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Abstract

We introduce the prime programming problem as a subclass of integer programming. These opti-
mization models impose the restriction of feasible solutions being prime numbers. Then, we demon-
strate how several classical problems in number theory can be formulated as prime programs. To
solve such problems with a commercial optimization solver, we extend the branch-and-bound pro-
cedure of integer programming. Next, in an effort to reduce the computational effort required by
this branch-and-bound method, we utilize the special structure of prime numbers to incorporate
new branching rules and variable fixing strategies. We present numerical results using a variety of
such strategies on a classic conjecture on linear equations in prime numbers. Finally, by employing
the concept of the inference dual of an integer program, we show how to perform sensitivity analysis
on general prime programs; this allows us to to quickly compute changes in the optimal objective
function value for small perturbations in the constraints. We publicly release all of our code to
solve a general prime programming model.
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1. Introduction

Consider the following optimization problem

min f(x, y, z) (1a)

s.t. g(x, y, z) ≥ 0, (1b)

x ∈ P, y ∈ R+, z ∈ Z+, (1c)

where Z+ denotes the set of non-negative integers, R+ denotes the set of non-negative real
numbers, and P = {2, 3, 5, . . .} ⊂ Z+ denotes the set of prime numbers. Then, model (1) is a
standard mixed-integer non-linear program with the inclusion of an additional set of variables, x,
restricted to be prime. We call model (1) as a prime program (PP). When functions f and g are
linear, model (1) is a mixed-integer linear program with prime number constraints. Such models
are pervasive in the number theory literature although they are often not formulated in the form
of a mathematical program such as optimization model (1). For example, the famous Goldbach’s
Conjecture rests on proving feasibility of the constraint 2a + 2 = x1 + x2 where x1, x2 ∈ P for any
given a ∈ Z+, or its infeasibility for some a. Similarly, the Vinogradov’s Theorem says that the
constraint 2a + 1 = x1 + x2 + x3 where x1, x2, x3 ∈ P is always feasible for positive integers a ≥ 3;
analogously, the Chen’s Theorem says that either of the two constraints 2a = x1 + x2 for some
x1, x2 ∈ P or 2a = x3 + x4 ·x5 for some x3, x4, x5 ∈ P is always feasible for a given sufficiently large
a ∈ Z+. For an introduction to several such problems, see, e.g., Wells (2005).

There is some work at the intersection of mathematical optimization and prime numbers. One
stream of work develops heuristics to identify or construct large prime numbers, see, e.g., Knezevic
(2021) that uses genetic programming to generate large prime numbers. Dass et al. (2013) study
the prime factorization problem using three metaheuristics. Both these works do not formulate
an explicit mathematical program, as is standard in the optimization community, to solve the
underlying problem using a numerical optimization solver. In contrast, Mehrotra & Pal (2018)
develop various objective functions that, when optimized over, solve instances of prime factoriza-
tion. The work by Kumar (2022) is more general — although without prime number constraints
— and, formulates non-linear Diophantine equations as complete mathematical optimization mod-
els. For instance, the nonlinear Diophantine a1xp

1 + a2xp
2 + . . . + anxp

n = b is reformulated as
minx (a1xp

1 + a2xp
2 + . . . + anxp

n − b)2 where x is constrained within a feasible region of integers.
Our work is in a similar spirit to this: we formulate problems concerning prime numbers as gen-
eral mathematical optimization models. Such mathematical programs are then easily solvable with
standard optimization solvers up to the solver’s numerical limits. As such, we introduce the PP in
the discrete optimization community.

The structure of this article is as follows. In Section 2, we motivate this work by studying six
elementary problems from number theory and formulate them as prime programs. In their current
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form, such problems are not solvable with an optimization solver (e.g., CPLEX or Gurobi), since
there is no analytical expression to formulate the restriction x ∈ P. Thus, in Section 3.1, we present
a method to solve a PP by modifying the standard branch-and-bound scheme for solving integer
problems. Further, we conduct sensitivity analysis for a PP that allows quick solutions of a slightly
perturbed problem without resolving it entirely. In Section 4, we present detailed computational
experiments and analysis by employing an example of finding a sequence of distinct primes such
that the arithmetic mean of any two of these primes is also a prime. We formulate this problem
as a PP, and we present additional solution strategies that extend our naive branch-and-bound
method. We conclude in Section 5 and provide additional numerical examples and results in the
appendix. We provide all of our code to solve a PP at our GitHub repository cited below.

2. Preliminaries

A classic problem in number theory, that is expressible as an integer program, is the computation
of the greatest common divisor (gcd) of two integers (Conforti et al., 2014, Chapter 1). For a, b ∈ Z+,
the gcd of a and b is given by gcd(a, b) = maxz z s.t. {z divides both a and b with z ∈ Z+}. Then,
the optimization model

gcd(a, b) = min
x

ax1 + bx2 s.t.{ax1 + bx2 ≥ 1 with x1, x2 ∈ Z+} (2)

computes the gcd; see, Proposition 1.6 of Conforti et al. (2014) for a proof. Enforcing the additional
restriction of solutions, (x1, x2), being prime numbers transforms model (2) into a PP. In this
section, we provide optimization models for six elementary problems in number theory considered
in the classic textbook of Sierpiński (1970). We let p̄x and p

x
denote the smallest prime number

greater than x ∈ R+ and the largest prime number lesser than x ∈ R+, respectively.

Problem 1. Find four triplets of solutions, (x1, x2, x3), of the equation x2
1 + 1 = x2

2 + x2
3 with

x1, x2, x3 ∈ P.

Solution. The corresponding optimization model is:

min
x

0 s.t.{x2
1 + 1 = x2

2 + x2
3 with x1, x2, x3 ∈ P}. (3)

A solution to model (3) provides one such triplet, (x∗
1, x∗

2, x∗
3). In Section 3.1 we describe

a procedure to solve this problem, and obtain an optimal solution (x∗
1, x∗

2, x∗
3) = (7, 5, 5). To

obtain another solution, we add one cutting plane: x1 ≥ p̄x∗
1
; equivalently, we can add the cutting

planes x2 ≥ p̄x∗
2
, x3 ≥ p̄x∗

3
, or the weaker cutting plane x1 ≥ x∗

1 + 1. We continue this process
until we obtain four triplets of solutions. Again, using the procedure in Section 3.1, we obtain
(7, 5, 5), (13, 7, 11), (17, 11, 13), and (23, 13, 19) as four triplets.
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An equivalent optimization formulation is obtained by (i) using the identity (5z + 13)2 + 1 =
(3z + 7)2 + (4z + 11)2, ∀z ∈ Z+, and (ii) the fact that there are infinitely many primes of the form
az + b when gcd(a, b) = 1. Then, the following optimization model is equivalent to model (3):

min
x,z

0 s.t.{x1 = 5z + 13, x2 = 3z + 7, x3 = 4z + 11 with x1, x2, x3 ∈ P, z ∈ Z+}. (4)

A variation of this problem is to enforce the largest of these primes, x1, to be the smallest prime
number feasible to model (3). Then, we simply change the objective function of model (3); the
corresponding model is

min
x

x1 s.t.{x2
1 + 1 = x2

2 + x2
3 with x1, x2, x3 ∈ P}. (5)

Problem 2. Find all solutions of the equation x1(x1+1)+x2(x2+1) = x3(x3+1) with x1, x2, x3 ∈ P.

Solution. The corresponding optimization model is:

min
x

0 s.t.{x1(x1 + 1) + x2(x2 + 1) = x3(x3 + 1) with x1, x2, x3 ∈ P}. (6)

Model (6) is a non-linear integer optimization model due to the product of integer variables but
is easily linearized with a McCormick envelope, see, e.g., Wolsey (1998). Again, using the procedure
in Section 3.1, one such optimal triplet is (x∗

1, x∗
2, x∗

3) = (2, 2, 3); and, for the next solution, we add
a similar cutting plane as in Problem 1. However, in this case the solution is unique as we show
below; thus, the computational method of adding cutting planes yields the same solution.

To verify uniqueness of the solution (2, 2, 3), consider the constraint of model (6) which is
equivalent to x1(x1 + 1) = (x3 − x2)(x3 + x2 + 1). From this equation, we immediately have that
the prime number x1 divides at least one of x3 − x2 or x3 + x2 + 1. We distinguish two exclusive
cases below.

(i) Consider x1 divides x3 − x2. Then, we have x1 ≤ x3 − x2, and it follows that x1(x1 + 1) ≤
(x3 − x2)(x3 − x2 + 1). Hence, x3 + x2 + 1 ≤ x3 − x2 + 1, which is false since x2 ∈ Z+.

(ii) Consider x1 divides x3 + x2 + 1. Then, there exists a k ∈ Z+ such that x3 + x2 + 1 = kx1,
hence x1 + 1 = k(x3 − x2). If k = 1, then x3 + x2 + 1 = x1 and x1 + 1 = x3 − x2. However,
this yields x1 − x2 = x3 + 1 and x1 + x2 = x3 − 1, which cannot be true since x2 ∈ Z+. Now,
consider k ≥ 2 and the identity 2x2 = (x3 + x2)− (x3 − x2). We have

2x2 =(x3 + x2)− (x3 − x2)

=(kx1 − 1)− (x3 − x2)

=k[k(x3 − x2)− 1]− 1− (x3 − x2)
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=(k + 1)[(k − 1)(x3 − x2)− 1].

Since x2 is prime, the divisors of 2x2 are 1, 2, x2, and 2x2. Further, since k + 1 ≥ 3 and
divides 2x2, either k + 1 = x2 or k + 1 = 2x2. Again, we distinguish the two exclusive cases
below.

(a) Consider k + 1 = x2. Then (k − 1)(x3 − x2) = 3, hence (x2 − 2)(x3 − x2) = 3. Thus,
either x2 − 2 = 1 and x3 − x2 = 3, or x2 − 2 = 3 and x3 − x2 = 1. In the first case,
x2 = 3 and x3 = 6, which is not prime. In the second case, x2 = 5 and x3 = 6, again
resulting in a non-prime solution for x3.

(b) Consider k + 1 = 2x2. Then (k − 1)(x3 − x2) = 2, hence 2(x2 − 1)(x3 − x2) = 2. Thus,
x2 − 1 = x3 − x2 = 1, hence x2 = 2 and x3 = 3. In this case, we obtain the solution
(x∗

1, x∗
2, x∗

3) = (2, 2, 3) ∈ P which is that computed by our procedure above.

Similar to Problem 1, a variation of this problem is to enforce the largest of these primes, x3, to
be the smallest prime number feasible to model (6). Then, we simply change the objective function
of model (6); the corresponding model is

min
x

x3 s.t.{x1(x1 + 1) + x2(x2 + 1) = x3(x3 + 1) with x1, x2, x3 ∈ P}. (7)

Problem 3. Find all solutions z ∈ Z+ with z + 1, z + 3, z + 7, z + 9, z + 13, z + 15 ∈ P.

Solution. The corresponding optimization model is:

min
x

0 s.t.{x1 = z + 1, x2 = z + 3, x3 = z + 7, x4 = z + 9,

x5 = z + 13, x6 = z + 15 with x1, . . . , x6 ∈ P, z ∈ Z+}.
(8)

In model (8), the integrality restriction, z ∈ Z+, is replaceable with its continuous relaxation,
z ∈ R+. Again, using the procedure in Section 3.1, one feasible tuple of solutions is (x∗

1, x∗
2, x∗

3,

x∗
4, x∗

5, x∗
6, z∗) = (5, 7, 11, 13, 17, 19, 4); for the next solution, we add a similar cutting plane as in

Problem 1 and continue this process.
However, again similar to Problem 2, the solution of model (8) is unique. To verify this claim,

we note that a feasible solution is of the form {x∗
1, x∗

2, x∗
3, x∗

4, x∗
6} = {a+1, a+3, a+7, a+9, a+15},

where a ∈ Z+. This set has exactly one element divisible by 5. Hence, if the smallest number of
this set, a + 1, exceeds 5, then all the numbers cannot simultaneously be prime. Since z = 1, 2, 3
are all infeasible, the obtained solution z∗ = 4 is unique. Indeed, adding a constraint z ≥ 5 (or,
equivalently x1 ≥ 6) to the optimization solver renders the model infeasible.
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Similar to Problem 1 and Problem 2, a variation of the problem is the following model:

min
x,z

z s.t.{x1 = z + 1, x2 = z + 3, x3 = z + 7, x4 = z + 9,

x5 = z + 13, x6 = z + 15 with x1, . . . , x6 ∈ P, z ∈ R+}.
(9)

Problem 4. Find all primes which can be represented both as sums and differences of two primes.

Solution. The corresponding optimization model is:

min
x

0 s.t.{x1 = x2 + x3, x1 = x4 − x5 with x1, . . . , x5 ∈ P}. (10)

Here, the decision variables (x∗
2, x∗

3, x∗
4, x∗

5) are auxiliary variables while x∗
1 provides the required

solution. Then, we obtain x∗
1 = 5 with our procedure of Section 3.1. For the next solution, we

proceed by adding cutting planes similar to Problems 1-3, e.g., x1 ≥ p̄x∗
1
. However, model (10) is

simplified further by a few observations. All prime numbers except 2 are odd, and hence x2 + x3 is
an even number (i.e., not prime) unless exactly one of x2 and x3 is 2. Without loss of generality,
set x3 = 2. Similarly, we have x5 = 2. We thus have the equivalent optimization model:

min
x

x1 s.t.{x1 = x2 + 2, x1 = x4 − 2 with x1, x2, x4 ∈ P}. (11)

Again, the solution to this problem is unique. To verify this claim, let x∗
1 = a for some a ∈ Z+.

Consider the set {x∗
1, x∗

2, x∗
4} = {a, a − 2, a + 2}. This set has exactly one element divisible by 3

since any integer a is of the form of either a = 3k, a = 3k + 1, or a = 3k + 2 for some k ∈ Z+;
in each of the three cases, exactly one element is divisible by 3. Hence, all elements of the set are
at most three for them to be prime. Since x1 = 1, 2, 3, 4 are all infeasible, the obtained solution
x∗

1 = 5 is unique. Again, adding a constraint x1 ≥ 6 to the optimization solver renders the model
infeasible.

Problem 5. Find the five least positive integers, z, such that each of the integers z, z + 1, z + 2
is a product of two different primes.

Solution. The corresponding optimization model is:

min
x

z s.t.{z = x1x2, z + 1 = x3x4, z + 2 = x5x6 with x1, . . . , x6 ∈ P, z ∈ Z+}. (12)

To ensure that the primes are different, we enforce x1 ̸= x2, x3 ̸= x4, and x5 ̸= x6. Without
loss of generality, we add an additional set of constraints: xi+1 ≥ xi + 1, i = 1, 3, 5. Then, the
solution to model (12) provides one feasible value for z; we obtain (x∗

1, x∗
2, x∗

3, x∗
4, x∗

5, x∗
6, z∗) =
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(3, 11, 2, 17, 5, 7, 33) as the solution using the procedure in Section 3.1. For the next solution, we
add a cutting plane: z ≥ z∗ + 1. We repeat this process until we get five solutions for z obtaining
z∗ = 33, z∗ = 85, z∗ = 93, z∗ = 141, and z∗ = 201, respectively. We are unaware of how many such
solutions exist.

Problem 6. Find all integers, z, such that each of the six integers z, z + 2, z + 6, z + 8, z + 12,
z + 14 are primes.

Solution. The corresponding optimization model is:

min
x

0 s.t.{x2 = x1 + 2, x3 = x1 + 6, x4 = x1 + 8,

x5 = x1 + 12, x6 = x1 + 14 with x1, . . . , x6 ∈ P}.
(13)

Then, we obtain one feasible solution to model (13) using the procedure in Section 3.1 as (x∗
1, . . . ,

x∗
6) = (5, 7, 11, 13, 17, 19). The uniqueness of this solution is verifiable in a method similar to that

for Problem 4. Let x∗
1 = a for some a ∈ Z+. Consider the set {x∗

1, x∗
2, x∗

3, x∗
4, x∗

6} = {a, a + 2, a +
6, a + 8, a + 14} which has exactly one element divisible by 5. Thus, x1 ≤ 5 is a valid inequality.
Since, x1 = 2, 3 are not feasible (and, x1 = {1, 4} is not prime), the obtained solution x∗

1 = 5 is
unique.

