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Abstract:

This paper is devoted to the Truck-to-dock Door Assignment Problem. Two integer programming
formulations introduced after 2009 are examined. Our review of the literature takes note of the
criticisms and limitations addressed to the seminal work of 2009. Although the published adjustments
that followed present strong argument and technical background, we have identified several errors,
inaccuracies and incompleteness. This paper therefore brings a rigorous presentation and clarification
of these two formulations. In particular, both are described, corrected if necessary, analyzed and
discussed. From this study, a bi-objective variant derived from these two formulations is proposed,
resulting in four formulations in total.

They have been implemented and the codes are open-source and available online. Numerical experi-
ments on instances from the literature have been conducted. Among the numerical results collected,
we underline the advantage shown by the multi-objective formulations for the quality of the solutions
produced.

Keywords: Supply Chain Management; Cross Docking; Truck-to-dock Door Assignment Problem;
Integer Programming; Multi-objective Optimization

1 Introduction

1.1 Background

In the context of supply chain operations, this paper addresses an operational problem encountered
in a cross-docking warehouse. Cross-docking is a logistics technique that aims to accelerate goods
delivery and increase supply chain efficiency. Considering a warehouse with a given shape, the term
cross-docking expresses the process of receiving products on inbound dock doors and then transferring
them directly across the cross-dock to outbound dock doors, with few or no storage time in between (see
Figure 1). More precisely, incoming products arrive through means of transportation such as trucks,
and are docked on inbound dock doors of the cross-dock terminal. Once incoming trucks have been
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Figure 1: Illustration from Van Belle et al. (2012) of a cross-dock where the layout of the warehouse
presents a I-shape. Ten docks are available (flat rectangles) to serve as inbound or outbound of
products. Five trucks are docked (long rectangles). A pallet of a given product is represented by a
rectangle with a given pattern. Each truck may convoy pallets of different products (represented by
rectangles with different patterns). Pallets are moved into the warehouse (represented by arrows) from
inbound to outbound docks.

docked, the pallets get unloaded, sorted and screened to identify their end destinations. Afterward,
the pallets are moved to outbound dock doors of the cross-dock terminal using e.g. material handling
devices such as forklifts.

Cross-docking requires close coordination among a company’s supply chain partners, including its
suppliers and freight carriers. According Jenkins (2023), this effort often pays off in multiple ways:
companies can deliver products faster, minimize the need for warehouse space, optimize inventory
control, and reduce transportation and labor costs.

Depending on the horizon of decisions considered (long term, mid term, short-term decisions), the
literature presents several decision problems related to cross-docking (see e.g Nduwayo (2020); Van
Belle et al. (2012) ). They are grouped in strategic (e.g. location of cross-docks and layout design),
tactical (e.g. cross-docking networks), and operational (e.g. vehicle routing, dock door assignment,
truck scheduling and temporary storage) decision problems.

1.2 The Truck-to-dock Door Assignment Problem

In the context of cross-docking operations, the specific situation tackled is as follows: given a cross-
dock warehouse composed of docks, and a planning of trucks where each truck is characterised by
an arrival time, a departure time, and a number of pallets to transfert between trucks, the goal is to
maximise the volume of cargo transiting through the cross-dock, and to minimize the time required
to perform the cargo transfer operations. This statement leads to an assignment subproblem. Indeed,
when an inbound or outbound truck arrives at the cross-dock, it has to be decided to which dock door
the truck should be assigned. A good assignment can increase the productivity of the cross-dock and
can decrease the handling costs. Also, this statement leads to a scheduling subproblem. Effectively, the
dock doors are considered as resources (used by the trucks) that have to be scheduled over time. The
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problem decides on the succession of inbound and outbound trucks at the dock doors of a cross-dock:
in short, where and when should the trucks be processed. Thus, a model describing this optimization
problem must take into account (1) the arrival and departure of trucks, (2) the assignment of trucks to
the docks, (3) the operational time for pallet shipment among the docks, and (4) the maximum amount
of pallets that the cross-dock can support.

This optimization problem falls in the class of truck scheduling problem which deal with short-term
decisions (operational). Among truck scheduling problems, those where scheduling of inbound and
outbound trucks is the central problem are referred to as the Truck-to-dock Door Assignment Problem
(TDAP) in the literature. It is a combinatorial optimisation problem known to belong to the class
of NP-hard problems (Miao, Lim, and Ma, 2009). On the basis of the contributions of Lim, Miao,
Rodrigues, and Xu (2005); Lim, Ma, and Miao (2006); Miao et al. (2009), the TDAP is the optimization
problem addressed in this paper, and the model introduced in Miao et al. (2009) is our starting reference.

In the literature, the various studies related to the TDAP consider different assumptions and settings,
for instance regarding the preemption (allowed or not), the processing time to load or unload a truck
(fixed or not for all trucks), intermediate storage (allowed or not), etc. In the following, we consider
the case (1) without preemption (loading/unloading operations cannot be interrupted and resumed
at a later time), and (2) the processing time to load/unload trucks is fixed for all trucks. The case
with/without intermediate storage is discussed in this paper.

1.3 Literature Review

Miao et al. (2009) have extended a truck scheduling problem previously proposed by Lim et al. (2005,
2006) in which the authors assumed that the trucks are loaded or unloaded during a fixed time window.
This means that the optimization problem is reduced to determining at which dock door the trucks
have to be processed. The length of these time windows can be interpreted as the time needed to
load or unload a truck. The trucks can be assigned to any door and the capacity of the cross-dock is
limited. Preemption is not allowed and trucks that cannot be served are penalized. The objective here
is to minimize the operational cost (based on travel time) plus the cost of unfulfilled shipments. The
authors formulate the problem with an Integer Programming (IP) model. This formulation is denoted
“Formulation M” in the remaining of the paper. Numerical experiments on their mathematical model
are carried out using CPLEX. Observing that the exact solver could not solve medium and large
instances to optimality within the given time limit of 7200 seconds, they also proposed a heuristic
approach using tabu search and a genetic algorithm.

Van Belle et al. (2012) present a comprehensive state-of-the-art of the cross-docking concept. First,
the authors discuss on guidelines for the use and implementation of cross-docking. They describe
characteristics that can be helpful to distinguish the different cross-dock types and provide an extensive
review of the existing literature until 2012 on cross-docking. The papers discussed are classified based
on the problem type tackled (e.g. internal transport type, temporary storage allowed or not, etc.), and
promising directions to improve and extend the contributions are suggested.

Several PhD thesis related to decision problems on cross-docking have been defended (e.g. Ladier
(2014); Nassief (2017); Nduwayo (2020); Zhang (2016); Zhu (2007)). For example, Nduwayo’s
contributions (Nduwayo, 2020) are devoted to the Cross-Docking Assignment Problem (CDAP), which
consists in finding an assignment of origins to inbound doors and destinations to outbound doors that
minimizes the total cost inside the cross-dock platform. The authors propose original Mixed-Integer
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Programming models (Gelareh, Glover, Guemri, Hanafi, Nduwayo, and Todosijević, 2020), and
conduct an extensive comparative analysis on benchmark instances from the literature. Additional
contributions related to this particular problem can be found in Tsui and Chang (1992); Zhu, Hahn,
Liu, and Guignard-Spielberg (2009) or again Meliàn-Batista (2024).

In a technical report available online, Gelareh, Goncalves, and Monemi (2015) underline weaknesses
and shortcomings in Formulation M. They propose a revised IP formulation for the TDAP, denoted
“Formulation G” in the rest of the paper. Several valid inequalities are also introduced, and exact
separation algorithms are described for separating cuts for those leading to an exponential number of
constraints. An efficient branch-and-cut algorithm solving real-life size instances in a reasonable time
is provided. Numerical experiments show that in most cases, the optimal solution is identified at the
root node without requiring any branching. The main contents of this report have been published in
Gelareh, Monemi, Semet, and Goncalves (2016).

Kucukoglu and Ozturk (2017) consider a variant of the TDAP with product placement plans. To solve
this problem, they propose an IP model where the goal is to find the truck-door assignment and product
placement plans that minimize total travelling distance of the products.

Recently, Daquin, Allaoui, Goncalves, and Hsu (2021) published an adaptation of the Variable Neigh-
borhood Search metaheuristic to solve the TDAP. However, this work is based on Formulation M,
which is pointed out as incorrect since 2015 by Gelareh et al. (2015). Thus, an another paper (Gelareh,
2021) which refers to (Gelareh et al., 2015, 2016) has been published which criticizes Daquin et al.
(2021) and recalls the shortcomings already discussed about Formulation M.

1.4 Contributions and Organisation of the Paper

Given the points of contention observed along the literature review, a careful reading of the four
documents concerned (Gelareh, 2021; Gelareh et al., 2015, 2016; Miao et al., 2009) has been achieved.
Inconsistencies in the arguments put forward in Gelareh (2021); Gelareh et al. (2015, 2016), as well
as to vagueness and incompleteness in Formulation G were observed. In particular, the proposed
amendments in (Gelareh, 2021) does not address accurately all deficiencies identified in Formulation
M and, to the best of our capability, we could not replicate the results of the numerical experiment
provided in Gelareh et al. (2016).

On this basis, the first contribution of this paper is an analysis and a discussion of Formulations M and
G and their optimal solutions. The aim is to provide to the readers (i) an advanced understanding of
the formulations, (ii) a corrected formulation of G, and (iii) an understanding of the optimal solutions
collected with the two formulations. The second contribution is the proposition of a bi-objective
variant of formulations M and G, respectively named 2M and 2G, where the formulation’s abilities to
simultaneously optimise independently the two conflicting objectives is explored. Finally, the third
contribution of this paper consists of numerical experiments conducted with these four formulations
over the set of instances found in the literature, which reveal conclusions that were not expected.

The paper is thus organised as follow. Section 2 presents the notations and the definitions of the
parameters of the problem. In order to facilitate the discussions about formulations, the notations
used for the formulations have been unified across the paper. Next, an illustrating example based on a
toy instance is used to review the different values that parameters may take, and the type of solution
returned. After that, formulation M is presented and discussed in Section 3, followed in Section 4 by
a criticism of this formulation found in the literature. Section 5 introduces the Formulation G, and
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additional details about it are given in A. Finally, formulations 2M and 2G are introduced in Section 6.
These four formulations have been implemented in Julia using JuMP as algebraic modelling language.
The corresponding codes are given in B and are available online. Results of the numerical experiments
are synthesized in Section 7, and all the quantitative results collected are reported in C. Finally,
Section 8 gives a conclusion and draws several perspectives for future research.

