the inequality in (21) follows.

Similarly, using Lemma 6 with H = Y, T = A, L = LA, c = µk, z = Gzk and v = αk/µkG(xk − zk) + wk,
we have (61) with χ = yk and $ = ak for all σ ∈ (µkLA, 1), which implies the inequality in (22). Taking σ
large enough, we conclude the proposition.

As a consequence of the previous proposition, the procedure in (62), which only requires two evaluations
of each operator per iteration, can be used in steps 2 and 3 of Algorithm 2 to obtain the desired triplets.
However, if the Lipschitz constants of the operators are unknown, Proposition 4 cannot be applied. In that
case, we can implement the following backtracking linesearch to be used in place of (62).

Backtracking procedure 1. Input: T , z, u, v ∈ H, c1 > 0, ∆ > 0

Set φ = Tz and for j = 1, 2, . . . do

1. χ̃j = z + u− cj(φ− v)

2. $̃j = T χ̃j

3. if ∆
∥∥z − χ̃j∥∥2 ≤ 〈z − χ̃j , $̃j − v

〉
− 1

cj

〈
z − χ̃j , u

〉
then

4. return J ← j, c← cj , χ← χ̃j , $ ← $̃j

5. else cj+1 = cj/2

The backtracking procedure (BP) 1 is closely related to the backtracking linesearch proposed in [23].
However, di�erent from [23], the BP 1 allows us to deal with Lipschitz operators not only in the parallel case.
The following lemma shows that the loop in the BP 1 has �nite termination and that the number of iterations
is bounded. Its proof is similar to [23, Theorem 2], and for the sake of brevity we only present the necessary
modi�cations.
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Lemma 7. Assume that T : H⇒ H is an L-Lipschitz continuous maximal monotone operator. Then, for the

loop in the BP 1 we have

J ≤ max{2 + log2 ((∆ + L)c1) , 1}

and

c ≥ min

{
1

2(L+ ∆)
, c1

}
. (63)

Proof. By simple manipulations we have〈
z − χ̃j , $̃j − v

〉
− 1

cj

〈
z − χ̃j , u

〉
=
〈
z − χ̃j , $̃j − φ

〉
+
〈
z − χ̃j , φ− v

〉
− 1

cj

〈
z − χ̃j , u

〉
=
〈
z − χ̃j , $̃j − φ

〉
+

〈
z − χ̃j , φ− v − 1

cj
u

〉
=
〈
z − χ̃j , T χ̃j − Tz

〉
+

〈
z − χ̃j , 1

cj
(z − χ̃j)

〉
≥
(

1

cj
− L

)∥∥z − χ̃j∥∥2 ,
where the third equality above follows from the de�nitions of φ, χ̃j and $̃j in the BP 1, and the inequality is
due to the Cauchy-Schwartz inequality and the assumption that T is L-Lipschitz. The rest of the proof runs
as [23, Theorem 2].

In order to compute admissible triplets satisfying steps 2 and 3 of Algorithm 2, we can use the BP 1 as
follows:

2′. Choose λ(1,k) > 0 and set (λk, x
k, bk) = Backtracking procedure 1 (B, zk, 0,−G∗wk, λ(1,k),∆).

3′. Choose µ(1,k) > 0, αk ∈ R and set (µk, y
k, ak) = Backtracking procedure 1 (A,Gzk, αkG(xk −

zk), wk, µ(1,k),∆).

Additionally, we consider the following assumption:

(L2) there exist µ and λ such that λ ≥ µ > 0 and λ(1,k), µ(1,k) ∈ [µ, λ] for all k ≥ 0.

We observe that since for all k ≥ 0, λk is given by the BP 1 with initial trial stepsize λ(1,k), equation (63)
yields

λk ≥ min

{
1

2(LB + ∆)
, λ(1,k)

}
≥ min

{
1

2(L+ ∆)
, µ

}
=: λ, (64)

where the second inequality above follows from the de�nition of L and assumption (L2). Similarly, one can
prove that µk ≥ λ for all k ≥ 0. Further, by the BP 1 it follows that λk ≤ λ(1,k) and µk ≤ µ(1,k) for all k ≥ 0.
Thus, it holds

λk, µk ∈ [λ, λ], ∀k ≥ 0.

