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Abstract. The maximum-entropy sampling problem (MESP) aims to select the most informative principal submatrix of a pre-

specified size from a given covariance matrix. This paper proposes an augmented factorization bound for MESP based on concave

relaxation. By leveraging majorization and Schur-concavity theory, we demonstrate that this new bound dominates the classic fac-

torization bound of Nikolov (2015) and a recent upper bound proposed by Li et al. (2024). Furthermore, we provide the theoretical

guarantees that quantify how much our proposed bound improves the two existing ones and establish sufficient conditions for when

the improvement is strictly attained. These results allow us to refine the celebrated approximation bounds for the two approximation

algorithms of MESP. Besides, motivated by the strength of this new bound, we develop a variable fixing logic for MESP from a

primal perspective. Finally, our numerical experiments demonstrate that our proposed bound achieves smaller integrality gaps and

fixes more variables than the tightest bounds in the MESP literature on most benchmark instances, with the improvement being

particularly significant when the condition number of the covariance matrix is small.

Key words: maximum-entropy sampling, nonlinear integer programming, concave programming, matrix factorization,

Schur-concavity

1. Introduction

The maximum-entropy sampling problem (MESP) arises in spatial statistics and information theory, which

was introduced by the celebrated work of Shewry and Wynn (1987). MESP aims to select the most infor-

mative subset of s variables from a total of n variables to maximize the collected information, measured

by entropy (Ko et al. 1995). It has been widely applied to designing environmental monitoring networks

(Caselton and Zidek 1984, Ozkul et al. 2000). When dealing with variables that follow Gaussian or more

general multivariate elliptical distributions, MESP is recast as a combinatorial optimization problem:

z∗ :=max
S

{log det (CS,S) : S ⊆ [n], |S|= s} , (MESP)

where log det denotes the natural logarithm of the determinant function, C is a sample covariance matrix

obtained from the observations of n random variables, s≤ n is a user-specified parameter, and for a subset

S ⊆ [n], CS,S denotes a principal submatrix of C indexed by S. We assume that the matrix C is positive

definite, a condition commonly used in the MESP literature and well satisfied by the benchmark instances

(see Ko et al. 1995, Sebastiani and Wynn 2000, Anstreicher 2018, 2020 and references therein).

MESP is computationally challenging and known to be NP-hard, as Ko et al. (1995) demonstrated.

Indeed, MESP has no constant-factor polynomial-time approximation algorithm (Civril and Magdon-Ismail

2013). The primary solution method for solving MESP to optimality is branch-and-bound (see the excellent

survey by Fampa and Lee 2022, chapter 2 and many references they contain). In practice, branch-and-cut
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can quickly find a (near-)optimal solution after only a few iterations; however, proving its optimality can

be substantially time-consuming. A tight upper bound of MESP is often desired to accelerate this process.

Inspired by the Schur-concavity of the objective function in MESP, as discussed in Section 3, this paper

develops a tighter upper bound than directly factorizing C, a technique commonly used in the literature on

MESP (see, e.g., Nikolov 2015, Chen et al. 2023, Li and Xie 2024). As detailed below, our method starts

with subtracting a scaled identity matrix from C before factorization.

REMARK 1. For any t, 0 ≤ t ≤ λmin(C), the matrix C − tI is positive semidefinite, and we denote by

A(t)∈Rn×n the Cholesky factor of C − tI , i.e.,

C − tI = [A(t)]
⊤
A(t). (1)

Note that the rank of the matrix C − tI varies with the value of t. Specifically, for 0 ≤ t < λmin(C),

the matrix is full-rank; however, at t = λmin(C), it becomes singular. The Choleskey factor of a rank-r

matrix contains n− r rows of all zeros. These zero rows can be removed to yield a Choleskey factor of

size r×n. Thus, the Cholesky factor is not unique in this context. Fortunately, the bound derived from the

matrix factorization is independent of the particular Choleskey factor employed, based on a result of Chen

et al. (2023). For consistency, we therefore compute a sized-n×n Cholesky factor for any t.

1.1. Related work

The upper bounds of MESP have been derived in various ways. An eigenvalue-based upper bound was first

introduced by Ko et al. (1995). Following this, a variety of eigenvalue-based bounding methods have sub-

sequently been developed and investigated by Anstreicher and Lee (2004), Burer and Lee (2007), Hoffman

et al. (2001), Lee and Williams (2003). Another seminal approach to developing upper bounds for MESP

is based on the continuous relaxations of its equivalent concave integer programs. The classic work of

Anstreicher et al. (1996, 1999) first developed a concave relaxation for MESP. Since then, researchers have

actively developed different concave integer programs to achieve strong concave relaxations and improve

existing methods (see Nikolov 2015, Anstreicher 2018, 2020, Li et al. 2024). These bounding methods

were further combined and refined by Chen et al. (2021, 2023, 2024). While no bounding technique wins

in all test instances, the “Linx” bound, as introduced by Anstreicher (2020), and the Fact bound of Nikolov

(2015) seem to provide the tightest upper bounds for MESP from a computational perspective. Later, Chen

et al. (2023) applied the known mixing technique to combine them, which can further decrease the bound,

especially for values of s close to n/2. We refer to the mixing bound as “Mix-LF” in Section 4.

Our Aug-Fact bound can be viewed as an augmentation of Fact of Nikolov (2015) by employing a general

t, 0 ≤ t ≤ λmin(C), in (1), leading to a notable reduction in integrality gaps on most test instances. Nev-

ertheless, Nikolov (2015) focused on t= 0 in (1) to directly factorize the matrix C. Fact has been widely
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recognized for its high effectiveness and computational efficiency. Hence, Fact and its properties have been

extensively studied by Chen et al. (2023), Li and Xie (2024), Fampa and Lee (2024) and applied to different

variants of MESP, including generalized MESP (Ponte et al. 2024), the D-optimal data fusion (DDF) prob-

lem (Li et al. 2024), and the D-optimal design problem (Ponte et al. 2023). In particular, Li et al. (2024)

decomposed the matrix C into the form of (1) in which they set t= λmin(C), establishing the equivalence

between MESP and DDF. DDF results from an application to sensor placement in power systems (Li et al.

2011). DDF aims to select a subset of rank-one positive semidefinite matrices to add to the initial Fisher

information matrix, so as to maximize the D-optimality of the updated matrix. The continuous relaxation of

DDF is concave and naturally provides a practical upper bound- DDF-R for MESP.

1.2. Contributions and Outline

In Section 2, we convert MESP into a concave integer program for any t using Remark 1 and the concave

envelope technique, which leads to a new upper bound based on the concave relaxation- Aug-Fact.

Section 3 highlights the advantages of the proposed factorization method in Remark 1 for improving the

upper bound, through analyzing how the parameter t affects the performance of Aug-Fact. Specifically,

(i) By leveraging the theory of majorization and Schur-concave functions, we establish that the Aug-Fact

bound decreases as t increases in Subsection 3.1;

(ii) We demonstrate that for any strictly positive t, Aug-Fact is tighter than the two existing upper bounds,

Fact and DDF-R, and provide theoretical guarantees for their difference in optimal values in Subsec-

tions 3.2 and 3.3, respectively. Besides, Aug-Fact allows us to enhance the best-known and first-known

approximation bounds of the sampling and local search algorithms for MESP, respectively; and

(iii) From a primal perspective, Subsection 3.4 develops a variable fixing logic based on a feasible solution

of Aug-Fact at t= λmin(C).

