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Abstract— We present randomized reconstruction ap-
proaches for optimal solutions to mixed-integer elliptic PDE
control systems. Approximation properties and relations to
sum-up rounding are derived using the cut norm. This enables
us to dispose of space-filling curves required for sum-up
rounding. Rates of almost sure convergence in the cut norm
and the SUR norm in control space as well as almost sure H1

convergence in state space are shown.

I. INTRODUCTION
Elliptic control systems occur when analyzing station-

ary heat conduction, electrostatics, structural mechanics and
many more. In some cases the control parameters are limited
to a binary set. Such control problems exponentially increase
in complexity as the discretization resolution increases.
Solving a nonlinear integer program to optimality becomes
practically infeasible.
Mixed-integer control of an elliptic system has been analyzed
in depth by Manns with the use of sum-up rounding on a
finite partition of the domain [1]. It has been shown that
sum-up rounding has a weak-* convergence in the weak-*
topology by strategically mapping the one-dimensional sum-
up rounding algorithm to a two dimensional domain using
space-filling curves.
We later show that in our context sum-up rounding generally
does not converge. In turn we propose an algorithm which
shows a stochastic convergence.

Contributions: We show an almost sure convergence of
a Bernoulli rounding approach. Moreover, we demonstrate
that sum-up rounding converges for randomized space-filling
curves. Later on, we relate the convergence of the control
variables, to the H1 convergence of the state variables.

II. PRELIMINARIES
In this paper we consider the following mixed-integer

control system on a bounded domain Ω := (0, 1)× (0, 1):

inf
ȳ

J(ȳ) s.t. Lȳ = ωf in Ω, (1a)

ȳ = g on ∂Ω, (1b)
ω ∈ {0, 1} in Ω. (1c)

Here, L denotes a linear second-order elliptic operator gov-
erning the state constraint (1a) and ω ∈ L∞(Ω) represents a
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binary control variable for given f ∈ L∞(Ω) and boundary
values g. We can further relax the binary constraint on ω by
allowing it to take values in the interval [0, 1]. This relaxation
leads to the following formulation:

min
y

J(y) s.t. Ly = αf in Ω, (2a)

y = g on ∂Ω, (2b)
α ∈ [0, 1] in Ω. (2c)

By regularly refining the cartesian grid of piecewise binary
controls ω, obtained by strategically rounding the relaxed
controls α, it has been demonstrated that the state variables
under binary controls converge to those under the relaxed
controls [1]. Finding a binary approximation to α is what
we analyze in the context of the cut norm.

III. A BERNOULLI ROUNDING APPROACH
In this section, we introduce a new randomized approach

to reconstruct a binary feasible control ω from a relaxed
one denoted by α. We interpret the relaxed controls α as
probabilities for the rounded controls ω to be 1, instead of 0,
for almost all points (x, y) ∈ Ω.

A. Bernoulli Rounding
Definition 1: Let

(
Ω(x,y),F(x,y),P(x,y)

)
be a probability

space, where the sample space is Ω(x,y) := {0, 1}, the
σ-algebra is F(x,y) := {∅, {0}, {1}, {0, 1}}, and the
probability measure P(x,y) is

P(x,y)(ω(x, y) = k) :=

{
1− α(x, y) if k = 0,

α(x, y) if k = 1.
(3)

The rounded control ω(x, y) follows a Bernoulli distribution
with parameter α(x, y), denoted by ω(x, y) ∼ Ber(α(x, y)),
for almost all (x, y) ∈ Ω.

We define a sequence of partitions
{
P

(n)
i

}n

i=1
of (0, 1),

where P
(n)
i =

(
i−1
n , i

n

)
for i = 1, . . . , n. We choose ω

piecewise constant on each set P (n)
i × P

(n)
j such that

ωn(x, y) =

n∑
i=1

n∑
j=1

1
P

(n)
i

(x)1
P

(n)
j

(y)ωij , (4)

where ωij ∈ {0, 1} are the values that ωn(x, y) take on
the partition P

(n)
i × P

(n)
j . Then ωij is a Bernoulli random

variable with the parameter

αij =
1∣∣∣P (n)

i

∣∣∣ ∣∣∣P (n)
j

∣∣∣
∫
P

(n)
i ×P

(n)
j

α(x, y) dxdy. (5)

The algorithm of Bernoulli Rounding (BR) summarizes as

ωij ∼ Ber(αij) 1 ≤ i, j ≤ n. (6)



B. The Cut Norm

We now take interest in the difference ∥ω − α∥ in a
suitable norm. We make use of the cut norm, introduced
in [2], which for an M = (mij) ∈ Rn×n is given by

∥M∥C = max
S,T⊆[n]

∣∣∣∑
i∈S,j∈T

mij

∣∣∣ . (7)

As the node sets S and T are not required to be disjoint, the
cut norm is an upper bound to the maximum cut capacity,
such that the problem of computing ∥·∥C is a relaxation of
the max cut problem in matrix notation.

