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Abstract

Efficient operation of underground railway systems is critical not only for maintaining
punctual service but also for minimizing energy consumption, a key factor in reducing
operational costs and environmental impact. To evaluate the energy consumption of the
timetables, this paper delves into the development of mathematical models to accurately
represent energy dynamics within the underground railway network.

We evaluate the total traction energy consumption in an underground railway network
over a specified period, with the analysis discretized to a per-second basis. At each second
we evaluate the power flow in the transmission network, a direct current (DC) power grid
with fixed powerstation voltages. Quadratic constraints arise when linking power, current,
and voltage. To deal with the resulting computational complexity we compare two model
formulations, one based on power flow and the other based on current flow. We demonstrate
that the current flow model is easier to solve and develop a heuristic to further speed up the
solution process.

We integrate the model addressing the power flows in the transmission network with
the model that ensures the feasibility of the timetable. Central to our approach is the uti-
lization of Benders row generation to tackle the complexity of the large integrated model.
By decomposing the optimization problem into manageable subproblems, we enhance
computational efficiency and scalability. To linearize the Benders subproblems we develop
relaxations for the non-linear constraints and binary variables. We analyze the performance
of the integrated timetabling power flow model on real world data provided by the VAG
(Verkehrs-Aktiengesellschaft Niirnberg), the operator of public transport in Nuremberg,
Germany. The simulated energy consumption deviates from the actual measurements by
only around 1%. The calculated timetable increases energy efficiency by up to 0.8% compared
to the previously used model. Further numerical studies demonstrate the effectiveness of
the developed solving algorithms.

Keywords: Railway Timetabling, Integer Non-Linear Programming, Benders Decomposition,
DC Optimal Power Flow

1 Introduction

The underground railway system is a widely used urban transportation network recognized for
its effectiveness and, along with trams, as one of the cleanest forms of public transport (Moreno
etal., 2015). The study of energy efficiency in underground railway systems has gained relevance
in light of growing global concerns about climate change and the need for clean energy solutions.
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A critical area of research is reducing energy consumption within DC networks, which represent
one of the highest operational costs for underground railway systems. This work specifically
focuses on reducing energy consumption in an underground railway system through efficient
scheduling and the recovery of braking energy from trains.

Adjusting timetables can significantly impact energy consumption in underground railway
systems. Two key factors are relevant in this context: First, the optimal utilization of braking
energy, and second, the extension of coasting phases. By synchronizing the braking and accel-
erating phases of trains, it is possible to capture and reuse braking energy effectively, thereby
reducing the overall energy consumption. Additionally, longer running times allow for extended
coasting phases, further decreasing energy consumption for individual trains.

However, the efficiency gains from capturing braking energy are tempered by inherent losses
in the transmission network, particularly when trains are far apart. The transmission network in
underground railway systems operates on a DC power grid, presenting unique challenges for
mathematical modeling. Proper optimization techniques are essential for accurately representing
the complex dynamics of DC power flows and timetabling.

Energy recovery can be approached in two ways: first, using storage devices to store energy
generated during braking, which can then be used to accelerate trains when needed (known
as wayside storage); and second, by synchronizing accelerating and braking trains to properly
coordinate the energy supplied by braking trains and reduce the amount of energy required
from the power network.

Several studies have addressed energy efficiency in underground railway systems through
various approaches. For example, Gao and L. Yang, 2019; H. Liu et al., 2018; P. Liu et al., 2018; Su
etal., 2013; X. Yang et al., 2015; Zhao et al., 2017 consider the timetable problem alongside train
speed profiles to find energy-efficient timetables, but they often overlook the characteristics of DC
networks and the related transmission energy losses. These studies focus mainly on the kinetic
energy recovery problem and differ in timetable constraints and solution approaches, such as
brute force algorithms and various metaheuristics. Similarly, P. Liu et al., 2018 included storage
devices in the timetabling with speed profiles model. In S. Yang et al., 2020, the timetabling
with speed profiles model is solved alongside a passenger assignment problem via bi-objective
optimization using a metaheuristic, later extended in Huang, Liao, and Gao, 2021 to multiple
interconnected lines. Finally, Gupta, Van Parys, and Tobin, 2023 present a timetabling with energy
recovery, where the energy is approximated via a data-driven approach.

However, these works often do not adequately consider the transmission losses in a DC power
network, assuming they can be neglected due to the distance between trains. This assumption
can lead to issues. For example, with low-frequency timetables where the distance between
trains is greater, the energy recovered from braking might not be sufficient to meet the energy
required by accelerating trains. In their study to minimize the energy consumption of a DC
railway system via voltage control on substations, Raghunathan et al., 2014 provide a model to
represent the transmission losses accurately. Also for timetabling, a joint approach that accounts
for power grid losses is essential to prevent overestimating recovered energy and to ensure
proper network operation.

Comprehensive reviews of timetabling and energy efficiency in railway systems can be found
in Scheepmaker, Goverde, and Kroon, 2017. Arboleya et al., 2020 provide a review of railway
feeding infrastructures, and Kang et al., 2024 offer an up-to-date review of underground train
timetabling and rescheduling problems.

In this paper, we examine energy-efficient timetabling in underground railway systems while
considering transmission network losses. Our model integrates the synchronization of braking
and accelerating trains with the power flow dynamics in a DC network, resulting in a non-convex
mixed-integer quadratically constrained problem. To address the non-convexity, we develop a
heuristic that, through linear approximation and relaxation, converges to a solution that satisfies
the physical dynamics of the problem. Our algorithm ensures that the timetabling solutions we



propose are both energy-efficient and practical for real-world implementation.

The remainder of this paper is structured as follows: Section 2 presents the energy-related
problem for a fixed timetable. We introduce and compare the current flow problem with the
power flow problem in a fixed timetable, introduce the heuristic, and analyze its computational
performance. In Section 3, we present the integrated model, considering timetabling and physical
dynamics, along with the different solving strategies. Section 4 presents our computational
study, and finally, in Section 5, we conclude and suggest possible extensions.

