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Abstract

We report on results concerning the polyhedral structure of the quadratic lin-

ear ordering problem and its associated integer linear programming formulations.

Specifically, we provide a deeper analysis of the characteristic equation system

that partly describes the corresponding polytope, i.e., the convex hull of the feasi-

ble solutions to the quadratic linear ordering problem, and determine an accessible

description of a restricted and inextensible subset of the odd-cycle inequalities that

induces facets of it. Further, we present an extended formulation that provides

a replacement for the commonly used linearization applied to products of linear

ordering variables that share an index.

1 Introduction

The quadratic linear ordering problem (QLOP) asks for a permutation of the elements

of a finite set S that maximizes an objective that depends on the relative order of ele-

ment pairs and combinations of these pairs. More formally, assuming without loss of

generality that S = [n] := {1, . . . ,n}, let Πn be the set of all permutations of n elements.

Given matrices C ∈Rn×n and Q ∈ Rn2×n2
, define the objective function

f (π) := ∑
i, j∈[n]:π(i)<π( j)

ci j + ∑
i, j,k,ℓ∈[n]:π(i)<π( j);π(k)<π(ℓ)

qi jkℓ. (1)

The QLOP is then to determine a permutation π∗ ∈ Πn such that f (π∗) ≥ f (π) for

all π ∈ Πn. In case Q = 0, the QLOP reduces to the classical linear ordering problem

which is well-known to be N P-hard [6].

The QLOP has several applications, for instance the single-row facility layout prob-

lem modeling several challenging problems in operations research [8, 10], crossing

minimization in hierarchical (layered) graph drawings [2], and cutwidth minimiza-

tion [5].
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In this paper, we extend the seminal polyhedral results and revisit the integer linear

programming formulation for the QLOP presented by Buchheim, Wiegele and Zheng

in [2]. Particularly, we amend their polyhedral study by an analysis of the continu-

ous relaxation of this formulation, and provide a deeper analysis of the impact and

implications of its characteristic minimal equation system. We then address the open

question from [2] which instances of the so-called odd-cycle inequalities, predomi-

nantly studied in the context of the strongly related Boolean Quadric Polytope, remain

facet-inducing for the convex hull of the feasible solutions to the QLOP, and iden-

tify a restricted subset of triangle inequalities for which this holds true. By taking up

some of the findings by DeVries in her PhD thesis [3], we describe how to determine

more compact and irredundant integer linear programming formulations for the QLOP,

and provide a perspective on further known facet-defining inequalities that facilitates

to assess their combinatorial structure. Finally, we suggest an extended formulation

that implicitly linearizes quadratic terms referring to the relative order of exactly three

distinct elements i, j,k ∈ [n].
The paper is organized as follows. In Sect. 2, we review the prevalent results on the

QLOP that are extended in this work and state the basic definitions and terminology

needed for this purpose. Sect. 3 is devoted to the analysis of the minimum equation

system that is valid for each solution to the QLOP, revealing also results concerning

triangle inequalities, before addressing more general odd-cycle inequalities in Sect. 4.

The extended formulation is presented in Sect. 5. A brief conclusion is given in Sect. 6.

In the appendix, Sect. A provides an explicit list of the facet-defining triangle inequal-

ities and Sect. B lists the further facet-defining inequalities from [3].

2 Preparations and Review of Results

Concerning the objective function (1), we will assume w.l.o.g. that the matrix C is

strictly upper triangular and that the matrix Q is replaced by an
(

n
2

)
×
(

n
2

)
matrix that is

strictly upper triangular as well. These new matrices provide coefficients for pairs (i, j)
where i, j ∈ [n], i < j, and their combinations with pairs (k, ℓ) where k, ℓ ∈ [n], k < ℓ

and either i < k or i = k and j < ℓ, respectively. As in [2], the resulting index set for the

quadratic terms of interest is thus I = {(i, j,k, ℓ) : i, j,k, ℓ ∈ [n], i < j and k < ℓ and (i<
k or (i = k and j < ℓ))}, and the one concerning single pairs is I2 := {(i, j) : i, j ∈
[n], i < j}. Upon the inclusion of a constant term C̃ and an update of the coefficients

(see e.g. [3]), we may then rewrite (1) as

f (π) = C̃+ ∑
(i, j)∈I2,π(i)<π( j)

ci j + ∑
(i, j,k,ℓ)∈I:π(i)<π( j);π(k)<π(ℓ)

qi jkℓ. (2)

For a permutation π ∈ Πn, define its associated incidence vector ξ (π) ∈ R(
n
2) such

that, for all (i, j) ∈ I2, ξ (π)i j = 1 if π(i)< π( j) and ξ (π)i j = 0 otherwise. Moreover,

let Ξn be the collection of the vectors ξ (π) for all π ∈ Πn. Then the quadratic linear

ordering polytope of order n can be defined as

Pn
QLO := conv

{

(x,y)T ∈ {0,1}(
n
2)×|I| : x ∈ Ξn and yi jkℓ = xi jxkℓ for all (i, j,k, ℓ) ∈ I

}

.
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In [2], Buchheim, Wiegele and Zheng show that the integer linear program

(QLOP-ILP)

max ∑
(i, j)∈I2

ci jxi j + ∑
(i, j,k,ℓ)∈I

qi jklyi jkℓ

s.t. yi jik + yik jk − yi j jk = xik for all i, j,k ∈ [n] : i < j < k (3)

yi jkℓ− xi j ≤ 0 for all (i, j,k, ℓ) ∈ I (4)

yi jkℓ− xkℓ ≤ 0 for all (i, j,k, ℓ) ∈ I (5)

xi j + xkℓ− yi jkℓ ≤ 1 for all (i, j,k, ℓ) ∈ I (6)

yi jkℓ ≥ 0 for all (i, j,k, ℓ) ∈ I (7)

xi j ∈ {0,1} for all (i, j) ∈ I2

is an exact formulation for the QLOP, by verifying that the equations (3) ensure x ∈ Ξn

if x ∈ {0,1}(
n
2). Even more, they proved that (3) constitute a minimal equation system

for Pn
QLO. Besides these equations, the inequalities (4)–(7) implement the “standard”

linearization (see [4, 7]) for the products yi jkℓ = xi jxkℓ. We refer to the program that

results from QLOP-ILP by removing the final integrality restrictions on x as its contin-

uous or, more precisely, linear programming (LP) relaxation, and remark that (4)–(7)

imply 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

For the discussion to follow, it is convenient to define the further index sets I3 :=
{(i, j, i,k),(i, j, j,k),(i,k, j,k) : i, j,k ∈ [n], i < j < k} ⊆ I and I4 := I \ I3 with respect

to the (linearized) quadratic terms. I3 corresponds to the only index combinations

(i, j,k, ℓ) ∈ I such that |{i, j,k, ℓ}|= 3 while I4 could also be written as I4 = {(i, j,k, ℓ) :

i, j,k, ℓ ∈ [n], |{i, j,k, ℓ}|= 4, i < j and k < ℓ and i < k}.