The numerical experiments in Section 4 demonstrate the superior performance of Aug-Fact across various

test instances, compared to most promising bounds in the literature on MESP. Section 5 summarizes the

paper and points to future work.

Notations: We use bold lower-case letters (e.g., x) and bold upper-case letters (e.g., X) to denote vectors

and matrices, respectively, and use corresponding non-bold letters (e.g., xi,Xij) to denote their components.

We let Sn,Sn
+ denote the set of all the n×n symmetric real matrices and the set of all the n×n symmetric

positive semidefinite matrices, respectively. We let Rn denote the set of all the n-dimensional vectors and

let Rn
+ denote the set of all the n-dimensional nonnegative vectors. We let 1 denote the zero vector and let

I denote the identity matrix, with their dimensions being clear from the context. Given a positive integer

n and a positive integer s ≤ n, we let [n] := {1,2, · · · , n}, let [s,n] := {s, s+ 1, · · · , n}, and let Is be a

vector with the first s elements as 1 and the rest as 0. For a vector y ∈Rn, we let y↓i denote the i-th largest

element of y for each i ∈ [n], let Diag(y) denote a diagonal matrix whose diagonal entries consist of the
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vector y, let
√
y denote a vector where each entry is the square root of that in y. For a symmetric matrix

A, we let λmin(X) and λmax(X) denote the smallest and largest eigenvalues of X , respectively, and let

λ(X) denote the eigenvalue vector, with eigenvalues sorted in nonincreasing order, that is, λi(X) is the

i-th largest eigenvalue of X for each i∈ [n]. Additional notation will be introduced later as needed.

2. Reformulating MESP as a concave integer program

In this section, we develop an equivalent concave integer program for MESP, based on the proposed factor-

ization method for matrix C in Remark 1 and the concave envelope technique.

2.1. A naive reformulation of MESP

This subsection presents an equivalent reformulation of MESP, but it is not a concave integer program. We

begin by introducing the following matrix and function.

DEFINITION 1. For any t, 0≤ t≤ λmin(C) and a vector x∈ [0,1]n, we define a matrix

Mt(x)∈ Sn
+ :=

∑
i∈[n]

xiai(t) [ai(t)]
⊤
,

where ai(t)∈Rn is the i-th column of A(t) for each i∈ [n], with A(t) being defined in Remark 1.

DEFINITION 2. For a matrix X ∈ Sn
+ with the eigenvalues λ(X) ∈Rn

+, an integer s ∈ [n], and a constant

t≥ 0, we define a function

Φs(X; t) :=
∑
i∈[s]

log (λi(X)+ t) .

Next, we rewrite MESP as the problem (2) using the function Φs. When t= 0, (2) reduces to a known

reformulation derived by Li and Xie (2024) (see also Chen et al. 2023). We extend this formulation to any t

within the range [0, λmin(C)]. The most striking result derived from this extension is that as t increases, the

Lagrangian dual bound of (2) becomes tighter, as demonstrated later.

PROPOSITION 1. For any t with 0≤ t≤ λmin(C), MESP can be reduced to

z∗ = max
x∈{0,1}n

{
Φs (Mt(x); t) :

∑
i∈[n]

xi = s

}
. (2)

Proof. For any S ⊆ [n], |S|= s, from (1), we have that log det(CS,S) = logdet([(A(t))S]
⊤
(A(t))S+tI) =∑

i∈[s] log(λi + t), where λ1 ≥ · · · ≥ λs ≥ 0 are the eigenvalues of the matrix [(A(t))S]
⊤
(A(t))S .

For a matrix V ∈Rn×s, it is known that V ⊤V and V V ⊤ have the same first s largest eigenvalues. The

matrices [(A(t))S]
⊤
(A(t))S and

∑
i∈S ai(t) [ai(t)]

⊤ share this property. By Definition 2, we have that∑
i∈[s]

log(λi + t) =Φs

(∑
i∈S

ai(t) [ai(t)]
⊤
; t

)
=Φs

(∑
i∈[n]

xiai(t) [ai(t)]
⊤
; t

)
=Φs (Mt(x); t) ,

where x is the binary characteristic vector of the subset S, i.e., xi = 1 if i∈ S and xi = 0 if i∈ [n] \S. □

Unfortunately, the objective function of (2) is not concave. This motivates us to concavify the function Φs

in the following subsection.
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2.2. The concave envelope

This subsection presents the concave envelope of Φs, denoted by Φ̂s, which allows us to reformulate (2) as

a concave integer program. The concave envelope of a function is the pointwise infimum of all its concave

underestimators. First, let us introduce a function.

DEFINITION 3. For a vector y ∈ Rn
+ and an integer s ∈ [n], suppose that k, 0 ≤ k ≤ s− 1, is an integer

such that y↓k >
1

s−k

∑
i∈[k+1,n] y

↓
i ≥ y↓k+1, with the convention y↓0 =∞. Then, we define

ψs(y) =
∑
i∈[k]

log
(
y↓i
)
+(s− k) log

(∑
i∈[k+1,d] y

↓
i

s− k

)
.

Note that the integer k above is unique, a technical result from Nikolov (2015, lemma 14). They also

established that ψs is a concave function with its subgradient defined below.

REMARK 2 (NIKOLOV 2015). Let y ∈Rn
+ be y1 ≥ · · · ≥ yn ≥ 0, and k follows from Definition 3. Then,

g ∈Rn
+ is a subgradient of the function ψs at y, where

gi =
1

yi
, ∀i∈ [k], gi =

s− k∑
i∈[k+1,n] yi

, ∀i∈ [k+1, n].

For t= 0, previous works have established that the concave envelope Φ̂s(X; 0) equals ψs(λ(X)) for a

matrix X ∈ Sn
+ (see Nikolov 2015, Li and Xie 2024). They followed the approach of Hiriart-Urruty and

Lemaréchal (1993) that computed the bi-conjugate of a function to derive its concave envelope. However,

applying their proof directly to a general t can be intricate, specifically due to the complexity of solving

the two underlying nonlinear optimization problems. It is somewhat surprising that by using the eigen-

decomposition technique and perturbing the eigenvalue vector, we can smoothly extend the established

concave envelope result at t= 0 to explicitly describe Φ̂s for any t, 0≤ t≤ λmin(C).

PROPOSITION 2. For any t with 0 ≤ t ≤ λmin(C) and a matrix X ∈ Sn
+, the concave envelope of the

function Φs(X; t) is Φ̂s(X; t) =ψs(λ(X)+ tIs).

Proof. By Definition 2, we have that Φs(X; t) =
∑

i∈[s] log (λi(X)+ t) for any matrix X ∈ Sn
+. Suppose

that Q∈Rn×n are eigenvectors of X corresponding to the eigenvalues λ(X). It is clear that the eigenvalues

of X + tQDiag(Is)Q⊤ are λ(X) + tIs. Then, adding tIs does not change the descending order of the

entries of λ(X). By Definition 2 and the analysis above, we get

Φs(X; t) =
∑
i∈[s]

log
(
λi

(
X + tQDiag(Is)Q⊤)+0

)
=Φs

(
X + tQDiag(Is)Q⊤; 0

)
=⇒ Φ̂s(X; t) = Φ̂s

(
X + tQDiag(Is)Q⊤; 0

)
=ψs(λ(X)+ tIs),

where the last equation is a result of Nikolov (2015). □
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As a side product, Proposition 2 leads to an equivalent concave integer program for MESP. This paves the

way for designing a branch-and-cut algorithm based on (sub)gradient inequalities to solve MESP to global

optimality (see, e.g., Li and Xie 2024, Li et al. 2024).