The cut norm proved useful in the context of graph limits,
where sequences of finite graphs converge to a limit object
called a graphon, with respect to the cut norm [3]. Graphs
and graphons can be represented as kernel functions. The cut
norm has therefore been generalized as follows:

Definition 2 (Cut Norm, cf. [3]): For a kernel v ∈
L1([0, 1]× [0, 1]), the cut norm is defined by

∥v∥□ = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

v(x, y) dxdy

∣∣∣∣ (8)

for measurable subsets S and T .
After introducing piecewise constant elements for ω and α,
the (normalized) cut norm becomes

∥ω − α∥□ =
1

n2
∥ω − α∥C = max

S,T⊆[n]

1

n2

∣∣∣∑
i∈S,j∈T

ωij − αij

∣∣∣, (9)

and will be denoted by ∥·∥□ to distinguish it from its
non-normalized counterpart ∥·∥C. The normalization factor
1/n2 represents the volume of a discretization element. The
following lower bound [4] will be required later:∣∣∣∣∣
∫
[0,1]×[0,1]

ω(x, y)− α(x, y) dxdy

∣∣∣∣∣ ≤ ∥ω − α∥□ . (10)

C. Almost Sure Convergence

We are now prepared to state the first central theorem of
this contribution.

Theorem 1: Let α : (0, 1) × (0, 1) → [0, 1] be a mea-
surable function. Consider ωn : (0, 1) × (0, 1) → {0, 1} to
be a piecewise constant function on the product sets from
the sequence of partitions

{
P

(n)
i

}n

i=1
. If ωn(x, y) = ωij is

a Bernoulli random variable for (x, y) ∈ P
(n)
i × P

(n)
j with

parameter αij as in (5), then it follows that

lim
n→∞

∥ωn − α∥□ = 0 almost surely. (11)

Note that this statement is not immediate from the cut
norm definition, as the maximizing choice of sets S, T may
always select on the order of n2 elements from the matrix,
thus fully compensating the weight 1/n2.
The relation of the cut norm to the operator norm and a result
from random matrix theory will be of use in this proof.

Proof: Define ν := ωn−α with ωn, α ∈ Rn×n and note
that the elements are in [−1, 1] and have mean zero. Using
Lemma 2 (a random matrix inequality) from the appendix,
we have

P
(√

n ∥νx∥2 ≥ An
)
≤ C exp(−cA2n), (12)

with the restriction ∥x∥∞ = 1 and constants A,C, c > 0.
We now make use of the cut norm bound [2]

∥ν∥C ≤ sup
x∈Rn\{0}

∥νx∥1
∥x∥∞

≤ sup
x∈Rn\{0}

√
n ∥νx∥2
∥x∥∞

, (13)

and obtain

P
(
∥ν∥C ≥ An

)
≤ C exp(−cA2n). (14)

Let A = sn represent the cut norm being greater than some
s > 0, i.e. 1/n2 ∥·∥C ≥ s. The constant A is certain to
become sufficiently large eventually, and we see that

P(∥ν∥C ≥ sn2) ≤ C exp(−cs2n3). (15)

Defining events En := {∥ν∥C ≥ sn2}, we consider the sums

∞∑
n=1

P(En) ≤
∞∑

n=1

C exp(−cs2n3). (16)

This series converges as n → ∞, therefore is finite. Follow-
ing Borel-Cantelli [5]

P
(
lim sup
n→∞

En

)
= 0. (17)

That is, the event that the cut norm becomes greater than
some s > 0 occurs only finitely many times as n → ∞.
Therefore, the probability that the Bernoulli approach yields
a cut norm greater than some s > 0 goes to zero almost
surely as we refine the discretization grid.