2 Simulation Model for a Fixed Timetable

In this section we focus on the physical model of the electricity flow for a fixed train configuration
at a particular moment, i.e., the power flow in the railway network for a given timetable. First, we
start by describing in a general way the network that will be considered, and later we compare
two formulations: First, Power Flow (PF) and second, Current Flow (CF). Both models are, in
their standard form, non-convex quadratic continuous models. Moreover, given our network
characteristics it is necessary to include new binary variables and constraints, making the for-
mulations to be mixed-integer non-convex, that are known to be NP-hard in general. Therefore,
for the current flow problem (that presented a better computational performance) we develop a
heuristic based on a linearization of the model that can tackle this problem in an efficient way
and allows us to later integrate timetable planning with the power flow problem.

2.1 Power Network

In this work we study an underground railway network that operates on a DC power grid. In a
general way, the network is composed by power stations, the railways connecting them, and
a power source for each power station. Additionally, in the network are trains that could be
braking or accelerating and that change their location along the planning horizon, making the
network dynamic with respect to time. Let us represent the dynamic network by a graph G(t)
for t in the time horizon T, and let A(G(t)) and V(G(t)) be the set of arcs and set of nodes of
the graph, respectively. The set V(G(t)) is partitioned into:

e Power stations and power station sources, denoted by V°(G) and V"5%(G), respectively.
These nodes do not change over time.

e Braking trains and accelerating trains: The trains position, and behavior, changes over time.
These nodes will be denoted by VBT (G(t)) and VAT(G(t)), respectively.

Finally, let us define by A">(G) the arcs connecting the power stations with their respective
source, this set represent the only time-independent arcs of the graph. Figure 1 represents an
example network for a given time. Here, we have 2 accelerating trains depicted in violet and
one braking train in yellow driving between 3 stations. The powerstation source nodes are
colored orange, the power station nodes teal. In what follows we will omit the time dependency
and focus on the network for a particular time, in Section 3 the time dependency will be again
considered. Each node u € V(G), following Watt’s law, is characterized by power P,, current
I, and voltage U,. For the particular case of the power station sources, the voltage is a fixed
quantity that is known beforehand and will be denoted by /. We also assume that all the power
station sources have equal fixed voltages. The power flows along the arcs of the network, for a
particular arc (u,v) € A(G) this can be represented as current flow I, or as power flow, going
out of node u towards node v, P4;”" and arriving at node v from node u, P9,

The power flows from higher to lower voltage. However, when the voltage of the power
station is higher than the voltage of its respective source a power flow will translate into energy
inefficiency for our network. Therefore, to avoid this situation there are gates that only allow



Figure 1: Transmission graph G.

power to flow from power station sources to power stations and prevent flow in the opposite
direction. From a modeling point of view, this is achieved by incorporating a binary variable
Suv for all power station arcs (u,v) € APS(G) that will activate the arc only if the voltage of the
power station source is higher than the voltage in the power station. Finally, the losses along
each arc (1#,v) € A(G) are represented with an admittance parameter c,,. The value of this
parameter depends on the length of the power line and its material, so we can break it down
further to
w

Cyp = ’
duv

where w is the material constant of the power line and d,,, represents its physical length.

2.2 Current and Power Flow Comparison

Now, we are interested in comparing the computational performance of the models PF and CF,
and later incorporate the more performant one with the timetable scheduling problem. First, we
present the models and later present some computational results to show that the current flow
model has a considerably better performance in our experiments.

2.2.1 Current Flow Model CF

Following closely the formulation presented by Hager and Kuen, 2024, and taking into consid-
eration the specific characteristics of our network, the current flow model can be written as:



D D (CF1)
(u,0)€APS(G)

stlh= Y Lw— Y Lo ©veVPTUVA(G), (CF.2)
weF (v) uesin(v)
0= Y ILw— Y Lo ©veV™(G), (CE.3)
wesout(v) uedn(v)
U, I, < —p,, uecVTuval(G), (CF.4)
Liw = cuo(Uy — Uy), (u,v) € A(G) \ AP5(G), (CF5)
ILn,>0, (u,0) € AP(G), (CE.6)
u,<u,<u, uecvV(G)\V’™G), (CE7)
Lo > cooU = Uy),  (u,0) € AP5(G), (CF.8)
Ly — My < co(U — Uy),  (u,0) € AP5(G), (CF.9)
Lo < M(1—464),  (u,0) € ATS(G), (CE.10)
U—-U, <M1 -3bp), (u,0) e AP(G), (CE11)
5 € {0,1}. (CE.12)

In here, the objective (CFE.1) is to minimize the current injected into the network by the power
station sources. Constraints (CF.2) and (CF.2) represent the current flow conservation, i.e.,
Kirchhoff’s first law, for the trains and the power stations, respectively. (CF.4) model the demand
(supply) of the accelerating (braking) trains. Ohm’s law, for the arcs that are not connected
to a power station source, is modeled with constraints (CE.5). Some variables are bounded by
constraints (CF.6) and (CE.7). Finally, constraints (CF.8)-(CF.11) model the activation of the
arcs connecting the power stations with their respective source. If these gate variables are set to
one, Ohm’s law is neglected at the associated arc (CF.9), (CE.8), no flow is permitted on the arc
(CF.10) and the voltage on the power station node has to be lower than the fixed voltage at the
power source node (CF.11).

The complexity of Model (CF) can be summarized by the non-convexity present in con-
straints (CF.5) and the combinatorial nature of the gate activation constraints. This model serves
as the basis for evaluating the energy consumption of the timetables. Comparisons between
the traction current data measured and simulated by the VAG (Verkehrs-Aktiengesellschaft
Niirnberg), the operator of public transport in Nuremberg, Germany show that the deviation is
only around 1%.