As DeVries [3] observed, for each triple i, j,k ∈ [n] : i < j < k, only half of the

twelve inequalities appearing as (4)–(7) for (i, j, i,k),(i, j, j,k),(i,k, j,k) ∈ I3 are truly

required. More precisely, one may choose e.g.

yi jik − xi j ≤ 0 for all i, j,k ∈ [n] : i < j < k (8)

yi jik − xik ≤ 0 for all i, j,k ∈ [n] : i < j < k (9)

yik jk − xik ≤ 0 for all i, j,k ∈ [n] : i < j < k (10)

yik jk − x jk ≤ 0 for all i, j,k ∈ [n] : i < j < k (11)

xi j + x jk − yi j jk ≤ 1 for all i, j,k ∈ [n] : i < j < k

− yi j jk ≤ 0 for all i, j,k ∈ [n] : i < j < k

while the other instances of (4)–(7) are then implied by combining two of these inequal-

ities for the respective other two I3-variables, e.g. the neglected inequality (4) for yi j jk

is implied by the two selected inequalities (4) for yi jik and (5) for yik jk. For ease of ref-

erence, we will call any choice of such a proper restriction of (4)–(7) an I3-linearization

reduction. Moreover, as opposed to the variables in I3 which are necessary to formulate

(3) and thus to model feasible permutations, the variables (i, j,k, ℓ) ∈ I4 only need to

be introduced if qi jkℓ 6= 0, while (4) and (5) can be omitted if qi jkℓ < 0, and (6) and (7)

can be omitted if qi jkℓ > 0. For the polyhedral results concerning Pn
QLO presented in the

paper, we assume that all I4-variables are present.
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Noteworthy, the equations (3) may be straightforwardly employed to eliminate

variables and then also themselves, as has been briefly considered by DeVries [3] as

well. For instance, one could substitute for the identity yi j jk = yi jik + yik jk − xik for

all i, j,k ∈ [n] : i < j < k. Any such elimination will be called an I3-equation reduc-

tion in the following. Choosing the exemplified one, and combining it with the above

I3-linearization reduction, one arrives at the following formulation.

(QLOP-ILP-RED)

max ∑
(i, j)∈I2

ci jxi j + ∑
i< j<k

(
qi j jk(yi jik + yik jk − xik)+ qi jikyi jik + qik jkyik jk

)
+ ∑
(i, j,k,ℓ)∈I4

qi jklyi jkℓ

s.t. (8), (9), (10), (11),

−yi jik − yik jk + xik ≤ 0 for all i, j,k ∈ [n] : i < j < k

xi j + x jk + xik − yi jik − yik jk ≤ 1 for all i, j,k ∈ [n] : i < j < k

yi jkℓ− xi j ≤ 0 for all (i, j,k, ℓ) ∈ I4

yi jkℓ− xkℓ ≤ 0 for all (i, j,k, ℓ) ∈ I4

xi j + xkℓ− yi jkℓ ≤ 1 for all (i, j,k, ℓ) ∈ I4

yi jkℓ ≥ 0 for all (i, j,k, ℓ) ∈ I4

xi j ∈ {0,1} for all (i, j) ∈ I2

3 A Deeper Analysis of the Minimal Equation System and the Re-

lated Triangle Inequalities

Apparently, the equations (3) play a central role for Pn
QLO and integer linear program-

ming formulations derived by linearizing the products of linear ordering variables. The

following extended analysis unveils new aspects regarding their impact and implica-

tions, so as to explain their role for the strength of the formulations from Sect. 2, re-

spectively of their continuous relaxations in characterizing the solution space. This

leads to a discussion of triangle inequalities for Pn
QLO in a natural way.

We begin this analysis by extending the result by Buchheim, Wiegele and Zheng

in [2], showing that the equations (3) imply the well-known three-di-cycle inequalities

0 ≤ xi j + x jk − xik ≤ 1 for all i, j,k ∈ [n] : i < j < k (12)

if x ∈ {0,1}(
n
2) (and thus transitivity in the sense that xik = 1 if xi j = x jk = 1 and xik = 0

if xi j = x jk = 0), to the continuous case. In other words, we show that equations (3)

imply inequalities (12) already for the LP relaxation of QLOP-ILP. Moreover, we show

that the converse is not true, i.e., that the relaxation with (3) is strictly stronger.

Theorem 1. Let (x̄, ȳ) be a feasible solution to the continuous relaxation of QLOP-ILP.

Then, for all i, j,k ∈ [n], i < j < k, 0 ≤ x̄i j + x̄ jk − x̄ik ≤ 1.

Proof. Fix some arbitrary triple i, j,k ∈ [n], i < j < k. By equations (3), a feasible

solution (x̄, ȳ) to the relaxation of QLOP-ILP satisfies

−ȳi jik − ȳik jk + ȳi j jk + x̄ik ≤ 0 (∗)
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When linearly combining (∗) as follows with (6) for ȳi j jk, (4) for ȳik jk, and (5) for

ȳi jik, we obtain:

− ȳi jik − ȳik jk + ȳi j jk + x̄ik ≤ 0

− ȳi j jk + x̄i j + x̄ jk ≤ 1

+ ȳik jk − x̄ik ≤ 0

+ ȳi jik − x̄ik ≤ 0

+ x̄i j + x̄ jk − x̄ik ≤ 1

Analogously, when combining (∗) with (7) for ȳi j jk, (5) for ȳik jk, and (4) for ȳi jik,

one obtains −x̄i j − x̄ jk + x̄ik ≤ 0.

Theorem 2. For any fixed n ∈ N, n ≥ 3, let P̃ be the polytope given by the feasible

region of the continuous relaxation of QLOP-ILP, and let Q̃ be the respective polytope

given when replacing (3) by (12) in QLOP-ILP. Then, P̃ ( Q̃.

Proof. The part P̃ ⊆ Q̃ follows directly from Theorem 1. To show Q̃ 6⊆ P̃, consider

the vector (x̂, ŷ) = ( 1
2
,0). It is easy to verify that (x̂, ŷ) satisfies 0 ≤ x̄i j + x̄ jk − x̄ik ≤ 1

for all i, j,k ∈ [n], i < j < k, as well as (4)–(7), and thus is feasible for Q̃. However,

(x̂, ŷ) strictly satisfies (i.e. is not binding for) any instance of (13) and thus violates each

instance of (3) for n ≥ 3, i.e., (x̂, ŷ) 6∈ P̃.

Theorem 2 theoretically underpins and partially explains the experimental observa-

tion in [2] that for specific instances the solution times with an ILP solver may signifi-

cantly improve with QLOP-ILP compared to when replacing (3) by (12).

The following proposition subsumes a simple observation that promotes insights

about a certain role of the variables xik, (i,k) ∈ I2, k− i > 1, in QLOP-ILP.

Proposition 3. Let (x̄, ȳ) be a feasible solution to the continuous relaxation of QLOP-

ILP. Then, for all i, j,k ∈ [n], i < j < k, we have ȳi j jk ≤ x̄ik

Proof. By equations (3), as well as (4) for ȳik jk and (5) for ȳi jik, we have ȳi j jk =
ȳi jik
︸︷︷︸

≤x̄ik

+ ȳik jk
︸︷︷︸

≤x̄ik

−x̄ik.

This result emphasizes in particular that if xik = 0 for some (i,k) ∈ I2, i+1< k, then

yi jik = yik jk = yi j jk = 0 for all j ∈ [n], i < j < k, which may be exploited for instance

in the implementation of branch-and-bound algorithms for QLOP.

Remark 4. By the derivations in Sect. 2, the above results naturally extend to an I3-

linearization reduction of QLOP-ILP and to QLOP-ILP-RED.