IV. SUM-UP ROUNDING

In this section, we relate the Bernoulli rounding algo-
rithm (BR) to the established sum-up rounding algorithm.
Sum-up rounding (SUR) was introduced by [6], [7] for
mixed-integer ODE constrained optimal control problems
(MIOCPs). Its purpose is to construct binary feasible controls
that are provably close to relaxed optimal ones. Of relevance
to our setting is the problem

inf
ω

J(ω) s.t. ẋ(t) = A(x(t))ω(t) a.e. in (0, tf ], (18a)
x(0) = x0, (18b)

ω ∈ {0, 1} a.e. in [0, tf ]. (18c)

The approximation approach is to introduce relaxed control
variables α(t) ∈ [0, 1] and to solve the problem using
the differential equation constraint ẋ(t) = A(x(t))α(t).
Afterwards, a relaxed optimal control α is rounded on a
given time grid 0 = t0 < t1 < · · · < tm = tf such that
the distance measure dSUR(α, ω) = ∥α− ω∥SUR implied by
the SUR norm

∥ν∥SUR := sup
t∈[0,tf ]

∣∣∣∣∫ t

0

ν(τ) dτ

∣∣∣∣ (19)

becomes small.
To this end, assume ω and α to be piecewise constant on

[0, tf ], that is, ωi := ω(t) and αi := α(t) for all t ∈ [ti, ti+1].



The sum-up rounding algorithm reconstructs a binary control
ω from a relaxed one α by computing (∆ti = ti+1 − ti)

ωi =

{
1 if

∑i−1
k=0(αk − ωk)∆tk + αi∆ti ≥ 1

2∆ti,

0 otherwise.
(20)

Fundamentally, SUR is a one-dimensional algorithm, and
its convergence in the control and state space are well
understood on interval domains, cf. [7], [8]. Manns et al. [1]
proposed mapping two-dimensional domains using space
filling curves c : [0, 1] → [0, 1] × [0, 1]. The approach is
to dissect the closure of the domain Ω into a sequence of
cells

(
{Q(n)

1 , . . . , Q
(n)
n2 }

)
n

such that ∪n2

i=1Q
(n)
i = Ω̄ for all

n ∈ N. On each partition, define ωi =
1
n2

∫
Q

(n)
i

ω dxdy. A
binary control ω is then computed from α by carrying out
SUR along the cells on the curve, and the curve-dependent
SUR norm is

∥ν∥cSUR = sup
t∈[0,1]

∣∣∣∣∫ t

0

ν(c(τ)) dτ

∣∣∣∣ . (21)

Weak-* convergence
∑n2

i=1 ω1Q
(n)
i

∗
⇀ α as n → ∞ of

SUR along space-filling curves and a rate of convergence
in ∥·∥H−1(Ω) have been shown in [1].

A. SUR Converges a.s. in the Cut Norm

Like BR, SUR also converges almost surely in the cut
norm. This result however requires a slightly different ar-
gument. We first consider a worst-case example given by
the relaxed controls α ≡ 1/2 on a discretized domain
represented by the following n× n matrix

α =

 1/2 ··· 1/2
...

. . .
...

1/2 ··· 1/2

 (22)

with n even. We traverse the domain following any curve
obeying the von Neumann neighborhood, and use SUR to
generate a binary feasible control, which will always yield

ω =

 1 0 1 ··· 0
0 1 0 ··· 1
1 0 1 ··· 0...

...
...

. . .
...

0 1 0 ··· 1

, ν =


+1/2 −1/2 +1/2 ··· −1/2
−1/2 +1/2 −1/2 ··· +1/2
+1/2 −1/2 +1/2 ··· −1/2...

...
...

. . .
...

−1/2 +1/2 −1/2 ... +1/2

 . (23)

We notice that throughout the domain we obtain a checker-
board pattern of zeros and ones. Considering the difference
ν = ω − α in the normalized cut norm (9), this always
leads to either S = T = {1, 3, 5, . . . , n − 1} or S =
T = {2, 4, 6, . . . , n}. Thus, the value of the cut norm is,
independent of n,

∥ν∥□ =
1

n2
|S||T |1

2
=

1

n2
· n
2
· n
2
· 1
2
=

1

8
. (24)

One has the bound [2]

sup
x∈Rn\{0}

∥νx∥1
∥x∥∞

≤ 4 ∥ν∥C (25)

and can see the operator norm to equal n2/2 (one lets x =
(1,−1, 1,−1, . . .)⊤, which is extremal since the objective is

convex and the feasible set a polytope). Hence this example
constitutes the worst case.