2 Notations, Parameters, Example

2.1 Parameters

The following parameters are used in the formulations:

𝑛: number of trucks

𝑚: number of docks

𝑎𝑖: arrival time of truck 𝑖 (1 ≤ 𝑖 ≤ 𝑛)

𝑑𝑖: departure time of truck 𝑖 (1 ≤ 𝑖 ≤ 𝑛)

𝑡𝑘𝑙: operational time for pallets from dock 𝑘 to dock 𝑙 (1 ≤ 𝑘, 𝑙 ≤ 𝑚)

𝑓𝑖 𝑗 : number of pallets transferring from truck 𝑖 to truck 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛)

𝑐𝑘𝑙: operational cost per unit time from dock 𝑘 to dock 𝑙 (1 ≤ 𝑘, 𝑙 ≤ 𝑚)

𝑝𝑖 𝑗 : penalty cost per unit cargo from truck 𝑖 to truck 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛)

𝐶: capacity of crossdock

𝛿𝑖 𝑗 : simultaneous presence indicator of trucks 𝑖 and 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛)

𝜏𝑟 : time marker 𝑟 (1 ≤ 𝑟 ≤ 2𝑛)

The simultaneous presence indicator indicates whether trucks 𝑖 and 𝑗 can be assigned to a same dock
(no temporal overlap) or not. It is established as follow1: for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, if [𝑎𝑖 , 𝑑𝑖] ∩ [𝑎 𝑗 , 𝑑 𝑗] is
empty then 𝛿𝑖 𝑗 = 1 meaning that trucks 𝑖 and 𝑗 may be assigned to a same dock, otherwise 𝛿𝑖 𝑗 = 0.
Furthermore, the following restrictions are adopted without loss of generality:

1. 𝑓𝑖 𝑗 ≥ 0 iff 𝑑 𝑗 ≥ 𝑎𝑖 (1 ≤ 𝑖, 𝑗 ≤ 𝑛), otherwise 𝑓𝑖 𝑗 = 0
It means that truck 𝑖 will transfer some cargo to truck 𝑗 iff truck 𝑗 departs no earlier than truck 𝑖

arrives;

2. 𝑎𝑖 < 𝑑𝑖 (1 ≤ 𝑖 ≤ 𝑛)
It implies that the arrival time of a truck is strictly smaller than its departure time;

3. 𝑛 > 𝑚

It considers the over-constrained condition of the cross-dock.
1originally in Miao et al. (2009), the authors state “𝛿𝑖 𝑗 = 1 iff truck 𝑖 departs no later than truck 𝑗 arrives; 0 otherwise”.
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In order to facilitate the expression of the set of capacity constraints, the vector 𝜏 is built from 𝑎𝑖 and
𝑑𝑖 as follows:

1. sort all 𝑎𝑖 and 𝑑𝑖 in an increasing order;

2. let 𝜏𝑟 (1 ≤ 𝑟 ≤ 2𝑛) be these 2𝑛 numbers such that 𝜏1 ≤ 𝜏2 ≤ ... ≤ 𝜏2𝑛.

2.2 Illustrative Example

Let’s take a toy example illustrated by Figure 2, which shows the parameters to handle.

(a) The layout of the cross-dock. Values on ar-
rows report the transfer time 𝑡𝑘𝑙 between docks
𝑘 and 𝑙.

(b) A previsional planning of trucks with arrival/departure
times. Arrows indicate a transfer of pallets 𝑓𝑖 𝑗 between
trucks 𝑖 and 𝑗 .

Figure 2: Data of the cross-dock and the planning of trucks for the illustration example

Regarding the cross-dock

• The layout illustrated in Figure 2a is composed of three docks (𝑚 = 3).

• The times of transfer between docks (in minutes) are given by:

𝑡 =
©«
0 1 4
1 0 3
4 3 0

ª®¬
• There is no restriction on the capacity of the cross-dock in this example, i.e. 𝐶 = ∞.

Regarding the previsional planning of trucks and transfers of pallets

• The scenario is composed of three trucks (𝑛 = 3).
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• The hours of arrival and departure (in format hour.minute) are known and are, respectively for
each truck:
𝑎 = (18.45, 18.30, 19.12)
𝑏 = (20.20, 19.46, 20.49)

• The number of pallets to transfer between the trucks is given by:

𝑓 =
©«
0 0 1
1 0 0
0 1 0

ª®¬ i.e.


truck 1 delivers 1 pallet to truck 3
truck 2 delivers 1 pallet to truck 1
truck 3 delivers 1 pallet to truck 2

Regarding the costs

• The operational costs and the penalty costs (in unit of value) are respectively:

𝑐 =
©«
0 1 1
1 0 2
1 2 0

ª®¬ and 𝑝 =
©«

0 0 52
24 0 0
0 23 0

ª®¬
Regarding the data derived from the parameters

• The matrix 𝛿 indicates the simultaneous presence indicator for all pairs of trucks; the value 1
means “no overlap” and the value 0 shows “an overlap”:

𝛿 =
©«
0 0 0
0 0 0
0 0 0

ª®¬ i.e.


the time window of truck 1 overlaps with 2 and 3
the time window of truck 2 overlaps with 1 and 3
the time window of truck 3 overlaps with 1 and 2

• The vector 𝜏 collects all time markers (i.e. hours of arrival and departure to consider) in one
vector, where the values are sorted in increasing order:
𝜏 = (18.30, 18.45, 19.12, 19.46, 20.20, 20.49)

A feasible solution

• The three trucks can be assigned at one of the three docks, as depicted in Figure 3.

• There is no conflict between the time windows and enough time to make all pallet transfers:

– trucks 1 and 3 are docked together for 68 minutes (20h20-19h12)
– trucks 2 and 1 are docked together for 61 minutes (19h46-18h45)
– trucks 3 and 2 are docked together for 34 minutes (19h46-19h12)

• Thereby, the transfer times of pallets between docks (unit of time) are:

– 1 pallet of truck 1 (dock 1) goes to truck 3 (dock 3): 4 minutes
– 1 pallet of truck 2 (dock 2) goes to truck 1 (dock 1): 1 minute
– 1 pallet of truck 3 (dock 3) goes to truck 2 (dock 2): 3 minutes

which leads to a total of 4 + 1 + 3 = 8 units of time (minutes) used to transfer all the pallets.
Furthermore, no penalty appear in this example as there is no undelivered pallet.
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truck 1 assigned to dock 1
truck 2 assigned to dock 2 −→
truck 3 assigned to dock 3

Figure 3: Assignment of trucks to docks and the corresponding transfers of pallets within the cross-
dock.

3 Formulation M

The original IP model introduced by Miao et al. (2009) is stated as follow. Two sets of decision
variables are defined:

𝑦𝑖𝑘 =


1 if truck 𝑖 is assigned to dock 𝑘 (1 ≤ 𝑖 ≤ 𝑛;

1 ≤ 𝑘 ≤ 𝑚)
0 otherwise

𝑧𝑖 𝑗𝑘𝑙 =


1 if truck 𝑖 is assigned to dock 𝑘 , truck 𝑗 to dock 𝑙 (1 ≤ 𝑖, 𝑗 ≤ 𝑛;

1 ≤ 𝑘, 𝑙 ≤ 𝑚)
0 otherwise

The model is thus formulated as:
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min
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑘𝑙 𝑡𝑘𝑙 𝑧𝑖 𝑗𝑘𝑙 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝𝑖 𝑗 𝑓𝑖 𝑗

(
1 −

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑧𝑖 𝑗𝑘𝑙

)
(1)

s.t.
𝑚∑︁
𝑘=1

𝑦𝑖𝑘 ≤ 1 (1 ≤ 𝑖 ≤ 𝑛) (𝑀.2)

𝑧𝑖 𝑗𝑘𝑙 ≤ 𝑦𝑖𝑘 (1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝑀.3)
𝑧𝑖 𝑗𝑘𝑙 ≤ 𝑦 𝑗𝑙 (1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝑀.4)
𝑦𝑖𝑘 + 𝑦 𝑗𝑙 − 1 ≤ 𝑧𝑖 𝑗𝑘𝑙 (1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝑀.5)
𝛿𝑖 𝑗 + 𝛿 𝑗𝑖 ≥ 𝑧𝑖 𝑗𝑘𝑘 (1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 ; 1 ≤ 𝑘 ≤ 𝑚) (𝑀.6)
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

∑︁
𝑖∈{𝑖:𝑎𝑖≤𝜏𝑟 }

𝑛∑︁
𝑗=1

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 −
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖=1

∑︁
𝑗∈{ 𝑗:𝑑 𝑗≤𝜏𝑟 }

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 ≤ 𝐶 (𝑀.7)

(1 ≤ 𝑟 ≤ 2𝑛)

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 (𝑑 𝑗 − 𝑎𝑖 − 𝑡𝑘𝑙) ≥ 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝑀.8)
𝑦𝑖𝑘 ∈ {0, 1}, 𝑦 𝑗𝑙 ∈ {0, 1}, 𝑧𝑖 𝑗𝑘𝑙 ∈ {0, 1}(1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝑀.9)

where:

(1) is the objective function, which is composed of the total operational cost (first term) and the
total penalty cost (second term);

(M.2) ensures that each truck cannot be assigned to more than one dock;

(M.3-M.5) jointly determine the logic relationship between all 𝑦𝑖𝑘 , 𝑦 𝑗𝑙 and 𝑧𝑖 𝑗𝑘𝑙 variables;

(M.6) ensures that one dock cannot be occupied by two trucks simultaneously;

(M.7) is the capacity constraint, i.e. for each time point 𝜏𝑟 , the total number of pallets inside the
warehouse cannot exceed the capacity 𝐶;

(M.8) ensures that the transfer of pallets from truck 𝑖 on dock 𝑘 to truck 𝑗 on dock 𝑙 takes place within
the time window given by the arrival time of truck 𝑖 and the departure time of truck 𝑗 ;

(M.9) defines the binary nature of the decision variables.

Constraints (M.2) to (M.9) define X𝑀 the space of feasible solutions corresponding to the formulation
M.

3.1 Discussion

3.1.1 The objective function given by expression (1)

The objective is in minimization and contains two parts: the transfer time of the pallets in the cross-
dock and the number of undelivered pallets. These two parts being non-commensurable, they are
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converted in monetary unit with an operational cost 𝑐𝑘𝑙 associated with the transfer of pallets between
the docks 𝑘 and 𝑙, and a penalty cost 𝑝𝑖 𝑗 associated with a transfer of the truck 𝑖 to the truck 𝑗 . The
two parts can therefore be aggregated into the single synthesis function described by expression (1).

These costs are an artifact that makes the two parts commensurable and play a major role in the
aggregation, as they can be artificially tweaked to obtain different optimal solutions. In Section 6,
a bi-objective variant is proposed for the formulation M (and formulation G as expression (1) is the
same in both cases). It addresses this issue by considering both parts independently in their respective
units, namely time transfert and quantity of cargo transferred.

3.1.2 The notion of capacity in expression (M.7)

The constraint expressed by (M.7) in formulation M (as well as in formulation G as the constraint is
the same in both cases) does not help us to relate the 𝐶 value to the concrete resource limitations in the
cross-dock. Indeed, this value could be based on a limited number of forklifts, on a congestion related
to pallet traffic, on a limitation of pallet handling spaces near the docks, or on an another resource.