COROLLARY 1. For any t with 0≤ t≤ λmin(C), MESP is equivalent to

z∗ = max
x∈{0,1}n

{
Φ̂s (Mt(x); t) :

∑
i∈[n]

xi = s

}
. (MESP-I)

Proof. For a binary vector x∈ {0,1}n with
∑

i∈[n] xi = s, suppose X =Mt(x) =
∑

i∈[n] xiai(t) [ai(t)]
⊤.

Then, we observe that X is at most rank-s, as ai(t) [ai(t)]
⊤ is a rank-one matrix for all i ∈ [n]. Hence,

λ(X) has only s positive elements, and so does the perturbed vector λ(X)+ tIs.

Let y = λ(X) + tIs. There is an integer ℓ, 0 ≤ ℓ ≤ s− 1, such that y1 ≥ · · · ≥ yℓ > yℓ+1 = · · · = ys >

ys+1 = · · ·= yn = 0, with the convention y0 =∞. Then, it is easy to verify that the integer k in Definition 3

is exactly ℓ, and ψs(y) reduces to
∑

i∈[s] log(yi).

According to Proposition 2 and the results above, it follows that

Φ̂s(X; t) =ψs (y) =
∑
i∈[s]

log(yi) =
∑
i∈[s]

log (λi(X)+ t) =Φs(X; t), (3)

which allows us to replace the objective of (2) with Φ̂s. We thus complete the proof. □

The continuous relaxation of MESP-I offers a practical upper bound- Aug-Fact. It is worth noting that

Aug-Fact meets the Lagrangian dual bound of (2). This is because the concave envelope Φ̂s is precisely the

bi-conjugate of the objective function Φs of (2). By duality and concave conjugate theory, the dual of (2)

and the continuous relaxation of MESP-I form a primal-dual pair.

3. The augmented factorization bound and its properties

Relaxing the binary variables in MESP-I leads to an upper bound:

z∗ ≤ ẑ(t) := max
x∈[0,1]n

{
Φ̂s (Mt(x); t) :

∑
i∈[n]

xi = s

}
. (Aug-Fact)

For t= 0, Aug-Fact reduces to the known factorization bound (Fact), proposed by Nikolov (2015):

z∗ ≤ ẑ(0) := max
x∈[0,1]n

{
Φ̂s (M0(x); 0) :

∑
i∈[n]

xi = s

}
. (Fact)

In this section, we establish that Aug-Fact decreases monotonically with t, 0 ≤ t ≤ λmin(C). We also

demonstrate that Aug-Fact is tighter than the two existing upper bounds- Fact and DDF-R for any strictly

positive t and quantify how much smaller Aug-Fact is compared to them at t= λmin(C). Motivated by the

strength of Aug-Fact, we propose a variable fixing logic from a primal perspective.
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3.1. The monotonicity of Aug-Fact and its dominance over Fact

This subsection investigates the monotonicity of Aug-Fact with respect to t, which allows us to establish

that for any t with 0< t≤ λmin(C), Aug-Fact dominates Fact. We begin by introducing Schur-concave and

strictly Schur-concave functions, which are critical to proving our results.

DEFINITION 4 (CONSTANTINE 1983, LAW ST 2007). A function f : Rn → R is Schur-concave if for

all ν,µ∈Rn such that µ majorizes ν (denoted µ≻ ν), i.e.,∑
i∈[ℓ]

µ↓
i ≥

∑
i∈[ℓ]

ν↓[i],∀ℓ∈ [n− 1],
∑
i∈[n]

µi =
∑
i∈[n]

νi,

one has that f(µ) ≤ f(ν). The function f is strictly Schur-concave if the strict inequality f(µ) < f(ν)

holds for any ν,µ∈Rn, such that µ≻ ν but ν is not a permutation of µ.

Note that every concave and symmetric function is Schur-concave (see Marshall et al. 1979). For the con-

cave function ψs (Nikolov 2015), we observe that it is permutation-invariant with the arguments. Therefore,

Observation 1 The function ψs in Definition 3 is Schur-concave.

For a matrix X ∈ Sn
+, by Proposition 2, the objective function of Aug-Fact can be represented by ψs based

on the perturbed eigenvalue vector λ(X) + tIs. The following lemma presents several technical results

about the perturbed eigenvalue vector across different t. To be specific, Part (i) of Lemma 1, together with

Observation 1, enables us to develop the monotonicity of Aug-Fact in Theorem 1. Parts (ii) and (iii) facilitate

the derivation of a theoretical guarantee for the difference ẑ(0)− ẑ(λmin(C)) in the next subsection.

LEMMA 1. Given a vector x ∈ [0,1]n satisfying
∑

i∈[n] xi = s, for all t1, t2 such that 0 ≤ t1 ≤ t2 ≤

λmin(C), suppose that νt1 and µt2 are the eigenvalues of Mt1(x) and Mt2(x), respectively, sorted in

nonincreasing order. Then, the following hold:

(i) µt2 + t2Is ≻ νt1 + t1Is;

(ii)
∑

i∈[ℓ] µ
t2
i +(t2 − t1)

∑
i∈[ℓ] x

↓
i ≥

∑
i∈[ℓ] ν

t1
i for each ℓ∈ [s]; and

(iii) µt2
i + t2 − t1 ≥ νt1i for each i∈ [s].

Proof. The proof of Part (i) is two-step: analyzing the properties of the eigenvalue vectors νt1 ,µt2 and

exploring the relation between νt1 + t1Is and µt2 + t2Is, respectively.

Step 1. For any t, let V = A(t)Diag(
√
x). We have that Diag(

√
x)A(t)⊤A(t)Diag(

√
x) = V ⊤V .

On the other hand, it is easy to check that Mt(x) =
∑

i∈[n] xiai(t) [ai(t)]
⊤
= A(t)Diag(x)A(t)⊤ =

V V ⊤. For a matrix V ∈ Rn×n, it is known that V ⊤V and V V ⊤ have the same eigenvalues. Hence,

the vectors νt1 and µt2 precisely contain all eigenvalues in the nonincreasing order of the matrices

Diag(
√
x)A(t1)

⊤A(t1)Diag(
√
x) and Diag(

√
x)A(t2)

⊤A(t2)Diag(
√
x), respectively.
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Let B := Diag(
√
x)A(t2)

⊤A(t2)Diag(
√
x). By (1), we can get

C =A(t1)
⊤A(t1)+ t1I =A(t2)

⊤A(t1)+ t2I =⇒ A(t1)
⊤A(t1) =A(t2)

⊤A(t2)+ (t2 − t1)I.

Multiplying both sides above by Diag(
√
x) gives

Diag(
√
x)A(t1)

⊤A(t1)Diag(
√
x) =B+(t2 − t1)Diag(x),

which means that νt1 is the eigenvalue vector of B+(t2 − t1)Diag(x).

Step 2. By Ky Fan inequality, for each ℓ∈ [n], we have that∑
i∈[ℓ]

νt1i =
∑
i∈[ℓ]

λi (B+(t2 − t1)Diag(x))≤
∑
i∈[ℓ]

λi(B)+ (t2 − t1)
∑
i∈[ℓ]

λi (Diag(x))

=
∑
i∈[ℓ]

λi(B)+ (t2 − t1)
∑
i∈[ℓ]

x↓
i =

∑
i∈[ℓ]

µt2
i +(t2 − t1)

∑
i∈[ℓ]

x↓
i ,

(4)

where the second equation is because the matrix Diag(x) is diagonal and its eigenvalues are exactly x.

As x ∈ [0,1]n and
∑

i∈[n] xi = s, we have that
∑

i∈[ℓ] x
↓
i ≤min{ℓ, s} for all ℓ ∈ [n− 1], which allows us

to further reduce (4) to∑
i∈[ℓ]

νt1i ≤
∑
i∈[ℓ]

µt1
i +(t2 − t1)ℓ, ∀ℓ∈ [s],

∑
i∈[ℓ]

νt1i ≤
∑
i∈[ℓ]

µt1
i +(t2 − t1)s, ∀ℓ∈ [s+1, n− 1],

and ∑
i∈[n]

νt1i = tr (B+(t2 − t1)Diag(x)) = tr (B)+ (t2 − t1)s=
∑
i∈[n]

µt2
i +(t2 − t1)s.

Hence, we obtain that µt2 + t2Is majorizes νt1 + t1Is, i.e., µt2 + t2Is ≻ νt1 + t1Is.
Part (ii) follows immediately from (4).

Based on Step 1 of Part (i), we can leverage Weyl’s inequality to show Part (iii):

λi(B)≤ λi(B+(t2 − t1)Diag(x))≤ λi(B)+ t2 − t1 =⇒ νt1i ≤ µt2
i + t2 − t1, ∀i∈ [s].

where the second inequality is due to the fact x∈ [0,1]n. We thus complete the proof. □

THEOREM 1. Aug-Fact is monotonically decreasing with t, 0 ≤ t ≤ λmin(C). That is, for all t1, t2 such

that 0≤ t1 ≤ t2 ≤ λmin(C), the inequality ẑ(t1)≥ ẑ(t2) holds.

Proof. In order to prove the result, we show that for any solution x∈ [0,1]n with
∑

i∈[n] xi = s, the objective

function Φ̂s(Mt(x); t) decreases as t increases. Suppose that νt1 and µt2 are the eigenvalues of Mt1(x) and

Mt2(x), respectively, sorted in nonincreasing order. By Part (i) of Lemma 1, we get µt2 + t2Is ≻ νt1 + t1Is.
According to the Schur-concavity of ψs in Observation 1, we have that ψs (ν

t1 + t1Is) ≥ ψs (µ
t2 + t2Is).

According to Proposition 2, the inequality implies that

Φ̂s (Mt1(x); t1)≥ Φ̂s (Mt2(x); t2) .

Thus, it is clear that ẑ(t1)≥ ẑ(t2) holds at optimality. □
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By leveraging the Schur-concavity of the function ψs, a property not previously explored in the literature,

Theorem 1 demonstrates the monotonicity of Aug-Fact over t. To explore this monotonicity, we consider a

general t, 0≤ t≤ λmin(C) rather than directly setting t= λmin(C) at the beginning. We also note that

(i) As the known Fact bound is a special case of Aug-Fact at t= 0, a notable side product of Theorem 1

is that Aug-Fact dominates Fact whenever t > 0, as summarized in Theorem 2. Our numerical results

verify the superior performance of Aug-Fact. In addition, Aug-Fact maintains a similar computational

efficiency with Fact, since both objectives are formulated by the concave function ψs; and

(ii) The proof of Theorem 1 also sheds light on how the objective of Aug-Fact varies with t. Corollary 1

indicates that the function Φs(Mt(x); t) meets its concave envelope Φ̂s(Mt(x); t) if x is a binary

solution to MESP-I (see equation (3)). By Proposition 1, the function Φs(Mt(x); t) is invariant under

t given a binary solution x, and so is Φ̂s(Mt(x); t). Interestingly, when x is not binary, the invariance

may not hold, since Φ̂s(Mt(x); t) becomes monotonically decreasing with t.

THEOREM 2. For any t with 0< t≤ λmin(C), Aug-Fact dominates Fact, i.e., ẑ(0)≥ ẑ(t).

3.2. Theoretical guarantees for the improvement of Aug-Fact over Fact

This subsection aims to quantify the effect of t on Aug-Fact. By leveraging Lemma 1 and the concavity of

the function ψs, we establish a lower bound for the difference ẑ(0)− ẑ(λmin(C)) and propose a sufficient

condition where Aug-Fact strictly improves Fact at t = λmin(C). This lower bound also contributes to

enhancing the theoretical performance guarantees of the local search and sampling algorithms for MESP.

THEOREM 3. Suppose that x∗ is an optimal solution of Aug-Fact at t= λmin(C) and β∗ is the vector of

eigenvalues of M0(x
∗) in nonincreasing order. Then, the following hold:

(i) Let (x∗)↓0 = 0 by default. We have that

ẑ(0)− ẑ (λmin(C))≥∆lb := λmin(C)

(
k−

∑
i∈[k]

(x∗)↓i

)(
s− k∑

i∈[k+1,n] β
∗
i

− 1

β∗
k

)
≥ 0;

and

(ii) Aug-Fact with t= λmin(C) strictly dominates Fact if k≥ 1 and (x∗)↓k < 1,

where 0≤ k≤ s− 1 is an integer, such that β∗
k >

1
s−k

∑
i∈[k+1,n] β

∗
i ≥ β∗

k+1 with β∗
0 =∞.

Proof. Our proof contains two parts.

(i) To begin, we define λ∗ to be the eigenvalue vector of Mλmin(C)(x
∗). In this way, β∗ and λ∗ are a pair

of eigenvalues vectors obtained from x∗ at t= 0 and t= λmin(C), respectively.

Let θ∗ := λ∗ + λmin(C)Is − β∗. Given the solution x∗, by leveraging Lemma 1 in which we set

t1 = 0, t2 = λmin(C) and νt1 =β∗, µt2 =λ∗, we have that∑
i∈[n]

θ∗i = 0,
∑
i∈[ℓ]

θ∗i ≥ λmin(C)

(
ℓ−

∑
i∈[ℓ]

(x∗)↓i

)
, ∀ℓ∈ [s], and θ∗i ≥ 0, ∀i∈ [s]. (5)
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According to Proposition 2 and the concavity of ψs, we have that

ẑ(λmin(C))− ẑ(0)≤ Φ̂s(Mλmin(C)(x
∗);λmin(C))− Φ̂s(M0(x

∗); 0) =ψs(λ
∗ +λmin(C)Is)−ψs(β

∗)

≤ g⊤(λ∗ +λmin(C)Is −β∗) = g⊤θ∗,

where the first inequality is because x∗ may not be optimal for Fact and g ∈Rn
+ is a subgradient of the

function ψs at β∗, as defined in Remark 2. Specifically, gi = 1/β∗
i for all i∈ [k] and gk+1 = · · ·= gn =

s−k∑
i∈[k+1,n] β

∗
i

. By the definition of g, we can show that

g⊤θ∗ =
∑
i∈[k]

giθ
∗
i + gk+1

∑
i∈[k+1,n]

θ∗i ≤ gk
∑
i∈[k]

θ∗i + gk+1

∑
i∈[k+1,n]

θ∗i = gk
∑
i∈[k]

θ∗i − gk+1

∑
i∈[k]

θ∗i

≤ (gk − gk+1)λmin(C)

(
k−

∑
i∈[k]

(x∗)↓i

)
=−∆lb ≤ 0

where the first inequality is from θ∗i ≥ 0 for all i ∈ [k] in (5) and g1 ≤ · · · ≤ gk, the second equality

is due to the fact that
∑

i∈[n] θ
∗
i = 0 in (5), and the second inequality arises from the lower bound of∑

i∈[k] θ
∗
i in (5). By definition, we have that gk < gk+1. In addition, the inequality (k−

∑
i∈[k](x

∗)↓i )≥ 0

must hold given x∗ ∈ [0,1]n. These results guarantee a nonnegative bound ∆lb.

