
A Dynamic Strategic Plan for the Transition to a Clean Bus Fleet using
Multi-Stage Stochastic Programming with a Case Study in Istanbul

Neman Karimia, Burak Kocuka,∗, Tuğçe Yüksela,b
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Abstract

In recent years, the transition to clean bus fleets has accelerated. Although this transition might bring en-

vironmental and economic benefits, it requires a long-term strategic plan due to the large investment costs

involved. This paper proposes a multi-stage stochastic program to optimize strategic plans for the clean bus

fleet transition that explicitly considers the uncertainty scenarios in the cost and efficiency improvements

of clean buses. Our optimization model minimizes the total expected cost subject to emission targets, bud-

get restrictions and several other operational considerations. We propose a new forecasting approach that

captures the correlation between these improvements to obtain realistic future pathways for Battery Electric

Buses (BEBs) and Hydrogen Fuel Cell Buses (HFCBs), which are then given to the multi-stage stochastic

program as scenarios. We also utilize a physics-based model for BEBs to accurately capture their energy

consumption and recharging needs. As a case study, we focus on the complex public bus network of Istanbul,

which aims to transition to a clean bus fleet by 2050. Utilizing real datasets, we solve a five-stage stochastic

program spanning a 25-year planning horizon that involves 256 scenarios to obtain dynamic strategic plans

that can be used by the policy makers. Our results suggest that BEBs are more advantageous than HFCBs,

even in slow BEB but fast HFCB development scenarios. We also conduct several sensitivity analyses to

understand the effects of the intermediate emission targets, budget limitations and energy prices.

Keywords: OR in Energy, Bus fleet transition, Zero-emission vehicles, Multi-stage

stochastic programming

1. Introduction

Transport-related CO2 emissions account for over 21% of global emissions, with the majority coming from

internal combustion engine vehicles used in road transport (IEA, 2023b). Due to the significant impact of

these emissions on climate change, ambitious targets have been set to transition the transport sector from

fossil fuels to sustainable energy sources. For instance, the United States aims to eliminate all emissions
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in the transport sector by 2050, while the European Union pledges to reduce transport-related emissions by

90% by the same year (European Commission, 2020; Muratori et al., 2023). Although the adoption of clean

energy alternatives such as electric and fuel cell vehicles has increased in recent years, a lot more effort

is still needed to keep the long-term net-zero emission goals within reach. This is particularly important

for medium and heavy-duty vehicles such as trucks and buses, which need accelerated transitions (IEA,

2023a). Despite making up only 8% of all vehicles (excluding two- and three-wheelers), trucks and buses

account for over 35% of road transport emissions (IEA, 2024b). To accelerate the shift of these vehicles

to clean technology alternatives, 33 countries have joined the Global Memorandum of Understanding on

Zero-Emission Medium- and Heavy-Duty Vehicles as of 2023, committing to 30% zero-emission truck and

bus sales by 2030 and 100% by 2040 (IEA, 2024a).

Such policies and pledges necessitate strategic planning to minimize the total costs of transitioning

heavy-duty vehicle fleets, such as city buses. Due to the currently high investment costs of zero-emission

buses—including their purchase and the costs related to building the required infrastructure— carefully

constructed strategic plans could save millions of dollars. These plans should focus on identifying the most

cost-effective mix of bus technologies to purchase, the most favorable infrastructure technology to utilize

(such as overnight charging vs. fast charging for electric buses), and the optimal timing for bus replacements.

To this end, case studies have been conducted for several cities worldwide, including cities in China (Zhang

et al., 2022), Singapore (Zhou et al., 2023), Germany (Dirks et al., 2022), France (Pelletier et al., 2019), the

US (Islam & Lownes, 2019), and Austria (Frieß & Pferschy, 2024), to optimize the bus fleet transition to

clean energy buses.

Most of the relevant studies focused on electric buses (EB) as the clean energy option. With today’s tech-

nology, EBs are widely considered to be the most cost-effective zero-emission alternative. However, their

integration into fleets is complicated by a number of barriers, the most significant being their limited driving

range. Currently, battery electric buses (BEBs), which rely only on electricity stored in on-board batteries,

are the most common type of EBs. There are different options available for BEBs in terms of battery capac-

ity which can affect operational planning during their use. BEBs equipped with large and heavy batteries

might be recharged only at night due to the long recharging time, or those that have smaller batteries can

utilize fast charging stations and possibly recharge multiple times within the day to ensure demand satisfac-

tion. Assuming that existing bus dispatch timetables are maintained, it is crucial to ensure that buses relying

on overnight charging (ONC) have sufficient battery capacity to complete the scheduled trips. Moreover,

fast-charging (FC) buses require an additional consideration in recharge scheduling, which depends on the

frequency of assigned trips, availability of charging stations and the time needed for recharging. To this end,

different studies have attempted to optimize the decisions related to the investment and placement of charger

technology, investments on electric buses with different battery capacities and recharge scheduling (Perumal

et al., 2022).

Hydrogen fuel cell buses (HFCBs) are also gaining attention in the literature. Although they may not yet

be competitive with EBs, efforts to reduce their purchase and operational costs could make them promising
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options for new city buses in near future. These buses are similar to diesel buses in terms of their operation,

as they usually require one daily refueling, which takes less than 10 minutes (Anandarajah et al., 2013).

Many efforts are being made to improve both BEBs and HFCBs in terms of reducing costs and increasing

efficiency. For BEBs, the anticipated increase in energy density of batteries will improve their driving range,

allowing them to operate on lines that were previously impractical or not cost-effective. Improvements in

HFCBs are also expected to increase fuel cell efficiency, thereby decreasing fuel consumption and lowering

operational costs. However, these improvements in cost and efficiency are often overlooked in strategic

transition plans for bus fleets. Anticipated cost reductions are only rarely considered as yearly reductions

in the purchase cost of BEBs and in a deterministic manner. Efficiency-related improvements and their

implications are even more scarce in the literature. In He et al. (2023), reductions in energy consumption

of newly purchased buses and increased recharging efficiency were included, but again as deterministic

parameters.

To the best of our knowledge, no study has included long-term technological advances in BEBs and

HFCBs, which are uncertain by nature, affecting their costs and efficiency as stochastic scenarios. To fill

this gap, we present an optimization model to strategically plan the bus fleet transition to clean energy tech-

nologies, treating cost- and efficiency-related technological advances in batteries and fuel cells as scenarios

in a large-scale multi-stage stochastic programming model. After forecasting the advances and clustering

them into scenarios in order to capture their inherent correlation, we test our model on the large bus fleet of

Istanbul Municipality, which aims to transition to a clean bus fleet by 2050 as part of its Sustainable Urban

Mobility Plan (Istanbul Metropolitan Municipality, 2022), with more than 6,500 buses operating on over

830 lines. We also perform sensitivity analysis to provide insights for bus fleet owners and managers.

1.1. Literature Review

The literature on strategic planning for transitioning to clean energy buses can be categorized into two main

approaches: ‘one-step transition’ and ‘multi-step transition.’ In the one-step transition approach, strategic

decisions, including investments in fleet and infrastructure, are made at a single point in time. In contrast,

the multi-step transition approach involves making decisions at multiple points throughout the planning

period, usually because of budget constraints or long-term emission reduction goals. This gradual transition

approach is better suited for taking into account evolving technologies and changing parameters; therefore,

we adopt this approach in the current paper. In what follows, we first mention some one-step transition

studies before delving into the literature on multi-step transition.

Existing studies with a one-step transition approach are mostly focused on electric buses and their nec-

essary infrastructure. Different charging technologies, including recharging at stations, lane charging, and

battery swap technologies were evaluated against each other in some studies (Bi et al., 2017; Chen et al.,

2018). However, the majority of studies focused on charging stations and involved the deployment of fast-

charging and overnight depot charging stations in their strategic plans. This includes optimal placement of

fast-charging stations (Xylia et al., 2017), decisions about battery capacity (Kunith et al., 2017), and in-
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vestigating the effect of factors like demand uncertainties (An, 2020) and energy consumption uncertainty

(Benoliel et al., 2021) on such decisions. Some researchers integrated more operational-level problems such

as electric bus scheduling and charge scheduling, with strategic decisions including infrastructure planning,

battery sizing and fleet sizing, see, e.g., He et al. (2022), Rogge et al. (2018), Shehabeldeen et al. (2024),

and Yıldırım and Yıldız (2021).

On the other hand, most studies with a multi-step approach developed optimization models similar to

those for the parallel equipment replacement problem. In these models, purchasing and salvaging decisions

are made in each period to minimize total costs while ensuring demand is met throughout the planning hori-

zon. Keles and Hartman (2004) were among the first to apply such models to bus fleets, including different

competing technologies. Later studies incorporated emission-related costs (Feng & Figliozzi, 2014) or con-

straints (Emiliano et al., 2020), along with decisions for bus-to-task assignments (Stasko & Gao, 2010).

Islam and Lownes (2019) included BEBs as clean technology options and accounted for their charger costs.

An integer linear program developed by Pelletier et al. (2019) aimed to minimize total fleet management

costs, incorporating various charging technologies for electric buses, midlife costs for BEB batteries, and

bus-to-route assignments. Tang et al. (2021) addressed diesel-electric replacement ratios to manage potential

fleet size increases due to range anxiety associated with BEBs.

Some recent multi-step transition studies integrated strategic decisions with various operational-level

decisions. Dirks et al. (2022) addressed charging station deployment and battery sizing decisions, along

with operational decisions such as assigning electric buses to routes and tracking battery state of charge.

Zhang et al. (2022) incorporated seasonal variations in electric bus consumption into their model. Zhou

et al. (2023) used an aggregated demand approach and considered external costs, including climate and

health impacts, battery replacement costs, and evaluated different types of electric and hybrid buses. Li et

al. (2022), focused on determining charger locations, planning bus route electrification, and assigning buses

to charging stations in a Build-Operate-Transfer setting. He et al. (2023) accounted for future technological

advances such as reduced battery and charger costs, and improved charging efficiency in a deterministic

setting. This study included siting and sizing of fast-charging stations along with recharge schedules for

new BEBs.

In Table 1, we compare various studies on multi-step bus fleet transition and highlighting their key as-

pects. To the best of our knowledge, no study has incorporated the uncertainty of future ZEB improvements

into strategic planning for bus fleet transitions. As both BEBs and HFCBs are still developing, incorporating

these uncertainties into planning ensures that strategies remain adaptable and cost-effective as advancements

occur. The current absence of HFCBs in many strategic plans is largely due to their higher costs and lower ef-

ficiency compared to BEBs, an aspect that should be reconsidered as the future technological improvements

could make HFCBs more competitive. Additionally, no study has considered the impact of route-specific

energy consumption of BEBs, seasonal variations in their consumption rate, and diesel-electric replacement

ratios together in strategic planning. To fill these gaps in the literature, we present a multi-stage stochastic

program that incorporates technological developments while also considering detailed operational consider-
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ations, providing a comprehensive and adaptive solution for bus fleet transition planning.

Table 1: Studies on multi-step bus fleet transition.

Decisions EB Operational Feasibility Technological Change
Reference Bus Fleet Charger Task Calculating Recharge SeasonalDiesel-electricCostEfficiencyStochasticity

Technologies Invest. Invest. Assign. Electricity Scheduling Effect Replacement
Consumption Ratio

Stasko and Gao (2010) DB ✓ - ✓ - - - - ✗ ✗ ✗
Feng and Figliozzi (2014) DB/HEB ✓ - ✗ - - - - ✓ ✗ ✗
Islam and Lownes (2019) DB/HEB/BEB ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Pelletier et al. (2019) DB/CNG/BEB ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Emiliano et al. (2020) DB ✓ - ✗ - - - - ