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Abstract

Mathematical modeling, simulation, and optimization can significantly support the development
and characterization of chromatography steps in the biopharmaceutical industry. Particularly mech-
anistic models become preferably used, as these models, once carefully calibrated, can be employed
for a reliable optimization. However, model calibration is a difficult task in this context due to high
correlations between parameters, highly nonlinear models, and limited prior knowledge of certain
parameters, among others.

In this work we propose a homotopy-based globalization strategy that can be used in combina-
tion with iterative algorithms for the solution of mathematical optimization problems, particularly
parameter estimation problems. With our approach, convergence can be achieved even when initial
guesses are far away from a solution. Moreover, we describe and discuss the calibration procedure
for a real-world ion exchange chromatography process, here considering a complete chromatography
system. This description may serve as a general blueprint for the estimation of model parameters
in chromatography processes.
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1. Introduction

The biopharmaceutical industry is fast growing and highly competitive. More drug candidates
must be developed in a shorter period of time while also maintaining high quality standards, e.g.,
in terms of purity of the desired product. Hence, the purification process of biopharmaceuticals,
also called downstream process, must adapt quickly to new molecules in a short amount of time
and with limited sample volumes.

Column chromatography is predominantly used in the downstream processing of biopharma-
ceuticals. This technique is versatile and still subject to major developments, compare Unger et al.
(2010) and Rathore et al. (2018). However, to effectively and efficiently make use of chromatography
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steps, a substantial process understanding is required, which is also promoted by regulatory agen-
cies such as the U.S. Food and Drug Administration. In their guidelines for process development,
compare U.S. Food and Drug Administration (2004), it is also stated that the ability to predict the
process behavior shows a deeper understanding of the underlying process and may therefore lead
to more freedom in changing the originally approved process conditions.

Since chromatography steps make up to 70% of the total costs in the downstream processing
(Osberghaus et al., 2012a), there is a large interest in the optimization of such processes. Both
economic and ecological benefits can be expected, such as a shorter process duration, improved
product quality, and an economic use of buffer components. In the last few decades, techniques from
mathematical optimization have been employed to successfully optimize chromatographic separation
processes, compare, e.g., Karlsson et al. (2004), Nfor et al. (2011), Holmqvist et al. (2015), Pirrung
et al. (2017), Bock et al. (2021), and Cebulla et al. (2023). Albeit typically being more complex than,
e.g., empirical models, the use of mechanistic models becomes increasingly preferred, as such models
typically exhibit a good predictability (Osberghaus et al., 2012b). Indeed, quite a few mechanistic
mathematical models have been proposed to describe different types of chromatographic processes,
such as size exclusion chromatography, ion exchange chromatography, hydrophobic interaction
chromatography, multimodal chromatography, and affinity chromatography, compare the books by
Guiochon et al. (2006) and Schmidt-Traub et al. (2012), as well as, e.g., Brooks and Cramer (1992),
Nfor et al. (2010), Deitcher et al. (2010), Sandoval et al. (2012), Nilsson and Andersson (2017),
Leweke and von Lieres (2018, table 1), and Cebulla et al. (2019).

However, the calibration of mechanistic models is a challenging task, due to highly nonlinear
models, high correlations between certain model parameters, and a lack of sufficient data, compare
Rischawy et al. (2019). In this work, we propose a new methodology that can be used in combi-
nation with an iterative optimization algorithm for a reliable estimation of model parameters for
chromatographic processes.

1.1. Related work
Various methods have been proposed for the estimation of model parameters of a mechanistic

model, e.g., use of correlations, as well as performance and evaluation of tracer, frontal, and bind-
and-elute experiments, compare Schmidt-Traub et al. (2012, section 6.5) and Gu (2015, chapter 4),
as well as the references cited therein.

Furthermore, parameters related to mass transfer phenomena, such as dispersion, diffusion,
and (film) mass transfer coefficients, can be either estimated by evaluation of breakthrough curves
(Persson et al., 2006) or by a moment analysis of performed tracer experiments in combination with
correlations, compare Schmidt-Traub et al. (2012, sections 6.5.3.1, 6.5.6.2, and 6.5.8). Estimation
of model parameters for column external equipment, such as additional mixers and tubing, can be
performed in a similar way.

However, it is typically the adsorption-related model parameters that affect the elution profiles
in chromatograms the most. It is hence crucial to take particular care when estimating these model
parameters. Again, several methods have been proposed in the past. For example, Brooks and
Cramer (1992) describe a strategy to determine equilibrium parameters for their proposed steric
mass action (SMA) isotherm model to describe ion exchange chromatography (IEX) processes. One
further parameter occurring in this model, namely the total ionic capacity, can be either retrieved
from manufacturer data or from titration experiments, compare Tugcu et al. (2002). Further ap-
proaches, e.g., for the determination of saturation capacities and Henry coefficients, are summarized
in Schmidt-Traub et al. (2012, section 6.5.7). Also, manually fitting certain model parameters to
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given measurement data has been reported to yield promising results, compare Karlsson et al.
(2004).

A different strategy for the estimation of model parameters that is also independent of the
actually employed mathematical model is the use of an inverse method. Here, a mathematical
optimization problem has to be solved where the objective is to minimize an appropriately defined
deviation between measurement data and model prediction; the model parameters are the degrees
of freedom. The probably most famous problem class are least squares problems, where the squared
difference between measurements and predictions are minimized.

Inverse methods are often used to estimate adsorption-related parameters, compare Nfor et al.
(2010), Schmidt-Traub et al. (2012, section 6.5.7.11), Leweke and von Lieres (2018), and Rischawy
et al. (2019). Osberghaus et al. (2012a) have shown for the SMA isotherm model that both ap-
proaches, namely either following the instructions by Brooks and Cramer (1992) or using an inverse
method, yield comparable results with respect to the predictability of the calibrated model. Yet,
the obtained parameter values were not the same. Although the authors seem to favor the inverse
method for the ability of fast process development, this approach also has its limitations. For exam-
ple, it is generally agreed that one should not try to estimate all model parameters simultaneously
with an inverse method, as high correlations between certain parameters may lead to meaningless
results, compare Leweke and von Lieres (2018) and Rischawy et al. (2019). Indeed, some authors
state that no more than three parameters should be estimated simultaneously with this approach,
compare Schmidt-Traub et al. (2012, section 6.5.3.2). Therefore, as many parameters as possible
should still be determined separately, e.g., with the methods summarized at the beginning of this
section.

To numerically solve the (least squares) parameter estimation problems, the current state of the
art is using heuristic approaches, such as sampling, genetic algorithms or simulated annealing, in
order to obtain good starting points for a successive refined search by a derivative-based optimization
algorithm, such as the Levenberg-Marquardt method or an interior point method (IPM), compare
Wang et al. (2016), Leweke and von Lieres (2018), and Rischawy et al. (2019).

1.2. Contribution
Based on the previous discussion, we can see that application of an inverse method is an im-

portant ingredient for the estimation of model parameters. However, the performance of these
methods typically relies on a “good” initial guess provided by the user. For some model parameters
good initial guesses can be obtained by using correlations, but for other parameters, specifically
adsorption-related ones, not even the order of magnitude may be known. As stated in the pre-
vious section, an initial guess is often obtained by a heuristic approach, typically combined with
the claim that this is done to avoid local minima. However, we must emphasize that using these
heuristics does not guarantee to converge to a global minimum (yet, a better local optimum may
be found). Even if a better local minimum in terms of the objective function value is obtained,
the found minimizer is useless if it is not stable under perturbations of the measurements, compare
Bock et al. (2007, section 3.5) and Bock et al. (2020, section 2). Lastly, in order to employ these
heuristic approaches, the search space has to be limited beforehand, which might cut off desirable
local minima.

In this work we propose a novel homotopy-based globalization approach for iterative methods,
whose aim is to ensure convergence to a local solution even if the initial parameter guess is far away
from a solution. Although we limited the previous discussion to mechanistic models, the proposed
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methodology can in principle be also used when employing other types of models, such as empirical
models.

To show and investigate properties of the proposed homotopy approach, we consider a real-world
IEX process, for which we perform model calibration. We fully describe a procedure to estimate
all occurring model parameters, which may serve as a general template for model calibration of
chromatographic processes. Moreover, the homotopy approach is analyzed in terms of the parameter
values along the homotopy path, as well as in terms of required number of iterations of a generalized
Gauss–Newton method for solving (constrained) least squares problems.

1.3. Outline
The remainder of this article is organized as follows: In section 2 we introduce our novel

homotopy-based globalization approach in a rather general framework, i.e., by not making as-
sumptions on the type of mathematical model being used, as well as independent on the actual
numerical method to solve parameter estimation problems. The estimation of model parameters
for a real-world IEX process by using the novel homotopy approach is presented in section 3. We
conclude with a discussion of the presented results in section 4.

2. Reliable parameter estimation in chromatographic applications using a homotopy-
based globalization approach

The goal of this section is to introduce a novel homotopy-based globalization approach based
on exponentially modified Gaussian (EMG) functions and tailored to chromatographic applications
for the reliable estimation of unknown model parameters. To this end, we first describe the general
setting and the problems that may occur in this context, followed by a presentation of the novel ho-
motopy strategy to overcome these problems. Lastly, we discuss possible extensions to the proposed
methodology and provide theoretical considerations regarding its local convergence behavior.

2.1. Setting and resulting difficulties
We first describe our setting for the estimation of model parameters for chromatographic appli-

cations.

Assumption 2.1. Let T = [t0, tf ] ⊆ R be the time horizon of interest and P ⊆ Rnp the space of
admissible parameters. Our setting for parameter estimation is based on the following assumptions:

1. There are scalar-valued measurements ηi = η(ti) ∈ R for selected time points ti ∈ T . We allow
ti = tj for i ̸= j, hence there can be multiple measurements at a single point in time. In chro-
matographic applications measurement data is typically given in form of chromatograms, e.g.,
data from ultraviolet (UV) spectroscopy. We first limit our discussion to a single-component
experiment where a single peak can be observed, compare figure 1.

2. There is a model response / prediction function h : T × P → R such that (ideally) we have
h(ti, p) ≈ ηi for a suitable choice of p and for all i. Evaluation of the model response function
may involve the solution of a partial differential equation (PDE) model when using so-called
rate models, but also empirical models can be used.

3. To estimate model parameters based on given measurements, certain instances of nonlinear
programs (NLPs) must be solved, such as (weighted) least-squares or least absolute deviation
problems. We assume that an iterative algorithm is used to solve such parameter estimation
problems. This implies that we require an initial parameter value p(0) ∈ P to start the solution
procedure.
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Figure 1: Exemplary data of a real-world chromatography experiment. Here, a single substance is investigated and
the data shows a single peak.

We note that our setting is fairly general and by no means uncommon. However, the limitation
to a single-component experiment with a single observable peak can be too restrictive in certain
cases; specifically, if it is not feasible to perform single-component experiments. We therefore discuss
later in section 2.3 possible extensions to the homotopy approach presented in section 2.2, including
the multi-component case.

With the setting described in assumption 2.1, we identify the following potential difficulties,
which were also briefly mentioned in section 1:

1. Some of the model parameters p may be completely unknown and vary over several orders
of magnitude. The initially chosen parameter guess p(0) may therefore be far away from a
solution and the employed NLP solver may require a large number of iterations until the
respective termination criteria are fulfilled.

2. Some of the model parameters may be highly correlated or can only be determined under
experimental conditions that are not always possible to conduct, such as experiments with
high sample concentrations.

3. Available measurements are typically conductivity, pH, and UV absorbance of the fluid leaving
the column. On the one hand, this implies that we cannot measure the concentration profiles
of separate components, but, in the simplest case, only a weighted sum thereof, compare (10)
in section 3.1. On the other hand, we also cannot measure the state within the chromatography
column. Hence we obtain comparably little information from measurement data.

4. Depending on the employed mathematical models, bounds must be imposed on the parameters
(and possibly further variables, such as concentrations) in order to guarantee non-negativity.
Both (too) negative concentrations and parameters can lead to a breakdown of the employed
solution method, as the underlying model response function h may not be evaluable anymore.
On the other hand, imposing bound constraints may lead to very small steps taken by the
employed NLP solver. An active set strategy, as previously proposed (Cebulla et al., 2019),
may improve on this situation, but not on the other difficulties.

A combination of the above mentioned difficulties may lead to a breakdown of the employed
solution strategy, i.e., the solver does not, or only very slowly, converge. To overcome this undesired
behavior we propose a novel homotopy-based globalization approach whose description is the subject
of the next section.
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Algorithm 1: Generic homotopy approach for parameter estimation problems.
Input: Initial parameter estimate p(0), sequence of measurements {η(1), . . . , η(N)}.
Output: Parameter estimate p(N) for the measurements η(N).

1 for k = 1 to N do
2 Obtain parameter estimate p(k) based on measurements η(k) by applying a suitable

inverse method / NLP solver. Use p(k−1) (or a suitable predictor) as initial guess.
3 end

2.2. Homotopy-based globalization approach using exponentially modified Gaussian functions
To summarize the difficulties mentioned in the previous section, particularly the lack of a suitable

initial parameter estimate p(0) may lead to a breakdown of the employed NLP solver or that a large
number of iterations may be required until the solver terminates. To improve on this situation we
propose to employ a homotopy-based globalization strategy. The general idea behind this method
is outlined in algorithm 1 and we refer to, e.g., Allgower and Georg (1990) and Deuflhard (2004,
chapter 5) for a more detailed treatment of such continuation methods. In our setting, the final
goal is to obtain a parameter estimate for the measurements η(N) that are the actual (real-world)
measurements for which model parameters are sought. The reasoning for this methodology lies in
the assumption that the model parameters depend continuously on the measurement data. That is,
altering the measurements slightly will also only slightly alter the respective parameter estimates
and the employed inverse method will converge quickly. We formalize this idea in section 2.4
where we consider constrained nonlinear least squares (NLLS) problems that are solved with the
generalized Gauss–Newton method.

The core question when one wants to apply algorithm 1 is how to generate the sequence of
measurements {η(1), . . . , η(N)}. We propose to use EMG functions, as they are known to describe
chromatography data well, compare Grushka (1972) and Foley and Dorsey (1984). To this end, we
first introduce two versions of such functions; one to describe tailing behavior, and another one to
describe fronting behavior, compare figure 2.

Definition 2.2 (Exponentially modified Gaussian functions). Exponentially modified Gaussian
(EMG) functions that can be used to describe peaks with fronting behavior (emgF : R → R) and
tailing behavior (emgT : R → R) are given by

emgT(t;A,µ, σ, τ) =
Aσ

τ

√
π

2
exp

(
σ2

2τ2
− t− µ

τ

)
erfc

(
σ√
2τ

− t− µ√
2σ

)
,

emgF(t;A,µ, σ, τ) =
Aσ

τ

√
π

2
exp

(
σ2

2τ2
+

t− µ

τ

)
erfc

(
σ√
2τ

+
t− µ√
2σ

)
,

(1)

with
erfc(x) = 1− erf(x) =

2√
π

∫ ∞

x
exp(−t2) dt, x ∈ R,

being the complementary error function. Here, (A,µ, σ, τ) ∈ R4 are parameters specifying the
behavior of the respective EMG function.

We first remark that the “classic” EMG function (emgT) can be interpreted as a scaled probabil-
ity density function of the sum of a normally distributed and an exponentially distributed random
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Figure 2: Exemplary EMG functions for peaks with fronting behavior (left) and tailing behavior (right), using (1).
All instances are generated with A = 1.0 and σ = 0.5.

variable. The EMG parameters are the amplitude A, the mean µ and standard deviation σ of the
underlying Gaussian and the reciprocal of the underlying exponential’s rate τ .

To use EMG functions in the context of a moment analysis, compare Schmidt-Traub et al.
(2012, section 6.5.3), the following lemma summarizes mean and standard deviation of the EMG
functions defined in (1).

Lemma 2.3 (Mean and standard deviation of EMG functions). The mean (µemg) and standard
deviation (σemg) for the EMG functions defined in (1) are given by

µemg =

{
µ+ τ, for emgT,

µ− τ, for emgF,
σ2
emg = σ2 + τ2.