(ii) When k ≥ 1 and (x∗)↓k < 1, given x∗
i ≤ 1 for all i ∈ [n], we have that k >

∑
i∈[k](x

∗)↓i . Based on Part

(i), it is easy to show that ẑ(0)− ẑ (λmin(C))≥ λmin(C)(k−
∑

i∈[k](x
∗)↓i )(gk+1 − gk)> 0. We thus

conclude the proof. □

Theorem 3 provides a theoretical guarantee ∆lb for the improvement of Aug-Fact over Fact. Part (ii) of

Theorem 3 provides a sufficient condition under which Aug-Fact with t= λmin(C) is strictly tighter than

Fact. A tighter concave relaxation is often beneficial to enhance the theoretical guarantees of approximation

algorithms. By leveraging Fact, Li and Xie (2024) derived the best-known and first-known approximation

bounds when applying the randomized sampling and local search algorithms to MESP, respectively. We

show that Aug-Fact with t = λmin(C) allows us to enhance these approximation bounds by ∆lb. Analo-

gously, a strict improvement occurs when the condition in Part (ii) of Theorem 3 is satisfied.

COROLLARY 2. The randomized sampling algorithm of Li and Xie (2024, algorithm 2) returns a

(s log(s/n) + log(
(
n
s

)
)−∆lb)-approximation bound for MESP. The local search algorithm of Li and Xie

(2024, algorithm 4) returns a (smin{log(s), log(n−s−n/s+2)}−∆lb)-approximation bound for MESP.

Proof. Let z be the objective value of MESP returned by the randomized sampling algorithm. We have that

z ≥ ẑ(0)− s log
( s
n

)
− log

((
n

s

))
≥ ẑ(λmin(C))+∆lb − s log

( s
n

)
− log

((
n

s

))
≥ z∗ +∆lb − s log

( s
n

)
− log

((
n

s

))
,
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where the first inequality follows from the proof of Li and Xie (2024, theorem 5) and the second inequality

is because of Part (i) of Theorem 3.

For the local search algorithm, using the result of Li and Xie (2024, theorem 7), the rest of the proof

follows from the above and is thus omitted. □

Theorem 3 provides important insights into how the condition number of C affects the performance

of Aug-Fact at t = λmin(C). As seen in Theorem 3, the lower bound ∆lb is an increasing function of

λmin(C). Thus, a larger λmin(C) is desired to guarantee a greater improvement. Besides, the lower bound

is determined by the difference between the reciprocals of the eigenvalues of M0(x
∗), specifically (s−

k)/(
∑

i∈[k+1,n] β
∗
i ) − 1/β∗

k . The difference generally decreases as we scale up all the eigenvalues β∗. It

is, therefore, likely that a negative relationship between ∆lb and λmax(C) exists, given that the eigen-

values of M0(x
∗) are bounded by λmax(C) according to Remark 1. Then, a possible implication is that

Aug-Fact is more effective at improving Fact at t = λmin(C) when the condition number of C, denoted

λmax(C)/λmin(C), is smaller. Our numerical results provide further support for the hypothesis.

3.3. Theoretical guarantees for the improvement of Aug-Fact over DDF-R

This subsection generalizes the existing upper bound- DDF-R for MESP and demonstrates that Aug-Fact

produces a tighter upper bound than DDF-R.

By setting t = λmin(C) in (1), Li et al. (2024) transformed MESP into the form of the D-optimality

data fusion (DDF) problem. We begin with a slight generalization of Li et al. (2024, theorem 1) to any t,

0< t≤ λmin(C).

COROLLARY 3. For any t with 0< t≤ λmin(C), MESP reduces to

z∗ = max
x∈{0,1}n

{
log det (Mt(x)+ tI) :

∑
i∈[n]

xi = s

}
− (n− s) log(t). (6)

Proof. For any subset S, |S|= s, let x be the binary characteristic vector of S. Following from the proof of

Proposition 1, we get log det(CS,S) =
∑

i∈[s] log(λi + t), where λ1 ≥ · · · ≥ λs ≥ 0 = λs+1 = · · ·= λn are

eigenvalues of the matrix Mt(x). Given t > 0, it is easy to check that∑
i∈[s]

log(λi + t) =
∑
i∈[n]

log(λi + t)− (n− s) log(t) = logdet (Mt(x)+ tI)− (n− s) log(t).

Thus, we conclude the proof. □

Corollary 3 immediately provides a concave integer program for MESP, and it falls into the DDF frame-

work. In (6), Mt(x) and tI correspond to the information obtained from newly selected and existing data

of DDF, respectively. A concave relaxation can be naturally obtained from relaxing the binary variables x

of (6) to be continuous. We refer to this upper bound as “DDF-R” to denote the relaxation of DDF.

z∗ ≤ ẑD(t) := max
x∈[0,1]n

{
log det (Mt(x)+ tI) :

∑
i∈[n]

xi = s

}
− (n− s) log(t). (DDF-R)
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Note that for t= 0, DDF-R approaches negative infinity due to the rank deficiency of the objective matrix.

Therefore, the condition 0< t≤ λmin(C) must be satisfied.

DDF-R has been widely used to provide an upper bound in branch-and-bound-based methods for finding

an optimal solution to DDF (see, e.g., Hendrych et al. 2023, Li et al. 2024). However, DDF-R may only

sometimes serve as a strong upper bound, as demonstrated in the numerical results of Li et al. (2024). They

also demonstrated that DDF-R with t = λmin(C) is not comparable with Fact. By contrast, our proposed

Aug-Fact bound outperforms DDF-R, and it is strictly better in some cases, as shown below.

THEOREM 4. For any t with 0< t≤ λmin(C), the following hold:

(i) Aug-Fact dominates DDF-R;

(ii) Aug-Fact strictly dominates DDF-R if the integer s is strictly less than the rank of C− tI and Aug-Fact

is not an exact concave relaxation of MESP, i.e., ẑ(t)> z∗; and

(iii) Aug-Fact meets DDF-R if the integer s is no less than the rank of C − tI .

Proof. Our proof contains three parts.

(i) To prove the result, we show that the objective value of DDF-R is larger than that of Aug-Fact for

any feasible solution x ∈ [0,1]n. Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of Mt(x). Suppose

0 ≤ k ≤ s− 1 is an integer, such that λk >
1

s−k

∑
i∈[k+1,n] λi ≥ λk+1, with the convention λ0 = ∞.

Then, we construct a vector β ∈Rn
+ as

βi = λi,∀i∈ [k], βk+1 = · · ·= βs =
1

s− k

∑
j∈[k+1,n]

λj, βi = 0,∀i∈ [s+1, n].

From the construction above, we get

∑
i∈[n]

log(βi + t)− (n− s) log(t) =
∑
i∈[s]

log(βi + t) =ψs(λ+ tIs) = Φ̂s (Mt(x); t) ,

where the first equation is due to βi = 0 for all i ∈ [s+1, n], the second one is from Definition 3, and

the last one is from Proposition 2.