We now direct our attention to the well-observed fact that each of the equations

(3) describes a facet of the Boolean Quadric Polytope P
(n

2)
BQP [11] that is induced by the

corresponding triangle inequality:

yi jik + yik jk − yi j jk − xik ≤ 0 for all i, j,k ∈ [n] : i < j < k (13)
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Besides (13), there are three further triangle inequalities defined for P
(n

2)
BQP and the

same I3-index respectively y-variable triples:

yi jik − yik jk + yi j jk − xi j ≤ 0 for all i, j,k ∈ [n] : i < j < k (14)

− yi jik + yik jk + yi j jk − x jk ≤ 0 for all i, j,k ∈ [n] : i < j < k (15)

− yi jik − yik jk − yi j jk + xi j + x jk + xik ≤ 1 for all i, j,k ∈ [n] : i < j < k (16)

As has been observed also in [5] in matrix notation for the linear constraints (3)–

(7) of QLOP-ILP, these triangle inequalities are implied by its continuous relaxation

as well. More precisely, the proof of the following theorem shows that any point on

the affine space defined by one instance of (3) that additionally satisfies (a weakening

of) the “standard” linearization inequalities (4)–(7) lies in the feasible halfspaces of the

according instances of (14), (15), and (16).

Theorem 5. Let (x̄, ȳ) be a feasible solution to the continuous relaxation of QLOP-ILP.

Then, for all i, j,k ∈ [n], i < j < k, (x̄, ȳ) satisfies (14), (15), and (16).

Proof. Substituting for ȳi j jk by ȳi jik + ȳik jk − x̄ik in (14) gives 2ȳik jk − x̄ik − x̄ jk ≤ 0

which is implied by (4) and (5) for ȳik jk. Analogously, substituting for ȳi j jk by ȳi jik +
ȳik jk − x̄ik in (15) gives 2ȳi jik − x̄i j − x̄ik ≤ 0 which is implied by (4) and (5) for ȳi jik.

Finally, substituting for x̄ik by ȳi jik + ȳik jk − ȳi j jk in (16) gives x̄i j + x̄ jk − 2ȳi j jk ≤ 1

which is implied by (6) and (7) for ȳi j jk.

For n≥ 4, there are up to four classes of further triangle inequalities defined besides

(14)–(16) that are not implied by (3), and so may be violated by a feasible solution to

the continuous relaxation of QLOP-ILP. We now explore them one after one regarding

the question whether they define facets of Pn
QLO, n ≥ 4.

The first additional class stems from triangles combining three I3-variables that do

not all belong to the same triple i, j,k ∈ [n], i< j < k, but to different ones. An example

configuration (x̄, ȳ) that is feasible for the LP relaxation of QLOP-ILP for n = 4 and

that violates the triangle inequality

y1213 − y1214+ y1314− x13 ≤ 0

belonging to this class is shown in Figure 1. The inequalities stemming from such

triangles however do not define facets of Pn
QLO, n ≥ 4. In particular, for n = 4, their

induced faces F have dimF < 16 while the dimension of P4
QLO is dimP4

QLO =
(

4
2

)
+

((4
2)
2

)
−
(

4
3

)
= 17 [2].

The second additional class combines two I3-variables and one I4-variable. Exactly

one of the four inequalities associated with each such triangle defines a facet of P4
QLO,

n ≥ 4. A proof of this statement and an explicit list of these inequalities is given in

the appendix section A. The result has also been equivalently derived by DeVries w.r.t.

a variable space that results from an I3-equation reduction (Table 3.4 in [3]). As an

asset, the more natural representation considered in the appendix permits to identify

the general (sign) pattern (in terms of the {−1,1}-coefficients) that distinguishes the

facet-defining inequalities from the other three ones per triangle. It turns out that the

number of y-variables of the form yi j jk for some i, j,k ∈ [n] : i < j < k, is characteristic

in this respect. We therefore subdivide the index set I3 into the set I∗3 := {(i, j, j,k) ∈
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Figure 1: Graph-based illustration where the vertices (edges) correspond to the x-

(y-)variables for P4
QLO. The attached values reflect a feasible solution to the contin-

uous relaxation of QLOP-ILP that violates the (non-facet-inducing) triangle inequality

y1213 + y1314 − y1214− x13 ≤ 0.

I3 : i < j < k} collecting these variable subscripts and the set I−3 = I3 \ I∗3 . The subset

of the second class of triangle inequalities that induce facets for P4
QLO, n ≥ 4, can then

be compactly written as follows where we use elements from I interchangeably with

their corresponding y-indices (i.e., with or without parenthesis) and the notation e∩ f

for two y-variable indices to denote their common index pair from I2 (e.g. (i, j, j,k)∩
(i, j,k, ℓ) = (i, j)).

− ye + y f + yg − x f∩g ≤ 0 for all e ∈ I4, f ∈ I−3 ,g ∈ I−3 , f 6= g

ye + y f − yg − xe∩ f ≤ 0 for all e ∈ I4, f ∈ I−3 ,g ∈ I∗3

− y f − yg − ye + xe∩ f + x f∩g + xe∩g ≤ 1 for all e ∈ I4, f ∈ I∗3 ,g ∈ I∗3 , f 6= g

This representation is thus to be interpreted as follows. If no index from I∗3 is

involved in the triangle then the single I4-variable is the only one with a negative co-

efficient (right-hand side zero). If exactly one I∗3 -index is involved, then the respective

variable is the only one with a negative coefficient (right-hand side zero). Finally, if

two I∗3 -variables are involved, then all y-variables obtain a negative coefficient and the

right-hand side is one. The x-variables receive their unique coefficients (signs) accord-

ing to the inherent pattern that is given in (14)–(16) or, more generally, described for

(17) in Sect. 4.

For n ≥ 5, there is a third additional class that combines one I3-variable and two

I4-variables. Here, there are two facet-defining inequalities per triangle. Again, an

explicit list of these and a proof is given in the appendix section A. Using the same

notation as before, these can be compactly expressed as follows.

− ye+ y f + yg − x f∩g ≤ 0 for all e ∈ I4, f ∈ I4,g ∈ I−3 ,e 6= f

ye − y f + yg − xe∩g ≤ 0 for all e ∈ I4, f ∈ I4,g ∈ I−3 ,e 6= f

ye + y f − yg − xe∩ f ≤ 0 for all e ∈ I4, f ∈ I4,g ∈ I∗3 ,e 6= f

− y f − yg − ye + xe∩ f + x f∩g + xe∩g ≤ 1 for all e ∈ I4, f ∈ I4,g ∈ I∗3 ,e 6= f
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The interpretation is now again based on the number of involved I∗3 -variables. If

there are no such variables, then both I4-variables obtain once a negative coefficient,

giving the first two inequality types. If there is a variable from I∗3 , then there is one

facet-defining inequality where only this variable has a negative coefficient, and one

where all y-variables have negative coefficients (right-hand side one).

Finally, for n ≥ 6, there is a fourth additional class that combines three I4-variables.

Here, all four inequalities per triangle are facet-defining which are listed together with a

proof in the appendix section A. Even though thus no distinction among the inequalities

associated with a single triangle is necessary, we continue for consistency the notation

used for the previous classes.