The granularity of the model does not allow us to respond, especially since the time window during
which a truck is docked covers three times: unloading, loading and waiting time. No information
allows to identify precisely the time when the pallets are handled within this time window, and therefore
to measure accurately the required resources for handling the pallets.

This concern is particularly relevant when pallets from 𝑖 must therefore be stored while awaiting the
arrival of 𝑗 . In order to grasp this aspect more realistically, a perspective could be to consider capacity
constraints attached to platforms, as for the Cross-Docking Assignment Problem (CDAP) (Zhu et al.,
2009).

3.1.3 The case of pallets not transferred.

When a pallet cannot be transferred, it remains in the truck. However, an another capacity problem may
occurs here. Indeed, if this truck is initially planned to leave the cross-dock fully loaded with pallets
issued from other trucks, an infeasible situation occurs in practice (truck loaded over its capacity) but
is not managed by the formulation M (as well as in formulation G as the situation is identical). This
case may appear with situations corresponding to the numerical instances used in papers Gelareh et al.
(2016); Miao et al. (2009).

Nevertheless, if the movements of pallet exchanges between trucks correspond to a different modus
operandi, this case is no longer relevant. For example, assuming that incoming and outgoing trucks
are differentiated into the planning, such that incoming trucks which transport cargo from a production
manufacture do not receive pallets, a pallet not transferred is returned to the supplier, which makes
sense in practice. To examine this scenario, we have in perspective the project of building a new family
of numerical instances.

3.1.4 The multiplication factor 𝑓𝑖 𝑗 in expression (M.8)

In the constraint expressed by (M.8), 𝑓𝑖 𝑗 is the expected number of pallets to be transferred between
the trucks 𝑖 and 𝑗 , with 𝑎𝑖 being truck 𝑖’s arrival time, 𝑑 𝑗 truck 𝑗’s departure time, and 𝑡𝑘𝑙 a global time
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to carry these pallets between the docks 𝑘 and 𝑙. The aim of this constraint is to force the variable 𝑧𝑖 𝑗𝑘𝑙
to zero when the conditions to perform this transfer are not satisfied, and (M.8) is valid in this sense.

While the interpretation of the term 𝑓𝑖 𝑗 × 𝑡𝑘𝑙 is understandable (although according to the authors, the
valuation of 𝑡𝑘𝑙 includes the number of pallets, and therefore, this product does not represent the time
proportional to the number of pallets contrary to what it suggests), this is not the case for 𝑓𝑖 𝑗 × 𝑑 𝑗 and
𝑓𝑖 𝑗 × 𝑎𝑖 . The meaning behind multiplying a time marker related a truck movement with the number of
pallets is not intuitive.

4 Literature criticisms about Formulation M

According to Gelareh (2021); Gelareh et al. (2015), Formulation M has several limitations and issues.
They are discussed in the technical report (Gelareh et al., 2015) available online and in the paper
(Gelareh, 2021). The mains criticisms and amendments reported in those documents are synthetised
hereafter.

4.1 Mains criticisms and amendments

4.1.1 Infeasible bi-directional transfers

There is a bi-directional transfer between two trucks 𝑖 and 𝑗 if 𝑓𝑖 𝑗 > 0 and 𝑓 𝑗𝑖 > 0. If only one of the
transfers is not feasible e.g. due to the capacity constraint, then constraints (𝑀.3) − (𝑀.5) invalidates
both of them. Indeed, if transfer from 𝑖 to 𝑗 is not feasible, then 𝑧𝑖 𝑗𝑘𝑙 = 0 and by constraints (𝑀.3) and
(𝑀.4), 𝑦𝑖𝑘 = 𝑦 𝑗𝑙 = 0. As a result, by constraint (𝑀.5), 𝑧 𝑗𝑖𝑙𝑘 = 0, meaning that the opposite transfer
also becomes infeasible, even though it may not be w.r.t. the practical problem. Note that a transfer
may be feasible in one direction but not the other e.g. because of the global capacity constraint. As a
consequence of this, feasible transfers may be canceled, resulting in potentially sub-optimal solutions
for the practical problem. In such cases, less pallets may be transferred leading to higher total cost due
to increased penalty costs.

4.1.2 No temporary storage

In Formulation M, a bi-direction pallet transfer between two trucks is feasible only if they are docked
at a common period of time, which must be long enough for completing the transfer. As a consequence
of that, solutions of practical interest may potentially be missed by the model.

Indeed, by definition of the 𝑓𝑖 𝑗 coefficients in Formulation M, it is not possible to have a pair of trucks
𝑖, 𝑗 such that truck 𝑖 arrives after truck 𝑗 leaves the cross-dock (𝑎𝑖 > 𝑑 𝑗) and with a positive flow of
pallets ( 𝑓𝑖 𝑗 > 0). However, such situations may occur in real scenarios. Thus, the authors introduce a
notion of “buffer” and come with modifications on the Formulation M to allow such cases.

4.1.3 Extra transportation costs

The authors have also pointed out others unintended consequences over the optimal solutions induced
by the Formulation M.
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Suppose that two trucks 𝑖 and 𝑗 have no common time window, i.e. for example 𝑗 departs before 𝑖

arrives. In this case, by definition of 𝑓𝑖 𝑗 , we have 𝑓𝑖 𝑗 = 0. Furthermore, since 𝑓𝑖 𝑗 = 0, constraint
(𝑀.8) is then satisfied without inducing any restriction on 𝑧𝑖 𝑗𝑘𝑙, as the left-hand side of the constraint
becomes 0. However, if for some 𝑘, 𝑙, we have 𝑧 𝑗𝑖𝑙𝑘 = 1, then by symmetry 𝑧𝑖 𝑗𝑘𝑙 = 1 even though there
is no transfer. Because of the first part of the objective function, i.e.

∑𝑚
𝑙=1

∑𝑚
𝑘=1

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑐𝑘𝑙 𝑡𝑘𝑙 𝑧𝑖 𝑗𝑘𝑙,

an extra cost is paid for a transfer that does not exist. Consequently, optimal values are inaccurate in
this case. Note that the second part of the objective function is not impacted because 𝑓𝑖 𝑗 = 0.

4.1.4 Symmetry

There is a link between 𝑧𝑖 𝑗𝑘𝑙 and 𝑧 𝑗𝑖𝑙𝑘 . Indeed, there may be a bi-directional transfer between two
trucks 𝑖 and 𝑗 in an optimal solution of Formulation M, i.e. 𝑧𝑖 𝑗𝑘𝑙 = 𝑧 𝑗𝑖𝑙𝑘 holds. This implies that there
is an equivalent alternative optimal solution where truck 𝑗 is assigned to dock 𝑙 and truck 𝑖 is assigned
to dock 𝑘 . In such a solution, 𝑧𝑖 𝑗𝑘𝑙 = 𝑧 𝑗𝑖𝑙𝑘 holds. As a result, many alternative optimal solutions exist,
which may slow down the resolution process significantly.

4.1.5 Proposed modifications

First, to address the infeasible bi-directional transfers and symmetry issue, the definition of the variables
𝑧𝑖 𝑗𝑘𝑙 has been revised so that 𝑧𝑖 𝑗𝑘𝑙 = 1 if and only if there is an actual transfer from 𝑖 to 𝑗 , and the
model is adapted accordingly.

Furthermore, constraint (𝑀.5) is removed and replaced by new constraints that allow for bi-directional
transfers for trucks with non-overlapping time windows in the trucks’ docking time.

Finally, constraint (𝑀.8) has been rewritten so that 𝑧𝑖 𝑗𝑘𝑙 = 0 when 𝑓𝑖 𝑗 = 0 or when the time window
is too short to make a delivery. This eliminates the extra cost problem.

This led to the revised formulation named G in this paper, proposed by the authors and discussed in
Section 5 and A.

4.2 Discussion

Although Gelareh et al. (2015) and Gelareh (2021) propose valid technical solutions to limitations and
issues raised in Formulation M, unfortunately these two documents contain themselves inaccuracies
such as several inconsistent points and typos.

First, the authors use an example to demonstrate that Formulation M does not compute all the feasible
solutions. It is built so that M find no solution and forbid all transfers while Formulation G finds one.

• With Formulation M, they report a value of 16 for the objective function, and none of the variable
is activated, which is different from the sum of penalties when no transfer is fulfilled, namely
22.
Indeed, given the definition of the objective function (1) in Formulation M, when all variables
𝑧𝑖 𝑗𝑘𝑙 = 0 with 11 transfers to consider, a penalty value of 1 for each unfulfilled transfer, and 2
pallets per transfer, the penalty term is:∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑝𝑖 𝑗 𝑓𝑖 𝑗
(
1 − ∑𝑚

𝑘=1
∑𝑚

𝑙=1 𝑧𝑖 𝑗𝑘𝑙
)
= 2 × 1 × 11 = 22
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• With Formulation G, the value 11 is reported, with 5 variable activated. However, with 𝑐𝑘𝑙 =

𝑡𝑘𝑙 = 1, the terms corresponding to the transfer and the penalty take respectively values 5 and 6:
1 × 1 × 5 + 1 × 2 × 6 = 17
Again, the value reported is different. With the information provided in the documents, to the
best of our capabilities, we were not able to understand the origin of these differences.

Second, Formulation G as published by the authors does not allow to reproduce the results reported in
the papers (see Section 7.4 for a comment on that matter). Indeed, the description of the formulation
given in both documents contains several deficiencies (errors and missing information) to implement
it properly, see Section 5 for details.

5 Formulation G

The IP model corresponding to Formulation G uses the same definition of the decision variables as
Formulation M, except that the interpretation of the 𝑧𝑖 𝑗𝑘𝑙 variables is slightly changed as described in
Section 4.1.5. The formulation is reproduced exactly as described in (Gelareh, 2021; Gelareh et al.,
2015, 2016) in A.1, with errors and missing information. They are listed in detail, together with the
corrections we propose in A.2, and B.2 gives the code in Julia corresponding to Formulation G after
having fixed issues.

While some of these inaccuracies could be easily identified and corrected with certainty, others were
not immediately identifiable and are subject to interpretation. They could only be found after a
meticulous analysis of the flat formulation, which necessitated testing instances by hand. We have
therefore proposed corrections, which have enabled us to obtain a formulation that provides con-
sistent solutions. Note that in particular when the indices are missing or in excess, or when their
values are not stated, there is a risk of confusion and ambiguity of the expressions, exposing us to the
possibility of deviating from the authors’ original intentions. The amended model is thus formulated as:
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min
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑘𝑙 𝑡𝑘𝑙 𝑧𝑖 𝑗𝑘𝑙 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝𝑖 𝑗 𝑓𝑖 𝑗

(
1 −

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑧𝑖 𝑗𝑘𝑙

)
(1)

s.t.
𝑚∑︁
𝑘=1

𝑦𝑖𝑘 ≤ 1 (1 ≤ 𝑖 ≤ 𝑛) (𝐺.2)

𝑧𝑖 𝑗𝑘𝑙 ≤ 𝑦𝑖𝑘 (1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝐺.3)
𝑧𝑖 𝑗𝑘𝑙 ≤ 𝑦 𝑗𝑙 (1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝐺.4)
𝑦𝑖𝑘 + 𝑦 𝑗𝑘 ≤ 1 + 𝛿𝑖 𝑗 + 𝛿 𝑗𝑖 (1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 ; 1 ≤ 𝑘 ≤ 𝑚) (𝐺.5)
𝑧𝑖 𝑗𝑘𝑘 ≤ 𝛿𝑖 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 ; 1 ≤ 𝑘 ≤ 𝑚) (𝐺.6)
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

∑︁
𝑖∈{𝑖:𝑎𝑖≤𝜏𝑟 }

𝑛∑︁
𝑗=1

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 −
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖=1

∑︁
𝑗∈{ 𝑗:𝑑 𝑗≤𝜏𝑟 }

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 ≤ 𝐶 (𝐺.7)

(1 ≤ 𝑟 ≤ 2𝑛)

𝑧𝑖 𝑗𝑘𝑙 = 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 ; 1 ≤ 𝑘, 𝑙 ≤ 𝑚; (𝐺.8)
𝑑 𝑗 − 𝑎𝑖 − 𝑓𝑖 𝑗 𝑡𝑘𝑙 ≤ 0)

𝑦𝑖𝑘 ∈ {0, 1}, 𝑦 𝑗𝑙 ∈ {0, 1}, 𝑧𝑖 𝑗𝑘𝑙 ∈ {0, 1}(1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 ≤ 𝑘, 𝑙 ≤ 𝑚) (𝐺.9)

where:

(G.5) guarantee that if the arrival/departure time windows of two trucks 𝑖 and 𝑗 overlap (𝛿𝑖 𝑗 = 𝛿 𝑗𝑖 = 0),
at most one of them can be docked at dock 𝑘 (not both);

(G.6) ensure that truck 𝑖 and truck 𝑗 can use the same dock for realizing the transfers of pallets from 𝑖

to 𝑗 , only if their time windows do not overlap;

(G.8) ensure that 𝑧𝑖 𝑗𝑘𝑙 is set to zero if 𝑓𝑖 𝑗 > 0 and (𝑑 𝑗 − 𝑎𝑖 − 𝑡𝑘𝑙 < 0).

The others parts of the formulation, i.e. (1), (𝐺.2 − 𝐺.4), (𝐺.7), and (𝐺.9), share the same def-
inition with Formulation M. Constraints (𝐺.2) to (𝐺.9) define X𝐺 the space of feasible solutions
corresponding to the formulation G.

6 Formulations 2M and 2G, and lexicographic optimal solution

The bi-objective formulations are now presented. They are straitghforward derived from the single
objective formulations where expression (1), which corresponds to the objective function in M and
G, is spitted in two parts, resulting in the two objectives functions without the costs 𝑐𝑘𝑙 and 𝑝𝑖 𝑗 : the
expression (1.1) minimizes the transfer time of the pallets in the cross-dock, and the expression (1.2)
maximizes the quantity of cargos transferred. The IP models are formulated as follow:
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min
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑡𝑘𝑙 𝑧𝑖 𝑗𝑘𝑙 (1.1)

max
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 (1.2)

subject to constraints defining the space of feasible solutions X𝑀 and X𝐺 , respectively for formulation
2M and 2G.

For these two formulations, a lexicographically optimal solution (see Ehrgott (2005) for more details)
will be desired and sufficient. It corresponds to the optimization problem where the main objective to
be maximized is the quantity of cargos transferred (objective 1.2), and the secondary objective to be
minimized is the total transfer time of the pallets in the cross-dock (objective 1.1). Such an optimal
solution makes sense from a practical point of view, as the main goal of a practitioner is to transfer the
planned cargo through the cross-dock. Then, once this goal is fulfilled, time or resources necessary to
transfer this maximum number of pallets within the cross-dock can be minimized.

A lexicographically optimal solution is obtained at the end of two successive single-objective opti-
mizations. The main objective is firstly optimized giving (if it exists) an optimal value. Next, an
additional equality constraint on the optimal value obtained for the first objective function is added,
and the secondary objective is optimized giving (if it exists) an optimal value. The couple of optimal
values obtained gives the value of the lexicographic optimal solution.

7 Numerical experiments

7.1 Numerical Instances

The experiments reported by Miao et al. (2009) have been conducted with a collection of instances
that represent a cross-dock with a I-shape, where dock gates are symmetrically located on each sides.
Datasets have been randomly generated (i) with different values of parameters 𝑛 and 𝑚, and (ii) with
the following characteristics:

• the time window of a truck on a dock is randomly comprised between 45 and 74 minutes;

• the value 𝑓𝑖 𝑗 giving the number of pallets to be shipped is randomly chosen between 6 and 60.

• the duration of the transfer 𝑡𝑘𝑙 is based on the Manhattan distance between two docks gates. The
authors specifies that a “proportional conversion" is necessary to define 𝑡𝑘𝑙 correctly but without
more detail.

Note that any truck can carry out a pallet transfer to all the other trucks (see Figure 4). It is in this
sense that we named them "full-mesh".

On base of their size 𝑛 × 𝑚, the authors distinguish three categories of instances, (1) the small size
instances (10 × 3 to 18 × 6), (2) the medium size instances (20 × 6 to 40 × 8), and (3) the large size
instances (50 × 10 to 80 × 12). Nevertheless, data files are not provided by the authors.
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Figure 4: Example of a full-mesh transfer of pal-
lets. Trucks arrives with pallets from suppliers, and
leave with pallets to customers. For example, truck
numbered 2 arrives with three (red) pallets destined
to trucks 3/4/5, and leaves with pallets provided by
truck 1 (blue) and truck 5 (green).

Gelareh et al. (2015) have generated instances following generation procedure described below. For
the 𝑡𝑘𝑙, no proportional conversion is considered, only the Manhattan distance is kept. The data files
generated are available online2 but raise questions about at least 2 aspects.

First, this way of defining transfers from truck 𝑘 to truck 𝑙 without “proportional conversion" implies
that there is no link between the duration of a pallet transfer 𝑡𝑘𝑙 and the quantity of pallet in this transfer
𝑓𝑖 𝑗 . These choices can lead to a long transfer time for a small number of pallets to be transferred,
which is not in line with a real situation. Second, the units associated to values such as 𝑡𝑘𝑙 are not
stated. The units applied to the data is a potential source of inconsistencies that can lead to misuse of
the data, in particular with respect to the truck’s time windows.

7.2 Experimental environment

The program is implemented in Julia (version 1.10) and uses JuMP (version 1.21) as algebraic
modeling language. All the codes are available online at https://github.com/xgandibleux/
TDAP, including an implementation of Formulation M, Formulation G corrected as described in this
paper, Formulations 2M and 2G. The program is ready to be run with Gurobi or GLPK as MIP solver3.

The experiment are performed on a MacBook Pro laptop under macOS Ventura (version 13.6) equipped
as follow:

• CPU model: 3.5 GHz Intel Core i7 double cores.

• Memory: 16 Go 2133 MHz LPDDR3.

Here, Gurobi Optimizer (version 10.0.3 build v10.0.3rc0 (mac64[x86])) is used.

7.3 Experiment 1: detailed numerical analysis of Formulations M and G on a didactic
instance

This experiment examines in detail the optimal solutions obtained by Formulations M and G on a
didactic instance composed of 5 trucks and 3 docks. The maximum capacity of the terminal is 813

2https://www.lgi2a.univ-artois.fr/~gelareh/downloads/cross_dock/data.rar
3The program provided online is configured to run with GLPK. Explanations are provided into the readme file to switch

to Gurobi.
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pallets. The previsional arrival and departure time of trucks into the format (hh.mm), transformed in
minutes in the interval [00:00;23:59], is given by Table 1a.

The previsional number of pallets 𝑓𝑖 𝑗 to transfer from truck 𝑖 to truck 𝑗 , the penalties 𝑝𝑖 𝑗 (in unit of
cost) when a transfer from 𝑖 to 𝑗 is not achieved, the operational times (minutes) 𝑡𝑘𝑙 from 𝑘 to 𝑙, and
the transportation cost (in unit of cost) 𝑐𝑘𝑙 from 𝑘 to 𝑙 are respectively given in Table 1b, 1c, 1d, and
1e. The Gantt chart depicted in Figure 1f illustrates the previsional planning of trucks and transfers of
pallets.

The information deduced from the data are (1) the simultaneous presence indicators 𝛿, and (2) the time
markers 𝜏. They are reported in Tables 2a and 2b respectively.

An optimal solution obtained respectively with Formulation M and Formulation G is given in Table 3.
Table 3a shows the optimal assignments of trucks to docks and Table 3b reports the transfers of pallets.

The value of the objective function for an optimal solution obtained with Formulation M is equal to
12, which is also the value of the operational cost. Indeed, all the transfers awaited (7 transfers) are
fulfilled (ratio of 100.0%), thus the penalty cost is equal to 0.

With Formulation G, the value of the objective function for an optimal solution obtained is equal to
67, with an operational cost of 3 and a penalty cost of 64. Indeed, only 6 transfers on the 7 awaited are
fulfilled (ratio of 85.71%).

For the two optimal solutions collected, Figures 3c and 3d illustrates the evolution of the load in the
terminal in term of pallets respectively for Formulation M and G. This numerical result obtained with
a didactic instance shows that an optimal solution obtained with Formulation G may be dominated by
an optimal solution obtained with M.
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truck ID (𝑖) arrival (𝑎𝑖) departure (𝑑𝑖)
hh.mm minutes hh.mm minutes

1 17:26 1046 18:17 1097
2 17:14 1034 18:17 1097
3 19:15 1155 20:20 1220
4 18:30 1110 19:16 1156
5 19:47 1187 20:49 1249

(a) Previsional planning of trucks.

𝑓𝑖 𝑗 𝑗

1 2 3 4 5
1 . . . . 33
2 . . 36 . .

𝑖 3 . . . 8 50
4 . . 8 . 52
5 . . 24 . .

(b) Previsional number of pallets 𝑓𝑖 𝑗 to transfer
from truck 𝑖 to truck 𝑗 .

𝑝𝑖 𝑗 𝑗

1 2 3 4 5
1 . . . . 8
2 . . 8 . .

𝑖 3 . . . 8 8
4 . . 9 . 8
5 . . 8 . .

(c) Penalties 𝑝𝑖 𝑗 from 𝑖 to 𝑗 .

𝑡𝑘𝑙 𝑙

1 2 3
1 0 1 4

𝑘 2 1 0 3
3 4 3 0

(d) Operational times (minutes) 𝑡𝑘𝑙 from 𝑘 to 𝑙.

𝑐𝑘𝑙 𝑙

1 2 3
1 0 1 1

𝑘 2 1 0 2
3 1 2 0

(e) Transportation cost 𝑐𝑘𝑙 from 𝑘 to 𝑙.

(f) Overview of the previsionnal planning of trucks and transfers of pallets.

Table 1: Data provided for the didactic instance.
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𝛿𝑖 𝑗 𝑗

1 2 3 4 5
0 0 1 1 1
0 0 1 1 1

𝑖 1 1 0 0 0
1 1 0 0 1
1 1 0 1 0

(a) 𝛿𝑖 𝑗 , the simultaneous presence indicator between trucks 𝑖 and 𝑗 (1 if no
overlap, 0 otherwise).

id (𝑟) time marker (𝜏𝑟 ) arrivals (atr[r]) departures (dtr[r])
hh.mm minutes list of trucks 𝑖 list of trucks 𝑗

1 17:14 1034 [2] [ ]
2 17:26 1046 [1, 2] [ ]
3 18:17 1097 [1, 2] [1, 2]
4 18:17 1097 [1, 2] [1, 2]
5 18:30 1110 [1, 2, 4] [1, 2]
6 19:15 1155 [1, 2, 3, 4] [1, 2]
7 19:16 1156 [1, 2, 3, 4] [1, 2, 4]
8 19:47 1187 [1, 2, 3, 4, 5] [1, 2, 4]
9 20:20 1220 [1, 2, 3, 4, 5] [1, 2, 3, 4]
10 20:49 1249 [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

(b) Arrivals and departures of trucks at a time marker. For example, at the 2nd (𝑟 = 2) time marker
(𝜏2 = 17:26), trucks 1 and 2 are arrived (atr[2]=[1,2]), none departure of truck (dtr[2]=[]).

Table 2: Information deduced from the data for the didactic instance.
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Formulation M Formulation G
truck dock arrival departure truck dock arrival departure

1 1 17:26 18:17 1 2 17:26 18:17
2 2 17:14 18:17 2 1 17:14 18:17
3 1 19:15 20:20 3 1 19:15 20:20
4 2 18:30 19:16 4 2 18:30 19:16
5 2 19:47 20:49 5 2 19:47 20:49

(a) Assignments of trucks to docks.

Formulation M Formulation G
trucks docks # pallets trucks docks # pallets
𝑖 → 𝑗 𝑘 → 𝑙 𝑖 → 𝑗 𝑘 → 𝑙

1 → 5 1 → 2 33 1 5 2 → 2 33
2 → 3 2 → 1 36 2 3 1 → 1 36
3 → 4 1 → 2 8 3 5 1 → 2 50
3 → 5 1 → 2 50 4 3 2 → 1 8
4 → 3 2 → 1 8 4 5 2 → 2 52
4 → 5 2 → 2 52 5 3 2 → 1 24
5 → 3 2 → 1 24

(b) Transfers of pallets.

(c) Evolution of the load in the terminal in term of
pallets for Formulation M.

(d) Evolution of the load in the terminal in term of
pallets for Formulation G.

Table 3: Optimal solution collected with each formulation.
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7.4 Experiment 2: comparison between Formulations M and G

This experiment focuses on the optimal solutions obtained by Formulations M and G on small and
medium size instances. For this experiment, a computation time limit of 600 seconds is given to
Gurobi. This value was chosen because it has shown to be sufficient to observe the behaviour of the
two formulations given our computer configuration.

In total, 65 instances of increasing size were selected from the available data set. Most instances have
been solved to optimality by Gurobi within the time limit for at least one of the formulations. For both
formulations and for each instance,(1) the optimal objective value (aggregated cost, operational cost,
penalty cost), (2) the CPU time in seconds, (3) the transfers of pallets between docks (number and
percentage) achieved, (4) the number of trucks assigned to a dock, and (5) the total time transfert as
well as the total quantity of cargo transferred, are gathered together in Tables 5 and 6 in C, and Figures
5 and 6 synthesize graphically these results.

As announced in Section 4, we were unable to reproduce the optimal value reported by the authors for
the given instances. For example, we obtained an optimal value of 7911, 4032 and 8556 for instances
data_12_4_1, data_12_4_2 and data_12_4_3 respectively. On the other hand, Gelareh et al. (2016)
reported optimal values of 7747, 4032 and 8562. We observe that our values are sometimes equal,
greater, or lower than those of Gelareh et al. (2016). To the best of abilities, we could not identify
any clear pattern to predict which scenario will occur for which instance. Note that we checked the
feasibility of all solutions we obtained, and the code used to do that is available with the source code.
Unfortunately, the authors do not provide the optimal solutions they obtained nor do they mention any
open access to their codes. Therefore, it was not possible to determine the origin of these differences
between both numerical results.

Figure 5a shows that except for two small instances, Formulation M requires more CPU time to solve
than Formulation G, and this gap seems to widen with the size of the instance. Moreover, it is important
to mention that we did not make use of the valid inequalities presented in Gelareh et al. (2015, 2016).
As a result, the CPU time for Formulation G could be further reduced. Consequently, Formulation G
appears to be the best one with respect to computation time.

Figure 5b compares the optimal value of the objective function between both formulations. We observe
that the optimal value for Formulation G is lower than the one for Formulation M in all but six instances.
Thus, empirically, the adjustments proposed by Gelareh et al. (2015) have a positive impact in general,
although not systematic.

When taking a closer look at Tables 5 and 6, we see that the optimal solutions found by Formulation
M often have a larger operational cost. However, the penalty costs are in general equal or lower than
those of Formulation G. From that, we conclude that Formulation M finds solutions with a greater
number of transfers fulfilled (as illustrated in Figures 6a and 6b), which is surprising considering that
Formulation G should be able to find more feasible transfers.

From a practitioner’s perspective, this nuance may be relevant as it appears reasonable to put priority
first on the number of pallets transferred. Indeed, it may be of greater importance to utilize the
cross-dock as much as possible in order to reduce the number of unsatisfied clients due to undelivered
pallets. Only then, the total transfer time within the cross-dock are optimized in order to minimize the
resources used to perform the deliveries.

Based on these observations, we built the two bi-objective formulation presented in Section 6, which
return lexicographically optimal solutions for this problem.
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(a) Comparison elapsed time collected for each instance. When a 𝑦 value is equal to 600, the corresponding
optimal solution is not available.

(b) Comparison of objective values collected for each instance. When a 𝑦 value is equal to 0, the corresponding
optimal solution is not available.

Figure 5: Comparison between Formulations M and G on the objective value and the elapsed time.

22



(a) Comparison on number of transfers collected for each instance. When a 𝑦 value is equal to 0, the corresponding
optimal solution is not available.

(b) Positive difference on number of transfers collected for each instance solved to optimality for both formula-
tions. “M” means the difference is in favor of Formulation M, “G” means the difference is in favor of Formulation
G, “=” means there is no difference between the two formulations.

Figure 6: Comparison between Formulations M and G on the number of transfers.
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7.5 Experiment 3: results obtained with formulations 2M and 2G

Here, instances are solved using Formulations 2M and 2G. The lexicographic optimization is done
in two stages. First, objective (1.2) is maximized, and an optimal value 𝑣∗ is observed. Second, an
additional constraint in the form

∑𝑛
𝑖=1

∑𝑛
𝑗=1

∑𝑚
𝑘=1

∑𝑚
𝑙=1 𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 = 𝑣∗ is added to the model, i.e. we

force objective (1.2) to be optimal. Then, objective (1.1) is minimized with the new constraint added.

The time limit is kept to 600 seconds for the whole lexicographic optimization process. Detailed
results are reported in Table 7 and 8 in C.

instance bi-objective single objective
formulation value formulation value

data_12_4_0 2G (63 ; 980) G (64 ; 973)
data_16_4_4 2M (186 ; 1175) M (194 ; 1167)
data_16_6_0 2G (97 ; 1591) G (110 ; 1590)
data_16_6_2 2M (310 ; 1767) M (344 ; 1764)
data_18_4_0 2M (386 ; 1818) M (392 ; 1811)
data_18_4_4 2M (386 ; 1980) M (390 ; 1975)
data_20_6_1 2G (195 ; 2902) G (199 ; 2896)
data_20_6_3 2G (141 ; 2351) G (152 ; 2348)
data_25_6_4 2G (262 ; 3552) G (271 ; 3531)

Table 4: Cases identified where the value of a lexicographic optimal solution dominates strictly the
value of a single objective optimal solution. The couple of values between parentheses reported in a
column “value” corresponds on the left at the time transfer (to minimize), and on the right the quantity
of cargo transferred (to maximize).

First, solutions obtained with the bi-objective formulations weakly dominate the solutions obtained
with the single-objective formulations, i.e. they are equal on one objective and strictly better on the
other one. Indeed, the secondary objective (objective (1.1), which minimizes the total transfer time)
is improved 26 times for 2M and 45 times for 2G.

Furthermore, Table 4 show that for 9 instances, the lexicographic solutions strictly dominate those
from the single-objective formulation, i.e. they are strictly better on all objectives. This indicates that
a multi-objective approach where all objectives are considered independently may provide solutions of
greater quality for the practical problem, as opposed to a single-objective version where all objectives
are aggregated into one complex function.

The CPU time for the lexicographic approach is in general higher than for the single-objective approach,
since two IPs have to be solved each time. However, this increase seems to stay within a reasonable
proportion, and we even observed the opposite on a few instances. For example, data_20_6_2 was
not solved within 600 seconds for M, but an optimal solution was found in 363.176 seconds for 2M.
Similarly, we see that data_14_6_0 was solved in 116.325 seconds for G, and 102.004 seconds for
2G. This may be explained by the fact that the expression of the objective functions are much simpler
in the bi-objective models, as opposed to the complex aggregation function in the single-objective
formulations. The practical value of the multi-objective approach for the TDAP is therefore not
overshadowed by the computation time required to find a lexicographically optimal solution.
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(a) Cases where the value of the time transfert obtained with 2M is better than the value obtained with M.

(b) Cases where the value of the time transfert obtained with 2G is better than the value obtained with G.

Figure 7: Comparisons between values on time transfer collected with M vs 2M, and G vs 2G.
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8 Conclusion and perspectives

This paper studies two formulations for the TDAP published since 2009, namely Formulations M and
G. Our literature review unveiled several critics and discussions in various papers published since then.
Even though the arguments presented are justified, strong, and have a valid technical background, we
identified a few errors or inconsistencies in some of these studies.

On this basis, we first aimed at providing a rigorous description of the two formulations. For this
purpose, both were written with unified notations, corrected if necessary, discussed, and analyzed
numerically. The conclusions drawn led us to propose a bi-objective variant of these models, resulting
in four formulations in total.

Finally, we conducted numerical experiments on instances from the literature. All solutions reported
are optimal, and all implementations are available online. First, we observed that there was no clear
winner between Formulations M and G. Indeed, although Formulation G has a better optimal value
in general, Formulation M is still better for some instances. Furthermore, Formulation M tends to
generate solutions with more pallets delivered, which may be interesting from a practical point of view,
but is also slower to solve.

Experiment 3 showed the practical value of a multi-objective approach in terms of quality of the solu-
tion. Indeed, the lexicographic solutions weakly or strictly dominate the solutions from Formulations
M and G in terms of number of transfers achieved and total time transfer in the cross-dock. Moreover,
although the computation time is slightly higher in general for 2M and 2G, there is again no clear
winner as some instances were solved faster with the lexicographic approach.