In addition, it is easy to verify that β ≻ λ. Majorization remains valid after adding the vector t1;

that is, β+ t1≻ λ+ t1. It is known that for a vector y ∈Rn
++, the function

∑
i∈[n] log(yi) is strictly

Schur-concave (see, e.g., Marshall et al. 1979, Shi 2007). Thus, the objective value of DDF-R satisfies

∑
i∈[n]

log(λi + t)≥
∑
i∈[n]

log(βi + t) = Φ̂s (Mt(x); t)+ (n− s) log(t).

Thus, we must have ẑD(t)≥ ẑ(t) at optimality.

(ii) For any t with 0< t≤ λmin(C), suppose x∗ is an optimal solution to Aug-Fact. Then, x must not be

binary. Otherwise, x∗ is also optimal for MESP-I, which contradicts with ẑ(t)> z∗. Thus, the support
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of x∗ is at least size-(s+1). In addition, the rank of C− tI is strictly greater than s. By the definition

of Mt(x
∗) and Remark 1, its rank must exceed s in this context.

Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of Mt(x
∗). Then, λs+1 is strictly positive. Following

Part (i), we construct a vector β with βs+1 = 0. Given λs+1 > βs+1, λ+ t1 can not be a permutation

of β+ t1. Following Part (i) to use the property of a strictly Schur-concave function, we obtain that∑
i∈[n]

log(λi + t)>
∑
i∈[n]

log(βi + t) = Φ̂s (Mt(x
∗); t)+ (n− s) log(t) = ẑ(t)+ (n− s) log(t).

As x∗ is feasible for DDF-R, the optimal value ẑD(t) must be strictly greater than ẑ(t).

(iii) We establish that the objective values of DDF-R and Aug-Fact are equal in this case for any feasible

solution x ∈ [0,1]n. It suffices to prove that the vectors λ and β in Part (i) are the same. Let r be the

rank of C − tI . Given r ≤ s and
∑

i∈[n] xi = s, according to Remark 1 and Definition 1, the matrix

Mt(x) must be rank-r, and thus, its eigenvalues satisfy λ1 ≥ · · · ≥ λr > λr+1 = · · ·= λn = 0. Next,

there are two cases to be discussed.

(a) r = s. First, there always exists an integer 0≤ ℓ≤ s− 1 such that λℓ > λℓ+1 = · · ·= λr, with the

convention λ0 =∞. We can verify that λℓ >
1

s−ℓ

∑
i∈[ℓ+1,n] λi =

1
r−ℓ

∑
i∈[ℓ+1,r] λi = λℓ+1, where

the first equation follows from the facts that s= r and λr+1 = · · ·= λn = 0. The integer k in Part

(i) is unique, and thus, it must equal ℓ. By the construction of β, we have that β=λ.

(b) r < s. It is clear that λr > 0 = 1
s−r

∑
i∈[r+1,n] λi = λr+1. Here, the integer k in Part (i) equals r. It

follows that that β=λ.

Since the objective values of DDF-R and Aug-Fact are always equal, their optimal values must be the

same. We thus complete the proof. □

We would like to highlight that both conditions in Part (ii) of Theorem 4 can be readily satisfied. That

is, Aug-Fact strictly dominates DDF-R in most cases. First, when 0< t < λmin(C), the matrix C − tI is

full-rank. Thus, the first condition is, in fact, the inequality s≤ n− 1 under this setting. When s= n, it is

the trivial case, as both Aug-Fact and DDF-R yield the same optimal values as MESP. For t = λmin(C),

the matrix C − tI has a rank at most n− 1. We use t = λmin(C) in the numerical study, where the first

condition reduces to s≤ n− 2. Second, if Aug-Fact matches MESP, i.e., ẑ(t) = z∗, it is undoubtedly the

strongest upper bound.

As Aug-Fact is stronger than Fact for any t with 0 < t ≤ λmin(C), Part (iii) of Theorem 4 results in a

sufficient condition under which DDF-R dominates Fact.

COROLLARY 4. Suppose that the integer s is no less than the rank of C − tI . Then, DDF-R dominates

Fact for any t, 0< t≤ λmin(C).

Analogous to Aug-Fact, we show that DDF-R decreases monotonically as t increases by leveraging the

theory of Schur-concavity. This indicates that setting t= λmin(C) yields the best DDF-R bound, which is

exactly the one proposed by Li et al. (2024).
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PROPOSITION 3. DDF-R is monotonically decreasing with t, 0< t≤ λmin(C). That is, for all t1, t2 such

that 0< t1 ≤ t2 ≤ λmin(C), the inequality ẑD(t1)≥ ẑD(t2) holds.

Proof. In the following, we show that given a feasible solution x of DDF-R, the objective function is

monotonically decreasing with t. Suppose that νt1 ∈Rn
+ and µt2 ∈Rn

+ are the vectors of the eigenvalues of

Mt1(x) and Mt2(x), respectively, sorted in nonincreasing order.

Part (i) of Lemma 1 implies that µt2 + (t2 − t1)Is ≻ νt1 . Adding t11 on both sides directly leads to

µt2 +(t2− t1)Is+ t11≻ νt1 + t11. As the function
∑

i∈[n] log(yi) is Schur-concave for y ∈Rn
++ (see, e.g.,

Marshall et al. 1979), we have that

log det(Mt1(x)+ t1I) =
∑
i∈[n]

log(νt1i + t1)≥
∑
i∈[s]

log(µt2
i + t2)+

∑
i∈[s+1,n]

log(µt1
i + t1)

≥
∑
i∈[n]

log(µt2
i + t2)− (n− s) log

(
t2
t1

)
= logdet(Mt2(x)+ t2I)− (n− s) log

(
t2
t1

)
,

where the second inequality is because log(µt2
i + t1) + log(t2/t1) = log(t2/t1µ

t2
i + t2)≥ log(µt2

i + t2) for

all i∈ [s+1, n]. Thus, the monotonicity of DDF-R immediately stems from its monotonic objective over t.

We conclude the proof. □

Next, we derive a theoretical bound for the difference in optimal values between Aug-Fact and DDF-R

with t= λmin(C) using the property of the natural logarithmic function.

THEOREM 5. Suppose that x∗ is an optimal solution of Aug-Fact t = λmin(C) and the vector λ∗ ∈ Rn
+

contains the eigenvalues of Mλmin(C)(x
∗) in nonincreasing order. Then, we have that

ẑD(λmin(C))− ẑ(λmin(C))≥Θlb :=

(
1

λ∗
s+1 +λmin(C)

− 1

λ∗
s +λmin(C)

) ∑
i∈[s+1,n]

λ∗
i ≥ 0.

Proof. First, we construct a vector β ∈Rn
+ as

βi = λ∗
i ,∀i∈ [k], βk+1 = · · ·= βs =

1

s− k

∑
j∈[k+1,n]

λ∗
j , βi = 0,∀i∈ [s+1, n],

where the integer 0≤ k≤ s− 1 satisfies λ∗
k >

1
s−k

∑
i∈[k+1,n] λ

∗
i ≥ λ∗

k+1. Then, we have that

ẑD(t)− ẑ(t)≥
∑
i∈[n]

log(λ∗
i + t)−

∑
i∈[n]

log(βi + t) =
∑

i∈[k+1,n]

log

(
λ∗
i + t

βi + t

)
≥

∑
i∈[k+1,n]

(
1− βi + t

λ∗
i + t

)
,

where the first inequality is because x∗ is feasible for DDF-R, the first equation is from Proposition 2 that

implies log det(Mt(x
∗)) =ψs(λ

∗+ tIs), the second equation is because λi = βi for all i∈ [k], and the last

inequality stems from the fact that for any y > 0, log(y)≥ 1− 1/y must hold.