− ye + y f + yg − x f∩g ≤ 0 for all e, f ,g ∈ I4,e 6= f 6= g 6= e

ye − y f + yg − xe∩g ≤ 0 for all e, f ,g ∈ I4,e 6= f 6= g 6= e

ye + y f − yg − xe∩ f ≤ 0 for all e, f ,g ∈ I4,e 6= f 6= g 6= e

− y f − yg − ye + xe∩ f + x f∩g + xe∩g ≤ 1 for all e, f ,g ∈ I4,e 6= f 6= g 6= e

We conclude that the facial structure for Pn
QLO, n ≥ 4, includes triangle inequali-

ties, but in a more complicated pattern than in case of the Boolean Quadric Polytope.

From a practical perspective, the results suggest a tailored separation procedure for the

triangle inequalities. When using QLOP-ILP-RED instead of QLOP-RED, one further

needs to take into account that the edges corresponding to the I3-equation reduction do

not anymore appear in the graph G if it were straightforwardly constructed from the

variables present in the formulation.

The triangle inequalities constitute a subset of the more general odd-cycle inequal-

ities that we address in Section 4, thereby further confirming the conjecture by Buch-

heim, Wiegele, and Zheng in [2] that it is likely to obtain inequalities from a usual

separation procedure which are not facet-inducing.

4 Odd-Cycle Inequalities for the Quadratic Linear Ordering Poly-

tope

To extend the discussion of odd-cycle inequalities for the QLOP beyond the special

case of triangles addressed in Sect. 3, it is helpful to associate an instance of the

QLOP with a graph. To this end, let G = (V,E) be the undirected graph such that

vi j ∈ V corresponds to (i, j) ∈ I2 and the corresponding variable xi j, and there is an

edge {vi j,vkℓ} ∈ E corresponding to the variable yi jkℓ, respectively (i, j,k, ℓ) ∈ I. For

n = 4, G is precisely the graph shown in Figure 1.

Given G = (V,E), consider now an arbitrary cycle consisting of the edges C ⊆ E .

Then, for Pn
QLO and P

(n
2)

BQP, n ≥ 4, the following odd-cycle inequality is defined for any

partition of C into CA ∪CB such that |CA| is odd.

∑
vi j∈VA

xi j − ∑
vi j∈VB

xi j − ∑
{vi j ,v jk}∈CA

yi jkℓ+ ∑
{vi j ,vkℓ}∈CB

yi jkℓ ≤

⌊
|CA|

2

⌋

(17)

Here, VA (VB) are the vertices incident to exactly two edges in CA (CB).
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In view of the results for |C| = 3 presented in Sect. 3, we will focus on cycles of

length at least four, and thereby make use of the fact that it is a necessary condition for

an odd-cycle inequality to be facet-defining that the respective cycle is chordless in G.

Lemma 1. Let C, |C| > 3, be a cycle in the graph G that has a chord. Then, the

odd-cycle inequalities (17) defined for C do not induce facets of Pn
QLO, n ≥ 4.

Proof. If c ∈ E \C is a chord of C, then (17) can be written as a linear combination of

two other valid odd-cycle inequalities [1, 11, 9] obtained from splitting C along c, and

thus cannot be a facet of Pn
QLO.

In case of the Boolean Quadric Polytope P
(n

2)
BQP, chordlessness is also a sufficient

condition for an odd-cycle inequality to define a facet [1, 11]. This is not true for Pn
QLO,

as we already see from the fact that not all triangle inequalities are facet-inducing for

it. Conversely, by taking a closer look at the structure of the graph G, it turns out that

Lemma 1 already serves as a sufficient basis to prove the following result.

Theorem 6. For n≥ 4, no odd-cycle inequality (17) other than the triangle inequalities

described in Sect. 3, respectively (22)–(153) in the appendix, induces a facet of Pn
QLO.

Proof. Since every possible I4-edge is present, G is a complete graph. It follows that

each cycle of length larger than three has a chord, and so, by Lemma 1, the correspond-

ing odd-cycle inequalities cannot induce a facet of Pn
QLO.

5 An Extended Formulation

In this section, we take on an alternative perspective on the I3-variables that concern the

relative positions of entity triples i, j,k ∈ [n], i < j < k, only. Replacing these variables

by (asymmetric) betweenness variables, in a reverse fashion compared to the approach

in [10], permits to derive an extended formulation for the QLOP whose continuous

relaxation implies the “standard” linearization with respect to the (replaced) I3-part.

To build this extended formulation, we first replace, for all i, j,k ∈ [n], i < j < k, the

variables yi jik,yik jk ∈ I3 (while keeping yi j jk) by the variables ykii j and yikk j so that the

common index can be dropped. Switching further from y to b for further umambiguity,

we obtain the three variables bi jk, bki j and bik j, and further introduce the “reverse”

betweenness variables b jik, bk ji and b jki for all i, j,k ∈ [n], i < j < k, supposed to be

equal to one if and only if the order specified by the respective index is respected by the

permutation. The objective coefficients qi j jk, qik jk, and qi jik are accordingly reassigned

to bi jk, xik − bik j, and xi j − bki j.

The next step is to replace (3) by the following equation, which can be obtained

from it by simple term substitutions [10] as well:

bki j + bik j + bi jk − xi j = 0 for all i, j,k ∈ [n] : i < j < k (18)

Finally, we append three more pendants of (18) from [10], for instance:

b jik + bik j + bi jk − xik = 0 for all i, j,k ∈ [n] : i < j < k (19)

b jik + b jki+ bi jk − x jk = 0 for all i, j,k ∈ [n] : i < j < k (20)

bk ji + b jki+ b jik + xi j = 1 for all i, j,k ∈ [n] : i < j < k (21)
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The resulting formulation is subsequently displayed as EXT-QLOP-ILP, thereby

emphasizing how to redistribute the objective coefficients of QLOP-ILP, while further

objective coefficients for b-variables could be inserted in a straightforward way.

(EXT-QLOP-ILP)

max ∑
(i, j)∈I2

ci jxi j + ∑
i< j<k

(
qi j jkbi jk + qi jik(xi j − bki j)+ qik jk(xik − bik j)

)
+ ∑
(i, j,k,ℓ)∈I4

qi jklyi jkℓ

s.t. bki j + bik j + bi jk − xi j = 0 for all i, j,k ∈ [n] : i < j < k

b jik + bik j + bi jk − xik = 0 for all i, j,k ∈ [n] : i < j < k

b jik + b jki + bi jk − x jk = 0 for all i, j,k ∈ [n] : i < j < k

bk ji + b jki + b jik + xi j = 1 for all i, j,k ∈ [n] : i < j < k

yi jkℓ− xi j ≤ 0 for all (i, j,k, ℓ) ∈ I4

yi jkℓ− xkℓ ≤ 0 for all (i, j,k, ℓ) ∈ I4

xi j + xkℓ− yi jkℓ ≤ 1 for all (i, j,k, ℓ) ∈ I4

yi jkℓ ≥ 0 for all (i, j,k, ℓ) ∈ I4

xi j ∈ {0,1} for all (i, j) ∈ I2

As shown in [10], the equation system has full rank, and it implies the three-di-

cycle inequalities (12) as well as the inequalities of the “standard” linearization (for all

b-variables) already for the continuous relaxation of EXT-QLOP-ILP. Thus, the explicit

linearization is only kept for the I4-variables.