Various perspective for more realistic models were mentioned in the discussions, such as considering
a more detailed management of the capacity constraint, having a more realistic calculation of the
transfer time that depends also on the number of pallets to transport, studying of the formulations on
different classes of instances, ect. Naturally, the valid inequalities known for Formulation G could also
be applied to Formulation 2G and to some extent M and 2M to reduce the computation time. Finally,
while already relevant, the multi-objective approach is considered in its simplest form at the moment.
Multiple non-dominated points could be computed to provide the practitioner with a better picture
of the trade-off between the objectives considered, depending on what makes the most sense for the
practical problem at hand.

26



A Formulation G from Gelareh (2021); Gelareh et al. (2015, 2016)

A.1 The original formulation

The IP model is reproduced exactly as presented in papers, with errors and missing information. It is
formulated as:

min
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑘𝑙 𝑡𝑘𝑙 𝑧𝑖 𝑗𝑘 +
𝑛∑︁
𝑖=1

©«
𝑛∑︁
𝑗=1

𝑝𝑖 𝑗 𝑓𝑖 𝑗

(
1 −

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑧𝑖 𝑗𝑘𝑙

)ª®¬ (1)

s.t.
𝑚∑︁
𝑘=1

𝑦𝑖𝑘 ≤ 1 ∀𝑖 (2)

𝑧𝑖 𝑗𝑘𝑙 ≤ 𝑦𝑖𝑘 ∀𝑖, 𝑗 , 𝑘, 𝑙 (3)
𝑧𝑖 𝑗𝑘𝑙 ≤ 𝑦 𝑗𝑙 ∀𝑖, 𝑗 , 𝑘, 𝑙 (4)
𝑦𝑖𝑘 + 𝑦 𝑗𝑘 ≤ 1 + 𝛿𝑖 𝑗 + 𝛿 𝑗𝑖 ∀𝑖, 𝑗 , 𝑘 (5)
𝑧𝑖 𝑗𝑘𝑘 ≤ 𝛿𝑖 𝑗 ∀𝑖, 𝑗 ≠ 𝑖, 𝑘, 𝑙 (6)
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

∑︁
𝑖∈{𝑖:𝑎𝑖≤𝜏𝑟 }

𝑛∑︁
𝑗=1

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 +
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖

∑︁
𝑗∈{ 𝑗:𝑑 𝑗≤𝜏𝑟 }

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 ≤ 𝐶 (7)

∀𝑟 ∈ {1, 2, ..., 2𝑛}
𝑧𝑖 𝑗𝑘𝑙 = 0 ∀𝑖, 𝑗 , 𝑘, 𝑙 : 𝑗 ≠ 𝑖, (𝑑 𝑗 − 𝑎𝑖 − 𝑡𝑘𝑙 ≤ 0) (8)
𝑧𝑖 𝑗𝑘𝑙 ≤ 1 ∀𝑖, 𝑗 , 𝑘, 𝑙 : 𝑗 ≠ 𝑖 (9)
𝑧𝑖 𝑗𝑘𝑙 ≥ 0 ∀𝑖, 𝑗 , 𝑘, 𝑙 : 𝑗 ≠ 𝑖 (10)
𝑦𝑖𝑘 ≤ 1 ∀𝑖, 𝑘 (11)
𝑦𝑖𝑘 ≥ 0 ∀𝑖, 𝑘 (12)
𝑦𝑖𝑘 ∈ {0, 1}, 𝑧𝑖 𝑗𝑘𝑙 ∈ {0, 1} (13)
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A.2 The corrections proposed

A number of inaccuracies and incompleteness were identified in Formulation G, making it non-
operational. They are reported hereafter (also coloured in red in the text).

– in (1): index missing into the first term:
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑘𝑙 𝑡𝑘𝑙 𝑧𝑖 𝑗𝑘𝑙 +
𝑛∑︁
𝑖=1

©«
𝑛∑︁
𝑗=1

𝑝𝑖 𝑗 𝑓𝑖 𝑗

(
1 −

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑧𝑖 𝑗𝑘𝑙

)ª®¬
– in (5): wrong definition of index:

𝑦𝑖𝑘 + 𝑦 𝑗𝑘 ≤ 1 + 𝛿𝑖 𝑗 + 𝛿 𝑗𝑖 ∀𝑖, 𝑗 ≠ 𝑖, 𝑘

– in (6): wrong definition of index:

𝑧𝑖 𝑗𝑘𝑘 ≤ 𝛿𝑖 𝑗 ∀𝑖, 𝑗 ≠ 𝑖, 𝑘, 𝑙

– in (7): wrong operation, and initial value missing:
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

∑︁
𝑖∈{𝑖:𝑎𝑖≤𝜏𝑟 }

𝑛∑︁
𝑗=1

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 −
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑖=1

∑︁
𝑗∈{ 𝑗:𝑑 𝑗≤𝜏𝑟 }

𝑓𝑖 𝑗 𝑧𝑖 𝑗𝑘𝑙 ≤ 𝐶 ∀𝑟 ∈ {1, 2, ..., 2𝑛}

– in (9-12): constraints (9-12) redundant with (13), and domains of indexes not stated in (13):

𝑦𝑖𝑘 ∈ {0, 1}, 𝑧𝑖 𝑗𝑘𝑙 ∈ {0, 1}
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B Formulations implemented in Julia with JuMP

B.1 Formulation M

using JuMP
mod = Model()
# --- Variables ---------------------------------------------------------------
# 1 if truck i is assigned to dock k, 0 otherwise:
@variable( mod,
y[1:n, 1:m], Bin
)
# 1 if truck i is assigned to dock k and truck j to dock l, 0 otherwise:
@variable( mod,
z[1:n, 1:n, 1:m, 1:m], Bin
)
# --- Objective ---------------------------------------------------------------
# total operational cost + total penalty cost:
@objective( mod,
Min,
sum(c[k,l] * t[k,l] * z[i,j,k,l] for i=1:n, j=1:n, k=1:m, l=1:m)
+
sum( p[i,j] * f[i,j] * ( 1 - sum( z[i,j,k,l] for k=1:m, l=1:m) ) for i=1:n, j=1:n) )
)
# --- (M2-M8): constraints ----------------------------------------------------
@constraint( mod,
cstM2_[i=1:n],
sum(y[i,k] for k=1:m) <= 1
)
@constraint( mod,
cstM3_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[i,k]
)
@constraint( mod,
cstM4_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[j,l]
)
@constraint( mod,
cstM5_[i=1:n, j=1:n, k=1:m, l=1:m],
y[i,k] + y[j,l] - 1 <= z[i,j,k,l]
)
@constraint( mod,
cstM6_[i=1:n, j=1:n, k=1:m; i!=j],
x[i,j] + x[j,i] >= z[i,j,k,k]
)
@constraint( mod,
cstM7_[r=1:2*n],
sum(f[i,j] * z[i,j,k,l] for i in atr[r], j=1:n, k=1:m, l=1:m)
-
sum(f[i,j] * z[i,j,k,l] for i=1:n, j in dtr[r], k=1:m, l=1:m) <= C
)
@constraint( mod,
cstM8_[i=1:n, j=1:n, k=1:m, l=1:m],
f[i,j] * z[i,j,k,l] * (d[j] - a[i] - t[k,l]) >= 0
)
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B.2 Formulation G after having fixed issues

using JuMP
mod = Model()
# --- Variables ---------------------------------------------------------------
# 1 if truck i is assigned to dock k, 0 otherwise:
@variable( mod,
y[1:n, 1:m], Bin
)
# 1 if truck i is assigned to dock k and truck j to dock l, 0 otherwise:
@variable( mod,
z[1:n, 1:n, 1:m, 1:m], Bin
)
# --- Objective ---------------------------------------------------------------
# total operational cost + total penalty cost
@objective( mod,
Min,
sum(c[k,l] * t[k,l] * z[i,j,k,l] for i=1:n, j=1:n, k=1:m, l=1:m)
+
sum( p[i,j] * f[i,j] * ( 1 - sum( z[i,j,k,l] for k=1:m, l=1:m) ) for i=1:n, j=1:n) )
)
# --- (G2-G8): constraints ----------------------------------------------------
@constraint( mod,
cstG2_[i=1:n],
sum(y[i,k] for k=1:m) <= 1
)
@constraint( mod,
cstG3_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[i,k]
)
@constraint( mod,
cstG4_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[j,l]
)
@constraint( mod,
cstG5_[i=1:n, j=1:n, k=1:m; i!=j],
y[i,k] + y[j,k] <= 1 + x[i,j] + x[j,i]
)
@constraint( mod,
cstG6_[i=1:n, j=1:n, k=1:m; i!=j],
z[i,j,k,k] <= x[i,j]
)
@constraint( mod,
cstG7_[r=1:2*n],
sum(f[i,j] * z[i,j,k,l] for i in atr[r], j=1:n, k=1:m, l=1:m)
-
sum(f[i,j] * z[i,j,k,l] for i=1:n, j in dtr[r], k=1:m, l=1:m) <= C
)
@constraint( mod,
cstG8_[i=1:n, j=1:n, k=1:m, l=1:m; i!=j && (d[j]-a[i]-t[k,l])<=0],
z[i,j,k,l] == 0
)
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B.3 Formulation 2M

using JuMP
mod = Model()
# --- Variables ---------------------------------------------------------------
# 1 if truck i is assigned to dock k, 0 otherwise:
@variable( mod,
y[1:n, 1:m], Bin
)
# 1 if truck i is assigned to dock k and truck j to dock l, 0 otherwise:
@variable( mod,
z[1:n, 1:n, 1:m, 1:m], Bin
)
# --- Objectives --------------------------------------------------------------
# (1.1): total transfert time of the pallets in the cross-dock
@expression( mod, objFct1_transfertTime,
sum(t[k,l] * z[i,j,k,l] for i=1:n, j=1:n, k=1:m, l=1:m)
)
# (1.2): total quantity transferred
@expression( mod, objFct2_quantityTransferred,
sum(f[i,j] * z[i,j,k,l] for i=1:n, j=1:n, k=1:m, l=1:m)
)
if obj == :obj1
@objective(mod, Min, objFct1_transfertTime)
else
@objective(mod, Max, objFct2_quantityTransferred)
end
# --- (M2-M8): constraints ----------------------------------------------------
@constraint( mod,
cstM2_[i=1:n],
sum(y[i,k] for k=1:m) <= 1
)
@constraint( mod,
cstM3_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[i,k]
)
@constraint( mod,
cstM4_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[j,l]
)
@constraint( mod,
cstM5_[i=1:n, j=1:n, k=1:m, l=1:m],
y[i,k] + y[j,l] - 1 <= z[i,j,k,l]
)
@constraint( mod,
cstM6_[i=1:n, j=1:n, k=1:m; i!=j],
x[i,j] + x[j,i] >= z[i,j,k,k]
)
@constraint( mod,
cstM7_[r=1:2*n],
sum(f[i,j] * z[i,j,k,l] for i in atr[r], j=1:n, k=1:m, l=1:m)
-
sum(f[i,j] * z[i,j,k,l] for i=1:n, j in dtr[r], k=1:m, l=1:m) <= C
)
@constraint( mod,
cstM8_[i=1:n, j=1:n, k=1:m, l=1:m],
f[i,j] * z[i,j,k,l] * (d[j] - a[i] - t[k,l]) >= 0
)
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B.4 Formulation 2G