On the other hand, the situation turns out to be an excep-
tion triggered by the curve we followed when computing the
SUR norm. For random curves, the situation is almost surely
better. We keep in mind the bound (13), which relates the
cut norm to the operator norm [2].
Now consider matrix ν to be a random matrix with i.i.d. en-
tries νij ∈ {−1/2,+1/2}, both with equal probability 1/2.
Then, elementary random matrix theory knows the following
bound (Lemma 2 in the appendix):

P(2 ∥νx∥2 ≥ A
√
n) ≤ C exp(−cA2n)

⇐⇒ P(
√
n ∥νx∥2 ≥ An/2) ≤ C exp(−cA2n).

(26)

The argumentation is analogous to that of the proof of
Theorem 1 and from that it follows

P(∥ν∥C ≥ sn2) ≤ C exp(−4cs2n3) (27)

and an almost sure convergence as n → ∞.
Now, the choice of a random matrix ν can be interpreted
as sampling with replacement from the ω − α instance
considered above. Carrying out SUR along a random curve
however amounts to sampling without replacement, that is,
random shuffles of the elements of matrix ν. The cut norm
is maximized if S and T can be chosen such that the subset
of elements selected contains as many +1/2 elements (or as
many −1/2 elements) as possible. Under sampling without
replacement, the budget of such elements is restricted to
exactly n/2 many, such that attaining higher cut norms
becomes less likely. Hence, the bound just proved also holds
for sampling without replacement, i.e., for random curves.

B. BR Converges a.s. in the SUR Norm Along Any Curve

We can show that our Bernoulli rounding approach does
converge almost surely in the norm ∥·∥πSUR. On a discretized
domain, we can represent the norm as

∥ω − α∥πSUR = max
k∈[n2]

1

n2

∣∣∣∣∣
k∑

i=1

ωπ(i) − απ(i)

∣∣∣∣∣ , (28)

where π encodes the curve as a permutation of cells
Q

(n)
1 , . . . , Q

(n)
n2 .

Theorem 2: Let the assumptions of Theorem 1 for α and
the piecewise constant function ωn hold, then

lim
n→∞

∥ωn − α∥πSUR = 0 almost surely. (29)

Proof: We insert the sum of the SUR norm into the
inequality of Lemma 1 (a Hoeffding inequality),

P

(∣∣∣∣∣
k∑

i=1

ωπ(i) − απ(i)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2t2

k

)
(30)

where index 1 ≤ k ≤ n2 indicates the cell Q(n)
π(k) that gave

rise to the supremum in the SUR norm. Now, we relate t



to the SUR norm by defining t := sn2, representing the
difference in the norm being greater than some s > 0, i.e.

P

(∣∣∣∣∣
k∑

i=1

ωπ(i) − απ(i)

∣∣∣∣∣ ≥ sn2

)
≤ 2 exp

(
−2(sn2)2

k

)
≤ 2 exp

(
−2s2n4

n2

)
= 2 exp

(
−2s2n2

)
. (31)

To continue, we refer to the proof of Theorem 1 as the rest is
analogous. An almost sure convergence as n → ∞ follows
from the argument of Borel-Cantelli [5].

The almost sure convergence of the Bernoulli Rounding
approach in the SUR norm is independent of the permuta-
tion π, i.e., of the curve used to compute the SUR norm.

C. Convergence Rates of BR in Both Norms

In the probability bound for BR in the cut norm (15), we
can choose s2 ∈ o(n3) to ensure almost sure convergence
and similarly, for the SUR norm in (31), we will select
s2 ∈ o(n2) to guarantee convergence. Specifically, this
implies that s ∈ o(n1.5) for the cut norm and s ∈ o(n1)
for the SUR norm.
Both norms intrinsically decrease at the rate of O(n2),
and the convergence rates are determined by the products
of this rate with the respective rates for s. For the cut
norm, the product O(n2) · O(n−1.5) = O(n0.5) dictates the
convergence rate for BR in the cut norm and the product
O(n2) · O(n−1) = O(n1) determines the convergence rate
in the SUR norm respectively.

V. STATE CONVERGENCE

Of the cut norm and the SUR norm, neither one can be
shown to dominate the other. Hence, in this section, we show
that cut norm convergence in the space of reconstructed
binary controls induces norm converges in the space of
differential states.

We assume αf ∈ L∞(Ω) and appropriate boundary
conditions g, such that there exist unique weak solutions
y ∈ H1(Ω) [9].
The linear operator L has the general divergence form

Ly = −
n∑

i,j=1

aij(x)yxixj
+

n∑
i=1

bi(x)yxi
+ c(x)y (32)

where in our scenario n = 2 because Ω ⊂ R2. Furthermore,
assume aij , bi, c ∈ L∞(Ω) and the symmetry aij = aji.