In Appendix A, we provide three further illustrative examples. Although Problems 1-6 are
“toy” problems, they demonstrate how problems in number theory are expressible as PPs. Further,
they show how such formulations allow an easy application of a commercial solver, if available; we
describe the details of such a solution method in Section 3.1. However, the above formulations
mask three subtleties from the original problems of number theory.

(i) First, our optimization problems implicitly upper bound the decision variables, e.g., the solver
Gurobi treats numbers larger than 1020 as infinite (Gurobi Optimization, LLC, 2024). Thus,
the optimization problems are unable to compute solutions larger than this value. Although
such large limits are expected to be reasonable for most practical problems, problems in
number theory do not have such a restriction. Scaling the numbers is one possible direction
to overcome this.

(ii) Second, computing all solutions requires running the procedure possibly an exponential num-
ber of times; even then we are only guaranteed to obtain solutions up to the solver-imposed
implicit upper bound. This exhaustive enumeration is expected as most problems in number
theory (and, integer programming) are NP-complete. Even verifying uniqueness of an integer
solution of a linear system of equations is NP-complete (Mangasarian & Ferris, 2010). How-
ever, when a finite number of solutions are required—such as, Problem 1 and Problem 5—we
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expect the solutions to be obtained in a few repetitions, particularly if good cuts are identified.
Indeed, in the procedure we describe in Section 3.1, we obtain solutions for these two problems
in four and five repetitions, respectively. Further, several problems in number theory typically
have solutions that are small prime numbers. For example, in Problem 6 we observe that
z ≤ 5. This is because for z > 5 at least one element in the set {z +1, z +3, z +7, z +9, z +15}
is divisible by 5 and, hence, is not prime.

(iii) Third, the above illustrated optimization procedure rests on a scheme to determine p̄x given
x; this provides an added cutting plane. Unfortunately, there is no analytical formula to
determine the prime number immediately proceeding a given integer. However, several theo-
rems from the number theory literature assist in this computation. For example, Bertrand’s
postulate sets the range of p̄x ∈ (x, 2x − 2), ∀x ∈ P \ {2, 3}, see, e.g., Sylvester (1881). In
computational practice, as we also mention above, instead of the cut x ≥ p̄x∗ we can simply
add the relaxed cut x ≥ x∗ +1 which allows the solver to compute a different optimal solution
than x. We build up on this to construct a modified branch-and-bound procedure in the next
section.

3. Solving Prime Programs

3.1. Branch-and-bound for Prime Programs

We now consider the PP presented in model (1) with linear functions as follows:

z∗ = min cx (14a)

s.t. Ax ≥ b, (14b)

xi ∈ [2, Mi] ∩ P, i = 1, . . . , n, (14c)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Mi ∈ Z+,∀i = 1, . . . , n. Here, M denotes a vector of upper
bounds on feasible prime numbers. If such a vector of large enough prime numbers is available, we
use that; however, if this is difficult to estimate, we employ large enough integers. In the absence of
the prime constraint given by equation (14c), model (14) is solvable via the standard branch-and-
bound procedure of integer programming, see, e.g., Wolsey (1998). We now adapt this procedure
to solve model (14).

To this end, we first solve the linear programming (LP) relaxation of model (14). If the solution,
x∗ = [x∗

1, . . . x∗
n], is prime we stop at the root node itself since the solution is optimal. If at least one

element is not prime, we select the element which is farthest from its closest prime to branch on;
this is similar to the so-called most fractional rule in integer programming. Given the non-prime
branching variable, i, we create two nodes, right and left, that include the additional constraints
xi ≥ p̄x∗

i
and xi ≤ p

x∗
i
, respectively. We store these in a heap, H, in this order. We then explore
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the last node (i.e., the left child node) in the heap via a depth-first strategy. We prune nodes if
one of the following conditions holds: (a) the node is optimal; i.e., the relaxed solution is prime,
(b) the node is infeasible, or (c) the objective function value of the relaxed solution at that node
is not better than that of the incumbent; i.e., the node is pruned if the objective function value
of the node is greater than the incumbent’s objective function value in a minimization problem.
When a node is pruned, we remove it from the heap. We terminate the algorithm when all nodes
are explored or pruned; i.e., H = ϕ. We note that solving the linear programming (LP) relaxation
with such a branching procedure is sufficient as it partitions the feasible space into disjoint spaces
without cutting off any feasible solution. We illustrate this branch-and-bound procedure with the
following numerical example.

min −x1 − 4x2 (15a)

s.t. −3x1 − x2 ≥ −2000, (15b)

−x1 − 5x2 ≥ −450, (15c)

x1, x2 ∈ [2, 100] ∩ P. (15d)

Figure 1 presents the branch-and-bound tree for model (15) that we summarize here; nodes marked
with white are pruned below while those in black are further branched. We first strengthen the
upper bound of M = 100 in constraint (15d) with M = p100 = 97. Then, the LP solution at the root
node is x∗ = [97, 70.6]. Since x1 is prime, we branch on x2. We identify p̄70.6 = 71 (right branch)
and p70.6 = 67 (left branch). We proceed to the left child-branch first (marked “2”); it is pruned,
identifying an incumbent solution. We then backtrack to the right branch at node “3”, which is
the next element in the heap, and continue the process. Node “5” is pruned via optimality and we
backtrack to node “4” to its right branch. Continuing, we identify a new incumbent solution at
node “8”. The right branch at node “9” identifies a solution that is not prime which is then pruned
by bound. Backtracking we proceed first to the right branch of node “6” (i.e., node “10”) and then
to the right branch of node “3” (i.e., node “11”) — both are pruned by infeasibility. The optimal
solution is then x∗ = [83, 73] with an optimal objective function value of -375. The enumeration
tree contains 11 nodes, six of which are leaf nodes.

3.2. Sensitivity Analysis for Prime Programs

We now describe a procedure to conduct sensitivity analysis on a linear PP. This allows us to
compute changes in the optimal objective function value for small perturbations in the problem
parameters without re-solving the entire program. To this end, we employ the technique of the
inference dual of an integer program as proposed in Dawande & Hooker (2000). Consider the
following problem that formulates a perturbation in model (14).

z∗
δ = min (c + cδ)x (16a)
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Figure 1: Enumeration tree for the prime branch-and-bound procedure applied to model (15). The six nodes marked
in white are leaf nodes that are pruned below for reasons indicated, while the other five nodes are further branched
on. For details, see Section 3.1.
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s.t. (A + Aδ)x ≥ b + bδ, (16b)

xi ∈ [2, Mi] ∩ P, i = 1, . . . , n. (16c)

In the absence of constraint (16c), the work in Dawande & Hooker (2000) provides a sufficient
condition ensuring z∗ − ∆ ≤ z∗

δ , where ∆ ≥ 0, by examining all the leaf nodes of the branch-
and-bound tree for model (14). At a leaf node p of the branch-and-bound tree, we let x̄p and
xp denote upper and lower bounds for x, and λp denote the optimal value of the dual variables
of constraint (14b). Further, we let zUB

p denote the best upper bound on the optimal objective
function value obtained up to node p in the tree; if no such bound is available, we set zUB

p = ∞.
We distinguish three cases for the three types of leaf nodes.

(i) If the leaf node is pruned by infeasibility, we let qp = λpA, qp
δ = λpAδ, and zp = ε, where ε is

a small positive quantity.

(ii) If the leaf node is pruned by bound, we let qp = λpA− c, qp
δ = λpAδ − cδ, and zp = zUB

p −∆.

(iii) If the leaf node is pruned by optimality, we let qp = λpA− c, qp
δ = λpAδ− cδ, and zp = z̄p−∆

where z̄p is the objective function value at that node.

Then, the following theorem relates the objective functions of model (14) and its perturbation in
model (16).

Theorem 1. Consider model (14) and its perturbation in model (16). Let qp, qp
δ , zp, and λp be as

defined above. Then, z∗ −∆ ≤ z∗
δ holds for all ∆ ≥ 0 if there exist q̄p

j , j = 1, . . . , n satisfying

n∑
j=1

(
(qp

j + qp
δ j)xp

j + q̄p
j (x̄p

j − xp
j )

)
≤ λp(b + bδ)− zp, (17a)

q̄p
j ≥ qp

j + qp
δ j , q̄p

j ≥ 0, j = 1, . . . , n, (17b)

for each leaf node p of the branch-and-bound tree of model (14).

Proof. See Dawande & Hooker (2000) and Appendix B.

The proof of Theorem 1 mirrors that in Dawande & Hooker (2000) for mixed-integer programs
(i.e., in the absence of prime number constraints); hence, we reserve it for the appendix. Although
Theorem 1 and the results in Dawande & Hooker (2000) provide only a sufficient, and not necessary,
condition, there is value in such sensitivity analysis as we demonstrate next. In Problem 7, we
consider an illustrative example inspired by the Goldbach conjecture.

Problem 7. Find the smallest prime number, x1, satisfying the condition 2k + 2 = x1 + x2 for a
given k ∈ Z+ where x2 ∈ P.
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Solution. The following PP formulates Problem 7.

z∗ = min
x1,x2

x1 (18a)

s.t x1 + x2 ≥ 2k + 2, (18b)

−x1 − x2 ≥ −2k − 2, (18c)

x1, x2 ∈ [2, M ] ∩ P. (18d)

where M is a large enough upper bound.

Now consider a perturbation in Problem 7: find the smallest prime number, x1, satisfying the
condition 2k + 2 + kδ = x1 + x2 for given k where kδ is an even integer and x2 ∈ P. In other words,
we change the right hand sides of equations (18b) and (18c). Then, we need to solve the following
PP:

z∗
δ = min

x1,x2
x1 (19a)

s.t x1 + x2 ≥ 2k + 2 + kδ, (19b)

−x1 − x2 ≥ −2k − 2− kδ, (19c)

x1, x2 ∈ [2, M ] ∩ P. (19d)

Following the notation of model (16), in model (19) we have Aδ ← 0, cδ ← 0, and bδ = [kδ,−kδ].
For a numerical demonstration, consider k = 1699. Figure 2 presents the branch-and-bound tree
for this instance of model (7); we have, z∗ = 11. The enumeration tree contains five nodes, three
of which are leaf nodes (marked in white).

(i) Consider node 3. We have x3 = [2, 2], x̄3 = [7, 3391], z3 = ε, λ3 = [0, 1]. Then, q3 = [1, 1], q3
δ =

[0, 0]. In order to satisfy the sufficient condition of Theorem 1 at this node, we require
a solution q̄3

1, q̄3
2 such that 4 + 5q̄3

1 + 3389q̄3
2 ≤ 3400 + kδ − ε and q̄3

1, q̄3
2 ≥ 1. By setting

q̄3
1, q̄3

2 = [1, 1] we obtain kδ ≥ −2 + ε.

(ii) Consider node 4. We have x4 = [11, 2], x̄4 = [M, 3391], z4 = 11 − ∆, λ4 = [0, 0]. Then,
q4 = [−1, 0], q4

δ = [0, 0]. In order to satisfy the sufficient condition of Theorem 1 at this node,
we require a solution q̄4

1, q̄4
2 such that −11 + (M − 11)q̄4

1 + 3389q̄4
2 ≤ −11 + ∆ and q̄4

1, q̄4
2 ≥ 0.

By setting q̄4
1, q̄4

2 = [0, 0] we obtain ∆ ≥ 0.

(iii) Consider node 5. We have x5 = [2, 3407], x̄5 = [M, M ], z5 = ε, λ5 = [1, 0]. Then q5 =
[−1,−1], q5

δ = [0, 0]. In order to satisfy the sufficient condition of Theorem 1 at this node, we
require a solution q̄5

1, q̄5
2 such that −3409 + (M − 2)q̄5

1 + (M − 3407)q̄5
2 ≤ −3400− kδ − ε and

q̄5
1, q̄5

2 ≥ 0. By setting q̄5
1, q̄5

2 = [0, 0] we obtain kδ ≤ 9− ε.
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Figure 2: Enumeration tree for the prime branch-and-bound procedure applied to model (18) with k = 1699. The
three nodes marked in white are leaf nodes that are pruned below for reasons indicated, while the other two nodes
are further branched on. For details, see Section 3.2.

Thus, we conclude that z∗
δ ≥ 11 −∆ holds for all ∆ ≥ 0 if kδ ∈ (−2, 9). The optimal solution

of model (18) is x∗ = [11, 3389]. We now illustrate the value of sensitivity analysis for PP via the
following arguments.

Since kδ is even, the set of small-enough allowed values is {2, 4, 6, 8}. Now, consider, kδ = 2
and the corresponding optimization model: minx x1 s.t.{x1 + x2 = 3402 with x1, x2 ∈ P}. Instead
of re-solving this model, we simply check the feasibility of the optimal solution of model (18) for
model (19). From the condition, x∗

1 ≥ 11 − ∆,∀∆ ≥ 0 it is sufficient to check feasible values
of x1 that are at least 11. Then, since [x1, x2] = [11, 3391] is feasible for model (19), it is also
optimal; hence, the optimal objective function value is 11. We thus obtain the optimal solution
without any additional computation (except checking that 3391 is a prime number). In contrast,
the branch-and-bound tree for this instance of model (19) has three nodes. Next, consider kδ = 4
and the corresponding optimization model: minx x1 s.t.{x1 + x2 = 3404 with x1, x2 ∈ P}. Then,
[x1, x2] = [11, 3393] is infeasible. The next solution [x1, x2] = [13, 3391] is feasible; hence, the
optimal objective function value is 13. We obtain this solution in two evaluations. In contrast, the
branch-and-bound tree for this instance of model (19) again has three nodes. Similarly, for kδ = 6
and kδ = 8, we obtain the optimal objective function value of 17 in only three additional evaluations.
Thus, following Theorem 1, we save computational effort by not considering prime numbers below
11; i.e., we obviate checking the primes 3, 5, and 7. In Appendix C, we provide another problem
which is also inspired by the Goldbach conjecture to illustrate the value of Theorem 1.
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4. Solution Strategies for Prime Programs

In Section 3.1, we present a branch-and-bound strategy to solve prime programs. This branch-
and-bound procedure is generic and capable of solving any PP; however, the computational effort
could be prohibitive. Similar to integer programming, certain prime programs allow us to exploit
their structural properties to obtain solutions in a computationally efficient way. Problems 1-6
present examples of how insights from number theory can be used to facilitate solutions. In this
section, we exploit such properties of the presented branch-and-bound procedure by revisiting a
classic problem in the number theory literature and employing it as a numerical case-study.

We carry out all computational experiments on a computing cluster with an Intel Xeon Gold
6138 2.0GHz processor with 192 GB of RAM and Gurobi version 10.0.3 using Python 3.8.3. We
require only a LP solver, and use Gurobi’s default LP optimality tolerance of 10−6. We provide the
corresponding branch-and-bound code at our GitHub page. As we demonstrate next, solving the
problem we consider —given an upper bound of the considered feasible solution—via the branch-
and-bound method of Section 3.1 is computationally challenging.

4.1. Linear Equations in Primes
Conjecture 1 (Pomerance et al. (1988)). There exist n distinct prime numbers x1 < x2 < . . . < xn

such that the average of any two of these primes, given by 1
2(xi + xj), ∀i, j = 1, . . . , n, i ̸= j, is also

a prime number for n ≥ 2.

Conjecture 1 is proposed in Pomerance et al. (1988) and is proven in Granville (1990) assuming
the so-called k-Tuple Conjecture of Hardy and Littlewood (Hardy & Littlewood, 1923) is true.
A solution of Conjecture 1 is not unique for a given n, e.g., consider n = 3 then [3, 7, 19] and
[5, 17, 41] are both valid solutions. We are only aware of solutions of Conjecture 1 until n = 12;
for n = 12 a solution is provided in Balog (1992): [5, 17, 521, 42281, 138461, 195137, 204137, 221537,

363497, 367001, 414737, 434717].
To solve Conjecture 1, we formulate a sequence of PPs of increasing fidelity. These PPs take as

input both n and an upper bound, M , for the considered set of prime numbers. We begin with a
naive PP as follows.

min
x,y

0 (20a)

s.t. 2yij = xi + xj , 1 ≤ i < j ≤ n, (20b)

xi+1 ≥ xi + 1, 1 ≤ i ≤ n− 1, (20c)

xi ∈ [2, M ] ∩ P, 1 ≤ i ≤ n, (20d)

yij ∈ [2, M ] ∩ P, 1 ≤ i < j ≤ n. (20e)

An optimal solution of model (20), if it exists, provides a vector [x]n, with each element below M ,
that satisfies Conjecture 1. Here, constraints (20b) and (20e) ensure that the average of any two
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components of [x] is also prime, where yij is the average of xi and xj for 1 ≤ i < j ≤ n. Constraint
(20c) ensures that the solutions are distinct primes, while constraint (20d) restricts x to be prime.
Then, from Section 3.1, model (20) is a PP.