Consequently, assumption (L2) implies condition (A2).

Proposition 5. Suppose that assumptions (L1) and (L2) hold. If ∆ > 0, then, for each iteration k ≥ 0,
(λk, x

k, bk) and (µk, y
k, ak) calculated by steps 2′ and 3′, respectively, satisfy (21) and (22) in Algorithm 2.

Proof. Let λk, x
k and bk be computed via line 2′. Since they are the outputs of the BP 1 with T = B, z = zk,

u = 0, v = −G∗wk and c1 = λ(1,k), from lines 1, 2 and 4 of this procedure it follows

xk = zk − λk(Bzk +G∗wk) and bk = Bxk. (65)
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By rearranging the terms in the �rst equality in (65) and using the triangle inequality for norms and the
Lipschitz continuity of B, we have∥∥λk(bk +G∗wk)

∥∥ =
∥∥λk(Bxk −Bzk) + zk − xk

∥∥ ≤ (λkLB + 1)
∥∥xk − zk∥∥ ≤ (λkL+ 1)

∥∥xk − zk∥∥ . (66)

Therefore, the BP 1, (66) and simple manipulations yield〈
zk − xk, bk +G∗wk

〉
≥∆

∥∥zk − xk∥∥2 =
∆

2

∥∥zk − xk∥∥2 +
∆

2

∥∥zk − xk∥∥2
≥∆

2

∥∥zk − xk∥∥2 +
∆

2(Lλk + 1)2
∥∥λk(bk +G∗wk)

∥∥2
=

1

2λk

[
∆λk

∥∥zk − xk∥∥2 +
∆λk

(Lλk + 1)2
∥∥λk(bk +G∗wk)

∥∥2] .
Further, since Lλk + 1 > 1, the equation above implies〈

zk − xk, bk +G∗wk
〉
≥ 1

2λk
· ∆λk

(Lλk + 1)2

[∥∥zk − xk∥∥2 +
∥∥λk(bk +G∗wk)

∥∥2] . (67)

Now, we use assumption (L2) and (64) to obtain

∆λk
(Lλk + 1)2

≥ ∆λ

(Lλ+ 1)2
.

From the fact that ∆,L > 0 and the de�nition of λ in (64), it follows that ∆λ ≤ ∆/2(L+ ∆) < 1 and clearly
1/(Lλ+ 1)2 < 1. Hence, de�ning σ̂2 := 1−∆λ/(Lλ+ 1)2, we have that σ̂ ∈ (0, 1), and combining with (67)
we deduce 〈

zk − xk, bk +G∗wk
〉
≥ 1− σ̂2

2λk

[∥∥zk − xk∥∥2 +
∥∥λk(bk +G∗wk)

∥∥2] .
The equation above, together with the second equality in (65) and Lemma 4, implies that λk and the triplet
(xk, bk, 0) satisfy the conditions in (21).

We next consider the outputs produced by line 3′. Since the proof is similar to the previous one, we will
only indicate the necessary modi�cations. Because µk, y

k and ak are the outputs of the BP 1 with T = A,
z = Gzk, u = αkG(xk − zk), v = wk and c1 = µ(1,k), it holds

yk = Gzk + αkG(xk − zk)− µk(A(Gzk)− wk) and ak = Ayk.

Therefore, using the equalities above, the triangle inequality, and the Lipschitz continuity of A, in place of
(66), we have∥∥αkG(zk − xk) + µk(ak − wk)

∥∥ =
∥∥Gzk − yk + µk(Ayk −A(Gzk))

∥∥ ≤ (Lµk + 1)
∥∥Gzk − yk∥∥ .

Thus, by the BP 1 and equation above, in analogy to (67), we obtain〈
Gzk − yk, αk

µk
G(zk − xk) + ak − wk

〉
≥ 1

2µk
· ∆µk
(Lµk + 1)2

[∥∥Gzk − yk∥∥2 +
∥∥αkG(zk − xk) + µk(ak − wk)

∥∥2] ,
and as before, taking σ̂2 = 1−∆λ/(Lλ+ 1)2 ∈ (0, 1), we have

∆µk
(Lµk + 1)2

≥ 1− σ̂2.