We continue with the weak formulation of (2a) and define
the bilinear form a(·, ·) : H1

0 (Ω)×H1
0 (Ω) → R to be

a(y, v) := −
∫
Ω

n∑
i,j=1

aijyxivxj+

n∑
i=1

biyxiv+cyv dx (33)

and

⟨αf, v⟩ :=
∫
Ω

αfv dx, (34)

where ⟨·, ·⟩ denotes the inner product in L2(Ω). We are now
concerned with

a(y, v) = ⟨αf, v⟩ . (35)

Let y be the solution under relaxed controls and ȳ the
solution of the binary controls. Consider the difference w :=
ȳ − y such that

Lw = (ω − α)f in Ω, (36a)
w = 0 on ∂Ω. (36b)

Because of the homogeneous boundary condition, weak
solutions w are in the space H1

0 (Ω).
We know that w is bounded in L∞(Ω) for a given (ω −
α)f [9] and there exists a constant C̃ > 0 such that

∥w∥L∞(Ω) ≤ C̃ ∥(ω − α)f∥L∞(Ω) . (37)

The constant C̃ depends only on the diameter of Ω. From
this relation, however, we cannot deduce, that if ω → α with
respect to the cut norm, w → 0, but the bound will be useful
in the following proof.

Theorem 3: Assume f ≥ 0. If ∥ω − α∥□ → 0, then
∥w∥H1

0 (Ω) → 0.
Proof: Since L is a second-order elliptic operator, there

exists a constant C > 0 such that

C ∥w∥H1
0 (Ω) ≤ a(w,w) (38)

for any weak solution w ∈ H1
0 (Ω). Additionally using the

Hölder inequality and the lower bound to the cut norm (10),
we can estimate

⟨(ω − α)f, v⟩ ≤ ess sup
Ω

(fv)

∫
Ω

ω − α dx

≤ ess sup
Ω

(fv) ∥ω − α∥□
(39)

for all v ∈ H1
0 (Ω). Substituting v = w, and noting

ess supΩ(fw) is bounded because of (37), we obtain

∥w∥H1
0 (Ω) ≤

1

C
ess sup

Ω
(fw) ∥ω − α∥□ . (40)

Therefore, as ∥ω − α∥□ → 0, it follows that ∥w∥H1
0 (Ω) → 0.

As the BR and SUR algorithms converge almost surely in
the control space with respect to the cut norm, we know that
an H1 convergence in the state space follows.

VI. NUMERICAL RESULTS

In this section, we present results of numerical experi-
ments. First, we consider the Poisson equation with a control
variable on the right-hand side

−∆y = u in Ω := (0, 1)× (0, 1), (41a)
y = 0 on ∂Ω. (41b)

The problem is discretized using a finite element scheme
in FEniCS [10] with a Friedrich-Keller triangulation for
the state and piecewise constant functions on the respective
quadrilateral grid for the control variables [11]. The goal is
to investigate the changes in the state variables, when we
reconstruct a binary control that approximates u in the cut
norm. As a benchmark, we set u ≡ 0.5 in Ω and compare the
resulting states in the L2 and H1 norm. Since the controls
are piecewise constant, we can easily map them to a matrix



U, Ū ∈ Rn×n, where Ū ∈ {0, 1}n×n represents the binary
controls.

A. Computing the Cut Norm

To compute S, T in the cut norm, we need to solve the
following bipartite binary quadratic optimization problem:

max
s,t

∣∣t⊤(Ū − U)s
∣∣ s.t. s, t ∈ {0, 1}n. (42)

The quadratic form is indefinite and the problem of com-
puting the global maximizer that gives rise to the cut norm
objective is hard. In [12], MaxSNP-hardness is shown and
a PTIME ε−approximation algorithm with error bound εN2

is offered, but its implementation is not without effort.
If instead one solves the relaxed quadratic optimization

problem twice in standard form with ±Q := ±(Ū − U),

max
s,t

(
s
t

)⊤(
0 Q⊤

Q 0

)(
s
t

)
s.t. 0 ≤ s, t ≤ 1. (43)

one observes that all stationary points of the relaxation are
immediately binary feasible. With duals λs, λt ∈ Rn, we
find the stationarity conditions

Q⊤t = [λs]
−+ [λs]

+(1− s), Qs = [λt]
−+ [λt]

+(1− t).