We now tighten the formulation in model (20) with a few observations. First, constraint (20b)
requires the elements of x to be odd primes; thus, we exclude the prime 2 from the optimal solution
of model (20). We make two further observations: (i) prime numbers differ by at least 2, and (ii)
we require at least one prime number between xi and xj . Thus, we tighten constraint (20c) and
have a more efficient model given by the PP below.

min
x,y

0 (21a)

s.t. 2yij = xi + xj , 1 ≤ i < j ≤ n, (21b)

xi+1 ≥ xi + 4, 1 ≤ i ≤ n− 1, (21c)

yij ≥ xi + 2, 1 ≤ i < j ≤ n, (21d)

xj ≥ yij + 2, 1 ≤ i < j ≤ n, (21e)

xi ∈ [3, M ] ∩ P, 1 ≤ i ≤ n, (21f)

yij ∈ [5, M ] ∩ P, 1 ≤ i < j ≤ n. (21g)

n M Nodes Time Solution

2 1000 7 - [3, 7]
3 1000 31 - [3, 7, 919]
4 1000 119 - [3, 7, 19, 139]
5 1000 269 - [3, 7, 19, 139, 859]
6 1000 189049 90 [3, 11, 23, 71, 191, 443]
7 1000 159473 82 [5, 17, 41, 101, 257, 461, 521]
8 1000 1286503 821 [5, 17, 41, 101, 257, 521, 761, 881]
9 1000 4080930 3000 ϕ

1000 8209983 6000 ϕ

10000 3658991 3000 ϕ

10000 7353380 6000 ϕ

Table 1: Computational results on solving model (21) using the Naive branch-and-bound solution strategy presented
in Section 3.1. Here, n and M are inputs to model (21), Nodes denotes the number of explored nodes in the branch-
and-bound tree, and Time denotes the computational time in seconds. Entries of “-” in the time column denote the
solution is obtained practically instantaneously. The Solution column presents an optimal solution found with the
given parameters, here the entry ϕ in the rows with n = 9 denotes that no solution is obtained; increasing the value
of M and Time still does not provide a solution.
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Table 1 presents our computational results for model (21) with M = 1000. We solve model (21)
with the branch-and-bound method presented in Section 3.1. Solutions for n ≤ 5 are obtained
practically instantly, while for n = 6, 7, 8 the solution times are slightly longer. However, no solution
is obtained for n = 9 within 50 minutes and neither is the model proven infeasible. Increasing the
time limit (to allow exploration of a greater number of nodes of the branch-and-bound tree) to 100
minutes or increasing M (to allow exploration of a greater number of potentially feasible prime
numbers) to 10000 still provides no feasible solution. Each branch-and-bound node solves a LP,
and this computation is highly effective benefiting from modern LP solvers; for n = 6, 7, 8, 9, the
computational time per 1000 nodes is only marginally over half a second. Thus, we now explore
tailored strategies to determine the branching variables as well as fixing certain variables to solve
model (21). We refer to the branching strategy of Section 3.1 as the Naive strategy, and begin
with variable fixing strategies.

4.2. Variable-fixing Strategies
Computing a solution for model (21) becomes increasingly computationally difficult as n in-

creases; however, the solution [x]n includes several components from the solution [x]n−1. This
observation motivates a variable fixing strategy where the first n− 1 components of [x]n are fixed
from the previously obtained solution. We then solve model (21) for the largest missing element
alone. We denote such a strategy of fixing the decision variables as SelectAll.

Routine 1 fixing strategy (name, arg)
Input: name = {Naive, SelectAll, ExcludeOne, ExcludeTwo} of chosen fixing strategy; a vector

[x̄] of dimension n − 1, additional arguments arg of appropriate dimension. Below, a ← ϕ

denotes no value is assigned to a.
Output: a vector [x] of dimension n.

1: if name = Naive

2: xi ← ϕ, ∀i = 1, . . . , n.
3: if name = SelectAll

4: xi ← x̄i, i = 1, . . . , n− 1; xn ← ϕ.
5: if name = ExcludeOne

6: (l)← arg.
7: xi ← x̄i, i = 1, . . . , l − 1; xi ← x̄i+1, i = l, . . . , n− 2; xi ← ϕ, i = n− 1, n.

8: if name = ExcludeTwo

9: (l1, l2)← arg, with l1 < l2.
10: xi ← x̄i, i = 1, . . . , l1 − 1; xi ← x̄i+1, i = l1, . . . , l2 − 2; xi ← x̄i+2, i = l2 − 1, . . . , n − 3;

xi ← ϕ, i = n− 2, . . . , n.

The SelectAll strategy might result in infeasibility of model (21) due to too many variables
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being fixed. Thus, rather than fixing all the first n − 1 components of x, we selectively exclude
some elements from fixing, e.g., those near their upper bound. To this end, we define two other
strategies — ExcludeOne and ExcludeTwo — that exclude one and two elements from fixing while
keeping the two and three largest elements unassigned, respectively. Routine 1 summarizes the
three variable fixing strategies, while Example 1 illustrates them numerically; here, the quantity
arg denotes the input arguments to the respective strategies. In Section 4.4, we provide the benefit
of these three enhanced strategies over the Naive strategy.

Example 1. An illustration of the four variable fixing strategies of Routine 1.

Let n = 7 and consider a known solution, x̄, for n = 6 with x̄ = [7, 19, 67, 127, 547, 607]. From
the seven positions of x to determine, we fix at most six positions from the known solution x̄. In
the Naive strategy we do not fix any variables. Our remaining three strategies are as follows.

(i) In the SelectAll strategy, all six elements are fixed. Then, we have x = [7, 19, 67, 127, 547,

607, ϕ].

(ii) In the ExcludeOne strategy, we have one element, l, excluded as determined by its input
argument while the other five elements are fixed. Consider l = 3. Then, we have x = [7, 19,

127, 547, 607, ϕ, ϕ].

(iii) In the ExcludeTwo strategy, we have two elements, l1 and l2, that are excluded as determined
by its input argument, while the other four elements are fixed. Consider (l1, l2) = (3, 4).
Then, we have x = [7, 19, 547, 607, ϕ, ϕ, ϕ].

4.3. Branching Strategies

By examining the solutions in Table 1, we observe that the solutions for n = 2 to 6 are similar;
this observation motivated the variable fixing strategies of Section 4.2. However, none of the
elements of the solutions from n = 2 to 6 are present in the solutions for n = 7 and n = 8. In
this section, we present a different strategy motivated by integer number theory. Unlike integer
programming, prime numbers are not spaced equally. We thus investigate strategies related to
the remainder of an integer when divided by another integer. In this section, we consider prime
numbers that are at least 5; checking whether 3 forms part of the solution is easily done as a
post-processing step to the optimization. We begin with two simple lemmas.

Lemma 1. Any prime number x ≥ 5 is expressible as x = 12z + k for some z ∈ Z and some
k ∈ {1, 5, 7, 11}.

Proof. Any integer x is expressible as x = 12z + k for some z ∈ Z, where 0 ≤ k ≤ 11 is the
remainder of x when divided by 12. When k = 0, x = 12z, which is divisible by 12; thus, x is not
prime. Similarly, if k = 2, 3, 4, 6, 8, 9, 10, then x is divisible by 2, 3, 4, 6, 4, 3, 2, respectively; hence,
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Routine 2 branching strategy (name, LP solution at node, arg)
Input: name ={Naive, Modulo} of chosen branching strategy; arguments arg of the chosen branching strategy, arg = ϕ

if name = Naive, arg = {1, 5, 7, 11} if name = Modulo; (x∗, y∗)← a solution of the linear programming relaxation
of model (21) at a given node.

Output: constraints for right and left child nodes of the input node.
1: if name = Naive

2: for i = 1, . . . , n

3: if x∗
i /∈ P

4: distXi ← min{p̄x∗
i
− x∗

i , x∗
i − p

x∗
i
}.

5: else
6: distXi ← 0.
7: for j = i + 1, . . . , n

8: if y∗
ij /∈ P

9: distYij ← min{p̄y∗
ij
− y∗

ij , y∗
ij − p

y∗
ij
}.

10: else
11: distYij ← 0.

12: indX ← arg maxi distXi; indY ← arg maxij distYij .
13: if distXindX > distYindY

14: return right and left nodes that contain additional constraints xindX ≥ p̄x∗
indX

and xindX ≤ p
x∗

indX

, respec-
tively.

15: else
16: return right and left nodes that contain additional constraints yindY ≥ p̄y∗

indY
and yindY ≤ p

y∗
indY

, respec-
tively.

17: if name = Modulo

18: k ← arg.
19: k0 ← k mod 6.
20: for i = 1, . . . , n

21: if (x∗
i /∈ P) or (x∗

i mod 12 ̸= k)
22: distXi ← min{p̄x∗

i
(12, k)− x∗

i , x∗
i − p

x∗
i
(12, k)}.

23: else
24: distXi ← 0.
25: for j = i + 1, . . . , n

26: if (y∗
ij /∈ P) or (y∗

ij mod 6 ̸= k0)
27: distYij ← min{p̄y∗

ij
(6, k0)− y∗

ij , y∗
ij − p

y∗
ij

(6, k0)}.
28: else
29: distYij ← 0.

30: indX ← arg maxi distXi; indY ← arg maxij distYij .
31: if distXindX > distYindY

32: return right and left nodes that contain additional constraints xindX ≥ p̄x∗
indX

(12, k) and xindX ≤
p

x∗
indX

(12, k), respectively.
33: else
34: return right and left nodes that contain additional constraints yindY ≥ p̄y∗

indY
(6, k0) and yindY ≤

p
y∗

indY

(6, k0), respectively.
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it is not prime. Therefore, for a given prime x ≥ 5, it is expressible only in the form x = 12z + k

for some z ∈ Z and some k ∈ {1, 5, 7, 11}. For example, the prime number 23 = 12 · 1 + 11.

Lemma 2. In an optimal solution for model (21), the prime number yij is given by the average of
two prime numbers, xi and xj, both of which leave the same remainder when divided by 12. Hence,
y is of the form 6z + k for some z ∈ Z, and some k ∈ {1, 5}.

Proof. From Lemma 1, consider x1 = 12z1 + k1 and x2 = 12z2 + k2 for some z1, z2 ∈ Z and some
k1, k2 ∈ {1, 5, 7, 11}, and x1, x2 ≥ 5. Table 2 provides the average of xi and xj for different values
of k1 and k2. The average cannot be prime unless k1 = k2. This completes the first part of the
lemma. Then, from constraint (21) (equivalently, from the diagonal entries of Table 2), yij is of the
form yij = 6zij + k for some zij ∈ Z where k ∈ {1, 5}.

HHH
HHHHx1

x2 12z2 + 1 12z2 + 5 12z2 + 7 12z2 + 11

12z1 + 1 6(z1 + z2) + 1 3(2z1 + 2z2 + 1) 2(3z1 + 3z2 + 2) 6(z1 + z2)
12z1 + 5 3(2z1 + 2z2 + 1) 6(z1 + z2) + 5 6(z1 + z2 + 1) 2(3z1 + 3z2 + 4)
12z1 + 7 2(3z1 + 3z2 + 2) 6(z1 + z2 + 1) 6(z1 + z2 + 1) + 1 3(2z1 + 2z2 + 3)
12z1 + 11 6(z1 + z2) 2(3z1 + 3z2 + 4) 3(2z1 + 2z2 + 3) 6(z1 + z2 + 1) + 5

Table 2: Averages of pairs of prime numbers of the form x1 = 12z1 + k and x2 = 12z2 + k for k = {1, 5, 7, 11}. For
details, see Section 4.3 and Lemma 2.

Lemmas 1 and 2 allow an improvement in the branching behavior of model (21). A straight-
forward way of doing so is to add additional integer variables to model (21). However, instead
we change the way the branch-and-bound method constructs the disjunctive branches. Consider
x = 24.7 at some node of the branch-and-bound tree of the Naive strategy. Then, the two branches
are x ≤ 23 and x ≥ 29. Now, let p̄x(m, k) denote the smallest prime number of the form mz + k

for some z ∈ Z which is greater than x ∈ R+, and p
x
(m, k) denote the largest prime number of

the form mz + k for some z ∈ Z which is less than x ∈ R+. We add the additional constraint for
the two branching nodes as xi ≥ p̄x∗

i
(m, k) and xi ≤ p

x∗
i
(m, k), respectively, for m = 12 and k = 1

(from Lemma 2). Then, the two branches under this new branching rule are x ≤ p24.7(12, 1) = 13
and x ≥ p̄24.7(12, 1) = 37. With the Naive strategy, we need to introduce a new integer variable
z ∈ Z such that x = 12z + 1 and then branch on one variable at a time. Branching on the variable
x = 24.7 leads to the two branches: x ≤ 23 and x ≥ 29. In contrast, branching on the variable
z = 1.975 leads to the two branches: z ≤ 1 and z ≥ 2 which are equivalent to x ≤ 13 and x ≥ 25.
The advantages of changing the branching method are twofold. First, it provides stronger con-
straints than those obtained from naive branching method since the solution is always a prime of
the form we are considering. Second, it is not necessary to introduce additional variables into the
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model. We call such a branching strategy as Modulo with the argument arg denoting the value of
k ∈ {1, 5, 7, 11}. Routine 2 summarizes the Modulo branching strategies.

4.4. Computation Results

In this section, we present our computational experiments to solve model (21) using the fixing
strategy described in Routine 1 and the branching strategy described in Routine 2. However, rather
than directly use them as solution procedures, we begin with a need for an iterative algorithm for
solving model (21) that takes an input both these strategies. For example, consider a moderate
sized instance of model (21) with n = 5 and M = 3000 that we solve with the ExcludeTwo fixing
strategy and the Modulo branching strategy. From the total of six instances each for arg = 1, 5,
7, and 11, we obtain feasible solutions in only two, one, two, and three instances, respectively;
the remaining instances are all infeasible. However, increasing the upper bounds results in all
instances being feasible within two seconds. Similarly, there are easily identifiable instances where
neither feasibility nor infeasibility is proved within a given time limit; Example S1 in Appendix D
provides a numerical instance that shows the number of such intractable instances is reduced when
the time limit is increased. Further, in Example S2 and S3 of Appendix D we demonstrate the
computational benefits of the variable fixing and branching strategies over their naive counterparts.
Since we know model (21) is feasible until at least n = 12 given a sufficiently large time limit and
upper bounds, we initialize solution procedures with a small enough upper bound and iteratively
increase the bound if an instance is proven infeasible. Algorithm 3 presents the complete scheme
we employ to solve model (21). We illustrate the working of the algorithm in Example 2. In the
interest of space, we present only the most relevant computational results here while we reserve the
complete set of results for Appendix D.

Example 2. Consider an instance of model (21) with inputs n = 3, M = 1000, T = 600 seconds,
t = 300 seconds, α = 0.2, fixing strategy = SelectAll with arg = ϕ, and branching strategy

= Modulo with arg = 1 applied to each node in Algorithm 3.