Now, combining the two equations above, we conclude〈
Gzk − yk, αk

µk
G(zk − xk) + ak − wk

〉
≥ 1− σ̂2

2µk

[∥∥Gzk − yk∥∥2 +
∥∥αkG(zk − xk) + µk(ak − wk)

∥∥2] ,
which by Lemma 4 gives that µk and (yk, ak, 0) satisfy (22).
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Remark 4.

(i) We note that under assumptions (A1), (L1), (L2) and (A3), if the hypotheses of Theorems 4 (or Theorem
5) are satis�ed, then the convergence of Algorithm 2, with the implementations in steps 2′ and 3′, is
guaranteed.

(ii) If our goal is to �nd triplets (x, b, εx) and (y, a, εy) such that (44) is satis�ed for �xed tolerances ρ, ε > 0,
then Theorem 7, Proposition 5 and Lemma 7 give that Algorithm 2, with the implementations in steps
2′ and 3′, will �nd such triplets in at most

O
(

max

{
d0
ζ ρ

,
d20
ζ ε

})
iterations, with each one making at most

O
(
max

{
2 + log2((∆ + L)λ), 1

})
iterations of the BP 1.

(iii) If B is an a�ne operator, it is not necessary to use the BP 1 to �nd a valid triplet. For this case, even
without knowing the Lipschitz constant, the operator B could be processed with only two forward steps.
See [23, Section 5.2] for more details.

5 Numerical experiments

In this section, we apply Algorithm 2 to two common test problems in convex optimization. The main
objective of these preliminary numerical experiments is to compare the computational performance of the
inertial projective splitting method with its non-inertial counterpart and to illustrate the e�ect that di�erent
values of αk have on the performance of the methods.

We recall that the convex minimization problem

min
z∈X

f(Gz) + g(z) (68)

where f : Y → (−∞,∞] and g : X → (−∞,+∞] are proper, convex and lower-semicontinuous functions, is
equivalent to (1) (under appropriate constraint quali�cations) with A = ∂f and B = ∂g. Thus, we can apply
Algorithm 2 to solve (68).

In our numerical experiments, we consider the Lasso and the TV deblurring problems, which are instances
of (68). In both test problems, the function g has Lipschitz continuous gradient, which clearly gives that
B is Lipschitz continuous. Therefore, we take λk ≡ σ/LB and use the scheme provided in the �rst line
of (62) to calculate a valid triplet in step 2 of Algorithm 2 at each iteration k. We test Algorithm 2 with
αk ≡ α = 0,−1, 1 and another 7 uniformly distributed random values over (−1, 1). Further, we set µk ≡ µ,
and µ was chosen such that assumption (A3) is satis�ed.

For a fair comparison with the non-inertial projective splitting method, we consider both algorithms with
the same choices of the parameters αk, λk, µk and βk. Also, the strategies for computing steps 2 and 3 in
the methods are the same. We implement both algorithms in Matlab and, analogously to [37], we use the
following condition to stop the methods:

|F (zk)− F ∗|
F ∗

≤ 10−4. (69)

In the equation above, F (·) denotes the objective function of (68), and F ∗ is the optimal value estimated after
running 104 iterations of Algorithm 2 (with αk ≡ 0 and ηk ≡ 0) and taking the minimum objective value. We
have preferred the stopping rule given by (69) since empirically we observed that it was satis�ed faster than
the condition (44) used in our complexity analysis. In the experiments, we refer to Algorithm 2 as the IR-PS
method and the non-inertial projective splitting method as the PS method.
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5.1 Lasso problem

In this section, we consider the Lasso problem [35]

min
z∈Rn

1

2
‖Mz − v‖22 + τ ‖z‖1 , (70)

where M ∈ Rm×n, v ∈ Rm and τ > 0 is a regularization parameter. The goal of this problem is to �nd a
sparse solution to the linear system of equations Mz = v. We observe that (70) is an instance of (68) taking

g(z) := (1/2) ‖Mz − v‖22, f(z) := τ ‖z‖1 and G = I.
It is well-known that the proximal operator of A(z) = ∂(τ ‖·‖1)(z) has a closed form. Thus, to solve

(70) via Algorithm 2, at each iteration k, we set yk = (µkA + I)−1((1 − αk)zk + αkx
k + µkw

k) and ak =
(1/µk)((1− αk)zk + αkx

k + µkw
k − yk) (observe that in this case ry,k = 0 and εyk = 0).