Accounting for the program size, the extended formulation replaces the 3
(

n
3

)
I3-

variables of QLOP-ILP by 6
(

n
3

)
b-variables, and in turn its 6

(
n
3

)
inequalities (assuming

an I3-linearization reduction and counting potential inequalities of the form ye ≥ 0, e ∈
I3) by 4

(
n
3

)
equations. Importantly, it has no equivalent in the variable space of QLOP-

ILP which is evident from the fact that equations (3) constitute a minimal equation

system for Pn
QLO. Indeed, when re-applying the variable-term substitutions, then any of

(18)–(21) turns into (3).

At the same time, the equation system in EXT-QLOP-ILP may be used to eliminate

variables in the same fashion as carried out for QLOP-ILP in Sect. 2, e.g. using the

identities:

bi jk = −bki j − bik j + xi j for all i, j,k ∈ [n] : i < j < k

b jik = bki j − xi j + xik for all i, j,k ∈ [n] : i < j < k

b jki = bik j − xik + x jk for all i, j,k ∈ [n] : i < j < k

bk ji = 1− x jk − bki j − bik j for all i, j,k ∈ [n] : i < j < k

The resulting reduced version of EXT-QLOP-ILP however does not imply the non-

negativity of the right-hand sides of these equations (whereas, for the single equation

used for elimination to obtain QLOP-ILP-RED, the inequality −yi jik − yik jk + xik ≤ 0

stemming from the standard linearization establishes it). On the other hand, it is easy

to verify that the right-hand sides of these equations must be less or equal to one if

they are enforced to be non-negative. Indeed, when studying the polytope spanned

by the six vertices corresponding to the permutations of three distinct i, j, k, in the

variables xi j, x jk, xik, bki j, and bik j, it turns out that the corresponding inequalities for

10



non-negativity of the above right-hand sides, bki j ≥ 0, and bik j ≥ 0 induce a complete

facet description. Therefore, in terms of formulation size, a net reduction of 4
(

n
3

)
vari-

ables is achieved compared to EXT-QLOP-ILP while 4
(

n
3

)
equations (with support size

four) are replaced by equally many inequalities (with support size three).

(EXT-QLOP-ILP-RED)

max ∑
(i, j)∈I2

ci jxi j + ∑
i< j<k

(
qi j jk(−bki j − bik j + xi j)+ qi jik(xi j − bki j)+ qik jk(xik − bik j)

)
+ ∑
(i, j,k,ℓ)∈I4

qi jklyi jkℓ

s.t. bki j + bik j − xi j ≤ 0 for all i, j,k ∈ [n] : i < j < k

−bki j + xi j − xik ≤ 0 for all i, j,k ∈ [n] : i < j < k

−bik j + xik − x jk ≤ 0 for all i, j,k ∈ [n] : i < j < k

bki j + bik j + x jk ≤ 1 for all i, j,k ∈ [n] : i < j < k

bki j, bik j ≥ 0 for all i, j,k ∈ [n] : i < j < k

yi jkℓ− xi j ≤ 0 for all (i, j,k, ℓ) ∈ I4

yi jkℓ− xkℓ ≤ 0 for all (i, j,k, ℓ) ∈ I4

xi j + xkℓ− yi jkℓ ≤ 1 for all (i, j,k, ℓ) ∈ I4

yi jkℓ ≥ 0 for all (i, j,k, ℓ) ∈ I4

xi j ∈ {0,1} for all (i, j) ∈ I2

When now comparing EXT-QLOP-ILP-RED with QLOP-ILP-RED, it is verified

by substituting for bki j = xi j − yi jik and bik j = xik − yik jk that they are equivalent.

We close this section with the remark that the results for QLOP-ILP concerning the

triangle inequalities defined for I3-variables in Sect. 3 carry over to EXT-QLOP-ILP,

i.e., bki j +bik j +bi jk − xi j ≤ 0, −bki j +bik j +bi jk − xik ≤ 0, x jk +bki j −bi jk +bik j ≤ 1,

and bki j + bi jk − bik j + xik − xi j − x jk ≤ 0 are implied by solutions satisfying (18).

6 Conclusion

We have shown that the characteristic minimal equation system partly describing the

(convex hull of the) feasible solutions to the quadratic linear ordering problem implies

the three-di-cycle inequalities known from the linear ordering problem already when

solving the continuous relaxation of the corresponding integer linear program. We

further illustrate their impact on the related triangle inequalities and reveal a pattern

to identify the restricted subset of these inequalities that define facets of the quadratic

linear ordering polytope. We further proved that no odd-cycle inequalities other than

these particular triangle inequalities induce facets of this polytope, and demonstrated

that there is an extended formulation that implicitly linearizes the quadratic terms that

refer to three distinct elements.

The contributed results suggest tailored algorithms to separate triangle inequalities

in the context of the quadratic linear ordering problem. Moreover, they suggest that a

further structural analysis of the polytope Pn
QLO, as considered by DeVries [3] for n = 3

and n = 4, is worthwhile. Even more since, as DeVries further points out, no facet of

the linear ordering polytope is a facet of the quadratic linear ordering polytope.

11



For completeness and convenience, we list the remaining 54 facet-defining inequal-

ities found by DeVries and contributing to a complete description of P4
QLO in the origi-

nal QLOP variable space in the appendix section B.

A The facet-defining triangle inequalities for Pn
QLO, n ≥ 4

We start with the facet-defining triangle inequalities involving exactly one I4-variable

for Pn
QLO, n ≥ 4:

yi jik − yi j jℓ+ yik jℓ− xik ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (22)

yi jiℓ− yi j jk + yiℓ jk − xiℓ ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (23)

yi jiℓ− yi jkℓ+ yiℓkℓ− xiℓ ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (24)

yikiℓ− yik jℓ+ yiℓ jℓ− xiℓ ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (25)

yik jk − yik jℓ+ y jk jℓ− x jk ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (26)

yik jℓ− yikkℓ+ y jℓkℓ− x jℓ ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (27)

yi jik + yi jkℓ− yikkℓ− xi j ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (28)

yikiℓ+ yik jk − yiℓ jk − xik ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (29)

yiℓ jk + yiℓkℓ− y jkkℓ− xiℓ ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (30)

− yi j jℓ+ yi jkℓ+ y jℓkℓ− xkℓ ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (31)

− yiℓ jk + yiℓ jℓ+ y jk jℓ− x jℓ ≤ 0 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (32)

− yi j jk − yi jkℓ− y jkkℓ+ xi j + x jk + xkℓ ≤ 1 for all i, j,k, ℓ ∈ [n] : i < j < k < ℓ (33)

The following result has been equivalently derived by DeVries w.r.t. a variable

space that results from an I3-equation reduction (Table 3.4 in [3]).

Theorem 7. The triangle inequalities (22)–(33) define facets of Pn
QLO for n ≥ 4.

Proof. Let F = {(x,y)T ∈ R(
n
2)×|I| : aT(x,y)T = b} be the affine space induced by any

of the triangle inequalities (22)–(33), and F≤ the corresponding halfspace of interest.

Clearly, we have Pn
QLO ⊆ F≤ as follows directly from the validity of the triangle in-

equalities for P
(n

2)
BQP. Any (x,y)T ∈ F is a convex (linear) combination of these vertices,

so the dimension dimF of F is equal to the maximal number of linear independent

vectors spanning F (minus one in case (0,0)T 6∈ F).