using JuMP
mod = Model()
# --- Variables ---------------------------------------------------------------
# 1 if truck i is assigned to dock k, 0 otherwise:
@variable( mod,
y[1:n, 1:m], Bin
)
# 1 if truck i is assigned to dock k and truck j to dock l, 0 otherwise:
@variable( mod,
z[1:n, 1:n, 1:m, 1:m], Bin
)
# --- Objectives --------------------------------------------------------------
# (1.1): total transfert time of the pallets in the cross-dock
@expression( mod, objFct1_transfertTime,
sum(t[k,l] * z[i,j,k,l] for i=1:n, j=1:n, k=1:m, l=1:m)
)
# (1.2): total quantity transferred
@expression( mod, objFct2_quantityTransferred,
sum(f[i,j] * z[i,j,k,l] for i=1:n, j=1:n, k=1:m, l=1:m)
)
if obj == :obj1
@objective(mod, Min, objFct1_transfertTime)
else
@objective(mod, Max, objFct2_quantityTransferred)
end
# --- (G2-G8): constraints ----------------------------------------------------
@constraint( mod,
cstG2_[i=1:n],
sum(y[i,k] for k=1:m) <= 1
)
@constraint( mod,
cstG3_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[i,k]
)
@constraint( mod,
cstG4_[i=1:n, j=1:n, k=1:m, l=1:m],
z[i,j,k,l] <= y[j,l]
)
@constraint( mod,
cstG5_[i=1:n, j=1:n, k=1:m; i!=j],
y[i,k] + y[j,k] <= 1 + x[i,j] + x[j,i]
)
@constraint( mod,
cstG6_[i=1:n, j=1:n, k=1:m; i!=j],
z[i,j,k,k] <= x[i,j]
)
@constraint( mod,
cstG7_[r=1:2*n],
sum(f[i,j] * z[i,j,k,l] for i in atr[r], j=1:n, k=1:m, l=1:m)
-
sum(f[i,j] * z[i,j,k,l] for i=1:n, j in dtr[r], k=1:m, l=1:m) <= C
)
@constraint( mod,
cstG8_[i=1:n, j=1:n, k=1:m, l=1:m; i!=j && (d[j]-a[i]-t[k,l])<=0],
z[i,j,k,l] == 0
)
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C Detailed results

C.1 Results for formulations M

fname tElapsed z zCost zPenalty totTimeTrans totQuanTrans nTruckAssig nTransDone pTransDone
sec # # %

data_10_3_0 0.509 3163 160 3003 124 789 9 21 67.74
data_10_3_1 0.562 8454 156 8298 84 1030 7 28 46.67
data_10_3_2 0.674 6659 234 6425 114 949 8 28 58.33
data_10_3_3 0.413 10021 60 9961 48 498 6 15 31.25
data_10_3_4 0.727 10047 192 9855 84 968 7 27 45.76
data_12_4_0 8.811 13508 196 13312 126 988 8 31 41.89
data_12_4_1 7.397 8035 220 7815 148 1285 9 37 56.06
data_12_4_2 6.127 4215 344 3871 192 1496 10 45 76.27
data_12_4_3 11.434 8642 208 8434 160 1470 9 41 59.42
data_12_4_4 3.544 6429 198 6231 160 1408 9 42 66.67
data_12_6_0 70.025 8845 406 8439 180 1271 9 39 57.35
data_12_6_1 62.186 1954 408 1546 276 1493 11 52 89.66
data_12_6_2 174.123 2251 532 1719 292 1925 11 60 89.55
data_12_6_3 62.948 528 528 0 344 2387 12 72 100.0
data_12_6_4 61.679 2625 422 2203 272 1846 11 53 88.33
data_14_4_0 10.294 6023 684 5339 228 1636 11 50 75.76
data_14_4_1 9.479 4376 600 3776 286 1473 12 43 78.18
data_14_4_2 11.663 7568 472 7096 224 1720 11 49 62.82
data_14_4_3 5.428 9744 260 9484 192 856 10 31 50.0
data_14_4_4 11.911 9015 420 8595 228 1509 11 48 60.0
data_14_6_0 122.656 6254 760 5494 316 1912 12 56 73.68
data_14_6_1 308.555 6889 778 6111 338 1615 12 51 72.86
data_14_6_2 237.558 5540 796 4744 328 1894 12 58 77.33
data_14_6_3 125.933 3713 568 3145 314 1973 12 58 81.69
data_14_6_4 159.806 6067 468 5599 272 1322 11 41 66.13
data_16_4_0 27.355 6334 800 5534 384 2551 14 71 80.68
data_16_4_1 20.97 9400 560 8840 324 2060 13 66 70.21
data_16_4_2 9.179 6083 680 5403 336 1616 13 46 71.88
data_16_4_3 22.18 7090 606 6484 336 1778 13 54 66.67
data_16_4_4 4.499 9664 286 9378 194 1167 10 33 44.59
data_16_6_0 196.66 11542 556 10986 290 1590 12 46 54.76
data_16_6_1 114.687 3485 806 2679 444 2682 14 81 90.0
data_16_6_2 319.275 8146 528 7618 344 1764 12 55 69.62
data_16_6_3 600.0 . . . . . . . .
data_16_6_4 600.0 . . . . . . . .
data_18_4_0 34.252 10910 656 10254 392 1811 14 50 56.82
data_18_4_1 53.99 2653 1352 1301 576 2472 17 87 94.57
data_18_4_2 19.462 12854 368 12486 320 1992 13 54 56.25
data_18_4_3 14.511 15922 522 15400 288 1915 12 52 50.0
data_18_4_4 69.997 9799 486 9313 390 1975 14 59 60.2
data_18_6_0 223.069 6615 1148 5467 536 2526 15 72 76.6
data_18_6_1 195.467 8506 842 7664 524 2943 15 83 75.45
data_18_6_2 600.0 . . . . . . . .
data_18_6_3 208.451 9988 662 9326 470 2003 14 63 64.95
data_18_6_4 600.0 . . . . . . . .
data_20_6_0 476.017 18159 976 17183 584 3039 16 84 61.31
data_20_6_1 600.0 . . . . . . . .
data_20_6_2 600.0 . . . . . . . .
data_20_6_3 485.055 10963 942 10021 594 2364 16 72 68.57
data_20_6_4 600.0 . . . . . . . .
data_20_8_0 600.0 . . . . . . . .
data_20_8_1 600.0 . . . . . . . .
data_20_8_2 600.0 . . . . . . . .
data_20_8_3 600.0 . . . . . . . .
data_20_8_4 600.0 . . . . . . . .
data_25_6_0 600.0 . . . . . . . .
data_25_6_1 600.0 . . . . . . . .
data_25_6_2 600.0 . . . . . . . .
data_25_6_3 600.0 . . . . . . . .
data_25_6_4 600.0 . . . . . . . .
data_25_8_0 600.0 . . . . . . . .
data_25_8_1 600.0 . . . . . . . .
data_25_8_2 600.0 . . . . . . . .
data_25_8_3 600.0 . . . . . . . .
data_25_8_4 600.0 . . . . . . . .

Table 5: Numerical results for formulation M (tElapsed: CPU time; z: aggregated cost; zCost:
operational cost; zPenalty: penalty cost; totTimeTrans: total time transfert; totQuanTrans: total
quantity of cargo transferred; nTruckAssig: number of trucks assigned to a dock; nTransDone:
number of transfers of pallets between docks; pTransDone: percentage of transfers of pallets between
docks).
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C.2 Results for formulations G

fname tElapsed z zCost zPenalty totTimeTrans totQuanTrans nTruckAssig nTransDone pTransDone
sec # # %

data_10_3_0 0.191 3105 38 3067 32 781 9 20 64.52
data_10_3_1 0.304 8410 112 8298 68 1030 7 28 46.67
data_10_3_2 0.263 6545 120 6425 52 949 8 28 58.33
data_10_3_3 0.245 10005 44 9961 32 498 6 15 31.25
data_10_3_4 0.383 9985 130 9855 56 968 7 27 45.76
data_12_4_0 2.997 13554 92 13462 64 973 8 30 40.54
data_12_4_1 3.997 7911 96 7815 72 1285 9 37 56.06
data_12_4_2 2.826 4032 161 3871 94 1496 10 45 76.27
data_12_4_3 4.875 8556 122 8434 92 1470 9 41 59.42
data_12_4_4 2.617 6353 122 6231 87 1408 9 42 66.67
data_12_6_0 32.222 8630 191 8439 89 1271 9 39 57.35
data_12_6_1 87.18 1722 176 1546 121 1493 11 52 89.66
data_12_6_2 192.302 2366 260 2106 153 1882 11 59 88.06
data_12_6_3 49.625 440 251 189 186 2366 12 71 98.61
data_12_6_4 22.671 2809 186 2623 121 1804 11 52 86.67
data_14_4_0 2.506 5627 288 5339 96 1636 11 50 75.76
data_14_4_1 1.673 3932 156 3776 80 1473 12 43 78.18
data_14_4_2 3.925 7560 192 7368 90 1686 11 48 61.54
data_14_4_3 1.896 9568 84 9484 60 856 10 31 50.0
data_14_4_4 3.489 8762 167 8595 104 1509 11 48 60.0
data_14_6_0 116.38 6380 292 6088 126 1858 12 55 72.37
data_14_6_1 88.715 6363 252 6111 119 1615 12 51 72.86
data_14_6_2 84.006 5076 332 4744 141 1894 12 58 77.33
data_14_6_3 54.847 3361 216 3145 132 1973 12 58 81.69
data_14_6_4 51.71 5756 157 5599 87 1322 11 41 66.13
data_16_4_0 5.437 5793 259 5534 135 2551 14 71 80.68
data_16_4_1 5.525 9050 210 8840 130 2060 13 66 70.21
data_16_4_2 2.787 5579 176 5403 94 1616 13 46 71.88
data_16_4_3 3.646 6649 165 6484 111 1778 13 54 66.67
data_16_4_4 2.219 9951 87 9864 58 1111 10 31 41.89
data_16_6_0 50.924 11162 176 10986 110 1590 12 46 54.76
data_16_6_1 61.577 3915 293 3622 175 2576 14 78 86.67
data_16_6_2 137.286 7799 174 7625 108 1767 12 51 64.56
data_16_6_3 141.809 4654 307 4347 162 2193 14 66 79.52
data_16_6_4 48.062 2597 324 2273 154 2268 15 69 88.46
data_18_4_0 4.472 10376 122 10254 80 1811 14 50 56.82
data_18_4_1 4.463 1987 358 1629 167 2431 17 86 93.48
data_18_4_2 6.018 12626 111 12515 100 2011 13 52 54.17
data_18_4_3 7.478 15611 211 15400 128 1915 12 52 50.0
data_18_4_4 8.419 9467 154 9313 116 1975 14 59 60.2
data_18_6_0 56.468 5972 321 5651 161 2503 15 71 75.53
data_18_6_1 59.063 8231 335 7896 208 2914 15 81 73.64
data_18_6_2 63.318 3965 316 3649 170 2728 16 81 86.17
data_18_6_3 74.137 9956 220 9736 154 1962 14 62 63.92
data_18_6_4 43.723 2979 238 2741 149 2197 16 68 87.18
data_20_6_0 119.347 17504 321 17183 208 3039 16 84 61.31
data_20_6_1 200.197 10825 349 10476 199 2896 16 86 69.92
data_20_6_2 116.617 4365 304 4061 206 2818 17 91 88.35
data_20_6_3 134.26 10432 235 10197 152 2348 16 71 67.62
data_20_6_4 116.442 10924 271 10653 154 2276 16 69 65.09
data_20_8_0 398.406 2176 353 1823 233 2730 19 87 93.55
data_20_8_1 600.0 . . . . . . . .
data_20_8_2 600.0 . . . . . . . .
data_20_8_3 600.0 . . . . . . . .
data_20_8_4 600.0 . . . . . . . .
data_25_6_0 251.293 7881 301 7580 188 2941 21 88 75.21
data_25_6_1 320.398 9627 267 9360 203 3150 22 95 76.0
data_25_6_2 301.192 6853 477 6376 247 3841 22 110 82.09
data_25_6_3 486.471 12345 456 11889 226 3271 20 99 68.75
data_25_6_4 197.149 10633 510 10123 271 3531 20 110 74.83
data_25_8_0 600.0 . . . . . . . .
data_25_8_1 600.0 . . . . . . . .
data_25_8_2 600.0 . . . . . . . .
data_25_8_3 600.0 . . . . . . . .
data_25_8_4 600.0 . . . . . . . .