In the numerical tests, we use four non-arti�cial data sets taken from the UCI Machine Learning Repository
[17]:

- the drive face dataset (DriveFace) with m = 606 and n = 6400;

- communities and crime dataset (Communities) with m = 2215 and n = 145;

- Breast Cancer Wisconsin (Diagnostic) dataset (Wisconsin) with m = 569 and n = 30;

- California Department of Transportation dataset (PEMS) with m = 267 and n = 138672.

We normalize the data for all problems and take τ = 0.1
∥∥MT v

∥∥
∞. We use σ = 0.24, and ηk ≡ 0.5 because

we have empirically found that it works well for all problems. Using equation (43), we compute β = 0.3425
with η = 0.57, and set βk ≡ β.

Tables 1, 2, 3 and 4 present the results of the numerical experiments for the Lasso problem for each dataset.
They report, for di�erent values of α (referred to as Alpha in the tables), the iteration count (It) and total
time in seconds (time(s)) required for the IR-PS and PS to satisfy (69). In each table, the smallest value in
each row appears in bold. We observe that the IR-PS solves almost all the problems faster than the PS. As
the last line in each table indicates, the IR-PS takes, in the mean, approximately 15% less time than the PS,
and executes around 1000 fewer iterations. Also, observe that the best IR-PS method (in terms of iterations
and running time) for all the datasets is always for a value of α di�erent from zero (α = 0 corresponds to the
parallel IR-PS of [4]).

For the fastest value of α for each data set, we report in �gures 1 and 2, respectively, the error and residual
curves for both methods. The error is given by (69), whereas the residue is de�ned as

max{
∥∥ak + bk

∥∥ ,∥∥xk − yk∥∥},
see (44).

5.2 Total variation deblurring problem

The Total Variation deblurring problem seeks to estimate an unknown original image z ∈ RN×N from an
observed blurred image v ∈ RN×N by solving the minimization problem

min
z∈RN×N

1

2
‖Mz − v‖2F + τ

N∑
i,j=1

‖(∇z)i,j‖2 , (71)

where ∇ : RN×N → RN×N × RN×N is the discrete gradient operator (see [13] for the precise de�nition),
τ > 0 is a regularization parameter, ‖·‖2 is the Euclidean norm in R2, and M : RN×N → RN×N is a linear

operator that represents some blurring operator. Problem (71) is an instance of (68) with g(z) = 1
2 ‖Mz − v‖2F ,

f(p) = τ
∑N
i,j=1 ‖pi,j‖2 and G = ∇.
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IR-PS PS
Alpha time(s) It time(s) It
1 44.33 5547 55.06 6881
-1 65.05 8140 70.79 8840
0 46.15 5803 52.19 6447

-0.8147 59.45 7450 66.46 8317
-0.1270 47.33 5909 52.88 6598
-0.6324 56.98 7110 66.08 8231
0.2785 42.70 5375 49.42 6240
0.5469 40.36 5045 46.29 5775
0.9575 44.65 5547 56.70 7058
-0.3584 49.67 6221 58.40 7303

Geometric Mean 49.67 6214.7 57.43 7169

Table 1: Results for the Lasso problem with the DriveFace dataset.

IR-PS PS
Alpha time(s) It time(s) It
1 0.5428 2269 0.6564 2838
-1 1.2063 4985 1.3776 6808
0 0.6888 3625 0.7603 3838

-0.8147 1.0097 5080 1.2829 6559
-0.1270 0.9349 4021 0.9050 4774
-0.6324 0.8943 4888 1.0568 5609
0.2785 0.5831 3066 0.7329 3821
0.5469 0.4718 2558 0.5958 3159
0.9575 0.4183 2228 0.5592 3028
-0.3584 0.7614 3966 0.9900 5169

Geometric Mean 0.7511 3668.6 0.8917 4560.3

Table 2: Results for the Lasso problem with the Communities dataset.

We recall that for B = ∂g, we use the strategy given in the �rst line of (62) for implementing step 2 of
Algorithm 2. On the other hand, A = ∂f has a computational simple proximal operator. Hence, we compute
yk = (µkA+ I)−1(∇((1− αk)zk + αkx

k) + µkw
k) and ak = (1/µk)(∇((1− αk)zk + αkx

k) + µkw
k − yk).