2.2.2 Power Flow Model PF

Using Watt’s law and following the work of Gan and Low, 2014, we can reformulate Model (CF)
obtaining the Power Flow problem:

PTO

lr)nbllr} . )ZA:PS( . U, (PE.1)
st.pu< ) PT;? Y PRoM 0eVvPTuvA(G), (PE2)
uedin(v wedout(v)
0=y ng — Y oM 0eVP(G), (PE3)
uesn(v) wedout(v)

PEROM — 11, (U, — Uy)cyo, (u,v) € A(G)\ AP5(G), (PF.4)
PIO = U, (U, — Uy)ewo,  (u,0) € A(G)\ AP5(G), (PE.5)
PI® >0,  (u,v) € AP5(G), (PF.6)
u,<u,<u, uecV(G), (PE7)
PIO > U,(U — Uy)cyo, (u,0) € AP5(G), (PF.8)
PIO — Mé,, < Uy(U — Uy)ewo,  (u,0) € APS(G), (PF.9)
PIO < M(1-6,,),  (u,0) € APS(G), (PF.10)
U—-U, <M(1—-64), (u,0) e AP(G), (PE.11)
o€ {0,1}. (PF.12)

In this case, the objective (PF.1) (to minimize the current injected) is non-linear. Kirchhoff’s first
law is represented by constraints (PF.2) and (PE.3). Constraints (PF.4) and (PE.5) model Ohm’s
law. Constraints (PF.6) and (PF.7) bound the power flowing into power station sources and the
voltage in each node, respectively. Finally, constraints (PF.8)-(PF.11) are, in an equivalent way
to Model (CF), the gate activation constraints. In this case, the complexity of Model (PF) lies in
the non-convexity present in (PE.1), (PF4), (PE5), (PES8), and (PE.9), and the combinatorial
nature of the gate activation constraints.

2.2.3 Computational Performance

Before studying the integrated timetable scheduling and power flow problem, we want to
determine which model is computationally more efficient. For this, we compared the runtime
of Model (PF) to the runtime of Model (CF) on 5 configurations with 100 randomly created
instances each. The configuration names encode the composition of the transmission network G
in the scheme (|V"*(G)|, [VAT(G)|, [VPT(G)|, max,cysryar(g) [pul)-

All performance tests in this section were implemented in Python 3.10.13 using Gurobi 11.0.0
with standard parameter setting to solve mixed-integer quadratic problems. We performed the
calculations on a laptop with an Intel i7-1165G7 CPU, 32 GB RAM, 4 cores and 2.80 GHz base
frequency.

The results in Table 1 show the average runtime of all instances in one configuration in
seconds. It gets clear that Model (CF) can be solved significantly more efficiently than Model
(PF) with an average speedup of 97%. Therefore, we concentrate in the following on the current
flow model.

2.3 Current Model Linearization

The only non-linearity in Model (CF) is in constraints (CF.4). However, we can approximate
these constraints by replacing in these inequalities the voltage variable U, with a constant value



Table 1: Runtime test solving Model (PF) compared to solving Model (CF) using Gurobi.

Config PF CF
(10,5, 5, 2) 1.705 0.055
(15,7,7,2) 7.918 0.152
(15,12,7,2) 21.713 0.155
(10,5, 5, 10) 1.288 0.069
(15,7,7,10) 4913 0.090
Average 7.508 0.104

Y,. Particularly, if Y, = U, for braking trains and Y;, = U, for accelerating trains we obtain an
inner approximation of the problem. With this, we can obtain the following mixed-integer linear
problem as an inner approximation of Model (CF)

rlr&rg ueVZPS:(G) veéozuf:(u) b (LD

stli= Y, Lw— Y Lu ucVPTUVAT(G), (LCF.2)
veSoUt (1) ved (u)

0= Y Lw— Y Lu ucVP(G), (LCF.3)
vesout (i) vesin (i)

I, < % ue VBTuvAT(G), (LCFA4)

L = cuo(Uu = Us),  (u,0) € A(G) \ A™(G), (LCE5)

Lo >0, (u,0) € APS(G), (LCE.6)

u,<u,<u, ucV(G)\V’™(G), (LCE7)

Lip > (U —Uy),  (u,0) € AT5(G), (LCES8)

Lo — Moo < co(UU = Uy),  (u,0) € AP5(G), (LCE.9)

L < M(1—-64),  (u,0) € AP5(G), (LCF.10)

U—-U, <M1-06,), (u,0) e A(G), (LCF.11)

se{0,1}. (LCF.12)

Model (LCF) overestimates the real current demand on accelerating trains and underestimates
the current supply on braking trains.

2.4 Linear Current Model Heuristic HEU

Even if the linearization used to obtain Model (LCF) is naive and not tight, we can make use
of an iterative procedure to improve the approximated constraints and converge to a solution
that is feasible for Model (CF). Now, we introduce a heuristic that makes the current demands
and supplies approach their actual values, and we also present some remarks regarding the
convergence of the heuristic.

As it was previously stated, Model (LCF) is an inner approximation of Model (CF). The
heuristic gradually adapts the demand constraints (LCF.4) towards the optimal solution of
Model (CF). The heuristic starts by using the voltage’s bounds, i.e., Y;, = U, for braking trains
and Y, = U, for accelerating trains. Then, we can solve Model (LCF) and use the solution
to update the values of Y),. This procedure is repeated until the change in Y is smaller than
a tolerance €. The heuristic is summarized in Algorithm 1, where I is the optimal solution to
Model (CF).



Algorithm 1: Linear Current Model Heuristic HEU

Data: Graph G, Parameters ¢, p, U, U,e>0
Result: Optimal current flow I* ~ I
Y, + U, uecVA(G);
Y, + U, uecVBT(G);
Solve Model LCF;
while |U* — Y| > e do
Y, < U, uecVBTuvAT(G);

(LCF4) « I, < P, ue VETuvA(G);
Solve Model LCF

N o R N =

Assuming we can use all the available current from braking trains, and that all accelerating
trains use exactly the current they demand, we can calculate the solution for Model (LCF)
efficiently in O(]A"%(G)[> + |A(G))).

Remark 2.1. For given values for 6,, and L, ¥(u,v) € APS(G) and I, Vu € VBT UVAT(G) one
can calculate all currents and voltages in the network G in O(|APS(G)|> + |A(G))|), if a solution to
Model (CF) exists.

To better represent the order of the nodes, we introduce an alternative notation for the nodes
in G, see Figure 2. The colors of the nodes are chosen as in Figure 1. The power stations are
enumerated from 1 to n, where power station k is adjacent to power station k — 1 and power
stationk + 1 forall k € 2,...,n — 1. For each k € [n] the corresponding power station source node
is named k, the power station node is named kq. The trains on a path between two neighboring
power station nodes ko and k + 1p get enumerated from 1 to 1, where m is the number of trains
between the two power station nodes. The corresponding train node is named k; for I € [my]
and k € [n]. Forall k € [n — 1], we can calculate the voltage of a train node I’ from its left-next

Figure 2: Ordered transmission graph G.

and from its right-next power station node

iy I=d dy g di, i o d

ok 14 vky o _ 1 k+1o + ky ki

Uk, — “w IF-Y o Iy = Ug, = Ugy1, — w (=Y I, —L)— ) ” Iy,
=1 =1 I=I'+1

This allows us to obtain the value for I, for all k € [n — 1] depending on the voltages at the
nearest power station nodes

I]j_ = - % dk[,k+1o Ik, + @ (uko - uk+1o)' (1a)
1=1 dko,k+10 dko,k+10

If we consider only two power station sources, this reduces to

=y G b
k Z kys (1b)



since the current from the power station source node equals the current from the power station
node. Assume 1 > 3. Ohm’s law at each power station arc yields

d
ulo =U- %I;r’
dkk0 =5 +
uko — Z Ik 1, — 1+ Ik ), Vk € {2,...,7’1 — 1}, (1C)
my_1
uno = nno Z I” 1, = n 1
Define
Ay = dk,k+1/ Vk € [7’1 - 1]’
by = _dk,kof Vk € [1’1 - 1]/
My
ry = — Zdll,zlll'
My—1
Tk = — dez k11, + Z iy Te-1,s vk € {2,..,n —1}.

=1

Combining (1a) and (1c) establishes a relationship between the current flows from power station
sources given by the following equation system:

mob 0 0Ny
bz an b3 . I;_ 2
0 b3 as 0 = . (2)
: . I+7 Yn—2
i ’ bn-1 I)zF ’ Tn 1
0 “ e 0 bl’l*l anil ;nzl n—
I r
A

Being a triangular matrix with non-zero entries on the diagonals, A is invertible and we can
calculate I'* using Thomas algorithm in O(n?). I~ is then given by the equations

Mg

Ik_ = — IX: kall — Ilj;l Vk € {2,...,1’1}
=1

and arc currents by Kirchhoff’s first law. Lastly, Uy, for k € [n — 1], 1" € [m;] can be calculated as

U — U dkko -+ I+ Loday ., 'S
ky =4 — (L +17) - Z L= Z I
= Y@ = W

Remark 2.2. If the network only consists of two power stations and accelerating trains, Algorithm 1
converges to the optimal solution of Model (CF), if it exists.

We use the notation of Remark 2.1. The voltage at each accelerating train node Uj,, for all
I € [my] can be calculated as follows. From (1b), we already know the current coming from
power station 1.

mq dll

Z d1, 111 (3a)




Now we can obtain the voltage at the accelerating train 1;.

!
-1
dh, =i,

h (3b)

1 1,
th, =U+—"F Z -
To proof that Algorithm 1 converges, we show that the voltage at each train node increases
monotonously which implies a monotonously decreasing objective function that is bounded
from below by 0.

=1

-1 _
Ui = dia, Z dl,, 1 1 > di,d1,2 — di,1,d1,2 o 11 )
b w d12 Ui u-tt = wdi tul ut
1 1 = 4 ! 1
>0 d11d1/2
- wd12 >0

The statement follows by induction and the fact that all voltages increase in the first iteration
because they were initialy set to their lower bound. All solution voltages in each iteration lie
between their lower bound and the optimal solution of Model (CF) and are therefore feasible.

The algorithm converges to Uﬁrl - U{I — 0 and thus towards a solution (U, I) that satisfies

Uy, I, = —py, for all train nodes | € [m;]. This is now a feasible solution for Model (CF) for
which all demand constraints are tight. The only way to improve this solution would be by
increasing the currents at the train nodes further without increasing the value for I;,Uj,. Using
previous transformations, we have for all I’ € [m;]

! —
_d 1,/ Ly

Z wdry )

=1

h,U, =1,U

Z d12

Taking the derivative of this function with respect to I, yields

ol Uy, dia,

d Ydydy d ,d dijg, d
= E 1] B Z L l l 1’11 1],2 Il r = U1 r 1’11 1],2 Il 17
8111, w d1 2 = wd 1,2 w dl,Z ! ! w d1,2 !

which is greater than zero. Hence, increasing the current at a train node comes with increasing the
power at the node and there is no better solution to Model (CF) than (U, I) found by Algorithm
1.

In Table 2 we compare the runtime of solving Model (CF) to the runtime of the developed
heuristic (HEU). We use the same setup as in Section 2.2.2, the stated runtimes are average
times over all instances of one configuration in seconds. The configurations are again named
(IVPS(G)|, |VAT(G)|,|VBT(G)], max,,cysryyar(G) | Pul). The column ITER represents the average
number of steps in the heuristic, so the number of linear models we have to solve to get to an
€ value of 1e—>. Note that on average we only have to solve 6 linear models to obtain a close
approximation to the optimal solution to the non-linear Model (CF). This, together with the fact
that we can utilize a warmstart for the linear models in each steps, yields a significant speedup
of 87% in the runtime on average.
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Table 2: Runtime test solving Model CF with Gurobi compared to the runtime of Algorithm 1
and number of steps in the heuristic.

Instance ITER CF HEU
(10,5, 5, 2) 3.3 0.048 0.009
(25, 10,10, 2) 3.9 0.197 0.020
(50, 25, 25, 2) 41 4.322 0.045
(100, 50, 50, 2) 4.5 11.365 0.102
(10, 5, 5, 10) 6.7 0.045 0.017
(25, 10, 10, 10) 7.2 0.137 0.034
(50, 25, 25, 10) 9.7 2.081 0.109
(100, 50, 50, 10) 10.3 6.375 0.245
Average 6.2 3.071 0.072

3 Embedding into Timetabling Model

We now aim to integrate the developed model for the DC power network with the underground
train timetable optimization model. By shifting departure times and lengthening running times
we can improve both the driving behaviour of the trains and the usage of braking energy in the
system to reduce the total energy consumption.

3.1 Modeling a Feasible Timetable

The modeling of a feasible timetable is taken from Gemander, Birmann, and Martin, 2023. Binary
variables xy;; are introduced which in the case xj;; = 1 indicate that the train on leg k departs at
time i with running time j. The set X contains all x representing a feasible timetable. The way
how X is defined is explained in detail in Gemander, Birmann, and Martin, 2023. The tuple
(k,i,7) is called a departure configuration. Each departure configuration has a power profile
assigned to it. This specifies the power demand of (k, i, j) in each second i,i + 1, ..., i + j. For each
t € [i,i+ j] the power demand of the train with departure configuration (k, i, j) is known and
given as py;j- Knowing the departure time, running time and power profile we can also state
the location of the train with departure configuration (k, i, ) at time t € [i,i + j].

3.2 Transmission Graph Adjustment

For each timestamp t € T, all departure configurations (k, i, j) that demand power at time t are
grouped into buckets B. Each bucket is assigned to a node in the transmission graph and is

denoted by B(u). The potential power demand of the bucket node is defined as the mean power
Yo (kij)eB(u) Pkijt

B It is activated if one

demand of the departure configurations inside the bucket p,, =
of the assigned departure configurations is selected.

The departure configurations are not only grouped by their power demand, but also by their
location at time t. We term the maximum proximity between two departure configurations
in one bucket the resolution of the transmission graph, where the proximity of two departure

configurations (ky,71, j1) and (kp, i, j») is defined as

t—ip t—ip
21 — 2jp
Pkuivjit Pkyirjot

for all t € T. We incorporate at least one bucket for each arc that contains a departure configura-
tion.

2
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Instead of train nodes, the transmission network now is filled with bucket nodes located
at the center of the departure configurations it contains as shown in Figure 3. This prevents

%—0&“@—0*@%@@@%@@@%8

S e 00 0

Figure 3: Grouping departure configuration nodes into buckets for transmission graph G; with
timetabling.

large admittance parameters causing numerical issues which would arise if two departure
configurations are located too close to each other.

3.3 Admittance Adjustment

When a timetable has been selected, many bucket nodes will have power demand zero, since
none of the assigned departure configurations has been chosen. The addition of nodes with zero
power demand into the network should have no impact to the overall flow. To archieve this we
have to properly determine the admittance parameters. In an example of three nodes where
node 2 has zero power demand, we can state the following relationship between the voltages.

(Uy — Up)crp = (Uz — Usz)eos
u u
Uy = 1012 + 3623‘

o @@
The current should be equal for all arcs (1,2), (2,3) and (1, 3).

Therefore the admittance parameter when deleting node 2 can ( : ) ( : )
be calculated as
(U — Us)erz = (Uy — Uz)erz
€12023
=3 = . 4
BT cnton )

As we define the admittance on an arc as a constant w over the length d of the power line
the arc represents. This fulfills (4) since

w dyo dy
duw - duv + de = d = o | w
uw ﬁ + dUZU

ES

w w
holds for all w, dyw, dyw, dvw € RT.
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3.4 Timetabling Model BASE

The mixed integer timetabling model stated in Gemander, Barmann, and Martin, 2023 seeks to
minimize the positive part of the sum of all power demands at one timestamp t forall t € T

min sz (BASE.1)
X per
s.t. Z Z PrijtXkij < Zt, teT, (BASE.2)
ueVBTUVAT(Gy) (k,i,j)€B(u)
z2>0 (BASE.3)
x € X. (BASE.4)

The z-variables can be interpreted as the amount of power that is requested from the power-
stations, assuming there is no limit on the voltages in the network and no transmission loss on
the lines. This model underestimates the actual power demand of the grid and serves as a base
model for the study in this paper.

3.5 Integrated Timetabling Current Flow Model CM

The goal is to integrate the constraints implied by physical laws into the (BASE) model. To
archieve this, we use Model CF as the evaluation function for the timetables.

Imu15nx t; - ;S(Gt)l,w (CM.1)

st.l,= Y 1 Y Lu ueVP(Gy, teT, (CM.2)
veéouf(u) vedn (u)

0= Y Iw— Y Lu ucVP(G) teT, (CM.3)
vesout (u ) ved (u)

Ui - I <Y —pujexkij,  u€VP(G), teT, (CM.4)

(k,i,j)eB(u)

Lo = cuo(Uy — Uy),  (u,0) € A(G) \ ATS(Gy), t €T, (CML.5)

Lo >0, (u,0) € AP5(Gy), teT, (CML.6)

u,<u,<u, ucV(G)\VPG), teT, (CM.7)

Lio > cup(U — Uy), (u,0) € APS(Gy), t € T, (CM.8)

Lo — Méyp < cup(U — Uy), (u,0) € APS(Gy), t € T, (CM.9)

Lo < M(1—64),  (u,0) € AP5(Gy), t €T, (CM.10)

U—-U, <M1 —6y), (u,0) € APS(Gy), teT (CM.11)

s € {0,1}, (CM.12)

x e X. (CM.13)

The coupling of the models takes place in the Constraints (CM.4). For each t € T, the demand
at each bucket node u € VEB(G;) is given by the power demand Pkij of the active departure
configuration xy;; in side the bucket. The buckets are defined such that there is at most one
departure configuration active inside it. Fixing the x variables and therefore commiting to one
timetable leads exactly to Model CF which was shown to be solvable efficiently in Section 2.4.