We initialize Algorithm 3 with k ← 0, m← 1, time← 0, and [x0]0 ← []. In the first iteration, we
apply the fixing strategy = SelectAll, resulting in [x0]1 ← [ϕ]. Using this fixed solution, we
solve model (21) with the Modulo with arg = 1 branching strategy to obtain a feasible solution in
Step 4. Then, k ← 1 and time is updated; currently, the fixed solution is [x1]1 = [13] and m← 2.
In the second iteration, we apply the fixing strategy again, now yielding [x1]2 = [13, ϕ].
Solving the model, we obtain a solution of [13, 853]. After this, k ← 2 and time is updated,
leading to [x2]2 = [13, 853] and m ← 3. In the third iteration, applying the fixing strategy

results in [x2]3 = [13, 853, ϕ]. However, now the model becomes infeasible; k ← 3 and time

is updated. Hence, we retain the previous fixed solution [x3]2 ← [x2]2 = [13, 853], and the
parameter M is updated to 1200 for i = 1, 2, 3. In the fourth iteration, the fixing strategy

yields [x3]3 ← [13, 853, ϕ]. Solving the model, we obtain the final solution [13, 853, 1129]. Finally,
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Algorithm 3 An algorithm to solve the PP given by model (21).
Input: an instance of model (21) given by n and Mi, ∀i = 1, . . . , n; time limits T and t; a scalar

α; subroutines fixing strategy defined by Routine 1 and branching strategy defined by
Routine 2.

Output: a feasible solution of model (21), x∗
i , i = 1, . . . , n or a statement of intractability under

the given input parameters.
1: k ← 0, m← 1, time← 0, [x0]0 = [].
2: while m ≤ n

3: Fix [xk]m ← fixing strategy(name, [xk]m−1).
4: Solve instance of model (21) with input m and Mi for i = 1, . . . , m using branching

strategy up to at most t seconds.
5: k ← k + 1.
6: Update time to wall-clock time.
7: if feasible solution found
8: [xk]m ← feasible solution of model (21).
9: if m = n

10: return [x∗]m ← [xk]m.

11: m← m + 1.
12: else
13: [xk]m−1 ← [xk−1]m−1.
14: Mi ←Mi(1 + α), ∀i = 1, . . . , m.

15: if time ≥ T

16: return statement of intractability.

k ← 4, time is updated, and the algorithm terminates, returning the feasible solution [x] =
[13, 853, 1129].

Now, we compare the four fixing and five branching strategies to each other. For a given n and
each of the branching strategies, we report results for each instance of the four fixing strategies;
i.e., one for Naive, one for SelectAll, n−1 for ExcludeOne and (n−1)(n−2)

2 for ExcludeTwo. Thus,
for the five branching strategies we report solutions and the time taken to obtain these solutions
for 5 · (2+ n(n−1)

2 ) instances for each n; for instances that fail to obtain a feasible solution or proven
infeasibility within a given time limit, we report as “Intractable”. Tables S1-S6 of Appendix D
present all of these results. Table 3 presents a summary of the “best” branching strategy (i.e.,
where a solution is obtained in the least amount of time) results for each n for each of the four
fixing strategies; the corresponding best fixing strategy is always SelectAll (we discuss this below).
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n fixing strategy branching strategy Time

6 Naive Modulo 5; 7; 11 -
SelectAll Modulo 1; 7; 11 -
ExcludeOne Modulo 1; 5; 11 -
ExcludeTwo Modulo 1; 11 -

7 Naive Modulo 5 2
SelectAll Modulo 7; 11 -
ExcludeOne Modulo 7; 11 1
ExcludeTwo Modulo 11 1

8 Naive Modulo 5 56
SelectAll Modulo 1; 7 1
ExcludeOne Modulo 7 8
ExcludeTwo Modulo 1 30

9 Naive × 3000
SelectAll Modulo 1; 7; 11 2
ExcludeOne Modulo 7 11
ExcludeTwo Modulo 11 16

10 Naive × 6000
SelectAll Modulo 1 18
ExcludeOne Modulo 1 1147
ExcludeTwo × 6000

11 Naive × 6000
SelectAll Modulo 7 664
ExcludeOne × 6000
ExcludeTwo × 6000

Table 3: Selected results on solving model (21) with Algorithm 3 that obtain feasible solutions in the least computa-
tional time for each fixing strategy in Routine 2 for n = 6 to 11; i.e., the best performers for each fixing strategy.
The Time column shows the computational time in seconds. Entries of “-” denote the solution is obtained practically
instantaneously while entries of × denote no solution is obtained in the given time limit. The Naive branching
strategy is consistently worse than the Modulo branching strategy. The SelectAll fixing strategy is consistently the
best performer among the fixing strategies for any given branching strategies.

Among the fixing strategies, the SelectAll strategy stands out as the most effective by suc-
cessfully obtaining a feasible solution in each of the 30 instances, for any branching strategy, and
all n = 5, . . . , 10; see, Table 4b. On the other hand, the ExcludeOne and ExcludeTwo strategies
encounter a significant number of intractable instances — nearly two-fifths and three-fifths of the
instances for ExcludeOne and ExcludeTwo are intractable (see, Table 4b). Both these strategies
are also poor at scaling with increasing n: the proportion of intractable instances increases from
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Instances Feasible Avg. Time

Naive 167 33.5% 352
Modulo 1 167 53.9 % 290
Modulo 5 167 47.9 % 442
Modulo 7 167 52.1 % 377
Modulo 11 167 50.3 % 274

(a) branching strategy

Instances Feasible Avg. Time

Naive 30 63.3 % 374
SelectAll 30 100.0 % 30
ExcludeOne 195 59.5 % 261
ExcludeTwo 580 40.0 % 393

(b) fixing strategy

Table 4: Summary of computational results on solving model (21) with Algorithm 3 for n = 5, . . . , 10 for each (a)
branching strategy and (b) fixing strategy. Here, Instances denotes the number of instances, Feasible denotes
the percentage of instances that obtain a feasible solution in the given time limit, and Avg. Time denotes the average
computational time of these feasible instances. For details, see Section 4.4 and Appendix D.

3% and 4% for n = 7 to 93% and 100% for n = 10 for ExcludeOne and ExcludeTwo, respectively.
Further, the SelectAll strategy consistently produces the best solutions among the four fixing

strategies in 29 of its 30 instances. The only exception occurs for the case of n = 6, where the Naive

and ExcludeOne fixing strategies obtain a solution instantly for the Modulo with arg = 5 branching
strategy; however, here too the SelectAll strategy is worse by only one second. In contrast, the
ExcludeOne and ExcludeTwo strategies yield the best solutions in a limited number of instances.
Specifically, for n = 5, . . . , 10, ExcludeOne produces the best solutions in 20/20, 3/25, 0/30, 0/35,
0/40, and 0/45 instances, respectively, while ExcludeTwo produces the best solutions in 30/30,
6/50, 1/75, 0/105, 0/140, and 0/180 instances, respectively (see, Tables S1-S6 of Appendix D). For
n = 5, all instances are solved practically instantly.

Among the branching strategies, the Modulo with arg = 7 and 11 strategies both achieve the
best performance in 9/24 instances; see, Table 3. This is followed by the Modulo with arg = 1 and
Modulo with arg = 5 strategies which perform the best in 8/24 and 4/24 instances, respectively.
In contrast, none of the instances with the Naive strategy achieve the lowest computation time for
any n; see, Table 3. Among the Modulo strategies, for n = 6, . . . , 9, there is no clear consensus
for the best performer. For n = 10 and n = 11, five instances are intractable for any branching
strategy; however, the Modulo with arg = 1 and 7 strategies consistently dominate the performance
for these n.
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Table 5 presents the averaged computational times, separately for each n, across instances
where a feasible solution is obtained by Algorithm 3 (i.e., not intractable). We find that the Modulo

strategy—with any of the four arguments—is almost an order of magnitude faster, on average, than
the Naive strategy for small n. For example, consider n = 5, 6, 7: the slowest of the four arguments
of the Modulo strategy (with any argument) is faster than the Naive in 12/12, 17/17, 16/23 instances
(there are no intractable instances in this case). It might appear that the Naive strategy is better
for large n due to the lower computational times in Table 5. However, this masks the fact that there
are only few instances where a feasible solution is obtained by the Naive strategy; see, Table 3.
Indeed, for n = 8, 9, 10, the best Modulo strategy is faster than the Naive strategy in 27/30, 38/38,
47/47 of the instances, respectively. The Naive strategy manages to obtain feasible solutions in
only 23/30, 1/38, and 1/47 instances for n = 8, 9, and 10, respectively; i.e., most of the nearly
one-third (see, Table 4) feasible instances of the Naive strategy are from small values of n. With
this background, the Modulo strategy outperforms the Naive strategy.

n = 6 n = 7 n = 8 n = 9 n = 10

Naive 127 779 356 113 156
Modulo 1 5 65 571 737 1186
Modulo 5 4 119 1082 1386 299
Modulo 7 5 158 857 827 221
Modulo 11 2 112 656 1596 1343

Table 5: Average computation time of the feasible instances alone on solving model (21) with Algorithm 3 for
n = 6, . . . , 10 for each branching strategy. Solutions for n = 5 are obtained practically instantaneously.

Next, we compare the four Modulo strategies to each other. Here, there is no clear consensus
for the best performer. To see this, first consider all instances for n = 5, . . . , 10. Then, the Modulo

with arg = 1 strategy reports the fewest intractable instances: 77/167. In contrast, the Modulo

with arg = 5, 7, and 11 strategies report higher numbers of intractable solutions: 87/167, 80/167,
and 83/167, respectively. For n = 8, only 4/30 instances are intractable for Modulo with arg = 1;
while the next best performer, Modulo with arg = 7, has 6/30 intractable instances. We find that
arg = 5 performs relatively poorly. It takes the most computational effort (among the four Modulo

strategies): for n = 8, 9, 10, its average computational time (including the time taken for intractable
instances) is the worst among the four Modulo strategies. Further, arg = 5 does not outperform
the other three strategies for any instance for n = 8, 9, 10. This pattern is particularly visible for
n = 10 where most of the instances are intractable: the best instances of both Modulo with arg = 1
and arg = 11 obtain feasible solutions in under half a minute while the best for arg = 5 and arg
= 7 take about four to five minutes (see, Table S6 in Appendix D). However, the under-performing
Modulo with arg = 5 strategy becomes useful for n = 11: arg = 5 and arg = 7 are the only
two strategies that obtain a feasible solution for n = 11 (results not shown). These varied results
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provide empirical evidence in support of having multiple strategies as heuristics to solve PPs.

5. Conclusions

Employing ideas from number theory and mathematical optimization, we introduce a novel
conceptual framework of optimizing over prime numbers. We describe mathematical programming
formulations for several well-known problems in number theory that are traditionally studied using
disciplines other than optimization. The framework we propose then facilitates numerical solutions
by easily employing commercially available solvers; we do so by extending the branch-and-bound
algorithm of integer programming into prime programming. Such an algorithm is generic and
capable of solving any linear prime program.

We then further extend the branching rules of this method by developing additional strategies
for variables to branch on as well as fixing certain variables. Our computational results, conducted
on a classical conjecture to find a sequence of primes where the average of any two numbers is
also a prime, shows the advantage of such methods. Future work could explore priority-based
branching methods for optimization problems with integer and prime number constraints. In such
problems, prioritizing branching on prime numbers could be advantageous. This preference stems
from the fact that when a feasible solution satisfies the prime number restrictions, the branching
process results in a larger reduction of the feasible region compared to that by branching on integer
variables alone. Finally, by employing the notion of an inference dual, we extend the concept of
sensitivity analysis which is well-studied in linear programming into that for prime programming.

All our data, models, and code are available at: https://github.com/montreeklim/PrimeNu

mberProgramming.
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Appendix for:
The Prime Programming Problem: Formulations and Solution Methods

Montree Jaideea, Bismark Singha,∗

aSchool of Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK

There are four components in this appendix. Section A provides examples of PPs which are
inspired by conjectures in number theory. Section B provides the proof for Theorem 1 of the main
text, required for conducting sensitivity analysis for PPs. We then provide additional examples of
sensitivity analysis for PPs inspired by the Goldbach conjecture in Section C. Section D provides
additional computational results to supplement those in Section 4.4 of the main text.

A. Prime Programming Formulations for Three Toy-problems

The following three problems, which can be formulated as PPs, are inspired by questions found
on the websites cited below. This section provides prime programming formulations of such prob-
lems.

Definition 1. A twin prime is a prime number that is either two more or two less than another
prime number.

Problem 1. Find all consecutive twin prime pairs (x1, x1 + 2) and (x2, x2 + 2) such that x2 is
smaller than the sum of the first pair.

Solution. The corresponding optimization model is:

min
x

0 s.t.{x2 ≥ x1 + 4, x2 ≤ 2x1 + 1, x3 = x1 + 2, x4 = x2 + 2 with x1, x2, x3, x4 ∈ P}. (1)

To ensure the smallest solution pair, a variation of the problem is the following model:

min
x

x1 s.t.{x2 ≥ x1 + 4, x2 ≤ 2x1 + 1 with x1, x1 + 2, x2, x2 + 2 ∈ P}. (2)

The solution to this model provides one feasible pair, (5, 7) and (11, 13); i.e., (x∗
1, x∗

2, x∗
3, x∗

4) = (5,

11, 7, 13). For the next solution, we add a cutting plane x1 ≥ x∗
1 + 1 and continue this process.

Repeating this process provides us several such solutions but not necessarily all the solutions. In the

∗Corresponding author
Email address: b.singh@southampton.ac.uk (Bismark Singh)
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first five iterations of the naive branch-and-bound procedure we describe in Section 3.1 of the main
text, we obtain solutions (5, 11, 7, 13), (11, 17, 13, 19), (17, 29, 19, 31), (29, 41, 31, 43), (41, 59, 43, 61).
However, the solutions obtained from this model are not necessarily consecutive twin prime pairs.
We can verify the consecutive nature of the obtained twin primes, (x∗

1, x∗
1 + 2) and (x∗

2, x∗
2 + 2), if

there exists (x0, x0 + 2) ∈ P for some x0 ≤ x∗
2.

For a similar problem to Problem 1, see https://math.stackexchange.com/q/4014554.

Definition 2. A super prime square is a prime number, x, such that (a1 + a2 + a3 + a4)/6 is prime
for some a1, . . . , a4 ∈ Z+ and x + ai is also a prime number for all i = 1, . . . , 4.

Problem 2. Find the largest super prime square.

Solution. The corresponding optimization model is:

max
x,a

x0 s.t.{6x0 = a1 + a2 + a3 + a4, x1 = x0 + a1, x2 = x0 + a2, x3 = x0 + a3, x4 = x0 + a4,

x2 ≥ x1 + 1, x3 ≥ x2 + 1, x4 ≥ x3 + 1 with x0, x1, . . . , x4 ∈ P and a1, . . . , a4 ∈ Z+}.(3)

To ensure the model is bounded, we need an upper bound for the variables. When
the upper bound is set to 105, the solution to this model (using the branch-and-bound
method we present in Section 3.1) provides one feasible tuple, (x∗

0, x∗
1, x∗

2, x∗
3, x∗

4, a∗
1, a∗

2, a∗
3, a∗

4) =
(3947, 9973, 9967, 9781, 9749, 6026, 6020, 5834, 5802) with the solution to the problem as x∗

0 = 3947.
Similarly, we obtain x∗

0 = 39727 and x∗
0 = 399853 when the upper bounds are set to 106 and 107,

respectively. It is possible that there are infinitely many solutions. If that is the case, there is no
largest super prime square.

For a similar problem to Problem 2, see https://math.stackexchange.com/q/2515549.

Definition 3. A sexy prime pair is a pair of prime numbers differing by 6.

Problem 3. Find the largest sexy prime pair (x, x + 6), such that their sum is divisible by 10.

Solution. The corresponding optimization model is:

max
x,z

x1 s.t.{2x1 + 6 = 10z, x2 = x1 + 6 with x1, x2 ∈ P and z ∈ Z+}. (4)

Again, an upper bound for variables is needed to ensure the model is bounded. To simplify the
model, we observe that if 2x+6 ≡ 0 mod 10, then x ≡ 2, 7 mod 10. Since x and x+6 are primes,
x must be of the form x = 10a + 7 for some a ∈ Z+. The simplified model is: maxx,a x1 s.t.{x1 =
10a+7, x2 = x1 +6 with x1, x2 ∈ P and a ∈ Z+}. When the upper bound is set to 105, the solution
to this model provides one feasible tuple, (x∗

1, x∗
2, a∗) = (99817, 99823, 9981) with the sexy prime

pair (99817, 99823). Similarly, we obtain a sexy prime pair (998737, 998743) and (9999937, 9999943)

2
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when the upper bound is set to 106 and 107, respectively. It is possible that there are infinitely
many solutions. If that is the case, there is no largest such sexy prime pair.