A fractional solution component si ∈ (0, 1) would imply
(Q⊤t)i = (λs)i = 0 due to complementary slackness, hence
the objective contribution si(Q

⊤t)i is zero. Either reducing
or increasing the fractional si will generate a positive ob-
jective contribution for the same vector t. We hence rely on
solving the non-convex relaxation using the global optimizer
EAGO.jl [13]. It quickly finds very good upper bounds, but
typically takes very long to confirm optimality. We therefore
terminate early after 100 iterations, and fractional results are
rounded. While this comes at the peril of underestimating
the true cut norm, we have not observed adverse effects.

B. Results

In Figure 1, ∥ȳ − y∥ is shown for the L2 and H1 norm
of the problem (41). For each resolution we have applied
BR and SUR reconstructions ū of relaxed controls u ≡ 0.5
on an n × n grid and we display the mean and standard
deviation over 100 samples. We compare the convergence
to SUR along a Hilbert space-filling curve of which the
convergence rate is known [1], [14]. We see that SUR along a
randomized space-filling curve converges in both the L2 and
H1 norm, reflecting the results in [1] for weaker assumptions
on the space-filling curve. Our Bernoulli rounding approach
converges with the same rate as SUR along a random curve.
In Figure 3, we visualize the control and state variables
and notice, that for higher resolutions, the state is visually
indistinguishable from the one with relaxed controls.
Figure 2 shows the mean distance ∥ū− u∥ in the cut and
SUR norm over more than 100 samples. The convergence
rates of BR and SUR in the cut and SUR norm correspond
to the rates shown theoretically. Even though BR and SUR
converge at the same rate in the cut norm, SUR is slightly
better on average.

Furthermore, in Figure 4, we applied the rounding ap-
proaches to an optimal control problem. There, the cost
function states J(y) =

∫
Ω
(y − yd)

2dx +
∫
ω
udx for given

yd = 1/(2π2) sin(πx1) sin(πx2), with zero Dirichlet bound-
aries only on the bottom and right edge of the domain
and zero Neumann boundaries on the remaining edges. The
optimal solution is computed using dolfin-adjoint [15].

21 22 23 24 25 26 27 28
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∥ȳ

−
y
∥

L2 SUR Hilbert
H1 SUR Hilbert

L2 BR
H1 BR

L2 SUR Rand.
H1 SUR Rand.
Conv. Rate 1/2
Conv. Rate 1
Conv. Rate 2

Fig. 1. Mean and one standard deviation of ∥ȳ − y∥ in the L2 and H1

norm, with u ≡ 0.5 and reconstructed binary controls using BR and using
SUR along a Hilbert curve and random curves

21 22 23 24 25 26 27 28
10−3
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10−1

n

∥ū
−

u
∥

BR Cut Norm
SUR Rand Cut Norm

BR SUR Norm
Conv. Rate 1/2
Conv. Rate 1

Fig. 2. Mean and one standard deviation of ∥ū− u∥ in the cut and SUR
norm, with u ≡ 0.5 and binary reconstructions ū using BR and SUR along
random curves

VII. CONCLUSION

We have shown that a simple Bernoulli rounding approach
converges almost surely not only in the cut norm, but also
in the SUR norm, related to the established SUR algorithm.
For the SUR algorithm, we demonstrated that along a ran-
domized space-filling curve, it converges almost surely in
the cut norm. We then related the convergence of the control
variables in the cut norm to the H1 convergence in the state
space.

APPENDIX

Lemma 1 (Hoeffding Inequality, cf. [16]): Let
X1, X2, . . . , Xr be independent random variables, each
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ūBR ūRandom
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Fig. 3. State (top) and control variables (bottom), first control variable is
0.5, the rest show binary reconstructions on a 16 × 16 and 64 × 64 grid
with BR and SUR along a random curve and along the Hilbert curve

0 ≤ Xi ≤ 1 for i = 1, . . . , r. Let S = X1 + · · ·+Xr, then
for all t > 0

P (|S − E(S)| ≥ t) ≤ 2 exp

(
−2t2

r

)
(44)

with E(S) the expected value.
A proof can be found in, e.g., [16].

Lemma 2 (Operator norm of a random matrix, cf. [17]):
Let the coefficients of matrix M = (mij) ∈ Rn×n

be independent random variables with zero mean and
uniformly bounded in magnitude by 1. Let x be a unit
vector in Rn. Then for A larger than some absolute constant,
one has

P(∥Mx∥2 ≥ A
√
n) ≤ C exp(−cA2n) (45)

for some absolute constants C, c > 0.
A proof can be found in, e.g. [17] with corrections available
online1.
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