3.6 Solving Strategies

Model CM is a mixed-integer nonlinear problem and is therefore computationally very hard
to solve as a whole. This section provides different strategies, relaxations and algorithms, to
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deal with this complexity. First, we try to relax the parts of the model, that make it hard to solve,
namely the binary part in the gate constraints (CM.10), (CM.11) and the quadratic terms in
(CM .4).

3.6.1 Relaxing Gate Constraints

For each t € T, the gate constraints (CM.8), (CM.9), (CM.10), (CM.11) and (CM.12) can be
relaxed to

Ly > Cuv(uu - uv)/ (M/ ’0) € APS(Gt), (RGl)
— u, —u
Lip < cup(Uyp — uv)#/ (u,v) € APS(Gt) (RG.2)
u?} - QU
Y. P < Y, Uiy (RG.3)
ueVBTUVAT(Gy) (k,i,j)€B(u) (u,0)€APS(Gy)
= 3
Cuv (uu - uv) u,

Figure 4: Gate constraint relaxation. Figure 5: Feasibility set for U, and I, with
relaxation of demand constraints at acceler-

ating buckets, assuming P, = —p,,.

The blue line in Figure 4 depicts the feasible set defined by (CM.8), (CM.9), (CM.10) and
(CM.11). Inequality (RG.1) yields an overestimator for the current shown by the red line in
Figure 4. The relaxation allows for some amount of current to flow from a power station source
node u to a power station node v although there is a higher voltage on v than on u. In special
cases, this could even lead to a higher voltage at the power station source node than at a acceler-
ating train. To prevent the case in which less power is supplied than demanded, we introduce
constraints (RG.3).

3.6.2 Relaxing Quadratic Power Balance Constraints

When relaxing the quadratic demand constraints (CM.4) it is helpful to differentiate between
buckets that only contain departure configurations with positive power demand, so called
accelerating buckets V4B(G;) and braking buckets VE2(G;), which only contain configurations
with negative power demand. The main difference is that the feasibility set of U, and I, for
accelerating buckets is convex, while it is concave for braking buckets.

Accelerating Trains The power flowing into a node u € VAB(G;) in an optimal solution only
takes two possible values. If one of the departure configurations inside the bucket (i, k, j) € B(u)
is selected the value is —py;jt, 0 otherwise. We introduce a variable for the power flowing into
node u, P,. For each t € T for a chosen value U, < V, < U, we introduce a cut to relax (CM.4)
that tangents [, = Boatp, = —pu and U, = V,,. Numerical experiments show, that the three

support points V € S, .= {U,,, u, JZrU” ,Uy,}, as depicted in Figure 5 are adequate.
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L,

L,

ull

u, (b) Relaxation using piecewise linearization

(a) Relaxation without using piecewise linearization

Figure 6: Feasibility set for U,, and I, with relaxation of demand constraints at braking buckets.

< Pu -u, 2 u AB
I Vz Uu ( Vz + V)Pu - puVZ’ u G V (Gt), V E Su, (AD.].)
I, <0, ucVA(G), (AD.2)
P, < Z —PuXiij, U & VAB(Gt). (AD3)
(k,i,j)eB(u)

Constraint (AD.1) is chosen to not cut of the point I, = P, = 0. This point should be feasible
and is enforced by constraints (AD.3) and (AD.2) if no departure configuration is active in the
bucket.

Braking Trains To relax the quadratic constraints for each t € T (CM.4) for braking trains we
use

1 1
L, <X U, —p,(—+—), uecVBE(G), BD.1
u> u,u, u Pu(gu Uu) (Gy) ( )
L-U, < Y —puxw, ueVPP(G). (BD.2)

(k,i,j)eB(u)

Zero or negative current flow if no departure configuration in the bucket is active is enforced
by constraints (BD.2). We can increase the tightness of the relaxation using the concept of
piecewise linearization. For each breaking train node u € VB8(G;) we add a binary variable 7,
indicating whether U, < V, or U, > V), holds for a chosen support point V. When relaxing
quadratic power balance constraints piecewise linear we replace constraints (BD.1) by

Pu 1 1 BB
Iu -~ u VUM pu( Vu) -I-M’)/u, u E V (Gt), (RP.l)
" 1 1
I, < Vpllu u, — pu(vu b= )+ M(1—1,), ueVB(G), (RP2)
U, <Vy+My,, uc VBB(Gt), (RP.3)
U, >V, +M1—1,), ucVEG), (RPA4)

for a chosen value U, <V, < U,,. The feasible sets for (BD.1) or (RP), respectively, is depicted
in Figure 6.

The fully relaxed version of Model CM with constraints (RG),(AD) and (BD), we term RLX.
The most accurate linearization of Model CM using only the relaxed constraints (RP) is termed
SB.
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3.6.3 Adaptive piecewise linearization

Normally, adaptivity is a crucial factor for the performance of approaches based on piecewise
linear relaxations. However, in our particular case, adding support points for the piecewise
linear relaxation of braking bucket demand constraints is not advantageous. This is due to the
fact that the underlying quadratic problem has an immensly symmetric structure, such that
essentially all nonlinear parts must be approximated with the same accuracy. Otherwise, the
coarsest approximation in the relaxation can be exploited to obtain solutions with a significantly
better objective value while maximizing the approximation error.

3.6.4 Benders Cut Generation

The structure of Model CM is very suitable for benders decomposition. If it weren't for the
timetable variables x, the model could be solved for each timestep t € T separately. Hence, we
divide the problem into a master problem and multiple subproblems. In the master problem,
we choose a feasible timetable. This is done using Model BASE. The power consumption of the
timetable is then evaluated by one subproblem for each timestep. The solution of these evaluation
subproblems is then used to add a benders cut to the master problem. The subproblems are the
relaxed (RG) + (AD) + (BD) versions of Model CM with fixed timetable variables %, Z.