Next, we show that the right-hand expression above is bounded by∑
i∈[k+1,n]

λ∗
i −βi

λ∗
i + t

=
∑

i∈[k+1,s]

λ∗
i −βi

λ∗
i + t

+
∑

i∈[s+1,n]

λ∗
i

λ∗
i + t

≥
∑

i∈[k+1,s]

λ∗
i −βi

λ∗
s + t

+
∑

i∈[s+1,n]

λ∗
i

λ∗
s+1 + t

≥
(

1

λ∗
s+1 + t

− 1

λ∗
s + t

) ∑
i∈[s+1,n]

λ∗
i ≥ 0,
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where the first equation is by the definition of β and the inequalities stem from the facts that βi =

1
s−k

∑
j∈[k+1,n] λ

∗
j ≥ λ∗

i for all i ∈ [k + 1, s],
∑

i∈[k+1,s](λ
∗
i − βi) +

∑
i∈[s+1,n] λ

∗
i = 0, and λ∗

s+1 ≤ λ∗
s. We

thus conclude the proof. □

We close this subsection by discussing how the lower bound Θlb in Theorem 5 varies with the condition

number of C. Following Theorem 3, we note that Aug-Fact with t = λmin(C) may be more effective at

improving Fact when the condition number of C is small. Conversely, Theorem 5 suggests that the improve-

ment of Aug-Fact over DDF-R becomes notable given a large condition number, as detailed below. Our

numerical studies also demonstrate that Aug-Fact is significantly tighter than DDF-R when its improvement

over Fact is minor, and vice versa.

As seen in Theorem 5, the lower bound Θlb decreases as λmin(C) increases. Besides, the bound Θlb gen-

erally increases as we scale up all the eigenvalues λ∗ of Mt(x
∗). Note that these eigenvalues are bounded

by λmax(C) based on Remark 1. It is possible, therefore, that there exists a positive relationship between Θlb

and λmax(C)/λmin(C). Thus, a large condition number of C is desirable for achieving a notable improve-

ment of Aug-Fact over DDF-R at t= λmin(C), as shown in Section 4.

3.4. A primal certificate for variable fixing using Aug-Fact

Variable fixing has been extensively studied for MESP in the context of various concave relaxation bounds

(see, e.g., Anstreicher et al. 2001, Anstreicher 2018, 2020, Chen et al. 2023 and references therein). It is

often used to accelerate the computation of exact solution methods (Li et al. 2024). However, previous

research has focused on deriving dual certificates, which requires computing (near-)optimal dual solutions

of those concave relaxations. By contrast, this subsection introduces a primal certificate for variable fixing

using the property of concave functions, independent of the dual problem of Aug-Fact.

To begin, we need an expression for the subgradient of the objective function of Aug-Fact. Note that

Φ̂s(Mt(x); t) is a spectral function that only depends on the eigenvalues of Mt(x). Based on the spectral

property and the subgradient of ψs in Remark 2, Li and Xie (2024) derived the subgradient of Φ̂s(Mt(x); t)

over x at t= 0 (see also Chen et al. 2023). Their result can directly extend to any t, 0≤ t≤ λmin(C).

REMARK 3. For any feasible solution x of Aug-Fact and any t, 0≤ t≤ λmin(C), suppose that Mt(x) =

QDiag(λ)Q⊤ is the eigen-decomposition of Mt(x), where λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of

Mt(x). Then, a subgradient of Φ̂s(Mt(x); t) at x can be defined as

∂Φ̂s (Mt(x); t)

∂xi

= [ai(t)]
⊤QDiag(g)Q⊤ai(t), ∀i∈ [n],

where g is a subgradient of the function ψs at λ, as defined in Remark 2.
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THEOREM 6. For any feasible solution x̃ of Aug-Fact at t= λmin(C), let g̃ be a subgradient of the function

Φ̂s at x̃, as defined in Remark 3. Then, any optimal solution x∗ of MESP must satisfy

x∗
i = 1 if g̃i − g̃↓s+1 >UB−LB, ∀i∈ [n], and

x∗
i = 0 if g̃↓s − g̃i >UB−LB, ∀i∈ [n],

where UB = Φ̂s

(
Mλmin(C)(x̃);λmin(C)

)
− g̃⊤x̃+

∑
i∈[s] g̃

↓
i and LB is a lower bound of MESP returned

by approximation algorithms.

Proof. For t= λmin(C), by the concavity of Φ̂s, we have that

Φ̂s(Mt(x); t)≤ Φ̂s(Mt(x̃); t)+ g̃⊤(x− x̃)

for all x∈ [0,1]n with the cardinality s. Maximizing the above inequality over x results in

ẑ(t) = max
x∈[0,1]n

{
Φ̂s(Mt(x); t) :

∑
i∈[n]

xi = s

}
≤ Φ̂s(Mt(x̃); t)− g̃⊤x̃+ max

x∈[0,1]n

{
g̃⊤x :

∑
i∈[n]

xi = s

}
= Φ̂s(Mt(x̃); t)− g̃⊤x̃+ max

x∈{0,1}n

{
g̃⊤x :

∑
i∈[n]

xi = s

}
=UB,

(7)

where the second equation follows from the linearity of the objective and the last equation is because the

maximization problem attains the optimal value
∑

i∈[s] g̃
↓
i .

We split the following proof into two parts, which fix a variable to 1 and 0, respectively.

(i) For each i ∈ [n], we assume that xi = 0. If MESP-I strictly decreases when restricted to satisfying the

constraint xi = 0, then no optimal solution of MESP-I can satisfy xi = 0. Therefore, xi must be equal

to 1 at optimality. Next, our goal is to provide a sufficient condition under which MESP-I with xi = 0

is strictly less than MESP-I. Suppose that ẑ0i (t) denotes the optimal value Aug-Fact with the constraint

xi = 0. Following the analysis in (7), we have that

ẑ0i (t)≤ Φ̂s(Mt(x̃); t)− g̃⊤x̃+ max
x∈{0,1}n

{
g̃⊤x :

∑
j∈[n]

xj = s,xi = 0

}
.

Enforcing the constraint xi = 0 leads to

max
x∈{0,1}n

{
g̃⊤x :

∑
j∈[n]

xj = s,xi = 0

}
=

{∑
j∈[s] g̃

↓
j , if g̃i ≤ g̃↓s+1;∑

j∈[s] g̃
↓
j + g̃↓s+1 − g̃i, if g̃i ≥ g̃↓s .

.

If UB + g̃s+1 − g̃i < LB holds, we have that ẑ0i (t) < LB ≤ z∗ based on the results above. Given

that ẑ0i (t) serves as an upper bound of MESP-I with the constraint xi = 0, xi must be equal to 1 at

optimality of MESP-I, as analyzed previously.
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(ii) For each i∈ [n], suppose xi = 1 in MESP. Then, we have that

max
x∈{0,1}n

{
g̃⊤x :

∑
j∈[n]

xj = s,xi = 1

}
=

{∑
j∈[s] g̃

↓
j , if g̃i ≥ g̃↓s ;∑

j∈[s] g̃
↓
j − g̃↓s + g̃i, if g̃i ≤ g̃↓s+1.

.