With EMG functions at hand, we can now describe our homotopy approach. The general
situation is depicted in figure 3 and an algorithmic description can be found in algorithm 2. The
core idea is to both fit the real-world measurements and the model prediction corresponding to the
initial parameter estimate p(0) with EMG functions. We thus obtain two sets of EMG parameters;
using a convex combination of these two sets of parameters generates intermediate peaks, compare
figure 3. In this figure, we can also observe that both the (real-world) measurements and the
measurements obtained by using the initial parameter estimate are well approximated by EMG
functions. We furthermore highlight that with this approach there will always be only a single
peak present in the intermediate stages. This would not be the case, e.g., when using a simple
convex combination of the measurement data. In the latter case, we would obtain two peaks in the
intermediate steps, which is typically not a physical behavior and a mathematical (mechanistic)
model will not be able to capture this.

In order to apply algorithm 2, we need to obtain the EMG parameters p(0)emg and p∗emg. This may
also be challenging by itself, as the EMG functions (1) are highly nonlinear. However, depending
on the quality of the measurement data, it is possible to obtain good initial estimates based on the
first and central second and third moments, as is described in the following lemma.

Lemma 2.4 (Obtaining EMG parameters from (central) moments). Let η ∈ {emgF, emgT} be an
instance of an EMG function, either for fronting or tailing behavior. Given the first three (central)
moments

µ1 =

∫∞
0 t η(t) dt∫∞
0 η(t) dt

, µ2 =

∫∞
0 (t− µ1)

2 η(t) dt∫∞
0 η(t) dt

, µ3 =

∫∞
0 (t− µ1)

3 η(t) dt∫∞
0 η(t) dt

, (3)
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Algorithm 2: Homotopy approach using EMG functions for a single peak.
Input: Model response function h, initial parameter guess p(0), (real-world) measurements

η∗, homotopy parameters 0 ≤ λ(1) ≤ · · · ≤ λ(N) = 1 with N ∈ N.
Output: Parameter estimate p∗ for measurements η∗.

1 Obtain “artificial” measurements η(0) by using model response function h with parameters
p(0).

2 Fit η(0) with an EMG function to obtain its parameters p
(0)
emg and the corresponding EMG

curve denoted by η
(0)
emg.

3 Fit the original (real-world) measurements η∗ with the same type (!) of EMG function to
obtain p

(N)
emg and the corresponding EMG curve η

(N)
emg.

4 for k = 1 to N do
5 Compute new EMG parameters, for example, by

p(k)emg =
(
1− λ(k)

)
p(0)emg + λ(k) p(N)

emg (2)

and compute the corresponding EMG curve η
(k)
emg.

6 Obtain new parameter estimate p(k) based on measurements η
(k)
emg by applying the

chosen inverse method. Use p(k−1) (or a suitable predictor) as initial guess.
7 end
8 Use p(N) as initial guess to obtain the parameter estimate p∗ for the original measurements

η∗.

the EMG parameters for η are given by

τ =
∣∣∣µ3

2

∣∣∣1/3 , σ =
√

µ2 − τ2, µ =

{
µ1 − τ, if η = emgT,

µ1 + τ, if η = emgF,
A =

∫∞
0 η(t) dt√

2πσ2
. (4)

Of course, real-world measurements are never perfect EMG functions, hence the above expres-
sions in (4) only serve as rough estimates. The three moments µ1, µ2, and µ3, can be easily computed
from the given measurements, e.g., with the trapezoidal rule, provided that the sampling rates of
the measurement devices are sufficiently high and the measurement noise low. Otherwise, results
obtained for the second and third central moments may be inaccurate, compare Schmidt-Traub
et al. (2012, section 6.5.3.1).

Having stated the homotopy algorithm using EMG functions (algorithm 2), as well as how to
obtain estimates for EMG parameters based on (central) moments (lemma 2.4), we now draw our
attention to possible extensions for the proposed methodology.

2.3. Extensions
Several open questions to the proposed homotopy method remain. First and foremost, the

question is whether this approach can also be used when multiple peaks are present. We can
generalize the above ideas to the multi-component case by using sums of EMG functions,

ηemg(t) :=

Nf∑
j=1

emgF(t;Aj , µj , σj , τj) +

Nf+Nt∑
j=Nf+1

emgT(t;Aj , µj , σj , τj).
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Figure 3: Exemplary visualization of the homotopy approach based on EMG functions, see algorithm 2. The
left-most data shows real-world measurements (point data) and the corresponding fit with an EMG function; the
right-most data shows “artificial” measurements obtained from evaluating the model response function h using the
initial estimate p(0). Intermediate curves show EMG functions obtained via (2).

Here, we assume that the actual measurements consist of Nf peaks with fronting and Nt peaks
with tailing behavior. For each component (peak) there is a separate collection of EMG parameters;
when using the homotopy approach stated in algorithm 2, the EMG parameters for each component
are altered according to (2). Of course, we have to assume that the underlying mathematical model
can always describe the current measurement data along the homotopy sufficiently well.

We immediately highlight that peaks not (strongly) overlapping with other peaks can be treated
separately when it comes to the estimation of suitable EMG parameters for the respective peak.
However, the situation is more difficult when two peaks strongly overlap. First, it might not be
obvious whether to use an EMG function with tailing or fronting. Second, even if we can deduce the
shape of the peak, we cannot apply (4) to generate good initial guesses for the EMG parameters.
In favor of numerical stability, τ should initially be chosen sufficiently large. Furthermore, the
mean µ can be roughly obtained by taking the position of the peak maximum. Hence relatively
good initial guesses for two out of four parameters are available. A postprocessing of the underlying
measurements, where peaks are extrapolated based on their non-overlapping data and subsequently
fit by an EMG function, may also work to obtain good initial estimates.

A further remaining question is how to choose the sequence of homotopy steps {λ(k)}Nk=1. On
the one hand, we prefer a small number of steps N , hence making fast progress. On the other
hand, forcing too large steps may again lead to non-convergence of the employed NLP solver.
One possibility to determine an efficient sequence of homotopy steps is to use a heuristic based
on a discrete proportional-integral controller that monitors a certain contraction factor, compare
Potschka and Bock (2021), but also other strategies have been proposed and analyzed, see Allgower
and Georg (1990) and Deuflhard (2004, chapter 5). We recapitulate another strategy, due to Bock
and coworkers, in section 2.4. In our cases studies, compare section 3.3, we are going to use a rather
small fixed step size, as this strategy leads to reliable results and where the employed inverse method
typically converges in just few iterations. Furthermore, we always use the previously determined
parameter estimate as initial guess, not a more elaborate predictor. This strategy is also known as
the classical continuation method.
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As a last comment, we remark that if a peak cannot be suitably described by an EMG function,
alternatives exist, such as so-called hyper-EMG functions (Purushothaman et al., 2017) that are
much more flexible, but also more complex. To conclude, we believe our proposed homotopy ap-
proach based on EMG functions to be highly versatile and to cover a wide range of chromatographic
applications.

2.4. Traceability of a homotopy when solving NLLS problems with the generalized Gauss–Newton
method

To also back up the proposed approach theoretically, we give a brief outline why and when a
homotopy approach may lead to a solution of the considered parameter estimation problem, whereas
not using such an approach may lead to failure. To this end, we consider an equality-constrained
NLLS problem that is solved with a generalized Gauss–Newton method, as is also done in our case
study in section 3. We remark that the results shown in this section are primarily attributable to
Bock and coworkers (Bock, 1987; Bock et al., 2007) and the following paragraphs shall only serve
as a rough overview. An excellent introduction to the subject of continuation methods is given by
Allgower and Georg (1990). Furthermore, this subject has also been studied by, e.g., Deuflhard and
coworkers, see Deuflhard (2004) and Hohmann (1993) for further details.

We begin our considerations with the statement of the problem class.

Definition 2.5 (Equality-constrained nonlinear least squares problem). Let F1 ∈ C1(Rn,Rn1) and
F2 ∈ C1(Rn,Rn2) with n1 ≥ n and n2 < n. We consider constrained NLLS problems of the form

min
x∈Rn

∥F1(x)∥22
s.t. F2(x) = 0.

(NLLS)

We solve (NLLS) with the generalized Gauss–Newton method outlined in the next definition.

Definition 2.6 (Generalized Gauss–Newton method). Let an initial estimate x(0) ∈ Rn be given.
In the kth iteration the generalized Gauss–Newton method computes a new iterate according to
x(k+1) = x(k) + α(k)δx(k), where α(k) is a step size from a suitable globalization strategy (see, e.g.,
Nocedal and Wright, 2006, chapter 3 and section 18.3), and δx(k) is a solution of the subproblem

δx(k) = argmin
δx∈Rn

∥F (k)
1 + J

(k)
1 δx∥22

s.t. F
(k)
2 + J

(k)
2 δx = 0,

(5)

where we abbreviate F
(k)
i := Fi(x

(k)) and J
(k)
i := Ji(x

(k)), the latter being the respective Jacobian
matrix for i ∈ {1, 2}.