Benders Subproblem fort € T

Il]’liul’l Z Ly (BS.1)
(u,0)EAPS(Gy)
st. =z <— Y Ly, (al) (BS.2)
(u,0)EAPS(Gy)
O=-Li+ Y ILw— Y. Lu ucVPG), (BS.3)
vesout( ) ved (1)
0= Y Lo— Y Lu ueVPG), (BS.4)
vesout(u) veS (1)
pu(i + i) < Py, -1, ueVBB(G), (a2) (BS.5)
u, u,” ~ u,u,
Yo ot < —Lo-U,,  ue VPG, (a3) (BS.6)
(k,i,j)eB(u)
u, " -u, 2
pups < 52 Uit (5 + 5P~ e VA(G), VES, (aly)  (BSY)
0< -1, ueViB(G), (BS.8)
Yo Pt < —Pu,  ueVA(Gy), () (BS.9)
(k,i,j)€B(u)
Cuold < Lip + colly,  (u,0) € AP5(Gy), («8,)  (BS.10)
u-u, u-u,
— Cupuvm < —Iuv Cuyuvﬂ, (M, 'U) S APS(Gt), (“ZU) (BSll)
Yo Puipfe < Y. Ul (a®)  (BS.12)
ueVBTUVAT(Gy) (k,i,j)eB(u) (u,0)€APS(Gy)
0=—lLo+cw(U,—U,), (u,0) € A(G)\ AP(Gy), (BS.13)
0<ILn  (u,0)eAP(G)), (BS.14)
u,<u, ucV(G), (a))  (BS.15)
—U, <-U, u€cV(G). (a9 (BS.16)
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Additionaly, (BS.7) connects the variables representing the total energy consumption at time
t, zs from Model BASE with the total consumption calculated in the subproblem. As long as
the total consumption is underestimated by Model BASE, the respective subproblem will be
infeasible. For an extreme ray & of the dual of Model 11, we can introduce the following feasibility
cutforeacht € T

0<—alz
3 1
t L mnlg )
ueVBB(Gy) u u

+ 2 & 2 PkijtXkij

ueVBB(Gy)  (kij)eB(u)
u

+ ) X &ivpuﬁ

ueVAB(G;) VES,

+ ). i Y Prijixeij
ueVAB(Gy)  (kij)eB(u)

+ Z &8 cuold,
(u,0)€APS(Gy)

—Uu,—-u
+ Z _Eczvcuvuv—u —=
(1,0)€APS (Gy) U, — U,

+af )3 Y. Priji¥i

ueVBTUVAT(Gy) (ki j)eB(u)

+ ) U,
MEV(G[)
+ Y -&'u,
MGV(Gf)

to Model BASE. This cut can be interpreted as a lower bound on the total power consumption at
time ¢, represented by z; in Model BASE when selecting timetable x.

Implementation of Benders Decomposition We implemented and tested the presented ben-
ders approach in two ways. Whenever we added the cuts from the subproblems in one iteration,
we can chose to solve the resulting master problem to optimality or we can generate the cuts
using a callback function at each node in the branch-and-bound tree of the master problem. Both
approaches have their own advantages. When solving the master problem to optimality in each
iteration, we at the same time obtain a lower bound for the integrated model. Using the callback
method, the master problem does not have to be solved to optimality in each iteration, therefore
the cuts can be added more efficiently. The disadvantage of this method is a slow improvement
of the lower bound for the integrated model. We term BCB the callback approach. BS represents
solving the master problem to optimality in each iteration.

4 Computational Results

In this section, we present the computational result sfor the developed models and solving
strategies for optimizing timetables of underground train network considering power flows. All
algorithms were implemented in Python 3.10.13 using Gurobi 11.0.0 with standard parameter
setting to solve mixed-integer problems. We performed the calculations on a server with an Intel
Xeon Gold 6326 CPU, 256 GB RAM, 2x16 cores and 2.9 GHz base frequency. The Gurobi solver
was limited to 8 threads to avoid memory issues.
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4.1 Test Instances

All tests were performed on real-world deployed timetables provided by our project partners
VAG, the operator of the underground train system in Nuremberg, Germany. We consider two
different timetables, one for weekdays and one for sundays. They differ in frequency of the
schedule, there drive fewer trains per hour on sundays than on weekdays. In order to be able to
use the timetable optimization in real operation, we plan to repeatedly optimize shorter sections
of around 10 minutes of the timetable during a day in a rolling horizon approach. Therefore the
instances analyzed in this section are segments of the timetable between 100 and 700 seconds.
The transmission network for the DC power simulation is also designed to match the real state of
the underground train system in Niirnberg, including informations about the track lengths and
admittance parameters on the power lines. The section we are looking at consists of 6 separate
sub-grids with a total of 18 substations.

4.2 Resolution Sensitivity Analysis

The first test investigates the impact of varying the resolution of the transmission graph as
defined in Section 3.3. The number of bucket nodes is adjusted for each track, and train nodes
are clustered with a specified maximum clustering distance. For each test configuration we
analyzed 10 instances optimizing different 100 second intervals of the sunday timetable and
present the mean value of the results. Table 3 displays the percentage reduction in the number of
buckets for different resolutions compared to using one bucket for each departure configuration.
The column oo indicates that we have exactly one bucket for each track. Additionally, Table 4

Table 3: Percentage of bucket nodes reduced by various resolutions.

Instance 0.05 0.1 0.5 1.0 1)
CM 34.40% 48.04% 72.70% 77.97% 81.49%

presents the relative difference in the objective function values compared to the case with one
bucket per train node for the quadratic model CM, its most accurate linearization SB and the
relaxed model RLX. The results in Table 3 indicate that we can already reduce almost half of the

Table 4: Relative difference in the objective value to the quadratic model CF for different models
and resolutions.