For a similar problem to Problem 3, see https://math.stackexchange.com/q/3230707.

B. Proof of Sensitivity Analysis for PP

In this section we provide a proof of Theorem 1 of the main text. The proof mirrors the proof
given in Dawande & Hooker (2000) with the key difference that the original work is for mixed-integer
programs while ours considers prime programs. The central idea is to derive sufficient conditions
that ensure z∗ − ∆ ≤ z∗

δ . These conditions are informed by determining a set of infeasible (or,
violated) inequalities, that the authors term as “surrogate inequalities”, at each of the leaf nodes.
To this end, we first drop both the prime number as well as the integer restrictions on the x variables
of model (14). Then, the following relaxed model is solved at each node of the branch-and-bound
tree.

min
x

cx (5a)

s.t. Ax ≥ b, (5b)

Cx ≥ d, (5c)

0 ≤ x ≤ M. (5d)

Here, Cx ≥ d denotes the branching cuts at each node where a variable xj has a non-prime value,
v. The left and right child nodes have branching cuts of the form xj ≤ p

v
and xj ≥ p̄v, respectively.

In constraint (5d), the bound of x variable is relaxed to between 0 and M ; where we can write the
model with an additional constraint xi ≥ 2 for all i = 1, . . . , n combined within the constraints (5c).
Then, model (5) has the same structure as the relaxed model (17) employed in Dawande & Hooker
(2000); hence, except for the branching rules of prime programs and mixed-integer programs, the
surrogate inequalities at leaf nodes follow directly. Let (λ, µ, ν) be the non-negative dual multipliers
of constraints (5b)-(5d), respectively. The following surrogate inequalities for model (5) directly
result from Dawande & Hooker (2000).

(i) For infeasible leaf nodes, the surrogate inequality is (λA)x ≥ λb.

(ii) For leaf nodes pruned by optimality, the surrogate inequality is (λA − c)x ≥ λb − ẑ + ∆ + ϵ,
where ẑ is the node’s objective function value.

(iii) For leaf nodes pruned by bound, the surrogate inequality is (λA−c)x ≥ λb− z̄ +∆+ ϵ, where
z̄ is the incumbent value of the objective function so far.

3
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At node p, consider
xj ∈ [vj , v̄j ] ∩ P, j = 1, . . . , n, (6)

where v, v̄ are prime numbers between 2 and M . We now define the following values as in Section 3.2,

zp =


ϵ,

z̄p − ∆,

zUB
p − ∆,

qp =


λpA,

λpA − c,

λpA − c,

qp
δ =


λpAδ, : if the node is pruned by infeasibility,

λpAδ − cδ, : if the node is pruned by optimality,

λpAδ − cδ, : if the node is pruned by bound.

Then, the surrogate inequality at node p is qpx ≥ λpb − zp + ϵ. The corresponding perturbed
surrogate inequality is then of the form (qp + qp

δ )x ≥ λp(b + bδ) − zp + ϵ. We now derive sufficient
conditions such that the perturbed inequality remains infeasible for each leaf node.

Lemma S1. Let xj ∈ [vj , v̄j ] ∩ P, j = 1, . . . , n, and consider a correspondingly infeasible surrogate
inequality qpx ≥ λpb−zp + ϵ. Then, the perturbed inequality (qp +qp

δ )x ≥ λp(b+bδ)−zp + ϵ remains
infeasible if and only if there exist q̄p

1 , . . . , q̄p
n such that

n∑
j=1

(
(qp

j + qp
δ j

)
vj + q̄p

j (v̄j − vj)) < λp(b + bδ) − zp + ϵ, (7a)

q̄p
j ≥ qp

j + qp
δ j , q̄j ≥ 0, j = 1, . . . , n. (7b)

Proof. This result is based on Lemma 2 of Dawande & Hooker (2000). The largest possible value
of (qp + qp

δ )x is as given by the following quantity:

∑
j:qp

j +qp
δ j

<0
(qp

j + qp
δ j)vj +

∑
j:qp

j +qp
δ j

>0
(qp

j + qp
δ j)v̄j . (8)

=⇒ Assume that the inequality (qp+qp
δ )x ≥ λp(b+bδ)−zp+ϵ is infeasible. Let q̄p

j = max{qp
j +qp

δ j , 0}
for j = 1, . . . , n which satisfies equation (7b). We have:

n∑
j=1

(
(qp

j + qp
δ j)vj + q̄p

j (v̄j − vj)
)

=
∑

j:qp
j +qp

δ j
<0

(qp
j + qp

δ j)vj +
∑

j:qp
j +qp

δ j
>0

(qp
j + qp

δ j)vj

+
∑

j:qp
j +qp

δ j
>0

(qp
j + qp

δ j)(v̄j − vj)

=
∑

j:qp
j +qp

δ j
<0

(qp
j + qp

δ j)vj +
∑

j:qp
j +qp

δ j
>0

(qp
j + qp

δ j)v̄j

< λp(b + bδ) − zp + ϵ,

where the last inequality holds since the inequality assumed is infeasible, and the preceding
expression is its largest term. Hence, equation (7) is satisfied.
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⇐= Now, assume that there exist q̄p
1 , . . . , q̄p

n satisfying (7). Then,

λp(b + bδ) − zp + ϵ >
n∑

j=1
((qp

j + qp
δ j)vj + q̄p

j (v̄j − vj))

≥
n∑

j=1
(qp

j + qp
δ j)vj +

∑
j:qp

j +qp
δ j

>0
(qp

j + qp
δ j)(v̄j − vj)

=
∑

j:qp
j +qp

δ j
<0

(qp
j + qp

δ j)vj +
∑

j:qp
j +qp

δ j
>0

(qp
j + qp

δ j)v̄j

> (qp + qp
δ )x.

Hence, the inequality (qp + qp
δ )x ≥ λp(b + bδ) − zp + ϵ is infeasible.

Lemma S1 completes the proof of Theorem 1.

C. Another Example of Sensitivity Analysis for Prime Programming

In this section, we present an additional example of sensitivity analysis for the prime program,
specifically in relation to the Goldbach conjecture.

Problem 4. Find the largest prime number, x1, satisfying the condition 2k + 2 = x1 + x2 for a
given k ∈ Z+ where x2 ∈ P.

The following PP formulates this problem with k = 499.

z∗ = min −x1 (9a)

s.t x1 + x2 ≥ 1000, (9b)

−x1 − x2 ≥ −1000, (9c)

x1, x2 ∈ [2, M ] ∩ P. (9d)

We consider a perturbation of the right hand side with bδ = [kδ, −kδ] for even kδ. In this case,
the enumeration tree of the branch-and-bound procedure described in Section 3.1 of the main text
contains three nodes as in Fig. S1. For additional details, see Section 3.2 of the main text.

(i) Consider node 2. We have x2 = [2, 2], x̄2 = [997, M ], z2 = −997 − ∆, λ2 = [0, 0]. Then,
q2 = [1, 0], q2

δ = [0, 0]. In order to satisfy the sufficient conditions of Theorem 1 at this node,
we require a solution q̄2

1, q̄2
2 such that 2 + 995q̄2

1 + (M − 2)q̄2
2 ≤ 997 + ∆ and q̄2

1 ≥ 1, q̄2
2 ≥ 0.

By setting q̄2
1, q̄2

2 = [1, 0] we obtain ∆ ≥ 0.

(ii) Consider node 3. We have x3 = [1009, 2], x̄3 = [M, M ], z3 = ε, λ3 = [0, 1]. Then, q3 =
[−1, −1], q3

δ = [0, 0]. In order to satisfy the sufficient conditions of Theorem 1 at this node,

5



Figure S1: Enumeration tree for the prime branch-and-bound procedure applied to model (9). The two nodes
marked in white are leaf nodes that are pruned below for reasons indicated, while the other node is further branched
on. For details, see Section 3.1.

we require a solution q̄3
1, q̄3

2 such that −1011 + (M − 1009)q̄3
1 + (M − 2)q̄3

2 ≤ −1000 − kδ − ε

and q̄3
1, q̄3

2 ≥ 0. By setting q̄3
1, q̄3

2 = [0, 0] we obtain kδ ≤ 11 − ε.

The optimal solution of model (9) is x∗ = [997, 3]. Thus, we conclude that z∗
δ ≥ −997−∆ holds

for all ∆ ≥ 0 if kδ = {2, 4, 6, 8, 10}; i.e., the optimal value of x∗
1 for the perturbation of model (9)

does not exceed 997.
Unlike Problem 7 of the main text, enumerating all the possibilities requires checking all prime

numbers below 997 (there are 167 such numbers). However, consider kδ = 2 and the corresponding
optimization model: maxx x1 s.t.{x1+x2 = 1002 with x1, x2 ∈ P}. From our results of the sensitivity
analysis above, we begin directly with x1 = 997. Then, [x1, x2] = [997, 5] is feasible, and, hence
optimal. Similarly, for kδ = 4, 8, 10 we obtain the optimal solution in the first computation itself.
For kδ = 6 the corresponding optimization model, maxx x1 s.t.{x1 + x2 = 1006 with x1, x2 ∈ P}, is
infeasible for x1 = 997. In the second computation, we test x1 = 991; i.e., the prime immediately
smaller than 997. The problem is still infeasible. However, in the third iteration, we have x1 = 983
and obtain an solution [x1, x2] = [983, 23]. Thus, we require at most three additional computations
and there is no need to solve another optimization model. In contrast, the branch-and-bound tree
for this instance of model (9) has 11 nodes.

D. Numerical Results for Linear Equations in Primes

Example S1. An illustration of the benefit of increasing the allowed time limit for solving
model (21).

Consider an instance of model (21) solved with Routine 2 with n = 8, M = 3000 and a time
limit of 300 seconds. With both the Naive strategy and the Modulo strategy with arg = 11,
the instance neither obtains a feasible solution nor proves infeasibility within the considered
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time limit. However, increasing the time limit to xxx and 600 seconds, respectively, provides
feasible solutions. Feasible solutions are obtained relatively quickly for the Modulo strategy with
arg = 1, 5, 7.

Example S2. An illustration of the computational benefit from using the three enhanced variable
fixing strategies of Routine 1 over the Naive fixing strategy.

Consider an instance of model (21) with n = 8 and M = 3000 solved using the Naive branching

strategy . The Naive fixing strategy takes 821 seconds to solve this instance (see Table 1).
Now, consider the known solution, x̄, for n = 7 with x̄ = [5, 17, 41, 101, 257, 461, 521] as an input
for Routine 2.

(i) In the SelectAll strategy, the first seven components are fixed; i.e., x = x̄. Here, the
instance’s infeasibility is determined practically instantly. However, increasing M to 10000
provides a feasible solution in practically no extra time: [5, 17, 41, 101, 257, 461, 521, 4157].
This reduces the computational time from 821 seconds to only 82 seconds; the latter is the
computational time to obtain the n = 7 solution (see Table 1).

(ii) In the ExcludeOne strategy with l = 6, we have six elements fixed. Then, we have x = [5,

17, 41, 101, 257, 521, ϕ, ϕ]. A feasible solution is determined in no time: [5, 17, 41, 101, 257,

521, 761, 881]. This again reduces the computational time to 82 seconds, which is the time
required for the n = 7 solution.

(iii) In the ExcludeTwo strategy with (l1, l2) = (6, 7), we have 5 elements fixed. Then, we have
x̄ = [5, 17, 41, 101, 257]. A feasible solution is obtained in only an additional second: x = [5,

17, 41, 101, 257, 521, 761, 881]. The computational time is again reduced from 821 seconds of
a Naive strategy (see Table 1) to 83 seconds; this includes 82 seconds to obtain the n = 7
solution.

Example S3. An illustration of the computational benefit from using the Modulo branching strategy
of Routine 2 over the Naive branching strategy.

Consider an instance of model (21) with n = 8 and M = 3000 solved using the Naive fixing

strategy . The Naive branching strategy takes 821 seconds to solve this instance (see Table 1).

(i) With the Modulo strategy and arg = 1, the instance is proven infeasible in 88 seconds.
However, increasing M to 10000 provides a different feasible solution, [13, 73, 181, 241, 373,

1693, 1801, 1861], in only two seconds.

(ii) With the Modulo strategy and arg = 5, the same feasible solution as the Naive strategy is
found in 37 seconds.
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(iii) With the Modulo strategy and arg = 7, the instance is proven infeasible in 246 seconds.
However, increasing M to 10000 provides another feasible solution, [7, 19, 67, 139, 607, 859,

907, 1699], in only two seconds.

(iv) With the Modulo strategy and arg = 11, the instance is proven infeasible in 195 seconds.
However, increasing M to 10000 provides another feasible solution, [11, 23, 71, 191, 1103,

1871, 2543, 7043], in 144 seconds.

The following tables present the numerical results obtained from Algorithm 3 using differ-
ent fixing and branching strategies, each with an appropriate time limit for different values of
n. All models yield solutions practically instantaneously for n = 5. The tables depict the com-
putational time for each strategy for n = 6 to 10; the row with the lowest computation time
for each branching strategy is highlighted in bold. For instances that cannot obtain a solu-
tion or report infeasibility within a given time limit, we report as “Intractable”. The results
of the algorithm with the inputs n = 11; Mi = 1000 for i = 1, . . . , n; T = 6000; t = 3000;
α = 0.2 are not shown here since all except two cases are intractable. These two cases are
the SelectAll fixing strategy with the Modulo branching strategy arguments of 5 and 7 respec-
tively; they yield solutions [5, 17, 881, 1181, 1637, 14957, 24197, 131297, 184721, 6353021, 69739337]
and [7, 19, 907, 1699, 1747, 3967, 4759, 16519, 23167, 4891507, 13542967] with a computation time of
3772 and 664 seconds, respectively. Our algorithm is unable to find a solution or report infeasibility
in 6000 seconds for n = 12. For details, see Section 4.4 of the main text.

Table S1: Computational results for solving model (21) using the fixing strategies in Routine 1 and branching
strategies in Routine 2. Inputs in Algorithm 3 are n = 5; Mi = 1000 for i = 1, . . . , n; T = 600; t = 300; α = 0.2. All
instances obtain a solution immediately.

Strategy Solution
Branching Fixing

name arg name arg
Naive ϕ Naive ϕ [3, 7, 19, 139, 859]

SelectAll ϕ [3, 7, 919, 2179, 4159]
ExcludeOne [1] [67, 127, 607, 631, 1867]

[2] [3, 1123, 1483, 2383, 4219]
[3] [3, 7, 859, 1279, 4219]
[4] [3, 7, 919, 2179, 4159]

ExcludeTwo [1, 2] [1579, 1987, 1999, 2287, 4639]
[1, 3] [43, 823, 883, 1051, 1423]
[1, 4] [67, 127, 151, 331, 547]
[2, 3] [3, 139, 223, 523, 619]
[2, 4] [3, 1123, 1279, 1303, 2203]
[3, 4] [3, 7, 19, 139, 859]
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Table S1 – Continued from previous page
Strategy Solution

Branching Fixing

name arg name arg
Modulo 1 Naive ϕ [13, 61, 73, 241, 853]

SelectAll ϕ [13, 853, 1129, 1213, 2113]
ExcludeOne [1] [1321, 1621, 1873, 3001, 4813]

[2] [13, 1129, 1213, 2113, 2389]
[3] [13, 853, 1213, 1753, 2113]
[4] [13, 853, 1129, 1213, 2389]

ExcludeTwo [1, 2] [241, 373, 601, 853, 1381]
[1, 3] [1237, 1621, 1861, 3457, 4597]
[1, 4] [1321, 1621, 1777, 3001, 3457]
[2, 3] [13, 241, 373, 601, 853]
[2, 4] [13, 1129, 1213, 2113, 2389]
[3, 4] [13, 853, 1453, 1489, 1609]

Modulo 5 Naive ϕ [5, 17, 29, 89, 449]
SelectAll ϕ [5, 17, 881, 1181, 1637]
ExcludeOne [1] [1229, 1637, 2777, 2897, 2909]

[2] [5, 53, 89, 113, 929]
[3] [5, 17, 509, 617, 1109]
[4] [5, 17, 881, 1181, 1637]

ExcludeTwo [1, 2] [89, 113, 389, 449, 1433]
[1, 3] [1361, 1637, 2417, 3257, 3461]
[1, 4] [1229, 1637, 2417, 2897, 2909]
[2, 3] [5, 89, 113, 269, 929]
[2, 4] [5, 53, 89, 929, 953]
[3, 4] [5, 17, 29, 89, 449]

Modulo 7 Naive ϕ [7, 19, 67, 127, 607]
SelectAll ϕ [7, 19, 907, 1699, 1747]
ExcludeOne [1] [1087, 2011, 2467, 3691, 4987]

[2] [7, 967, 1279, 3307, 3727]
[3] [7, 19, 907, 1699, 1747]
[4] [7, 19, 907, 1699, 1747]

ExcludeTwo [1, 2] [1231, 1327, 1531, 1567, 1987]
[1, 3] [1447, 1867, 1879, 3499, 3559]
[1, 4] [1087, 2011, 2251, 2311, 3691]
[2, 3] [7, 127, 151, 271, 547]
[2, 4] [7, 967, 1531, 2131, 3571]
[3, 4] [7, 19, 67, 859, 907]

Modulo 11 Naive ϕ [11, 23, 71, 191, 443]
SelectAll ϕ [11, 23, 911, 1283, 2711]
ExcludeOne [1] [1223, 1979, 2243, 2939, 3083]

[2] [11, 1031, 1187, 1931, 2207]
[3] [11, 23, 911, 1283, 2843]
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Table S1 – Continued from previous page
Strategy Solution

Branching Fixing

name arg name arg
[4] [11, 23, 911, 1283, 2843]

ExcludeTwo [1, 2] [191, 827, 947, 2027, 2447]
[1, 3] [1223, 2243, 2423, 2999, 3083]
[1, 4] [1223, 1979, 2243, 2939, 3083]
[2, 3] [11, 911, 947, 1607, 1667]
[2, 4] [11, 1031, 1163, 1583, 2111]
[3, 4] [11, 23, 71, 191, 443]
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Table S2: Computational results for solving model (21) using the fixing strategies in Routine 1 and the branching
strategies in Routine 2. Inputs in Algorithm 3 are n = 6; Mi = 1000 for i = 1, . . . , n; T = 3000; t = 600; α = 0.2.