Consider now the case n = 4 giving dimP4
QLO = 17 and exactly 12 instances of

(22)–(33) in total. By insertion, one verifies that 22 of the 24 vertices of P4
QLO lie on F .

It follows that F ∩P4
QLO 6= /0, and so F is a face of P4

QLO. Moreover, it is spanned by the

respective 22 integral vertices since P4
QLO is an integral polytope.

We have (0,0)T 6∈ F only for the face F induced by (33) which contains 17 linear

independent vertices of P4
QLO, so dimF = 16 and F is a facet of P4

QLO. All the other

induced faces F have a basis of 16 linear independent vertices of P4
QLO and (0,0)T ∈ F ,

so dimF = 16 as well.

Finally, as has been shown in [3], any facet for Pk
QLO, k ∈ N, is a facet of Pk+1

QLO, so

the statement follows.
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For n ≥ 5, the additional inequalities with two I4 variables lead to 60 different

shapes, each to be read for all i, j,k, ℓ,m ∈ [n], i < j < k < ℓ < m, whence we divide

them into two parts.

yi jik + yi jℓm− yikℓm − xi j ≤ 0 (34)

yi jik − yi jℓm+ yikℓm − xik ≤ 0 (35)

yi jiℓ+ yi jkm − yiℓkm − xi j ≤ 0 (36)

yi jiℓ− yi jkm + yiℓkm − xiℓ ≤ 0 (37)

yi jim + yi jkℓ− yimkℓ− xi j ≤ 0 (38)

yi jim − yi jkℓ+ yimkℓ− xim ≤ 0 (39)

− yi j jk + yi jℓm + y jkℓm− xℓm ≤ 0 (40)

− yi j jk − yi jℓm − y jkℓm+ xi j + x jk + xℓm ≤ 1 (41)

− yi j jℓ+ yi jkm + y jℓkm− xkm ≤ 0 (42)

− yi j jℓ− yi jkm − y jℓkm+ xi j + x jℓ+ xkm ≤ 1 (43)

− yi j jm+ yi jkℓ+ y jmkℓ− xkℓ ≤ 0 (44)

− yi j jm− yi jkℓ− y jmkℓ+ xi j + x jm + xkℓ ≤ 1 (45)

yi jkℓ− yi jkm + ykℓkm − xkℓ ≤ 0 (46)

− yi jkℓ+ yi jkm + ykℓkm − xkm ≤ 0 (47)

yi jkℓ+ yi jℓm − ykℓℓm− xi j ≤ 0 (48)

− yi jkℓ− yi jℓm− ykℓℓm + xi j + xkℓ+ xℓm ≤ 1 (49)

yi jkm − yi jℓm + ykmℓm − xkm ≤ 0 (50)

− yi jkm + yi jℓm+ ykmℓm − xℓm ≤ 0 (51)

yikiℓ+ yik jm − yiℓ jm− xik ≤ 0 (52)

yikiℓ− yik jm + yiℓ jm− xiℓ ≤ 0 (53)

yikim + yik jℓ− yim jℓ− xik ≤ 0 (54)

yikim − yik jℓ+ yim jℓ− xim ≤ 0 (55)

yik jk + yikℓm − y jkℓm − xik ≤ 0 (56)

yik jk − yikℓm + y jkℓm − x jk ≤ 0 (57)

yik jℓ− yik jm + y jℓ jm− x jℓ ≤ 0 (58)

− yik jℓ+ yik jm + y jℓ jm− x jm ≤ 0 (59)

yik jℓ− yikkm + y jℓkm − x jℓ ≤ 0 (60)

− yik jℓ− yikkm − y jℓkm+ xik + x jℓ+ xkm ≤ 1 (61)

yik jℓ+ yikℓm − y jℓℓm− xik ≤ 0 (62)

− yik jℓ− yikℓm − y jℓℓm+ xik + x jℓ+ xℓm ≤ 1 (63)
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yik jm − yikkℓ+ y jmkℓ− x jm ≤ 0 (64)

− yik jm − yikkℓ− y jmkℓ+ xik + x jm + xkℓ ≤ 1 (65)

yik jm − yikℓm + y jmℓm − x jm ≤ 0 (66)

− yik jm + yikℓm + y jmℓm− xℓm ≤ 0 (67)

yiℓim + yiℓ jk − yim jk − xiℓ ≤ 0 (68)

yiℓim − yiℓ jk + yim jk − xim ≤ 0 (69)

yiℓ jk − yiℓ jm + y jk jm − x jk ≤ 0 (70)

− yiℓ jk + yiℓ jm+ y jk jm − x jm ≤ 0 (71)

yiℓ jk + yiℓkm − y jkkm − xiℓ ≤ 0 (72)

− yiℓ jk − yiℓkm − y jkkm + xiℓ+ x jk + xkm ≤ 1 (73)

yiℓ jk − yiℓℓm + y jkℓm− x jk ≤ 0 (74)

− yiℓ jk − yiℓℓm− y jkℓm + xiℓ+ x jk + xℓm ≤ 1 (75)

yiℓ jℓ+ yiℓkm − y jℓkm− xiℓ ≤ 0 (76)

yiℓ jℓ− yiℓkm + y jℓkm− x jℓ ≤ 0 (77)

yiℓ jm + yiℓkℓ− y jmkℓ− xiℓ ≤ 0 (78)

− yiℓ jm+ yiℓkℓ+ y jmkℓ− xkℓ ≤ 0 (79)

yiℓ jm − yiℓkm + y jmkm − x jm ≤ 0 (80)

− yiℓ jm+ yiℓkm + y jmkm − xkm ≤ 0 (81)

yim jk − yim jℓ+ y jk jℓ− x jk ≤ 0 (82)

− yim jk + yim jℓ+ y jk jℓ− x jℓ ≤ 0 (83)

yim jk + yimkℓ− y jkkℓ− xim ≤ 0 (84)

− yim jk − yimkℓ− y jkkℓ+ xim + x jk + xkℓ ≤ 1 (85)

yim jk + yimℓm − y jkℓm − xim ≤ 0 (86)

− yim jk + yimℓm + y jkℓm− xℓm ≤ 0 (87)

yim jℓ− yimkℓ+ y jℓkℓ− x jℓ ≤ 0 (88)

− yim jℓ+ yimkℓ+ y jℓkℓ− xkℓ ≤ 0 (89)

yim jℓ+ yimkm − y jℓkm − xim ≤ 0 (90)

− yim jℓ+ yimkm + y jℓkm− xkm ≤ 0 (91)

yim jm + yimkℓ− y jmkℓ− xim ≤ 0 (92)

yim jm − yimkℓ+ y jmkℓ− x jm ≤ 0 (93)

Theorem 8. The triangle inequalities (34)–(93) define facets of Pn
QLO for n ≥ 5.

Proof. The proof is analogous to the one for the previous case, except that is carried

out for n = 5. Each of these inequalities has 100 of the 120 vertices of P5
QLO binding,

while the dimension of their associated faces is 44 and dimP5
QLO = 45.