The rest of the proof simply follows that of Part (i) and is thus omitted. □

We make the following remarks about Theorem 6.

(i) The main advantage of our dual-free variable fixing in Theorem 6 is its ease of implementation- it

can be easily integrated into any first-order algorithm for solving Aug-Fact. At each iteration, to fix

variables, it suffices to sort the elements of the subgradient;

(ii) Our variable fixing conditions in Theorem 6 align well with the cardinality constraint in MESP. Given

that UB −LB ≥ 0 and the subgradient vector has at most s entries larger than its s+1 largest entry,

we can fix up to s variables to 1. Likewise, we can fix at most n− s variables to 0; and

(iii) Our theoretical analysis of Theorem 6 builds on a feasible solution Aug-Fact. In fact, it can be directly

generalized to other upper bounds based on concave relaxations. For example, we evaluate the variable-

fixing capacity of Fact and DDF-R based on our primal certificate in Subsection 4.2.

4. Numerical experiments

In this section, we numerically compare Aug-Fact with the existing upper bounds of MESP and verify its

dominance over Fact and DDF-R with varying-scale instances. As both Aug-Fact and DDF-R are decreasing

with t, we set t = λmin(C) for them throughout this section. Besides, we use the Frank-Wolfe algorithm

to compute the upper bounds. To obtain a high-quality lower bound of MESP, we employ the local search

algorithm proposed by Li and Xie (2024) that has returned an optimal solution to MESP on three benchmark

data sets. All the experiments are conducted in Python 3.6 with calls to Gurobi 9.5.2 and MOSEK 10.0.29

on a PC with 10-core CPU, 16-core GPU, and 16GB of memory.

4.1. MESP: Three benchmark data sets

To evaluate Aug-Fact, we first consider three benchmark covariance matrices with n = 63,90,124. Their

corresponding condition numbers are 48.42, 200.45, and 78340.48, respectively. Both n= 63 and n= 124

instances have been repeatedly used in the literature on MESP, which are collected from an application

to re-designing an environmental monitoring network (Guttorp et al. 1993). Recently, Anstreicher (2020)

considered the n= 90 instance for MESP based on temperature data from monitoring stations in the Pacific

Northwest of the United States. Figures 1 to 3 display the gaps between several upper bounds and a lower

bound generated by the local search algorithm. We note that the gap values for Fact, Linx, and Mix-LF are

taken from the computational results of Chen et al. (2023). For each benchmark instance, gap values are

given for s ∈ [2, n− 1]. Their computational time is negligible (i.e., less than one minute), so we do not

report and compare them.
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Figures 1(a) and 2(a) show that Aug-Fact gives the best upper bound for MESP on the n= 63 and n= 90

data sets. Surprisingly, our Aug-Fact reduces the integrality gaps effectively for the most difficult instances,

with intermediate values of s, where Fact and Linx are nearly identical. Consistent with our analysis of

Theorem 3, Aug-Fact is only a bit better than Fact for n= 124, as displayed in Figure 3(a). This is because

the n= 124 covariance matrix has a huge condition number. We present the comparison between Aug-Fact

and DDF-R in different figures, since DDF-R often results in much worse integrality gaps. We see from

Figures 1(b), 2(b) and 3(b) that Aug-Fact is much tighter than DDF-R for all the test cases. As s approaches

n − 1, the gaps produced by Aug-Fact and DDF-R become nearly identical. It is interesting to observe

that the difference of gaps between Aug-Fact and DDF-R is increasing with the condition number of C.

Especially for n = 124, we observe a significant reduction in the gaps in Figure 3(b). These comparison

results parallel our theoretical findings in Subsection 3.3.

We verify the enhanced capacity of Aug-Fact to fix variables for MESP in Figures 1(c), 2(c) and 3(c),

when compared to Aug-Fact and DDF-R. Note that we employ the primal conditions in Theorem 6 to check

whether to fix a variable. For all other bounds, their fixed variables are sourced from Chen et al. (2023,

section 3), using the dual certificates. For n = 64 and n = 90, we see that Aug-Fact fixes many variables

for large values of s, while Fact fails to fix any variables at all. For n= 124, Aug-Fact still leads to more

variables fixed than Fact, even at points in which they have very similar gaps. In addition, we observe a

slightly different comparison result between Aug-Fact and Linx for n= 90 and n= 124. Specifically, for

small values of s, Aug-Fact has a smaller integrality gap and a stronger fixing power than the Linx bound,

whereas the reverse holds when s is large.
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Figure 1 n= 63 with the condition number λmax(C)/λmin(C) = 48.42

4.2. DDF: IEEE 118- and 300-bus data sets

This subsection tests the covariance matrices generated from two real-world IEEE data sets (Aminifar et al.

2009), that have been extensively applied to the phasor measurement unit (PMU) placement problem in the

literature of DDF (Li et al. 2011). Following the work of Li et al. (2024), for the IEEE 118 (or 300)-bus

data set, we generate two positive definite covariance matrices of n= 117 (or 299) based on large and small
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Figure 2 n= 90 with with the condition number λmax(C)/λmin(C) = 200.45
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Figure 3 n= 124 with the condition number λmax(C)/λmin(C) = 78340.48

PMU standard deviations, respectively. PMU standard deviations represent different levels of measurement

accuracy, leading to the covariance matrices with different condition numbers, as presented in Figures 4 to 7.

Following Li et al. (2024), for the IEEE 118-bus instance, we consider the cases where s∈ {10,15, · · · ,105}
to evaluate Aug-Fact, and for the IEEE 300-bus instance, we set s∈ {10,20, · · · ,290}.

First, Figures 4 to 7 show that the gaps between Fact and DDF-R, obtained from Li et al. (2024, section

5), are not comparable. We also report the number of variables fixed by them using the proposed variable-

fixing logic in Theorem 6. In Figures 4(a), 6(a) and 7(a), Aug-Fact significantly reduces the gaps of Fact.

However, in Figure 5(a), the two bounds are pretty close when dealing with a vast condition number of C.

Conversely, the reduced gaps achieved by Aug-Fact over DDF-R become most significant in this context,

as seen in Figure 5(b). In terms of the variable-fixing capacity, Aug-Fact wins on nearly all test instances,

with only the value of s= 25 in Figure 5(c) being an exception.
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Figure 4 IEEE 118-bus instance and large PMU standard deviations with λmax(C)/λmin(C) = 313.27
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Figure 5 IEEE 118-bus instance and small PMU standard deviations with λmax(C)/λmin(C) = 2690744.66
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Figure 6 IEEE 300-bus instance and large PMU standard deviations with λmax(C)/λmin(C) = 6.50
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Figure 7 IEEE 300-bus instance and small PMU standard deviations with λmax(C)/λmin(C) = 5498.76

5. Conclusions

We developed a novel upper bound for the maximum entropy sampling problem, referred to as the aug-

mented factorization bound. Our theoretical results include a thorough investigation into the monotonicity of

this new bound and its superiority over two existing upper bounds, based on the theory of majorization and

Schur-concave functions. Our numerical study demonstrated the strength of the proposed bound, yielding

smaller gaps and fixing more variables than the state-of-the-art bounds. In future work, we plan to develop

an efficient branch-and-bound implementation that incorporates the augmented factorization bound, solv-

ing MESP to optimality. We also expect that our augmented factorization technique can apply to various

machine learning and optimization problems with the cardinality constraint and Schur-concave objective

functions, such as A-optimal MESP, sparse PCA, and so on.
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