Strategy
Solution Time (s)

Branching Fixing

name arg name arg
Naive ϕ Naive ϕ [3, 11, 23, 71, 191, 443] 120

SelectAll ϕ [3, 7, 919, 2179, 4159, 13399] 1
ExcludeOne [1] [127, 607, 631, 1867, 8971, 10267] 21

[2] [3, 1483, 2383, 4219, 6823, 13723] 18
[3] [3, 7, 1279, 4219, 7159, 8179] 13
[4] [3, 7, 919, 4159, 13399, 37039] 255
[5] [3, 7, 919, 2179, 4159, 13399] 36

ExcludeTwo [1, 2] [1999, 2287, 4639, 6199, 9007, 10459] 74
[1, 3] [823, 1051, 1423, 2083, 2143, 4951] 22
[1, 4] [127, 151, 547, 607, 1951, 2791] 22
[1, 5] [127, 607, 631, 3931, 6007, 8971] 443
[2, 3] [3, 523, 619, 859, 1723, 2719] 16
[2, 4] [3, 1279, 2203, 3163, 3463, 4423] 15
[2, 5] [3, 1483, 2383, 2551, 4051, 6163] 13
[3, 4] [3, 7, 859, 1279, 4219, 8179] 149
[3, 5] [3, 7, 1279, 4759, 5179, 8179] 228
[4, 5] [3, 7, 919, 2179, 4159, 13399] 716

Modulo 1 Naive ϕ [13, 61, 73, 241, 601, 853] 2
SelectAll ϕ [13, 853, 1129, 1213, 2113, 2389] 0
ExcludeOne [1] [1621, 1873, 3001, 4813, 5521, 21313] 8

[2] [13, 1213, 2113, 2389, 9013, 15493] 9
[3] [13, 853, 1753, 2113, 3121, 4021] 1
[4] [13, 853, 1129, 2389, 3049, 3313] 1
[5] [13, 853, 1129, 1213, 2113, 2389] 0

ExcludeTwo [1, 2] [601, 853, 1381, 2341, 2593, 3121] 2
[1, 3] [1621, 3457, 4597, 5641, 5857, 7417] 7
[1, 4] [1621, 1777, 3457, 4597, 5641, 7417] 5
[1, 5] [1621, 1873, 3001, 9433, 10141, 11593] 39
[2, 3] [13, 601, 853, 1213, 3373, 4021] 5
[2, 4] [13, 1213, 2389, 2953, 3049, 3733] 1
[2, 5] [13, 1213, 2113, 2293, 2389, 7333] 10
[3, 4] [13, 853, 1609, 2053, 2113, 2389] 1
[3, 5] [13, 853, 1753, 2113, 3121, 4021] 2
[4, 5] [13, 853, 1129, 1213, 2113, 2389] 0

Modulo 5 Naive ϕ [5, 17, 41, 101, 257, 461] 0
SelectAll ϕ [5, 17, 881, 1181, 1637, 14957] 1
ExcludeOne [1] [1637, 2777, 2897, 2909, 3917, 6389] 2

[2] [5, 89, 113, 929, 1193, 1949] 0
[3] [5, 17, 617, 1109, 1277, 1709] 0
[4] [5, 17, 881, 1637, 2357, 4877] 1
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Table S2 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[5] [5, 17, 881, 1181, 9281, 11717] 7

ExcludeTwo [1, 2] [389, 449, 1433, 3413, 3833, 5009] 4
[1, 3] [1637, 3257, 3461, 4637, 5441, 10457] 12
[1, 4] [1637, 2417, 2909, 3917, 6257, 6869] 7
[1, 5] [1637, 2777, 2897, 3821, 4001, 4157] 1
[2, 3] [5, 269, 929, 1277, 1949, 2897] 1
[2, 4] [5, 89, 953, 1109, 4133, 6653] 12
[2, 5] [5, 89, 113, 389, 449, 1433] 1
[3, 4] [5, 17, 449, 509, 1877, 4817] 6
[3, 5] [5, 17, 617, 1109, 1277, 1709] 1
[4, 5] [5, 17, 881, 1301, 2861, 3797] 4

Modulo 7 Naive ϕ [7, 19, 67, 127, 547, 607] 0
SelectAll ϕ [7, 19, 907, 1699, 1747, 3967] 0
ExcludeOne [1] [2011, 2467, 3691, 4987, 13567, 28771] 21

[2] [7, 1279, 3307, 3727, 4159, 5407] 1
[3] [7, 19, 1699, 1747, 3967, 4759] 1
[4] [7, 19, 907, 1747, 3967, 4759] 1
[5] [7, 19, 907, 1699, 1747, 3967] 1

ExcludeTwo [1, 2] [1531, 1567, 1987, 2791, 3547, 3847] 2
[1, 3] [1867, 3499, 3559, 3727, 4759, 8179] 7
[1, 4] [2011, 2251, 3691, 4363, 5443, 7963] 6
[1, 5] [2011, 2467, 3691, 6211, 6247, 11887] 25
[2, 3] [7, 271, 547, 607, 967, 2791] 2
[2, 4] [7, 1531, 3571, 3967, 6991, 8191] 7
[2, 5] [7, 1279, 3307, 3727, 4159, 5407] 2
[3, 4] [7, 19, 907, 1699, 1747, 3967] 6
[3, 5] [7, 19, 1699, 2887, 3727, 3739] 3
[4, 5] [7, 19, 907, 1699, 1747, 3967] 6

Modulo 11 Naive ϕ [11, 23, 83, 251, 443, 683] 0
SelectAll ϕ [11, 23, 911, 1283, 2711, 2843] 0
ExcludeOne [1] [1979, 2243, 2939, 3083, 4919, 5099] 1

[2] [11, 1187, 1931, 2207, 5147, 5231] 1
[3] [11, 23, 1283, 2843, 3203, 12611] 4
[4] [11, 23, 911, 2843, 4691, 5903] 1
[5] [11, 23, 911, 1283, 2711, 2843] 0

ExcludeTwo [1, 2] [947, 2027, 2447, 4211, 5867, 5987] 5
[1, 3] [2243, 2999, 3083, 5903, 6299, 7703] 6
[1, 4] [1979, 2243, 3083, 4679, 4919, 5099] 2
[1, 5] [1979, 2243, 2939, 3083, 4919, 5099] 2
[2, 3] [11, 1607, 1667, 2087, 2591, 3011] 1
[2, 4] [11, 1163, 2111, 2843, 5903, 7823] 10
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Table S2 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[2, 5] [11, 1187, 1931, 2207, 5147, 5231] 3
[3, 4] [11, 23, 443, 491, 683, 911] 0
[3, 5] [11, 23, 1283, 2711, 2843, 3203] 2
[4, 5] [11, 23, 911, 1283, 2711, 2843] 1
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Table S3: Computational results for solving model (21) using the fixing strategies in Routine 1 and the branching
strategies in Routine 2. Inputs in Algorithm 3 are n = 7; Mi = 1000 for i = 1, . . . , n; T = 3000; t = 600; α = 0.2.

Strategy
Solution Time (s)

Branching Fixing

name arg name arg
Naive ϕ Naive ϕ [5, 17, 41, 101, 257, 461, 521] 243

SelectAll ϕ [3, 7, 919, 2179, 4159, 13399, 37039] 4
ExcludeOne [1] [607, 631, 1867, 8971, 10267, 10687, 24151] 42

[2] [3, 2383, 4219, 6823, 13723, 14083, 25639] 29
[3] [3, 7, 4219, 7159, 8179, 10039, 20599] 36
[4] [3, 7, 919, 13399, 37039, 44179, 191599] 2940
[5] Intractable 3000
[6] [3, 7, 919, 2179, 4159, 13399, 37039] 167

ExcludeTwo [1, 2] [4639, 6199, 9007, 10459, 18127, 21379, 37987] 942
[1, 3] [1051, 2083, 2143, 4951, 13063, 33331, 39043] 2077
[1, 4] [151, 547, 1951, 2791, 6091, 6451, 8167] 60
[1, 5] [607, 631, 3931, 8971, 10687, 10771, 11047] 455
[1, 6] [607, 631, 1867, 8971, 10267, 10687, 24151] 600
[2, 3] [3, 859, 1723, 2719, 4219, 5503, 8179] 69
[2, 4] [3, 2203, 3463, 4423, 14419, 21943, 25219] 1424
[2, 5] [3, 2383, 2551, 6163, 8263, 8311, 15091] 253
[2, 6] [3, 2383, 4219, 6823, 10039, 20599, 25903] 318
[3, 4] [3, 7, 4219, 8179, 10039, 20599, 29179] 1352
[3, 5] Intractable 3000
[3, 6] [3, 7, 4219, 7159, 8179, 10039, 20599] 422
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[5, 6] [3, 7, 919, 2179, 4159, 37039, 42379] 3372

Modulo 1 Naive ϕ [73, 241, 601, 853, 1021, 1213, 1381] 367
SelectAll ϕ [13, 853, 1129, 1213, 2113, 2389, 7333] 1
ExcludeOne [1] [1873, 3001, 4813, 5521, 21313, 42433, 68053] 79

[2] [13, 2113, 2389, 9013, 15493, 18913, 72613] 87
[3] [13, 853, 2113, 3121, 4021, 9973, 21661] 11
[4] [13, 853, 1129, 3049, 3313, 7993, 10009] 3
[5] [13, 853, 1129, 1213, 2389, 3049, 20593] 10
[6] [13, 853, 1129, 1213, 2113, 2389, 7333] 2

ExcludeTwo [1, 2] [1381, 2341, 2593, 3121, 8521, 9733, 12613] 22
[1, 3] [3457, 5641, 5857, 7417, 11821, 36637, 37321] 207
[1, 4] [1777, 3457, 5641, 7417, 9337, 23197, 24061] 102
[1, 5] [1873, 3001, 9433, 11593, 21313, 23293, 23833] 94
[1, 6] [1873, 3001, 4813, 5521, 5881, 7333, 21313] 12
[2, 3] [13, 1213, 3373, 4021, 6673, 9901, 14653] 38
[2, 4] [13, 2389, 3049, 3733, 9109, 18253, 20593] 86
[2, 5] [13, 2113, 2293, 7333, 11353, 16573, 17449] 53
[2, 6] [13, 2113, 2389, 9013, 19429, 21529, 36973] 143
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Table S3 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[3, 4] [13, 853, 2113, 2389, 3313, 6733, 9013] 18
[3, 5] [13, 853, 2113, 4021, 8713, 9973, 21661] 97
[3, 6] [13, 853, 2113, 3121, 3313, 9013, 11701] 23
[4, 5] [13, 853, 1129, 2389, 3049, 3313, 10009] 19
[4, 6] [13, 853, 1129, 3049, 3313, 7993, 10009] 16
[5, 6] [13, 853, 1129, 1213, 2113, 2389, 7333] 12

Modulo 5 Naive ϕ [5, 17, 41, 101, 257, 461, 521] 2
SelectAll ϕ [5, 17, 881, 1181, 1637, 14957, 24197] 2
ExcludeOne [1] [2777, 2897, 2909, 3917, 6389, 44357, 49937] 87

[2] [5, 113, 929, 1193, 1949, 8669, 29333] 28
[3] [5, 17, 1109, 1277, 1709, 16217, 16229] 12
[4] [5, 17, 881, 2357, 4877, 28097, 48821] 92
[5] [5, 17, 881, 1181, 11717, 14957, 24197] 12
[6] [5, 17, 881, 1181, 1637, 14957, 24197] 18

ExcludeTwo [1, 2] [1433, 3413, 3833, 5009, 6329, 14249, 15149] 34
[1, 3] [3257, 4637, 5441, 10457, 18521, 19841, 27281] 173
[1, 4] [2417, 2909, 6257, 6869, 9377, 16529, 20897] 57
[1, 5] [2777, 2897, 3821, 4157, 19001, 24821, 54101] 1028
[1, 6] [2777, 2897, 2909, 3917, 6689, 12269, 23189] 77
[2, 3] [5, 1277, 1949, 2897, 6977, 8669, 14489] 52
[2, 4] [5, 953, 4133, 6653, 9833, 19433, 23549] 89
[2, 5] [5, 113, 389, 1433, 1709, 6269, 6329] 7
[2, 6] [5, 113, 929, 1193, 5309, 7589, 14969] 73
[3, 4] [5, 17, 1877, 4817, 13121, 14897, 20261] 93
[3, 5] [5, 17, 1109, 1709, 2969, 10949, 11597] 16
[3, 6] [5, 17, 1109, 1277, 1889, 10457, 15749] 70
[4, 5] [5, 17, 881, 3797, 7817, 10457, 11717] 33
[4, 6] [5, 17, 881, 2357, 7817, 19697, 44537] 625
[5, 6] [5, 17, 881, 1181, 9281, 11717, 14957] 53

Modulo 7 Naive ϕ [7, 19, 67, 139, 607, 859, 907] 4
SelectAll ϕ [7, 19, 907, 1699, 1747, 3967, 4759] 0
ExcludeOne [1] [2467, 3691, 4987, 13567, 28771, 45307, 75211] 69

[2] [7, 3307, 3727, 4159, 5407, 27127, 39727] 51
[3] [7, 19, 1747, 3967, 4759, 8707, 16519] 7
[4] [7, 19, 907, 3967, 4759, 15427, 16519] 9
[5] [7, 19, 907, 1699, 3967, 4759, 15427] 8
[6] [7, 19, 907, 1699, 1747, 3967, 4759] 1

ExcludeTwo [1, 2] [1987, 2791, 3547, 3847, 8167, 8887, 9511] 15
[1, 3] [3499, 3727, 4759, 8179, 25087, 30259, 38839] 238
[1, 4] [2251, 3691, 5443, 7963, 10303, 25171, 31723] 87
[1, 5] [2467, 3691, 6211, 11887, 25147, 27091, 33391] 218
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Table S3 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[1, 6] [2467, 3691, 4987, 13567, 20407, 21211, 56731] 246
[2, 3] [7, 607, 967, 2791, 6451, 14407, 30871] 119
[2, 4] [7, 3571, 6991, 8191, 10687, 12547, 14071] 22
[2, 5] [7, 3307, 3727, 5407, 8179, 10039, 13399] 18
[2, 6] [7, 3307, 3727, 4159, 14479, 20599, 21019] 79
[3, 4] [7, 19, 1747, 3967, 5347, 8707, 12739] 36
[3, 5] [7, 19, 2887, 3739, 11467, 27739, 74719] 2214
[3, 6] [7, 19, 1747, 3967, 5347, 8707, 12739] 30
[4, 5] [7, 19, 907, 3967, 4759, 15427, 16519] 79
[4, 6] [7, 19, 907, 3967, 4759, 15427, 16519] 73
[5, 6] [7, 19, 907, 1699, 1747, 3967, 4759] 2