For n ≥ 6, the additional inequalities with three I4 variables lead to 60 different

instances per index configuration as well which are again divided into two parts. They

are to be read for all i, j,k, ℓ,m,o ∈ [n], i < j < k < ℓ < m < o.
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yi jkℓ+ yi jmo − ykℓmo − xi j ≤ 0 (94)

yi jkℓ− yi jmo + ykℓmo − xkℓ ≤ 0 (95)

− yi jkℓ+ yi jmo + ykℓmo − xmo ≤ 0 (96)

− yi jkℓ− yi jmo − ykℓmo + xi j + xkℓ+ xmo ≤ 1 (97)

yi jkm + yi jℓo − ykmℓo − xi j ≤ 0 (98)

yi jkm − yi jℓo + ykmℓo − xkm ≤ 0 (99)

− yi jkm + yi jℓo + ykmℓo − xℓo ≤ 0 (100)

− yi jkm − yi jℓo − ykmℓo + xi j + xkm + xℓo ≤ 1 (101)

yi jko + yi jℓm− ykoℓm − xi j ≤ 0 (102)

yi jko − yi jℓm+ ykoℓm − xko ≤ 0 (103)

− yi jko + yi jℓm + ykoℓm− xℓm ≤ 0 (104)

− yi jko − yi jℓm − ykoℓm+ xi j + xko + xℓm ≤ 1 (105)

yik jℓ+ yikmo − y jℓmo − xik ≤ 0 (106)

yik jℓ− yikmo + y jℓmo − x jℓ ≤ 0 (107)

− yik jℓ+ yikmo + y jℓmo − xmo ≤ 0 (108)

− yik jℓ− yikmo − y jℓmo + xik + x jℓ+ xmo ≤ 1 (109)

yik jm + yikℓo − y jmℓo − xik ≤ 0 (110)

yik jm − yikℓo + y jmℓo − x jm ≤ 0 (111)

− yik jm + yikℓo + y jmℓo − xℓo ≤ 0 (112)

− yik jm − yikℓo − y jmℓo + xik + x jm+ xℓo ≤ 1 (113)

yik jo + yikℓm − y joℓm− xik ≤ 0 (114)

yik jo − yikℓm + y joℓm− x jo ≤ 0 (115)

− yik jo + yikℓm + y joℓm− xℓm ≤ 0 (116)

− yik jo − yikℓm − y joℓm+ xik + x jo + xℓm ≤ 1 (117)

yiℓ jk + yiℓmo − y jkmo − xiℓ ≤ 0 (118)

yiℓ jk − yiℓmo + y jkmo − x jk ≤ 0 (119)

− yiℓ jk + yiℓmo + y jkmo − xmo ≤ 0 (120)

− yiℓ jk − yiℓmo − y jkmo + xiℓ+ x jk + xmo ≤ 1 (121)

yiℓ jm + yiℓko − y jmko − xiℓ ≤ 0 (122)

yiℓ jm − yiℓko + y jmko − x jm ≤ 0 (123)
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− yiℓ jm + yiℓko + y jmko − xko ≤ 0 (124)

− yiℓ jm − yiℓko − y jmko + xiℓ+ x jm+ xko ≤ 1 (125)

yiℓ jo + yiℓkm − y jokm − xiℓ ≤ 0 (126)

yiℓ jo − yiℓkm + y jokm − x jo ≤ 0 (127)

− yiℓ jo + yiℓkm + y jokm − xkm ≤ 0 (128)

− yiℓ jo − yiℓkm − y jokm + xiℓ+ x jo + xkm ≤ 1 (129)

yim jk + yimℓo − y jkℓo − xim ≤ 0 (130)

yim jk − yimℓo + y jkℓo − x jk ≤ 0 (131)

− yim jk + yimℓo + y jkℓo − xℓo ≤ 0 (132)

− yim jk − yimℓo − y jkℓo + xim + x jk + xℓo ≤ 1 (133)

yim jℓ+ yimko − y jℓko − xim ≤ 0 (134)

yim jℓ− yimko + y jℓko − x jℓ ≤ 0 (135)

− yim jℓ+ yimko + y jℓko − xko ≤ 0 (136)

− yim jℓ− yimko − y jℓko + xim + x jℓ+ xko ≤ 1 (137)

yim jo + yimkℓ− y jokℓ− xim ≤ 0 (138)

yim jo − yimkℓ+ y jokℓ− x jo ≤ 0 (139)

− yim jo + yimkℓ+ y jokℓ− xkℓ ≤ 0 (140)

− yim jo − yimkℓ− y jokℓ+ xim + x jo + xkℓ ≤ 1 (141)

yio jk + yioℓm− y jkℓm − xio ≤ 0 (142)

yio jk − yioℓm+ y jkℓm − x jk ≤ 0 (143)

− yio jk + yioℓm+ y jkℓm − xℓm ≤ 0 (144)

− yio jk − yioℓm− y jkℓm + xio + x jk + xℓm ≤ 1 (145)

yio jℓ+ yiokm − y jℓkm − xio ≤ 0 (146)

yio jℓ− yiokm + y jℓkm − x jℓ ≤ 0 (147)

− yio jℓ+ yiokm + y jℓkm − xkm ≤ 0 (148)

− yio jℓ− yiokm − y jℓkm + xio + x jℓ+ xkm ≤ 1 (149)

yio jm + yiokℓ− y jmkℓ− xio ≤ 0 (150)

yio jm − yiokℓ+ y jmkℓ− x jm ≤ 0 (151)

− yio jm + yiokℓ+ y jmkℓ− xkℓ ≤ 0 (152)

− yio jm − yiokℓ− y jmkℓ+ xio + x jm + xkℓ ≤ 1 (153)

Theorem 9. The triangle inequalities (94)–(153) define facets of Pn
QLO for n ≥ 6.

Proof. The proof is analogous to the previous ones, now carried out for n = 6. Each of

these inequalities has 540 of the 720 vertices of P6
QLO binding, while the dimension of

their associated faces is 99 and dimP6
QLO = 100.
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B Remaining facet-defining inequalities for P4
QLO from [3]

Up to n= 4, complete linear descriptions of Pn
QLO are known as derived by DeVries [3].

We list the remaining facet-defining inequalities for P4
QLO that have not been part of the

discussion in this paper and display them based on the full variable space of QLOP-ILP

(and in general notation for n ≥ 4 to be read for all i, j,k, ℓ ∈ [n], i < j < k < ℓ) which

increases the accessibility of their combinatorial relations or logical implications.

The first class of inequalities (Table 3.3 in [3]) are arranged in blocks of four, and

stem from multiplication of a three-di-cycle expression (of the form xi j + x jk − xik)

with (the complement of) an I2-variable that contains one different index. Each of

these blocks relates to three distinct edges having one common endpoint in the graph G

defined in Sect. 4. Assuming these have the indices (i, j, i, ℓ), (i,k, i, ℓ), and ( j,k, i, ℓ),
the first ≥-inequality states that if i is placed before k and ℓ (yikiℓ = 1), then j must be

placed either after i (yi jiℓ = 1) or before k (y jkiℓ = 1), or both. The first ≤-inequality

enforces that if yi jiℓ = y jkiℓ = 1 (which is only possible if xiℓ = 1) then yikiℓ = 1 as well.

The other two inequalities of a block consider complemented factors.