Table 6: Numerical results for formulation G (tElapsed: CPU time; z: aggregated cost; zCost:
operational cost; zPenalty: penalty cost; totTimeTrans: total time transfert; totQuanTrans: total
quantity of cargo transferred; nTruckAssig: number of trucks assigned to a dock; nTransDone:
number of transfers of pallets between docks; pTransDone: percentage of transfers of pallets between
docks).
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C.3 Results for formulations 2M

fname tElapsed totTimeTrans totQuanTrans nTruckAssigned nTransfertDone pTransfertDone
sec # # %

data_10_3_0 0.812 120 789 9 21 67.74
data_10_3_1 1.082 84 1030 7 28 46.67
data_10_3_2 1.544 102 949 8 28 58.33
data_10_3_3 0.764 46 498 6 15 31.25
data_10_3_4 1.492 80 968 7 27 45.76
data_12_4_0 11.51 128 995 8 30 40.54
data_12_4_1 12.974 148 1285 9 37 56.06
data_12_4_2 10.566 192 1496 10 45 76.27
data_12_4_3 15.674 160 1470 9 41 59.42
data_12_4_4 8.248 148 1408 9 42 66.67
data_12_6_0 116.325 180 1285 9 40 58.82
data_12_6_1 116.227 264 1493 11 52 89.66
data_12_6_2 158.53 284 1925 11 60 89.55
data_12_6_3 129.402 344 2387 12 72 100.0
data_12_6_4 75.455 264 1846 11 53 88.33
data_14_4_0 12.469 228 1636 11 50 75.76
data_14_4_1 13.827 280 1473 12 43 78.18
data_14_4_2 19.076 224 1720 11 49 62.82
data_14_4_3 11.069 174 856 10 31 50.0
data_14_4_4 22.0 224 1509 11 48 60.0
data_14_6_0 179.878 310 1912 12 56 73.68
data_14_6_1 372.014 328 1615 12 51 72.86
data_14_6_2 267.835 328 1894 12 58 77.33
data_14_6_3 155.441 290 1973 12 58 81.69
data_14_6_4 112.403 248 1322 11 41 66.13
data_16_4_0 46.507 384 2551 14 71 80.68
data_16_4_1 39.72 324 2060 13 66 70.21
data_16_4_2 18.136 324 1616 13 46 71.88
data_16_4_3 29.463 336 1778 13 54 66.67
data_16_4_4 11.37 186 1175 10 35 47.3
data_16_6_0 249.185 290 1591 12 47 55.95
data_16_6_1 162.236 440 2682 14 81 90.0
data_16_6_2 205.61 310 1767 12 51 64.56
data_16_6_3 438.476 454 2193 14 66 79.52
data_16_6_4 501.069 524 2268 15 69 88.46
data_18_4_0 45.011 386 1818 14 57 64.77
data_18_4_1 61.248 576 2472 17 87 94.57
data_18_4_2 40.208 320 2011 13 52 54.17
data_18_4_3 32.814 288 1915 12 52 50.0
data_18_4_4 66.205 386 1980 14 62 63.27
data_18_6_0 260.708 524 2526 15 72 76.6
data_18_6_1 392.485 508 2943 15 83 75.45
data_18_6_2 461.688 598 2728 16 81 86.17
data_18_6_3 295.336 454 2003 14 63 64.95
data_18_6_4 600.0 . . . . .
data_20_6_0 661.723 576 3039 16 84 61.31
data_20_6_1 600.0 . . . . .
data_20_6_2 363.176 660 2818 17 91 88.35
data_20_6_3 600.0 . . . . .
data_20_6_4 600.0 . . . . .
data_20_8_0 600.0 . . . . .
data_20_8_1 600.0 . . . . .
data_20_8_2 600.0 . . . . .
data_20_8_3 600.0 . . . . .
data_20_8_4 600.0 . . . . .
data_25_6_0 600.0 . . . . .
data_25_6_1 600.0 . . . . .
data_25_6_2 600.0 . . . . .
data_25_6_3 600.0 . . . . .
data_25_6_4 600.0 . . . . .
data_25_8_0 600.0 . . . . .
data_25_8_1 600.0 . . . . .
data_25_8_2 600.0 . . . . .
data_25_8_3 600.0 . . . . .
data_25_8_4 600.0 . . . . .

Table 7: Numerical results for formulation 2M (tElapsed: CPU time; totTimeTrans: total time
transfert; totQuanTrans: total quantity of cargo transferred; nTruckAssig: number of trucks assigned
to a dock; nTransDone: number of transfers of pallets between docks; pTransDone: percentage of
transfers of pallets between docks).
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C.4 Results for formulations 2G

fname tElapsed totTimeTrans totQuanTrans nTruckAssigned nTransfertDone pTransfertDone
sec # # %

data_10_3_0 0.342 29 781 9 20 64.52
data_10_3_1 0.787 68 1030 7 28 46.67
data_10_3_2 0.646 52 949 8 28 58.33
data_10_3_3 0.543 32 498 6 15 31.25
data_10_3_4 0.79 55 968 7 27 45.76
data_12_4_0 9.707 63 980 8 29 39.19
data_12_4_1 4.656 68 1285 9 37 56.06
data_12_4_2 3.027 94 1496 10 45 76.27
data_12_4_3 7.113 92 1470 9 41 59.42
data_12_4_4 4.217 87 1408 9 42 66.67
data_12_6_0 33.861 91 1285 9 40 58.82
data_12_6_1 36.12 120 1493 11 52 89.66
data_12_6_2 84.927 139 1882 11 59 88.06
data_12_6_3 73.181 176 2366 12 46 63.89
data_12_6_4 30.708 119 1804 11 34 56.67
data_14_4_0 4.083 96 1636 11 50 75.76
data_14_4_1 3.177 80 1473 12 43 78.18
data_14_4_2 6.195 87 1686 11 48 61.54
data_14_4_3 3.611 55 856 10 31 50.0
data_14_4_4 7.948 93 1509 11 48 60.0
data_14_6_0 102.004 117 1858 12 55 72.37
data_14_6_1 152.031 113 1615 12 51 72.86
data_14_6_2 79.687 138 1894 12 58 77.33
data_14_6_3 51.298 122 1973 12 58 81.69
data_14_6_4 36.628 87 1322 11 41 66.13
data_16_4_0 10.421 135 2551 14 71 80.68
data_16_4_1 11.445 129 2060 13 66 70.21
data_16_4_2 3.997 88 1616 13 46 71.88
data_16_4_3 6.654 102 1778 13 54 66.67
data_16_4_4 3.852 61 1119 10 33 44.59
data_16_6_0 208.463 97 1591 12 47 55.95
data_16_6_1 91.301 170 2576 14 78 86.67
data_16_6_2 44.587 104 1767 12 51 64.56
data_16_6_3 83.354 151 2193 14 66 79.52
data_16_6_4 46.325 152 2268 15 69 88.46
data_18_4_0 9.194 99 1812 14 56 63.64
data_18_4_1 10.164 164 2431 17 86 93.48
data_18_4_2 11.879 97 2011 13 52 54.17
data_18_4_3 11.257 126 1915 12 52 50.0
data_18_4_4 11.493 121 1980 14 62 63.27
data_18_6_0 98.589 158 2503 15 71 75.53
data_18_6_1 91.453 182 2914 15 82 74.55
data_18_6_2 70.69 170 2728 16 81 86.17
data_18_6_3 79.34 150 1962 14 62 63.92
data_18_6_4 53.487 146 2197 16 68 87.18
data_20_6_0 227.273 194 3039 16 84 61.31
data_20_6_1 353.924 195 2902 16 88 71.54
data_20_6_2 97.591 194 2818 17 91 88.35
data_20_6_3 103.752 141 2351 16 40 38.1
data_20_6_4 194.63 159 2278 16 69 65.09
data_20_8_0 599.659 202 2730 19 87 93.55
data_20_8_1 600.0 . . . . .
data_20_8_2 600.0 . . . . .
data_20_8_3 600.0 . . . . .
data_20_8_4 600.0 . . . . .
data_25_6_0 191.679 184 2941 21 88 75.21
data_25_6_1 251.288 187 3150 22 95 76.0
data_25_6_2 232.982 246 3841 22 110 82.09
data_25_6_3 579.702 206 3271 20 99 68.75
data_25_6_4 231.332 262 3552 20 112 76.19
data_25_8_0 600.0 . . . . .
data_25_8_1 600.0 . . . . .
data_25_8_2 600.0 . . . . .
data_25_8_3 600.0 . . . . .
data_25_8_4 600.0 . . . . .

Table 8: Numerical results for formulation 2G (tElapsed: CPU time; totTimeTrans: total time
transfert; totQuanTrans: total quantity of cargo transferred; nTruckAssig: number of trucks assigned
to a dock; nTransDone: number of transfers of pallets between docks; pTransDone: percentage of
transfers of pallets between docks).
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