Modulo 11 Naive ϕ [23, 179, 359, 443, 599, 683, 839] 68
SelectAll ϕ [11, 23, 911, 1283, 2711, 2843, 3803] 0
ExcludeOne [1] [2243, 2939, 3083, 4919, 5099, 9323, 21563] 9

[2] [11, 1931, 2207, 5147, 5231, 8171, 9767] 3
[3] [11, 23, 2843, 3203, 12611, 83003, 91631] 208
[4] [11, 23, 911, 4691, 5903, 6491, 27743] 17
[5] [11, 23, 911, 1283, 2843, 5903, 12611] 6
[6] [11, 23, 911, 1283, 2711, 2843, 3803] 1

ExcludeTwo [1, 2] [2447, 4211, 5867, 5987, 9311, 13007, 47387] 909
[1, 3] [2999, 5903, 6299, 7703, 20939, 24419, 25643] 182
[1, 4] [2243, 3083, 4919, 5099, 8219, 10739, 24419] 96
[1, 5] [2243, 2939, 3083, 5099, 5903, 11483, 44879] 305
[1, 6] [2243, 2939, 3083, 4919, 5099, 9323, 21563] 89
[2, 3] [11, 2087, 2591, 3011, 15107, 20147, 22787] 108
[2, 4] [11, 2111, 5903, 7823, 8663, 9851, 15791] 16
[2, 5] [11, 1931, 2207, 5231, 5387, 6491, 8171] 4
[2, 6] [11, 1931, 2207, 5147, 5231, 8171, 9767] 9
[3, 4] [11, 23, 683, 911, 1283, 2711, 3803] 3
[3, 5] [11, 23, 2711, 3203, 4691, 9923, 12503] 17
[3, 6] [11, 23, 2843, 3203, 4691, 17483, 24971] 159
[4, 5] [11, 23, 911, 2843, 3803, 24971, 28631] 199
[4, 6] [11, 23, 911, 4691, 6491, 6911, 26891] 174
[5, 6] [11, 23, 911, 1283, 2711, 2843, 3803] 1
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Table S4: Computational results for solving model (21) using either fixing strategy in Routine 1 or branching
strategy in Routine 2. Inputs in Algorithm 3 are n = 8; Mi = 1000 for i = 1, . . . , n; T = 3000; t = 600; α = 0.2.

Strategy
Solution Time (s)

Branching Fixing

name arg name arg
Naive ϕ Naive ϕ Intractable 3000

SelectAll ϕ [3, 7, 919, 2179, 4159, 13399, 37039, 301759] 25
ExcludeOne [1] Intractable 3000

[2] [3, 4219, 6823, 13723, 14083, 25639, 25903, 40039] 44
[3] [3, 7, 7159, 8179, 10039, 20599, 22699, 29179] 42
[4] Intractable 3000
[5] Intractable 3000
[6] Intractable 3000
[7] Intractable 3000

ExcludeTwo [1, 2] Intractable 3000
[1, 3] Intractable 3000
[1, 4] Intractable 3000
[1, 5] [631, 3931, 8971, 10771, 11047, 11827, 18691, 27367] 996
[1, 6] Intractable 3000
[1, 7] Intractable 3000
[2, 3] [3, 2719, 4219, 5503, 8179, 16843, 23623, 27763] 777
[2, 4] Intractable 3000
[2, 5] Intractable 3000
[2, 6] Intractable 3000
[2, 7] [3, 4219, 6823, 13723, 14083, 22543, 25639, 25903] 321
[3, 4] Intractable 3000
[3, 5] Intractable 3000
[3, 6] Intractable 3000
[3, 7] [3, 7, 7159, 8179, 10039, 20599, 22699, 29179] 286
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[4, 7] Intractable 3000
[5, 6] Intractable 3000
[5, 7] Intractable 3000
[6, 7] Intractable 3000

Modulo 1 Naive ϕ [13, 73, 181, 241, 373, 1693, 1801, 1861] 1579
SelectAll ϕ [13, 853, 1129, 1213, 2113, 2389, 7333, 20593] 1
ExcludeOne [1] [3001, 4813, 5521, 21313, 42433, 68053, 70573, 178693] 254

[2] [13, 2389, 9013, 15493, 18913, 72613, 176509, 283009] 1268
[3] [13, 853, 3121, 4021, 9973, 21661, 46273, 118093] 259
[4] [13, 853, 1129, 3313, 7993, 10009, 20173, 30169] 16
[5] [13, 853, 1129, 1213, 3049, 20593, 53353, 128053] 237
[6] [13, 853, 1129, 1213, 2113, 7333, 20593, 41113] 42
[7] [13, 853, 1129, 1213, 2113, 2389, 7333, 20593] 11

ExcludeTwo [1, 2] [2593, 3121, 8521, 9733, 12613, 12781, 46441, 72673] 1026
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Table S4 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[1, 3] Intractable 3000
[1, 4] [3457, 5641, 9337, 23197, 24061, 32797, 34381, 112921] 1757
[1, 5] Intractable 3000
[1, 6] Intractable 3000
[1, 7] Intractable 3000
[2, 3] [13, 4021, 6673, 9901, 14653, 22861, 74713, 78301] 1472
[2, 4] [13, 3049, 9109, 18253, 20593, 21433, 21529, 72109] 883
[2, 5] [13, 2293, 7333, 16573, 17449, 19009, 24469, 26053] 58
[2, 6] [13, 2389, 9013, 19429, 36973, 38149, 45553, 75109] 221
[2, 7] [13, 2389, 9013, 15493, 18913, 42373, 54949, 72613] 256
[3, 4] [13, 853, 3313, 6733, 9013, 18013, 37573, 38149] 376
[3, 5] [13, 853, 4021, 9973, 21661, 46273, 81373, 118093] 1335
[3, 6] [13, 853, 3121, 3313, 11701, 24061, 36973, 53281] 283
[3, 7] [13, 853, 3121, 4021, 9973, 46273, 57301, 79861] 1040
[4, 5] [13, 853, 1129, 3313, 10009, 20173, 30169, 64969] 770
[4, 6] [13, 853, 1129, 3313, 10009, 20173, 30169, 64969] 772
[4, 7] [13, 853, 1129, 3313, 7993, 8389, 10009, 20173] 30
[5, 6] [13, 853, 1129, 1213, 7333, 19009, 20593, 51109] 662
[5, 7] [13, 853, 1129, 1213, 3049, 7993, 20593, 45289] 178
[6, 7] [13, 853, 1129, 1213, 2113, 2389, 7333, 20593] 69

Modulo 5 Naive ϕ [5, 17, 41, 101, 257, 521, 761, 881] 56
SelectAll ϕ [5, 17, 881, 1181, 1637, 14957, 24197, 131297] 6
ExcludeOne [1] [2897, 2909, 3917, 6389, 44357, 49937, 63809, 65609] 90

[2] [5, 929, 1193, 1949, 8669, 29333, 42209, 222533] 861
[3] Intractable 3000
[4] Intractable 3000
[5] [5, 17, 881, 1181, 14957, 24197, 113357, 131297] 340
[6] [5, 17, 881, 1181, 1637, 24197, 44537, 108821] 147
[7] [5, 17, 881, 1181, 1637, 14957, 51341, 92357] 177

ExcludeTwo [1, 2] [3833, 5009, 6329, 14249, 15149, 25253, 33353, 33569] 110
[1, 3] Intractable 3000
[1, 4] [2909, 6257, 9377, 16529, 20897, 22229, 23057, 57329] 487
[1, 5] Intractable 3000
[1, 6] Intractable 3000
[1, 7] [2897, 2909, 3917, 6389, 44357, 49937, 63809, 65609] 324
[2, 3] [5, 2897, 6977, 8669, 14489, 22937, 30449, 37337] 201
[2, 4] [5, 4133, 9833, 19433, 23549, 35969, 127709, 217733] 2771
[2, 5] [5, 389, 1433, 6269, 6329, 12653, 17609, 65993] 1053
[2, 6] [5, 929, 1193, 5309, 14969, 31769, 33773, 77489] 1046
[2, 7] [5, 929, 1193, 1949, 8669, 56873, 68633, 84713] 1534
[3, 4] [5, 17, 13121, 14897, 20261, 23957, 50321, 98057] 2828
[3, 5] [5, 17, 1709, 10949, 11597, 14369, 52769, 64109] 465
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Table S4 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[3, 6] Intractable 3000
[3, 7] Intractable 3000
[4, 5] Intractable 3000
[4, 6] [5, 17, 881, 7817, 44537, 48821, 92357, 131297] 2164
[4, 7] Intractable 3000
[5, 6] [5, 17, 881, 1181, 14957, 24197, 113357, 131297] 2870
[5, 7] [5, 17, 881, 1181, 14957, 24197, 113357, 131297] 2812
[6, 7] [5, 17, 881, 1181, 1637, 28097, 51341, 82361] 2375

Modulo 7 Naive ϕ [7, 19, 67, 379, 859, 907, 1699, 1747] 2052
SelectAll ϕ [7, 19, 907, 1699, 1747, 3967, 4759, 16519] 1
ExcludeOne [1] [3691, 4987, 13567, 28771, 45307, 75211, 111427, 397687] 1747

[2] Intractable 3000
[3] [7, 19, 3967, 4759, 8707, 16519, 23167, 43987] 25
[4] [7, 19, 907, 4759, 15427, 16519, 34747, 56767] 68
[5] [7, 19, 907, 1699, 4759, 15427, 16519, 34747] 17
[6] [7, 19, 907, 1699, 1747, 4759, 15727, 23167] 14
[7] [7, 19, 907, 1699, 1747, 3967, 4759, 16519] 8

ExcludeTwo [1, 2] [3547, 3847, 8167, 8887, 9511, 34171, 34591, 105907] 2408
[1, 3] [3727, 8179, 25087, 30259, 38839, 39619, 52267, 64879] 328
[1, 4] Intractable 3000
[1, 5] [3691, 6211, 11887, 27091, 33391, 66271, 81727, 130687] 1651
[1, 6] [3691, 4987, 13567, 20407, 56731, 80347, 103567, 184711] 2043
[1, 7] Intractable 3000
[2, 3] [7, 2791, 6451, 14407, 30871, 76231, 79231, 95191] 843
[2, 4] [7, 6991, 10687, 12547, 14071, 16567, 98731, 155851] 2582
[2, 5] [7, 3727, 5407, 10039, 13399, 29587, 38839, 43627] 207
[2, 6] Intractable 3000
[2, 7] [7, 3727, 4159, 5407, 27127, 38167, 47119, 67867] 422
[3, 4] Intractable 3000
[3, 5] Intractable 3000
[3, 6] [7, 19, 3967, 5347, 12739, 17839, 102679, 125299] 2550
[3, 7] [7, 19, 3967, 4759, 8707, 16519, 23167, 43987] 187
[4, 5] [7, 19, 907, 15427, 16519, 32359, 56767, 101527] 2404
[4, 6] [7, 19, 907, 4759, 16519, 23167, 27739, 37567] 160
[4, 7] [7, 19, 907, 4759, 15427, 16519, 34747, 56767] 246
[5, 6] [7, 19, 907, 1699, 4759, 15427, 16519, 34747] 283
[5, 7] [7, 19, 907, 1699, 4759, 15427, 16519, 34747] 254
[6, 7] [7, 19, 907, 1699, 1747, 3967, 4759, 16519] 64

Modulo 11 Naive ϕ [11, 83, 251, 263, 443, 1103, 1511, 2111] 2605
SelectAll ϕ [11, 23, 911, 1283, 2711, 2843, 3803, 24971] 2
ExcludeOne [1] [2939, 3083, 4919, 5099, 9323, 21563, 34403, 87443] 88
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Table S4 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[2] [11, 2207, 5147, 5231, 8171, 9767, 21767, 87767] 160
[3] Intractable 3000
[4] [11, 23, 911, 5903, 6491, 27743, 52511, 61331] 47
[5] [11, 23, 911, 1283, 5903, 12611, 49331, 91631] 179
[6] [11, 23, 911, 1283, 2711, 3803, 24971, 28631] 27
[7] [11, 23, 911, 1283, 2711, 2843, 3803, 24971] 16

ExcludeTwo [1, 2] Intractable 3000
[1, 3] [5903, 7703, 20939, 24419, 25643, 33623, 69383, 79379] 542
[1, 4] [3083, 4919, 8219, 10739, 24419, 30539, 36599, 42719] 234
[1, 5] Intractable 3000
[1, 6] [2939, 3083, 4919, 5099, 21563, 26183, 34403, 87443] 593
[1, 7] [2939, 3083, 4919, 5099, 9323, 24419, 34403, 52223] 791
[2, 3] Intractable 3000
[2, 4] [11, 5903, 8663, 9851, 15791, 24203, 31583, 108863] 1306
[2, 5] [11, 2207, 5231, 6491, 8171, 17471, 35027, 61007] 704
[2, 6] [11, 2207, 5147, 5231, 9767, 20771, 21767, 87767] 2140
[2, 7] [11, 2207, 5147, 5231, 8171, 9767, 21767, 87767] 2281
[3, 4] [11, 23, 1283, 2711, 3803, 21683, 24971, 29063] 307
[3, 5] [11, 23, 3203, 9923, 12503, 29243, 32363, 67523] 1242
[3, 6] Intractable 3000
[3, 7] Intractable 3000
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[4, 7] [11, 23, 911, 5903, 6491, 9851, 27743, 34763] 202
[5, 6] [11, 23, 911, 1283, 3803, 5783, 24971, 28631] 196
[5, 7] [11, 23, 911, 1283, 5903, 29243, 39971, 57383] 598
[6, 7] [11, 23, 911, 1283, 2711, 2843, 3803, 24971] 166
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Table S5: Computational results for solving model (21) using the fixing strategies in Routine 1 and the branching
strategies in Routine 2. Inputs in Algorithm 3 are n = 9; Mi = 1000 for i = 1, . . . , n; T = 3000; t = 600; α = 0.2.