Instance 0.05 0.1 0.5 1.0 0

CM 0.01% 0.02% 0.04% 0.05% 0.02%
RLX 0.04% 0.29% 2.61% 4.67% 5.92%
SB 0.16% 0.05% 3.01% 2.73% 3.45%

train nodes with a resolution of 0.1. Decreasing the number of buckets in the transmission graph
leads to a reduction of bucket nodes by up to 81.49% but also comes with significantly higher
deviations from the objective value using one bucket for each train node. This has prompted us
to use a resolution of 0.1 in the following computational tests regarding the solving strategies.

4.3 Solving Strategy Comparison

The second test compares different solving strategies for instances with 4 different time horizons
between 100 and 700 seconds. The strategies include the solving of the models BASE, RLX, and
SB as well as the different implementations for the developed Benders decomposition approach
BS and BCB. Each strategy gets the solution of BASE as a starting solution. For each timetable
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and time horizon we solve 5 different timetable segments with a maximum runtime set to 5
hours. Table 5 shows the geometric mean of the resulting runtimes, Table 6 displays the mean of
the real energy consumptions of the solutions obtained with each strategy, along with the relative
improvement (SAV') compared to BASE. For us, the real energy consumption of a timetable is
the energy consumption of the timetable evaluated with the quadratic current model CF. For
this simulation, we use the heuristic HEU presented in Section 2.4. We evaluate each feasible
solution that is produced in the solving process of each strategy and display the best solution in
Table 6. The time used for evaluation is not included in Table 5. For Model BASE we present two
values. Column BASE is the real energy consumption of the optimal solution to model BASE.
Column BASE* displays the lowest real energy comsumption evaluated on all solutions found
by the Gurobi solver, also suboptimal solutions.

Table 5: Runtimes for different solving strategies.

Instance BASE RLX BS BCB SB
sunday_100 0.06 158.37 3.19 23.73 5374.34
sunday_300 0.14 2205.56 14.01 98.79 18000
sunday_500 0.21 4148.25 26.90 238.47 18000
sunday_700 0.24 4760.78 17.32 263.90 18000
weekday_100 0.14 1038.48 15.79 76.60 18000
weekday_300 0.70 14659.51 142.58 1295.00 18000
weekday_500 1.25 18000 245.49 3616.97 18000
weekday_700 1.44 18000 77.37 5401.85 18000
Average 0.50 7871.37 67.83 1376.91 16421.79

Table 6: Power provided by the powerstations in Wh for timetables computed with different
solving strategies.

Instance BASE BASE* RLX BS BCB SB ‘ SAV
sunday_100 179.74 179.74 179.38 179.35 179.36 179.69 0.22%
sunday_300 575.49 575.49 574.89 574.94 574.93 575.49 0.10%
sunday_500 955.31 955.21 954.69 954.79 954.77 955.29 0.07%

sunday_700 1360.61  1359.89  1359.20 1361.88 1359.83  1360.23 0.10%
weekday_100 302.52 302.46 300.14 300.12 300.16 302.52 0.79%
weekday_300 1023.30  1020.21 1017.34 1016.59 1017.05  1023.30 0.65%
weekday_500  1714.37 171092 170237 1700.81  1700.77  1712.31 0.79%
weekday_700 241597 241344  2408.32 2412.83 240836  2415.97 0.32%

The integrated view of schedule and DC power network optimization yields noticable im-
provements particularly for the weekday timetables, where there are more trains driving simul-
taneously in the network than on sundays. Nevertheless, it must be noted that the easy-to-solve
BASE model is a good approximation for the complex physical interrelationships. The produced
timetables do not have a significantly worse energy consuption than the ones computed with
the more complex power flow models. Solving the model that most accurately represents the
power flows in the DC network, Model SB, to optimality was not possible in the timelimit of 5
hours in most of the instances. Although the runtimes of solving Model RLX could be signifi-
cantly reduced through the use of Benders decomposition, the runtimes of the BASE model are
advantageous for the real-time application. The most practical approach to getting high quality
solutions in real time seems to be solving Model BASE, evaluating all solutions obtained in the
solving process and use the best of them with regard to the evaluation using Model CF.
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5 Conclusions

In conclusion, this paper represents a fusion of two critical areas of research: timetable opti-
mization and DC power grid optimization in the context of underground railway systems. By
combining these previously disparate fields, we have developed a novel approach for generating
energy-efficient timetables that accounts for the intricate dynamics of the power network. Our
work extends beyond conventional timetable optimization by accurately modeling the physical
laws and power losses inherent in the DC power grid, thus ensuring a more comprehensive
understanding of energy consumption and demand within the railway system.

Our study compared two model formulations—power flow and current flow—to address
the quadratic constraints that arise from the relationship between power, current, and voltage
in the DC power grid. The results indicate that the current flow model is computationally
more tractable, offering a significant advantage in solving large-scale optimization problems. To
further accelerate the solution process, we developed a heuristic that enhances the efficiency of
the current flow model, thereby making it more suitable for real-time applications.

Empirical validation using real-world data from the VAG (Verkehrs-Aktiengesellschaft
Niirnberg) demonstrated the practical effectiveness of our integrated model. The simulated
energy consumption closely aligned with actual measurements, deviating by at most 1%, thereby
validating the accuracy of our approach. Additionally, the newly calculated timetable achieved an
increase in energy efficiency of up to 0.8% compared to the previously used model, highlighting
the tangible benefits of our method in operational settings.

Beyond the immediate improvements in energy efficiency and computational performance,
this research contributes to the broader field of railway operations by offering a novel approach
that integrates physical energy dynamics with timetable optimization. The methodologies
developed here pave the way for future research at the intersection of transportation and energy
systems, offering potential applications in other domains where energy efficiency and operational
optimization are critical. As urban centers continue to expand, the demand for sustainable and
efficient public transportation will grow, making the contributions of this paper increasingly
relevant for the operation of next-generation railway systems.
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