Under certain regularity assumptions, the solution of the subproblem (5) can be expressed via
a generalized inverse as introduced in the following theorem.

Theorem 2.7 (Generalized inverse as a solution operator for (5)). Let x ∈ Rn and furthermore
F = (F T

1 , F T
2 )T and J = (JT

1 , J
T
2 )

T . Moreover, let

rank(J2) = n2, rank(J) = n (REG)

hold in an open neighborhood D = D(x) around x. We then have:
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• There exists a mapping J+ : Rn → Rn×(n1+n2) with δx = −J+(x)F(x), hence J+(x) is a
solution operator for the linearized subproblem (5).

• The mapping J+ is continuously differentiable for all y ∈ D(x).

• The generalized inverse has the form

J+(x) =
(
In×n 0n×n2

)(J1(x)TJ1(x) J2(x)
T

J2(x) 0n2×n2

)−1(
J1(x)

T 0n×n2

0n2×n1 In2×n2

)
, (6)

where the subscripts of the zero and identity matrices signify their respective dimensions.

Proof. See Bock (1987, theorem 3.1.31).

With the concept of the generalized inverse as introduced in theorem 2.7 we can present a result
of local convergence due to Bock.

Theorem 2.8 (Local contraction theorem). Let D ⊆ Rn be a domain, F = (F T
1 , F T

2 )T , J =
(JT

1 , J
T
2 )

T , and let J+ : D → Rn×(n1+n2) denote the generalized inverse in the sense of theorem 2.7,
assume (REG) holds for all x ∈ D. For all x, y ∈ D with y = x+ δx, where δx = −J+(x)F (x), and
for all t ∈ [0, 1], the following conditions shall be satisfied:

1. There exists ω < ∞ with∥∥J+(y)
[
J(x+ t δx)− J(x)

]
δx
∥∥ ≤ ω t

∥∥δx∥∥2.
2. There exists κ < 1 with ∥∥J+(y)R(x)

∥∥ ≤ κ
∥∥δx∥∥,

where R(x) = F(x)− J(x)J+(x)F(x) denotes the residual.
3. For an initial guess x(0), the step δx(0) = −J+(x(0))F(x(0)) satisfies

δ(0) :=
ω

2

∥∥δx(0)∥∥+ κ < 1.

4. Furthermore, we require D(0) ⊆ D, where D(0) :=B
(
x(0), ∥δx

(0)∥
1−δ(0)

)
is the closed ball around x(0)

with radius ∥δx(0)∥
(1−δ(0))

.

Then the following holds:
• The sequence of iterates generated by the generalized Gauss–Newton method with full steps
α(k) ≡ 1 remains in D(0).

• There exists x∗ ∈ D(0) with

x(k)
k→∞−→ x∗ and J+(x∗)F(x∗) = 0,

i.e., x∗ is a fixed point.

Proof. See Bock (1987, theorem 3.1.44).
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Two remarks are in order: First of all, the prerequisites of theorem 2.8, particularly those
involving ω and κ, have to hold for an arbitrary, selectable norm. For the unconstrained case, one
can show that if κ > 1 for any norm then there exists a perturbation of x∗ such that the generalized
Gauss–Newton iterations move away from x∗. Furthermore, it can be shown that a minimum x∗

with κ(x∗) > 1 is not even desired, as it is not statistically stable for the measurements. For further
details, we refer to Bock et al. (2020) and the references cited therein.

Secondly, the critical condition to fulfill is indeed κ < 1. This can be achieved, e.g., if the
residual R is small in the vicinity of a solution. The main motivation for a homotopy approach is to
ensure that this property (a small residual) is satisfied when using a previously computed solution
as an initial guess for the next problem instance along the homotopy.

The reasoning for local convergence along the homotopy goes as follows: Let the prerequisites
of theorem 2.8 be satisfied for a specific problem instance and assume that for each instance along
the homotopy a unique solution exists. Then, as long as the homotopy step is not too large, if the
previously computed solution lies in the area of contraction D(0) of the current problem instance,
we can expect convergence to the next solution along the homotopy, whose existence can be backed
up by the implicit function theorem.

We want to formalize this reasoning in a concise manner. To this end, we first have to extend
the setting for constrained NLLS problems.

Definition 2.9 (Embedded equality-constrained nonlinear least squares problem). Let, w.l.o.g.,
I := [0, 1]. Let F1 ∈ C2(D × I,Rn1) and F2 ∈ C2(D × I,Rn2), with a domain D ⊆ Rn, n1 ≥ n and
n2 < n. For a homotopy parameter λ ∈ I we consider embedded constrained NLLS problem of the
form

min
x∈Rn

∥F1(x, λ)∥22
s.t. F2(x, λ) = 0.

(NLLS(λ))

In our case, compare section 2, the homotopy parameter λ describes the sequence of measure-
ments generated by the EMG functions. For λ = 0 we assume that a solution is known and we are
interested in a solution for λ = 1, also compare algorithm 2. For the remainder of this section, we
have to agree on the following assumption.

Assumption 2.10. For all λ ∈ I we assume that there exists a unique solution x = x(λ) for
(NLLS(λ)). We furthermore assume that x : I → Rn is continuous.

We note that the continuity property can also be deduced by (repeated) application of the
implicit function theorem, when assuming the regularity condition (REG) in theorem 2.12.

The idea in algorithms 1 and 2 is that a previously computed parameter estimate is used as
an initial guess for the successive problem instance along the homotopy. We can formalize and
generalize this idea by means of a predictor P with a growth function W .

Definition 2.11 (Predictor with growth function). We call a mapping P : I → Rn predictor with
growth function W in λ̂ ∈ I, if there exists η̃ > 0 such that

∥P (λ̂+ h)− x(λ̂+ h)∥ ≤ η̃W (h), λ̂ ≤ λ̂+ h ∈ I

holds. Here, we call a function W : R≥0 → R≥0 a growth function (also known as class K function)
if it is continuous, strictly increasing, and W (0) = 0.

12



We remark that simply using the previous computed solution as initial guess for the successive
problem corresponds to using the predictor P (λ̂ + h) = x(λ̂) with growth function W (h) = h
and factor η̃, provided that the solution trajectory x(·) is Lipschitz continuous on I with Lipschitz
constant η̃.

With this setup we can now present a result of local convergence along the homotopy.

Theorem 2.12. For all λ ∈ I, let x(λ) be the unique solution of (NLLS(λ)), compare assump-
tion 2.10, with x(λ) ∈ D(λ), where D(λ) is a convex domain. Let D̂ ⊇ {(x, λ) | λ ∈ I, x ∈ D(λ)}
be a domain, F = (F T

1 , F T
2 )T ∈ C2(D̂,Rn1+n2), and J = (JT

1 , J
T
2 )

T denote the Jacobian of F with
respect to x. For all (x, λ) ∈ D̂ we assume that a generalized inverse J+(x, λ) in the sense of
theorem 2.7 exists. Moreover, for all λ ∈ I, s ∈ [0, 1], x, y ∈ D(λ) the following conditions shall be
satisfied:

1. There exists ω < ∞ with∥∥J+(y, λ)
[
J(x+ s (y − x), λ)− J(x, λ)

]
(y − x)

∥∥ ≤ ω s
∥∥y − x

∥∥2.
2. There exists κ < 1 with ∥∥J+(y, λ)R(x, λ)

∥∥ ≤ κ
∥∥y − x

∥∥,
where R(x, λ) = F(x, λ)− J(x, λ)J+(x, λ)F(x, λ) denotes the residual.

3. Let a predictor P with growth function W be given such that (2.11) holds for fixed η̃ > 0
that is independent of λ ∈ I.

4. For a chosen, but fixed δ < 1 with κ < δ and γ := κ+ 1 let

hmax := min

(
W−1

(
γ(
√

1+4(δ−κ) γ2−1)

ωη̃

)
, 1− λ

)
. (7)

We then require for all h ∈ [0, hmax] that B̃ :=B
(
x̃, ã

1−δ

)
⊆ D(λ̃), where λ̃ := λ+h, x̃ := P (λ̃),

and ã := ∥J+(x̃, λ̃)F(x̃, λ̃)∥.
Then, for all λ̃ ∈ [λ, λ+ hmax] the sequence of iterates generated by the generalized Gauss–Newton
method using the initial guess x(0) := P (λ̃) and with full steps α(k) ≡ 1 remains in B̃ and converges
to x(λ̃).

Proof. See Bock (1987, theorem 3.3.20). There, one can also find further a priori estimates, which
do not, however, play a role in our context.

We first remark that for the specific NLLS problems used in our case studies, compare (9),
only the measurements are dependent on the homotopy parameter λ, as they are altered along the
homotopy. Hence, the Jacobians with respect to the unknowns and also the generalized inverse
are independent of λ. Therefore, condition 1 in theorem 2.12 is not much more restricitve than its
counterpart in theorem 2.8.

We furthermore note that although theorem 2.12 gives us specific values for a maximum step
size along the homotopy, it is difficult to apply this result in practice, as the Lipschitz constants
ω and κ, as well as η̃ are difficult to obtain. Lower bounds for these constants can be obtained,
e.g., by sampling the domain D, but of course this is computationally expensive. Nonetheless, the
presented results serve as a theoretical underpinning.
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3. Model calibration for a real-world IEX process

In this section, we put the proposed homotopy approach presented in section 2 into practice
by considering a real-world IEX process. We first introduce the experimental setup, including the
employed mathematical models, followed by a detailed description of the methodology to estimate
all model parameters, with an emphasis on the application of our novel homotopy approach.

3.1. Experimental setup
We briefly describe the experimental setup, as well as the employed mathematical models and

our numerical solution strategy for nonlinear least squares problems constrained by (ordinary and
partial) differential equations. We remark that the experimental setup and the employed mathe-
matical models, see sections 3.1.1 and 3.1.2, are the same as in one of our previous publications
(Cebulla et al., 2023). However, for the sake of completeness and better understanding, we briefly
restate the most important aspects and refer the reader to said publication for further details.

3.1.1. Apparatus, chromatography column, chemical substances
For chromatographic experiments, we use an ÄKTATM pure 150 chromatography system in

combination with a UV monitor U9-M with 0.2 cm optical path length, as well as a conductivity
monitor C9n. A TricornTM 5/50 chromatography column is used, whose height is shortened to
25mm by adjusting the height of the movable adapter, thus having an approximate column vol-
ume of 0.5mL. The ion exchanger is a CaptoTM Q ImpRes strong anion exchanger. All of the
aforementioned equipment is purchased from Cytiva (Marlborough, MA, USA). Buffer components
such as sodium chloride, tris, and sodium hydroxide, are purchased from Merck KGaA (Darmstadt,
Germany).

We examine two substances: The product is VWF-12 (Octapharma Biopharmaceuticals GmbH,
Heidelberg, Germany), which is a recombinant dimeric fragment of the so-called von Willebrand
factor. This substance aims to prolong the half-life of proteins, such as factor VIII (Kannicht
et al., 2017; Vollack-Hesse et al., 2021). As an impurity we use HSA (human serum albumin;
Sigma–Aldrich, St. Louis, MO, USA), which has a similar isoelectric point as VWF-12 (HSA: 4.7,
VWF-12: 4.83). It can thus bind to the ion exchanger at the same buffer pH.

3.1.2. Mathematical models
To mathematically describe the IEX process, we employ a so-called transport-dispersive model

(TDM), compare (Schmidt-Traub et al., 2012, section 6.2.5.1), in combination with a kinetic version
of the SMA isotherm model (Brooks and Cramer, 1992), as this is a widely accepted model to
describe the adsorption behavior in IEX.

The model describes the concentration profiles of all components i along the axial position
x ∈ (0, Lc) of the column for a given time t ∈ (0, tf ),

∂cm,i

∂t
(t, x) =− vsup

εb

∂cm,i

∂x
(t, x) +Dax

∂2cm,i

∂x2
(t, x)− 1− εb

εb

3

rp
keff,i (cm,i(t, x)− cp,i(t, x)) , (8a)

∂cp,i
∂t

(t, x) =− 1− εp
εp

∂qi
∂t

(t, x) +
3

εprp
keff,i (cm,i(t, x)− cp,i(t, x)) , (8b)

∂qi
∂t

(t, x) = kads,i

(
ΛIEX −

∑ncomp

j=1
(zp,j + ςj) qj(t, x)

)zp,i
cp,i − kdes,ic

zp,i
p,salt qi(t, x), (8c)

∂qsalt
∂t

(t, x) =−
∑ncomp

j=1
zp,j

∂qj
∂t

(t, x). (8d)
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Here, (8a) and (8b) hold for all i ∈ {1, . . . , ncomp}∪{salt}, whereas (8c) holds for i ∈ {1, . . . , ncomp}.
The states in the TDM (8) are the concentrations in the mobile phase cm,i, the liquid particle

phase cp,i, and the adsorbed phase qi. Except for the (here fixed) superficial flow velocity vsup, all
further quantities in (8) are model parameters. The actual adsorption kinetics are given by (8c)
for a “normal” (protein) component and by (8d) for a salt (or modifier) component that affects the
adsorption behavior of the other components.

The TDM (8) is completed with Danckwerts’ boundary conditions (Danckwerts, 1953), which
are given by

∂cm,i

∂x
(t, 0) =

vsup
εbDax

(cm,i(t, 0)− cin,i(t)) ,
∂cm,i

∂x
(t, Lc) = 0,

for i ∈ {1, . . . , ncomp} ∪ {salt} and t ∈ [0, tf ]. Here, cin,i is the inlet concentration of component i,
a time-dependent control degree of freedom.

The initial values correspond to an equilibrated column and we thus have for x ∈ [0, Lc]

cm,i(0, x) = 0, cp,i(0, x) = 0, qi(0, x) = 0, for i ∈ {1, . . . , ncomp},
cm,salt(0, x) = csalt,init, cp,salt(0, x) = csalt,init, qsalt(0, x) = ΛIEX.

As the dead volume (or extracolumn volume) is approximately five times larger than the column
volume, we additionally take tubing, mixing chambers, and detectors of the chromatography system
into account. We model mixing chambers and detectors with a continuous stirred tank (CST) model
that is given by the initial value problem

dccsti

dt
(t) =

V̇

V cst

(
ccstin,i(t)− ccsti (t)

)
, ccsti (0) = ccstinit,i.

Additional tubing with length Ldpf > 0 is modeled by a dispersed plug flow (DPF) model given by

∂cdpfi

∂t
(t, x) = −vdpf

∂cdpfi

∂x
(t, x) +Ddpf

ax

∂2cdpfi

∂x2
(t, x).

Analogously to the TDM (8) the DPF model is completed with Danckwerts’ boundary conditions,
hence

∂cdpfi

∂x
(t, 0) =

vdpf

Ddpf
ax

(
cdpfi (t, 0)− cdpfin,i(t)

)
,

∂cdpfi

∂x
(t, Ldpf) = 0, cdpfi (0, x) = cdpfinit,i,

for t ∈ [0, tf ] and initial values for x ∈ [0, Lc].
With this, all employed models are introduced. In figure 4 we depict the actual modeling of

the whole chromatography system, where the outlet concentration of a model is used as an inlet
concentration for the respective successive model.

3.1.3. Parameter estimation problem and numerical solution strategy
In order to estimate model parameters based on given measurement data, we solve NLLS prob-

lems of the form

min
p,w(1),...,w(nexp)

F1(p, w
(1), . . . , w(nexp)) =

nexp∑
k=1

n
(k)
meas∑
i=1

(
h(k)(t

(k)
i , p; w(k))− η

(k)
i

σ
(k)
i

)2

s.t. F
(k)
2 (p, w(k)) = 0, k ∈ {1, . . . , nexp}.

(9)
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System tubing
(DPF model)

Mixing chamber
(CST model)

Sample tubing
(DPF model)

Connection tubing
(DPF model)

Column
(TDM)

Detector
(CST model)

cin,salt(t)

cin,i(t)

Figure 4: Schematic depiction of the employed chromatography system model.

That is, we consider nexp experiments simultaneously, each (potentially) with its own model re-
sponse function h(k) and independent set of variables w(k) ∈ Rn

(k)
w , measurements η(k) and standard

deviation of measurement noise σ(k), but with the same set of parameters p. Additional equality
constraints F

(k)
2 : Rnp+n

(k)
w → Rn

(k)
2 , e.g., discretized ordinary differential equation (ODE) or PDE

models, are imposed, each with their own variables w(k), but again with the same parameters p. This
formulation corresponds to a maximum likelihood approach when assuming additive measurement
noise that is normally distributed with zero mean and known variances (σ

(k)
i )2.