Strategy
Solution Time (s)

Branching Fixing

name arg name arg
Naive ϕ Naive ϕ Intractable 3000

SelectAll ϕ [3, 7, 919, 2179, 4159, 13399, 37039, 301759, 1291159] 113
ExcludeOne [1] Intractable 3000

[2] Intractable 3000
[3] Intractable 3000
[4] Intractable 3000
[5] Intractable 3000
[6] Intractable 3000
[7] Intractable 3000
[8] Intractable 3000

ExcludeTwo [1, 2] Intractable 3000
[1, 3] Intractable 3000
[1, 4] Intractable 3000
[1, 5] Intractable 3000
[1, 6] Intractable 3000
[1, 7] Intractable 3000
[1, 8] Intractable 3000
[2, 3] Intractable 3000
[2, 4] Intractable 3000
[2, 5] Intractable 3000
[2, 6] Intractable 3000
[2, 7] Intractable 3000
[2, 8] Intractable 3000
[3, 4] Intractable 3000
[3, 5] Intractable 3000
[3, 6] Intractable 3000
[3, 7] Intractable 3000
[3, 8] Intractable 3000
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[4, 7] Intractable 3000
[4, 8] Intractable 3000
[5, 6] Intractable 3000
[5, 7] Intractable 3000
[5, 8] Intractable 3000
[6, 7] Intractable 3000
[6, 8] Intractable 3000
[7, 8] Intractable 3000

Modulo 1 Naive ϕ Intractable 3000
SelectAll ϕ [13, 853, 1129, 1213, 2113, 2389, 7333, 20593, 41113] 2
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Table S5 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
ExcludeOne [1] Intractable 3000

[2] Intractable 3000
[3] Intractable 3000
[4] [13, 853, 1129, 7993, 10009, 20173, 30169, 59509, 106453] 123
[5] Intractable 3000
[6] [13, 853, 1129, 1213, 2113, 20593, 41113, 72733, 335173] 1852
[7] [13, 853, 1129, 1213, 2113, 2389, 20593, 41113, 72733] 67
[8] [13, 853, 1129, 1213, 2113, 2389, 7333, 20593, 41113] 37

ExcludeTwo [1, 2] Intractable 3000
[1, 3] Intractable 3000
[1, 4] Intractable 3000
[1, 5] Intractable 3000
[1, 6] Intractable 3000
[1, 7] Intractable 3000
[1, 8] Intractable 3000
[2, 3] Intractable 3000
[2, 4] Intractable 3000
[2, 5] [13, 7333, 16573, 19009, 24469, 26053, 28429, 75109, 113329] 682
[2, 6] Intractable 3000
[2, 7] Intractable 3000
[2, 8] Intractable 3000
[3, 4] Intractable 3000
[3, 5] Intractable 3000
[3, 6] [13, 853, 3313, 11701, 36973, 53281, 60601, 135601, 159721] 1619
[3, 7] Intractable 3000
[3, 8] Intractable 3000
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[4, 7] Intractable 3000
[4, 8] [13, 853, 1129, 7993, 10009, 20173, 30169, 59509, 106453] 1518
[5, 6] Intractable 3000
[5, 7] Intractable 3000
[5, 8] Intractable 3000
[6, 7] Intractable 3000
[6, 8] Intractable 3000
[7, 8] [13, 853, 1129, 1213, 2113, 2389, 7333, 20593, 41113] 483

Modulo 5 Naive ϕ Intractable 3000
SelectAll ϕ [5, 17, 881, 1181, 1637, 14957, 24197, 131297, 184721] 9
ExcludeOne [1] [2909, 3917, 6389, 44357, 49937, 63809, 65609, 134369, 414077] 2595

[2] Intractable 3000
[3] Intractable 3000
[4] Intractable 3000
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Table S5 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[5] Intractable 3000
[6] Intractable 3000
[7] Intractable 3000
[8] [5, 17, 881, 1181, 1637, 14957, 24197, 131297, 184721] 731

ExcludeTwo [1, 2] Intractable 3000
[1, 3] Intractable 3000
[1, 4] Intractable 3000
[1, 5] Intractable 3000
[1, 6] Intractable 3000
[1, 7] Intractable 3000
[1, 8] Intractable 3000
[2, 3] Intractable 3000
[2, 4] Intractable 3000
[2, 5] Intractable 3000
[2, 6] Intractable 3000
[2, 7] Intractable 3000
[2, 8] Intractable 3000
[3, 4] Intractable 3000
[3, 5] Intractable 3000
[3, 6] Intractable 3000
[3, 7] Intractable 3000
[3, 8] Intractable 3000
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[4, 7] Intractable 3000
[4, 8] Intractable 3000
[5, 6] Intractable 3000
[5, 7] Intractable 3000
[5, 8] Intractable 3000
[6, 7] Intractable 3000
[6, 8] [5, 17, 881, 1181, 1637, 44537, 51341, 92357, 107621] 505
[7, 8] [5, 17, 881, 1181, 1637, 14957, 24197, 131297, 184721] 3089

Modulo 7 Naive ϕ Intractable 3000
SelectAll ϕ [7, 19, 907, 1699, 1747, 3967, 4759, 16519, 23167] 2
ExcludeOne [1] [4987, 13567, 28771, 45307, 75211, 111427, 397687, 405967, 677587] 2088

[2] Intractable 3000
[3] Intractable 3000
[4] Intractable 3000
[5] Intractable 3000
[6] [7, 19, 907, 1699, 1747, 15727, 23167, 32359, 41479] 27
[7] [7, 19, 907, 1699, 1747, 3967, 16519, 23167, 101527] 186
[8] [7, 19, 907, 1699, 1747, 3967, 4759, 16519, 23167] 11
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Table S5 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
ExcludeTwo [1, 2] Intractable 3000

[1, 3] Intractable 3000
[1, 4] Intractable 3000
[1, 5] Intractable 3000
[1, 6] Intractable 3000
[1, 7] Intractable 3000
[1, 8] [4987, 13567, 28771, 45307, 75211, 111427, 116191, 280411, 397687] 2181
[2, 3] Intractable 3000
[2, 4] Intractable 3000
[2, 5] Intractable 3000
[2, 6] Intractable 3000
[2, 7] Intractable 3000
[2, 8] Intractable 3000
[3, 4] Intractable 3000
[3, 5] Intractable 3000
[3, 6] Intractable 3000
[3, 7] Intractable 3000
[3, 8] Intractable 3000
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[4, 7] Intractable 3000
[4, 8] Intractable 3000
[5, 6] Intractable 3000
[5, 7] Intractable 3000
[5, 8] [7, 19, 907, 1699, 15427, 16519, 32359, 81619, 101527] 1841
[6, 7] [7, 19, 907, 1699, 1747, 16519, 23167, 32359, 101527] 1731
[6, 8] [7, 19, 907, 1699, 1747, 15727, 23167, 32359, 41479] 85
[7, 8] [7, 19, 907, 1699, 1747, 3967, 4759, 16519, 23167] 121

Modulo 11 Naive ϕ Intractable 3000
SelectAll ϕ [11, 23, 911, 1283, 2711, 2843, 3803, 24971, 28631] 2
ExcludeOne [1] [3083, 4919, 5099, 9323, 21563, 34403, 87443, 97943, 584183] 3087

[2] Intractable 3000
[3] Intractable 3000
[4] Intractable 3000
[5] Intractable 3000
[6] Intractable 3000
[7] [11, 23, 911, 1283, 2711, 2843, 24971, 28631, 406403] 2639
[8] [11, 23, 911, 1283, 2711, 2843, 3803, 24971, 28631] 17

ExcludeTwo [1, 2] Intractable 3000
[1, 3] Intractable 3000
[1, 4] [4919, 8219, 24419, 30539, 36599, 42719, 72287, 89759, 129419] 2060
[1, 5] Intractable 3000
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Table S5 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[1, 6] Intractable 3000
[1, 7] Intractable 3000
[1, 8] Intractable 3000
[2, 3] Intractable 3000
[2, 4] Intractable 3000
[2, 5] Intractable 3000
[2, 6] Intractable 3000
[2, 7] Intractable 3000
[2, 8] Intractable 3000
[3, 4] Intractable 3000
[3, 5] Intractable 3000
[3, 6] Intractable 3000
[3, 7] Intractable 3000
[3, 8] Intractable 3000
[4, 5] Intractable 3000
[4, 6] Intractable 3000
[4, 7] Intractable 3000
[4, 8] Intractable 3000
[5, 6] Intractable 3000
[5, 7] Intractable 3000
[5, 8] Intractable 3000
[6, 7] [11, 23, 911, 1283, 2711, 24971, 34031, 57383, 117503] 2525
[6, 8] [11, 23, 911, 1283, 2711, 24971, 34031, 57383, 117503] 2388
[7, 8] [11, 23, 911, 1283, 2711, 2843, 3803, 24971, 28631] 54
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Table S6: Computational results for solving model (21) using the fixing strategies in Routine 1 and the branching
strategies in Routine 2. Inputs in Algorithm 3 are n = 10; Mi = 1000 for i = 1, . . . , n; T = 6000; t = 3000; α = 0.2.

Strategy
Solution Time (s)

Branching Fixing

name arg name arg
Naive ϕ Naive ϕ Intractable 6000

SelectAll ϕ [3, 7, 919, 2179, 4159, 13399, 37039, 301759, 1291159, 1765759] 156
ExcludeOne [1] Intractable 6000

[2] Intractable 6000
[3] Intractable 6000
[4] Intractable 6000
[5] Intractable 6000
[6] Intractable 6000
[7] Intractable 6000
[8] Intractable 6000
[9] Intractable 6000

ExcludeTwo [1, 2] Intractable 6000
[1, 3] Intractable 6000
[1, 4] Intractable 6000
[1, 5] Intractable 6000
[1, 6] Intractable 6000
[1, 7] Intractable 6000
[1, 8] Intractable 6000
[1, 9] Intractable 6000
[2, 3] Intractable 6000
[2, 4] Intractable 6000
[2, 5] Intractable 6000
[2, 6] Intractable 6000
[2, 7] Intractable 6000
[2, 8] Intractable 6000
[2, 9] Intractable 6000
[3, 4] Intractable 6000
[3, 5] Intractable 6000
[3, 6] Intractable 6000
[3, 7] Intractable 6000
[3, 8] Intractable 6000
[3, 9] Intractable 6000
[4, 5] Intractable 6000
[4, 6] Intractable 6000
[4, 7] Intractable 6000
[4, 8] Intractable 6000
[4, 9] Intractable 6000
[5, 6] Intractable 6000
[5, 7] Intractable 6000
[5, 8] Intractable 6000
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Table S6 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[5, 9] Intractable 6000
[6, 7] Intractable 6000
[6, 8] Intractable 6000
[6, 9] Intractable 6000
[7, 8] Intractable 6000
[7, 9] Intractable 6000
[8, 9] Intractable 6000

Modulo 1 Naive ϕ Intractable 6000
SelectAll ϕ [13, 853, 1129, 1213, 2113, 2389, 7333, 20593, 41113, 335173] 18
ExcludeOne [1] Intractable 6000

[2] Intractable 6000
[3] Intractable 6000
[4] Intractable 6000
[5] Intractable 6000
[6] Intractable 6000
[7] [13, 853, 1129, 1213, 2113, 2389, 41113, 72733, 85669, 335173] 1147
[8] Intractable 6000
[9] [13, 853, 1129, 1213, 2113, 2389, 7333, 20593, 41113, 335173] 2394

ExcludeTwo [1, 2] Intractable 6000
[1, 3] Intractable 6000
[1, 4] Intractable 6000
[1, 5] Intractable 6000
[1, 6] Intractable 6000
[1, 7] Intractable 6000
[1, 8] Intractable 6000
[1, 9] Intractable 6000
[2, 3] Intractable 6000
[2, 4] Intractable 6000
[2, 5] Intractable 6000
[2, 6] Intractable 6000
[2, 7] Intractable 6000
[2, 8] Intractable 6000
[2, 9] Intractable 6000
[3, 4] Intractable 6000
[3, 5] Intractable 6000
[3, 6] Intractable 6000
[3, 7] Intractable 6000
[3, 8] Intractable 6000
[3, 9] Intractable 6000
[4, 5] Intractable 6000
[4, 6] Intractable 6000
[4, 7] Intractable 6000
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Table S6 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[4, 8] Intractable 6000
[4, 9] Intractable 6000
[5, 6] Intractable 6000
[5, 7] Intractable 6000
[5, 8] Intractable 6000
[5, 9] Intractable 6000
[6, 7] Intractable 6000
[6, 8] Intractable 6000
[6, 9] Intractable 6000
[7, 8] Intractable 6000
[7, 9] Intractable 6000
[8, 9] Intractable 6000

Modulo 5 Naive ϕ Intractable 6000
SelectAll ϕ [5, 17, 881, 1181, 1637, 14957, 24197, 131297, 184721, 6353021] 299
ExcludeOne [1] Intractable 6000

[2] Intractable 6000
[3] Intractable 6000
[4] Intractable 6000
[5] Intractable 6000
[6] Intractable 6000
[7] Intractable 6000
[8] Intractable 6000
[9] Intractable 6000

ExcludeTwo [1, 2] Intractable 6000
[1, 3] Intractable 6000
[1, 4] Intractable 6000
[1, 5] Intractable 6000
[1, 6] Intractable 6000
[1, 7] Intractable 6000
[1, 8] Intractable 6000
[1, 9] Intractable 6000
[2, 3] Intractable 6000
[2, 4] Intractable 6000
[2, 5] Intractable 6000
[2, 6] Intractable 6000
[2, 7] Intractable 6000
[2, 8] Intractable 6000
[2, 9] Intractable 6000
[3, 4] Intractable 6000
[3, 5] Intractable 6000
[3, 6] Intractable 6000
[3, 7] Intractable 6000
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Table S6 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[3, 8] Intractable 6000
[3, 9] Intractable 6000
[4, 5] Intractable 6000
[4, 6] Intractable 6000
[4, 7] Intractable 6000
[4, 8] Intractable 6000
[4, 9] Intractable 6000
[5, 6] Intractable 6000
[5, 7] Intractable 6000
[5, 8] Intractable 6000
[5, 9] Intractable 6000
[6, 7] Intractable 6000
[6, 8] Intractable 6000
[6, 9] Intractable 6000
[7, 8] Intractable 6000
[7, 9] Intractable 6000
[8, 9] Intractable 6000

Modulo 7 Naive ϕ Intractable 6000
SelectAll ϕ [7, 19, 907, 1699, 1747, 3967, 4759, 16519, 23167, 4891507] 221
ExcludeOne [1] Intractable 6000

[2] Intractable 6000
[3] Intractable 6000
[4] Intractable 6000
[5] Intractable 6000
[6] Intractable 6000
[7] Intractable 6000
[8] Intractable 6000
[9] Intractable 6000

ExcludeTwo [1, 2] Intractable 6000
[1, 3] Intractable 6000
[1, 4] Intractable 6000
[1, 5] Intractable 6000
[1, 6] Intractable 6000
[1, 7] Intractable 6000
[1, 8] Intractable 6000
[1, 9] Intractable 6000
[2, 3] Intractable 6000
[2, 4] Intractable 6000
[2, 5] Intractable 6000
[2, 6] Intractable 6000
[2, 7] Intractable 6000
[2, 8] Intractable 6000
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Table S6 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[2, 9] Intractable 6000
[3, 4] Intractable 6000
[3, 5] Intractable 6000
[3, 6] Intractable 6000
[3, 7] Intractable 6000
[3, 8] Intractable 6000
[3, 9] Intractable 6000
[4, 5] Intractable 6000
[4, 6] Intractable 6000
[4, 7] Intractable 6000
[4, 8] Intractable 6000
[4, 9] Intractable 6000
[5, 6] Intractable 6000
[5, 7] Intractable 6000
[5, 8] Intractable 6000
[5, 9] Intractable 6000
[6, 7] Intractable 6000
[6, 8] Intractable 6000
[6, 9] Intractable 6000
[7, 8] Intractable 6000
[7, 9] Intractable 6000
[8, 9] Intractable 6000

Modulo 11 Naive ϕ Intractable 6000
SelectAll ϕ [11, 23, 911, 1283, 2711, 2843, 3803, 24971, 28631, 406403] 22
ExcludeOne [1] Intractable 6000

[2] Intractable 6000
[3] Intractable 6000
[4] Intractable 6000
[5] Intractable 6000
[6] Intractable 6000
[7] Intractable 6000
[8] Intractable 6000
[9] [11, 23, 911, 1283, 2711, 2843, 3803, 24971, 28631, 406403] 2664

ExcludeTwo [1, 2] Intractable 6000
[1, 3] Intractable 6000
[1, 4] Intractable 6000
[1, 5] Intractable 6000
[1, 6] Intractable 6000
[1, 7] Intractable 6000
[1, 8] Intractable 6000
[1, 9] Intractable 6000
[2, 3] Intractable 6000
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Table S6 – Continued from previous page
Strategy

Solution Time (s)
Branching Fixing

name arg name arg
[2, 4] Intractable 6000
[2, 5] Intractable 6000
[2, 6] Intractable 6000
[2, 7] Intractable 6000
[2, 8] Intractable 6000
[2, 9] Intractable 6000
[3, 4] Intractable 6000
[3, 5] Intractable 6000
[3, 6] Intractable 6000
[3, 7] Intractable 6000
[3, 8] Intractable 6000
[3, 9] Intractable 6000
[4, 5] Intractable 6000
[4, 6] Intractable 6000
[4, 7] Intractable 6000
[4, 8] Intractable 6000
[4, 9] Intractable 6000
[5, 6] Intractable 6000
[5, 7] Intractable 6000
[5, 8] Intractable 6000
[5, 9] Intractable 6000
[6, 7] Intractable 6000
[6, 8] Intractable 6000
[6, 9] Intractable 6000
[7, 8] Intractable 6000
[7, 9] Intractable 6000
[8, 9] Intractable 6000
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