In the numerical simulations, we consider the 256 × 256 Cameraman image blurred by a 4 × 4 Gaussian
blur with standard deviation 2, followed by an additive normal noise with zero mean and standard deviation
10−4. The regularization parameter τ was set to 10−4. We use σ = 1/ ‖∇‖1.3, and ηk ≡ η = 0.1 since we
empirically observed that this choice performs better for this problem. Using (43), we compute β = 1.519
with η = 0.17 > η and set βk = β for all k.

Table 5 displays the results of this experiment. The columns mean: Alpha, the value of α used by the
IR-PS and the PS; time(s), the time (in seconds) needed to reach the desired accuracy (69); and It, the number
of iterations performed by the methods. We again highlight the smallest value in each row, and we mark with
an asterisk (*) the instances that reach the maximum number of allowed iterations (10000). Observe that for
all α, the IR-PS method requires fewer iterations and it was faster than the PS method, taking approximately
less than one third of the execution time and iterations, in the mean. Also, observe that the best method
tested for this problem, in terms of iterations and running time, was the IR-PS method with α = −0.8147,
with a 30% reduction of the iterations and the execution time of the parallel IR-PS method (α = 0).

In �gure 3, we plotted the error and residual curves of the IR-PS and PS methods with α = 1, which is
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IR-PS PS
Alpha time(s) It time(s) It
1 0.0547 1881 0.0507 1815

-1 0.1177 3931 0.1426 4987
0 0.0815 2765 0.1022 3516

-0.8147 0.1093 3755 0.1296 4464
-0.1270 0.0759 2685 0.1159 3800
-0.6324 0.1810 3369 0.2141 4324
0.2785 0.0788 2652 0.0952 2995
0.5469 0.0642 2203 0.0736 2405
0.9575 0.0466 1534 0.0607 1925
-0.3584 0.0923 3046 0.1161 3928

Geometric Mean 0.0902 2782.1 0.1101 3315.9

Table 3: Results for the Lasso problem with the Wisconsin dataset.

IR-PS PS
Alpha time(s) It time(s) It
1 472.57 6036 616.97 7831
-1 612.82 7925 740.65 9572
0 495.11 6364 578.82 7432

-0.8147 588.41 7533 710.94 9095
-0.1270 499.74 6312 597.38 7583
-0.6324 555.49 7048 676.15 8581
0.2785 479.59 6027 556.78 7065
0.5469 434.45 5517 550.12 6977
0.9575 480.67 6065 636.19 8062
-0.3584 523.79 6658 621.95 7922

Geometric Mean 514.26 6548.5 628.60 8012

Table 4: Results for the Lasso problem with the PEMS dataset.

the fastest α for both methods. In this case, the residue is given by

max{
∥∥∇∗ak + bk

∥∥ ,∥∥∇xk − yk∥∥}
see (44).
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IR-PS PS
Alpha time(s) It time(s) It
1 42.99 2777 64.25 3989
-1 10.91 704 186.33 10000*
0 12.35 777 95.24 5830

-0.8147 7.21 510 43.66 2966
-0.1270 10.57 691 57.25 3960
-0.6324 11.14 785 71.14 4926
0.2785 21.57 1473 47.81 3392
0.5469 23.45 1670 40.09 2862
0.9575 36.64 2474 65.19 4649
-0.3584 9.49 679 44.39 3126

Geometric Mean 18.63 1254 71.54 4570

Table 5: Results for the TV deblurring problem.
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Figure 1: Error curves of the IR-PS and PS methods in the Lasso problems. (top left) α = 0.5469, (top right)
α = 0.9575, (bottom left) α = 0.9575, (bottom right) α = 0.5469.
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Figure 2: Residual curves of the IR-PS and PS methods in the Lasso problems. (top left) α = 0.5469, (top
right) α = 0.9575, (bottom left) α = 0.9575, (bottom right) α = 0.5469.
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Figure 3: Error curve (left) and residual curve (right), in the logarithmic scale, of the IR-PS and PS methods
with α = −0.8147 for the TV-deblurring problem.
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