In our case the model response functions describe a linear relationship between outflow concen-
tration cout (= ccstdetector in our case study) and UV absorption, or conductivity, respectively. For
UV absorption, the Lambert–Beer law states that

A(λ) = ℓcp

N∑
i=1

ε
(λ)
i cout,i. (10)

Here, A(λ) is the UV absorption at a specific wavelength λ, our model response. Moreover, ℓcp is
the cell path length of the measurement device, and ε(λ) is a component-dependent attenuation
coefficient that we must estimate.

We briefly summarize the most important steps for the numerical solution of (9). We pursue a
direct “first discretize, then optimize” approach: First, the PDE models (TDM and DPF models) are
spatially semi-discretized, in our case with a higher-order finite volume scheme. The resulting NLLS
problem, now solely constrained by ODEs, is then discretized with the direct multiple shooting
method, compare Bock and Plitt (1984). The obtained large-scale finite-dimensional NLLS problem
is then solved with a structure exploiting variant of the generalized Gauss–Newton method, see Bock
(1987), Schlöder (1988), Bock et al. (2007), and Cebulla et al. (2019).

In addition to the advantages of the generalized Gauss–Newton method stated in section 2.4, a
covariance matrix V ∈ Rnp×np of the obtained parameter estimates can be cheaply computed when
using this method. For details we refer to, e.g., Bock et al. (2007, section 4). We then can use
the covariance matrix for computing (1 − α) · 100% confidence intervals: We follow a frequentist
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perspective, thus assuming that there exist true, but unknown parameters ptrue. Having obtained
a parameter estimate p∗ with the generalized Gauss–Newton method (and additional estimates for
the variables w∗), we compute confidence intervals for the ith component via

Pr
[
ptruei ∈

[
p∗i − tℓ(1− α) · σ∗

0 ·
√

Vii, p
∗
i + tℓ(1− α) · σ∗

0 ·
√
Vii

]]
= 1− α, (11)

compare, e.g., Smith (2013, Chapters 4 and 7). Here,

(σ∗
0)

2 =
∥F1(p

∗, w∗)∥22
ℓ

is an estimate for the (unknown) common factor of the variance,

ℓ =
∑nexp

k=1

(
n(k)
meas + n

(k)
2 − n(k)

w

)
− np

is the number of degrees of freedom, and tℓ( · ) denotes the quantile function of the t-distribution
with ℓ degrees of freedom and used for two-sided (confidence) intervals. We remark that other
strategies to quantify uncertainty are also possible, e.g., by means of a bootstrap method (Borg
et al., 2012).

3.2. Separate determination and estimation of model parameters
As already discussed previously, a simultaneous estimation of too many model parameters can

lead to meaningless results. It is hence crucial to determine as many parameters as possible sepa-
rately. In this section, we give a brief description on how we obtain parameters for extra column
equipment and selected column and component parameters.

3.2.1. Extra column equipment
By replacing the chromatography column with a zero-volume connector, parts of the flow path

of the modeled chromatography system, compare figure 4, can be investigated independently. We
perform tracer experiments as described by Schmidt-Traub et al. (2012, section 6.5.2) with two
different injected volumes and estimate the model parameters of the combined mathematical models
by solving a least squares problem of the form (9) with the generalized Gauss–Newton method. All
tracer experiments are performed with a fixed volumetric flow rate V̇ = 0.5mLmin−1, but with
different injection volumes Vinj. The tracer substance is NaCl and the only measurement device is
the conductivity monitor.

We first estimate model parameters for the connection tubing and the successive detector,
see figure 4, thus connecting a DPF model for tubing with a CST model for the detector. The
experimental data, as well as our obtained fit, are depicted in figure 5; values and confidence
intervals are summarized in table 3.

To estimate the model parameters for the system tubing and mixing chamber, we add a DPF and
CST model to the mathematical model used before and keep the previously estimated parameters for
connection tubing and detector fixed. We depict the data of the corresponding tracer experiments
and the optimized model predictions in figure 6, the actual parameter values and confidence intervals
are stated in table 3. We highlight that the estimated parameters of the whole flow path correspond
to a volume of approximately 2.68mL, which is more than five times the volume of the employed
chromatography column. This makes the calibration even more challenging.
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Figure 5: Data of two tracer experiments for the estimation of model parameters of the connection tubing and
detector, see figure 4.
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Figure 6: Data of two tracer experiments for the estimation of model parameters of the system tubing and mixing
chamber, compare figure 4.

For the sample tubing we use the same factor for axial dispersion as for the system tubing, since
both tubings have the same inner diameter. The total volume of the sample tubing is approximately
1.26mL, which we can convert into a tubing length of roughly 160.4 cm.

We conclude this section with the following remark: We observe that the experimental data,
see figures 5 and 6, already shows a considerable amount of tailing. This is noteworthy, as no
chromatography column is present in these experiments. We will furthermore see, compare figure 7,
that the column itself does indeed only contribute little to peak broadening. It is hence particularly
the tubing and measurement devices that seem to be primarily responsible for peak broadening and
tailing in our experimental setup.

3.2.2. Column parameters and selected substance parameters
We perform tracer experiments with a moment analysis as described by Schmidt-Traub et al.

(2012, section 6.5.3); the measurement data, as well as the corresponding fits with EMG functions,
are shown in figure 7.

As a pore entering substance we use NaCl; performing a moment analysis and taking the
arithmetic mean of the respective first moments, we obtain a total porosity of εt ≈ 0.876. As we
could not find a tracer substance that does not enter the pores and hence does not get adsorbed, we
use a bed porosity of εb = 0.37, which serves as a valid, yet rough approximation (Schmidt-Traub
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Figure 7: Measurements from different tracer experiments and their corresponding fits using EMG functions.

et al., 2012, page 15). We then compute the particle porosity εp via

εp =
εt − εb
1− εb

=
0.876− 0.37

1− 0.37
≈ 0.80. (12)

The ionic capacity is obtained by performing titration experiments (data not shown) as described
by Hahn et al. (2016). We obtain an ionic capacity of approximately 0.17M, which lies within the
range 0.15M – 0.18M given by the manufacturer.

The particle radius rp of the resin is taken from manufacturer data. Together with the known
molecular weights for VWF-12 (MWVWF-12 = 124 170Da) and HSA (MWHSA = 69 084Da), we
can use a correlation to determine the component-dependent mass transfer coefficients, namely

keff,i ≈ kpore,i =
5

rp

ε3p
(2− εp)2

1.644× 10−3

MW
1/3
i

≈
{
3.56× 10−2 cmmin−1 i = HSA,

2.93× 10−2 cmmin−1 i = VWF-12.
(13)

Here, we use a correlation proposed by Polson (1950) to obtain the molecular diffusion coefficients,
combined with the Mackie–Meares correlation as stated by Guiochon et al. (2006, eq. 5.76) to obtain
the intraparticle pore diffusion coefficient. We compute the rate-limiting intraparticle transport
coefficient kpore with a correlation stated by Schmidt-Traub et al. (2012, eq. 6.199). The effective
mass transfer coefficient for NaCl is set to keff,salt = 0.15 cmmin−1, hence NaCl switches between
mobile and particle phase sufficiently fast.

Lastly, we determine estimates for the molar attenuation coefficients for 280 nm wavelength,
i.e., ε(280)HSA and ε

(280)
VWF-12, in order to be able to compute the desired model prediction via application

of the Lambert–Beer law, compare (10). To this end, UV absorbances are measured for several
concentrations and we fit a linear function to the obtained measurements (data not shown). The
obtained values are reported in table 3.

3.3. Homotopy approach for estimation of remaining model parameters
Having estimated most model parameters of the chromatography system by the previously

described methodology, we now present how to obtain the remaining, primarily adsorption-related
parameters by application of the homotopy approach described in section 2.

More specifically, we aim to estimate the following model parameters: the sample concentration
cload,i (as the components are not 100% pure), the adsorption rate kads,i, the binding charge zp,i,
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Table 1: The different phases in bind-and-elute experiments performed to obtain real-world data for the IEX sepa-
ration process.

Phase Buffer Duration Flow rate V̇

1: Equilibration phase Equilibration buffer
(0.1M NaCl, 0.05M Tris-HCl, pH 8)

— 0.5mLmin−1

2: Sample injection phase Equilibration buffer 20min 0.5mLmin−1

3: CAB phase Equilibration buffer 5min 0.5mLmin−1

4: Elution phase 1 Equilibration + elution buffer
(0.1M – 1.0M NaCl, 0.05M Tris-HCl, pH 8)

various 0.5mLmin−1

5: Elution phase 2 Elution buffer
(1.0M NaCl, 0.05M Tris-HCl, pH 8)

5min 0.5mLmin−1

6: CIP phase CIP buffer
(2.0M NaCl, 1.0M NaOH)

5min 0.5mLmin−1

the shielding parameter ςi, and the detector volume V cst
detector, as we used a different detector in

section 3.2.1, for i ∈ {VWF-12,HSA}. We choose to fix the desorption parameter for both sub-
stances to kdes,i = 1.00× 108M−zp,i min−1, as otherwise no meaningful parameter estimates can be
obtained (due to high correlations). Nonetheless, the chosen value reflects a fast desorption rate
which is often a reasonable assumption. As initial parameter guess to start the homotopy we use,
neglecting units,

VWF-12 : cload = 8.05× 10−7, kads = 1000, zp = 10, ς = 75, V cst
detector = 0.157,

HSA : cload = 1.45× 10−6, kads = 1000, zp = 9, ς = 75, V cst
detector = 0.157.

(14)

As measurement data, we have access to four bind-and-elute experiments per substance that
are evaluated simultaneously, compare (9). The general steps in each experiment are summarized
in table 1; for calibration the CIP phase is not considered. For the elution phase 1 we perform
linear salt gradients with 20min duration (experiments 01 and 02), 30min duration (experiment
03), and 40min duration (experiment 04), respectively; for experiment 02 we use a doubled sample
concentration compared to the other experiments.

We then follow the steps described in algorithm 2. That is, we fit an EMG function to each ex-
perimental data and to each simulated peak obtained with the initial parameter guess, respectively.
We then perform the homotopy with fixed step sizes of ∆λ = 0.05. This value is admittedly rather
small, but in most cases the generalized Gauss–Newton method will often converge within just a
couple of iterations, with just few, yet notable exceptions. The parameter estimates obtained for
λ = 1 are then used as initial guess for the original measurements. Lastly, we limit the number of
iterations taken by the generalized Gauss–Newton method to 15. On the one hand, we can thus
ensure that we do not spend too much time in computing a solution for a given homotopy step.
On the other hand, the iteration limit is sufficiently large such that for most homotopy instances
convergence is well achieved. The standard deviations in the least squares objective function (9)
are set to one.

EMG fits for the real-world experiments, as well as for the model predictions obtained with the
initial parameter guess, are depicted in figure 8, both for VWF-12 and HSA. The corresponding
EMG parameters are summarized in table 2.

We can see that in all cases, the measurements/predictions can be well described by EMG
functions, which underlines their capability of describing chromatography data well. We highlight
that although the conceptual goal (shifting the peaks to the left) is simple to grasp, the residuals
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Figure 8: Real-world measurements and artificial measurements, the latter obtained from evaluating the model
response with the initial parameter guesses, compare (14) and table 3, as well as the corresponding fits using EMG
functions. Top: VWF-12, bottom: HSA.

between real-world data and initial model prediction are very large, which negatively affects the
convergence behavior of the generalized Gauss–Newton method, compare section 2.4. Using the
homotopy approach aims to counteract against this undesired behavior by generating artificial
measurements such that the respective residuals are much smaller.

We first draw our attention to the parameter values along the homotopy path, as some interesting
observations can be made. The results are depicted in figure 9.

First, for λ between 0.25 and 0.30, we can observe kinks both for VWF-12 and HSA. This is
attributable to the fact that the generalized Gauss–Newton method did not converge within the
prescribed iteration limit in these cases, also compare figure 10. Nonetheless, it is remarkable that
despite this behavior, we can still perform the homotopy approach until the end. That is, at least
for these specific instances, convergence of the generalized Gauss–Newton method is not always
necessary to pursue the complete homotopy. This also justifies the choice of a low iteration limit.
We note, however, that the generalized Gauss–Newton method would have converged in all cases
within 50 iterations.

Furthermore, particularly the parameters kads and zp vary strongly during the first steps of the
homotopy, hence we in fact did start far from a solution. Moreover, it seems that these parameters
exhibit a high nonlinearity manifesting as “kinks” in the measurement data. This again is challenging
for optimization algorithms. Furthermore, using a more elaborate predictor at these steps on the
homotopy, e.g., based on higher-order extrapolation, will typically lead to worse initial guesses
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Table 2: EMG parameters for real-world data and for artificial measurements obtained by using the respective initial
parameter guess, compare (14) and table 3. The corresponding peaks are depicted in figure 8.

Experiment Real-world measurements Initial parameter guess
A µ σ τ A µ σ τ

01 (VWF-12) 352.03 34.862 0.3719 0.5946 401.74 36.474 0.3031 0.3136
02 (VWF-12) 703.99 34.528 0.3923 0.7844 876.50 36.318 0.3198 0.3291
03 (VWF-12) 316.92 36.928 0.4757 0.8281 351.71 38.951 0.3962 0.3152
04 (VWF-12) 265.75 38.887 0.5686 1.0815 286.20 41.288 0.4870 0.3170

01 (HSA) 140.13 32.713 0.2556 0.7177 129.02 35.231 0.2819 0.3267
02 (HSA) 208.31 32.561 0.3147 0.6895 239.44 35.041 0.3067 0.3520
03 (HSA) 105.12 33.785 0.3360 0.8264 101.09 37.194 0.3603 0.3420
04 (HSA) 84.231 34.742 0.4123 0.9416 83.883 38.994 0.4348 0.3649
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Figure 9: Parameter estimates along the homotopy path for VWF-12 (top) and HSA (bottom).

compared to simply choosing the previously determined estimate, as we do.
Interestingly, although the parameter zp,HSA varies between 9 and 11, at the end of the homotopy

this parameter value is almost the same as in the beginning. This serves as an example that generally
we cannot predict the behavior of the parameters along the homotopy. However, this was to be
expected, due to, e.g., the highly nonlinear models being used.

Moreover, it is worth noting that the estimated detector volumes V cst
detector are quite similar. This

is a promising result, as this parameter is independent of the actual component and it justifies our
approach of estimating this parameter in combination with the other remaining parameters.

When taking a look at the required number of Gauss–Newton iterations, compare figure 10, we
observe that for most parts convergence can be achieved within a couple of iterations, particularly in
the last two thirds of the homotopy. However, in the first third of the homotopy more iterations are
required and in one or two cases the maximum allowed number of iterations is reached. Nonetheless,
as already discussed previously, we can still follow the homotopy until the end.

To conclude the description of the calibration procedure, we depict in figures 11 and 12 the real-
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Figure 11: Real-world measurements (black) and corresponding model predictions (colored) for VWF-12 obtained
by using the optimized parameters reported in table 3.

world measurements and the model predictions obtained when using the final parameter estimates,
compare table 3.

We observe that the model predictions fit the real-world measurements exceptionally well in
many cases, particularly for HSA. This is also remarkable insofar as the measurements for HSA
show slight “bumps” in the rear part. For VWF-12 the model predictions are visibly more off, but
still good results can be achieved. Interestingly, at least to the eye, the model prediction seems
to agree best for experiment 03, both for VWF-12 and HSA. We furthermore remark that the
parameters kads and zp are almost completely correlated, both for VWF-12 and HSA, which was
also observed by Rischawy et al. (2019) in their case study with different substances.

We conclude the section with an outlook on the usefulness of the obtained parameter estimates.
We remark that since we have two estimates for the detector volume V cst

detector, we use their arithmetic
mean for the applied value.

To check the usefulness of the computed parameter estimates, we perform an experiment using
a 1:1 (w/w) mixture of VWF-12 and HSA and where a salt gradient of 20 minutes duration is
employed. Note that this experiment has not been used for calibration. We visualize the results
in figure 13, where we depict both the UV absorbance and the conductivity signal. The model
prediction for the latter is computed via an affine linear function with NaCl being the variable.

Comparing the measurement data with the respective single-component experiments, we note
that HSA elutes earlier, namely during sample injection. This can be explained by the fact that the
NaCl concentration of the sample buffer is higher than in the single-component case for HSA, namely
0.1484M. At this higher salt concentration, HSA is not so strongly retained. Correspondingly, the
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Figure 12: Real-world measurements (black) and corresponding model predictions (colored) for HSA obtained by
using the optimized parameters reported in table 3.
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Figure 13: Measurement data and model predictions (UV absorbance and conductivity) obtained from a bind-and-
elute experiment using a 1:1 (w/w) mixture of VWF-12 and HSA and a 20 minutes salt gradient. The employed
model parameters are summarized in table 3.

peak signifying the eluting HSA at t ≈ 33min is smaller than the peak where HSA is investigated
alone, compare figure 12.

We highlight that our UV model prediction shows an earlier eluting HSA component, too,
although the substance starts eluting a little bit later in the prediction, compared to the real-world
data. Furthermore, we observe that the smaller peak is also captured quite well. We therefore
conclude that the estimated parameters indeed lead to promising results, at least for this experiment.
However, we have to acknowledge that the applied salt gradient has also been used in single-
component experiments. We should hence also check whether we obtain good predictions with
the calibrated model when a salt gradient is used that is not covered by the experiments used for
parameter estimation. Indeed, we have shown elsewhere that the real-world process presented in
this case study can successfully be optimized, even when applying a salt gradient that is much
steeper than the gradients used for calibration. For further details we refer to Cebulla et al. (2023).

4. Conclusion and outlook

In this work we developed a novel homotopy-based globalization approach for iterative solution
methods for parameter estimation problems and specifically tailored to chromatographic applica-
tions. Afterwards, this approach has been used in combination with other methodologies to calibrate
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a mathematical model describing a real-world IEX separation process where a product (VWF-12)
is to be separated from an impurity (HSA).

The homotopy approach, which we primarily used to estimate adsorption-related parameters,
works sufficiently well in practice. Indeed, we could obtain meaningful parameter estimates even
though the respective initial parameter guesses were far away from the computed solution. More-
over, the generalized Gauss–Newton method typically converged in just few iterations for each
instance along the homotopy. Even when convergence was not achieved within the prescribed iter-
ation limit, it was still possible to reach the end of the homotopy. Furthermore, we note that only
four different bind-and-elute experiments were required per substance to perform the parameter
estimation procedure. This is indeed a small number of experiments.

Also, the prediction of the calibrated model lead to a good agreement with measurement data
from a two-component experiment that was not used for parameter estimation. We again highlight
that the calibrated model could also successfully be used for the optimization of the described IEX
process (Cebulla et al., 2023).

We cannot overemphasize the fact that these promising results could be obtained even though
the used column volume was just a fraction of the overall system volume.

Of course, further work can be considered regarding the presented homotopy approach. Most
importantly, it must be examined how this method performs in practice when experimental data
shows multiple peaks; such a generalized version has been shortly discussed in section 2.3.

Furthermore, in some cases it might be difficult to describe a peak with an EMG function,
although generalizations have been proposed for more versatility (Purushothaman et al., 2017).

Lastly, in our case study we performed the homotopy with fixed step sizes which may lead to an
exhaustive amount of (unnecessary) work. It definitively would be an improvement if the homotopy
steps are chosen adaptively. The results shown in section 2.4 may serve as a starting point for a
derivation of such an adaptive method.
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CST continuous stirred tank
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IEX ion exchange chromatography

IPM interior point method
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NLP nonlinear program

ODE ordinary differential equation

PDE partial differential equation

SMA steric mass action

TDM transport-dispersive model

UV ultraviolet

Appendix

We summarize all model parameters obtained with the procedures described in section 3 in
table 3. Furthermore, we depict in figures 14 and 15 selected concentration profiles when using the
respective set of model parameters obtained along the homotopy path.

Table 3: Overview of estimated model parameters for the IEX separation process with VWF-12 and HSA, compare
section 3. If applicable, 95% confidence intervals are stated, being computed via (11).

Parameter Value Unit 95% conf. interval Obtained from . . .

Ldpf
system 9.890 × 101 cm [9.874, 9.907]× 101 tracer experiments (section 3.2.1)

rdpfsystem 5.00 × 10−2 cm — manufacturer
Ddpf

ax, system 3.212 × 103 cm2 min−1 [3.157, 3.267]× 103 tracer experiments (section 3.2.1)
Ldpf

sample 1.604 × 102 cm — tracer experiments (section 3.2.1)
rdpfsample 5.00 × 10−2 cm — manufacturer
Ddpf

ax, sample 3.212 × 103 cm2 min−1 — tracer experiments (section 3.2.1)
Ldpf

conn 1.156 × 102 cm [1.155, 1.157]× 102 tracer experiments (section 3.2.1)
rdpfconn 3.75 × 10−2 cm — manufacturer
Ddpf

ax, conn 2.72 × 102 cm2 min−1 [2.517, 2.921]× 102 tracer experiments (section 3.2.1)
V cst

mixer 1.234 × 100 mL [1.561, 1.585]× 10−1 tracer experiments (section 3.2.1)
V cst

detector 3.277 × 10−1 mL — bind-and-elute experiments (section 3.3); us-
ing arithmetic mean of estimates

Lc 2.50 × 100 cm — manufacturer
rc 2.50 × 10−1 cm — manufacturer
Dax 2.753 × 10−2 cm2 min−1 — Schmidt-Traub et al. (2012, eq. 6.165)
cload,VWF-12 8.011 × 10−7 M [7.925, 8.098]× 10−7 bind-and-elute experiments (section 3.3)
cload,HSA 1.352 × 10−6 M [1.345, 1.359]× 10−6 bind-and-elute experiments (section 3.3)
ε
(280)
VWF-12 1.0854× 105 M−1 cm−1 — linear regression (section 3.2.2))
ε
(280)
HSA 1.5628× 104 M−1 cm−1 — linear regression (section 3.2.2)
ℓcp 2.00 × 10−1 cm — manufacturer
εb 3.70 × 10−1 — — Schmidt-Traub et al. (2012, page 15)
εp 8.00 × 10−1 — — moment analysis (12)
rp 2.00 × 10−3 cm — manufacturer
keff,VWF-12 3.56 × 10−2 cmmin−1 — correlations (13)
keff,HSA 2.93 × 10−2 cmmin−1 — correlations (13)
keff,salt 1.50 × 10−1 cmmin−1 — choice (section 3.2.2)
kads,VWF-12 6.412 × 100 M−x min−1 (⋆) [4.867, 7.957]× 100 bind-and-elute experiments (section 3.3)
kads,HSA 1.330 × 101 M−y min−1 (⋆) [1.198, 1.462]× 101 bind-and-elute experiments (section 3.3)
kdes,VWF-12 1.00 × 108 M−x min−1 (⋆) — choice (section 3.3)
kdes,HSA 1.00 × 108 M−y min−1 (⋆) — choice (section 3.3)

Continued on next page. . .
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Table 3: Continued from previous page.

Parameter Value Unit 95% conf. interval Obtained from . . .

zp,VWF-12 1.218 × 101 — [1.203, 1.232]× 101 bind-and-elute experiments (section 3.3)
zp,HSA 9.290 × 100 — [9.242, 9.337]× 100 bind-and-elute experiments (section 3.3)
ςVWF-12 4.663 × 102 — [4.461, 4.865]× 102 bind-and-elute experiments (section 3.3)
ςHSA 1.379 × 102 — [1.331, 1.428]× 102 bind-and-elute experiments (section 3.3)
ΛIEX 1.37 × 100 M — titration experiments (section 3.2.2)
(⋆) x = zp,VWF-12, y = zp,HSA
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Figure 14: Selected concentration profiles for VWF-12 when using model parameters estimated along the homotopy
path, here using a salt gradient of 20min (that is, experiment 01, compare section 3.3). Note that different time
axes are used for to make the changes more visible. For the same reason, the spatial dimension has been cropped to
x ∈ [0, 10] instead of x ∈ [0, 25].
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Figure 15: Selected concentration profiles for HSA when using model parameters estimated along the homotopy
path, here using a salt gradient of 20min (that is, experiment 01, compare section 3.3). Note that different time
axes are used for to make the changes more visible. For the same reason, the spatial dimension has been cropped to
x ∈ [0, 10] instead of x ∈ [0, 25].
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