0 ≤ yi jiℓ− yikiℓ+ yiℓ jk ≤ xiℓ

0 ≤ xi j − xik + x jk − yi jiℓ+ yikiℓ− yiℓ jk ≤ 1− xiℓ

0 ≤ yi j jℓ− yik jℓ+ y jk jℓ ≤ x jℓ

0 ≤ xi j − xik + x jk − yi j jℓ+ yik jℓ− y jk jℓ ≤ 1− x jℓ

0 ≤ yi jkℓ− yikkℓ+ y jkkℓ ≤ xkℓ

0 ≤ xi j − xik + x jk − yi jkℓ+ yikkℓ− y jkkℓ ≤ 1− xkℓ

0 ≤ yi jik − yikiℓ+ yik jℓ ≤ xik

0 ≤ xi j − xiℓ+ x jℓ− yi jik + yikiℓ− yik jℓ ≤ 1− xik

0 ≤ yi j jk − yiℓ jk + y jk jℓ ≤ x jk

0 ≤ xi j − xiℓ+ x jℓ− yi j jk + yiℓ jk − y jk jℓ ≤ 1− x jk

0 ≤ yi jkℓ− yiℓkℓ+ y jℓkℓ ≤ xkℓ

0 ≤ xi j − yi jkℓ− xiℓ+ yiℓkℓ+ x jℓ− y jℓkℓ ≤ 1− xkℓ

0 ≤ yi jik − yi jiℓ+ yi jkℓ ≤ xi j

0 ≤ xik − xiℓ+ xkℓ− yi jik + yi jiℓ− yi jkℓ ≤ 1− xi j

0 ≤ yik jk − yiℓ jk + y jkkℓ ≤ x jk

0 ≤−xiℓ+ xkℓ+ xik − yik jk + yiℓ jk − y jkkℓ ≤ 1− x jk

0 ≤−yiℓ jℓ+ yik jℓ+ y jℓkℓ ≤ x jℓ

0 ≤ xik + xkℓ− xiℓ+ yiℓ jℓ− yik jℓ− y jℓkℓ ≤ 1− x jℓ

0 ≤ yi j jk − yi j jℓ+ yi jkℓ ≤ xi j

0 ≤ x jk − x jℓ+ xkℓ− yi j jk + yi j jℓ− yi jkℓ ≤ 1− xi j

0 ≤ yik jk − yik jℓ+ yikkℓ ≤ xik

0 ≤ x jk − x jℓ+ xkℓ− yik jk + yik jℓ− yikkℓ ≤ 1− xik

0 ≤−yiℓ jℓ+ yiℓkℓ+ yiℓ jk ≤ xiℓ

0 ≤ x jk − x jℓ+ xkℓ+ yiℓ jℓ− yiℓkℓ− yiℓ jk ≤ 1− xiℓ
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The second class of inequalities (Tables 3.5 in [3]) relates to 4-cliques in G. Each

member stems from the multiplication of two distinct three-di-cycle expressions as well.

−x jk − xiℓ+ yik jk + yiℓ jℓ+ yikiℓ− yik jℓ− yiℓ jk + y jk jℓ ≤ 0

−x jℓ− xik + yik jk + yiℓ jℓ+ yikiℓ− yik jℓ− yiℓ jk + y jk jℓ ≤ 0

−xiℓ+ yi jiℓ− yi j jk − yi jkℓ+ yiℓkℓ+ yiℓ jk − y jkkℓ ≤ 0

xi j − xiℓ+ x jk + xkℓ+ yi jiℓ− yi j jk − yi jkℓ+ yiℓkℓ+ yiℓ jk − y jkkℓ ≤ 1

−xi j − x jℓ+ yi jik − yi j jℓ+ yi jkℓ+ yik jℓ− yikkℓ+ y jℓkℓ ≤ 0

−xik − xkℓ+ yi jik − yi j jℓ+ yi jkℓ+ yik jℓ− yikkℓ+ y jℓkℓ ≤ 0

The third class of inequalities (Table 3.7 in [3]) considers paths in G of the form

(i, j),( j,k),(k, ℓ) together with the edge (i, ℓ, j,k) and the “( j,k)-disjoint” edge (i,k, j, ℓ),
for all permutations of four distinct indices. The associated logical implication is that

if the variables on the path are both zero, i.e., yi j jk = 0 and y jkkℓ = 0, but yiℓ jk = 1, then

this uniquely determines the ordering i− k− j− ℓ on this quadruple, and so yik jℓ must

be equal to 1 as well. The x-variables stem from complements to occur when a pair

(quadruple) as mentioned above does not comply with the definition of I2 (I).

yiℓ jk − yi j jk − y jkkℓ− yik jℓ ≤ 0

yik jℓ− yi j jℓ− x jℓ+ y jℓkℓ− yiℓ jk ≤ 0

xiℓ− yiℓ jk − xik + yik jk − x jℓ+ y jk jℓ− yi jkℓ ≤ 0

yi jkℓ− yikkℓ− xkℓ+ y jℓkℓ− xiℓ+ yiℓ jk ≤ 0

xik − yik jℓ− xiℓ+ yiℓ jℓ− x jk + y jk jℓ− xi j + yi jkℓ ≤ 0

xi j − yi jkℓ− xiℓ+ yiℓkℓ+ x jk + xkℓ− y jkkℓ− xik + yik jℓ ≤ 1

yik jℓ− xik + yi jik − yikkℓ− yiℓ jk ≤ 0

yiℓ jk − jxiℓ+ yi jiℓ+ yiℓkℓ− yik jℓ ≤ 0

x jℓ− y jℓik − x jk + y jkik − xiℓ+ yikiℓ− xkℓ+ yi jkℓ ≤ 0

−yi jkℓ− y jkkℓ+ yiℓkℓ− x jℓ+ y jℓik ≤ 0

x jk − yiℓ jk − x jℓ+ yiℓ jℓ− xik + yikiℓ+ xi j + xkℓ− yi jkℓ ≤ 1

−xi j − xkℓ+ yi jkℓ− x jℓ+ y jℓkℓ+ xik + xkℓ− yikkℓ− x jk + yiℓ jk ≤ 0

yi jkℓ− xi j + yi jik − yi j jℓ− xiℓ+ yiℓ jk ≤ 0

−yiℓ jk + yikiℓ− xiℓ+ yiℓ jℓ− yi jkℓ ≤ 0

−xkℓ+ yi jkℓ+ x jk − yi j jk − xiℓ+ yi jiℓ− x jℓ+ yik jℓ ≤ 0

−yik jℓ+ y jk jℓ− x jℓ+ yiℓ jℓ+ xi j + xkℓ− yi jkℓ ≤ 1

−xiℓ− x jk + yiℓ jk − xkℓ+ yiℓkℓ− xi j + yi jiℓ+ xik + x jℓ− yik jℓ ≤ 0

−xik + yik jℓ− xkℓ+ y jℓkℓ+ xi j − yi j jℓ+ xiℓ+ x jk − yiℓ jk ≤ 1

−yi jkℓ+ yi jiℓ− yi j jk − xik + yik jℓ ≤ 0

−yik jℓ+ yikiℓ− xik + yik jk − xi j + yi jkℓ ≤ 0

−xkℓ+ yi jkℓ+ x jℓ− yi j jℓ− xik + yi jik − x jk + yiℓ jk ≤ 0

−yiℓ jk + y jk jℓ− x jk + y jkik + xi j + xkℓ− yi jkℓ ≤ 1

−x jℓ+ yik jℓ+ xkℓ− yikkℓ− xi j + yi jik + xiℓ+ x jk − yiℓ jk ≤ 1

−xiℓ+ yiℓ jk + xkℓ− y jkkℓ+ xi j + x jk − yi j jk + xik + x jℓ− yik jℓ ≤ 2
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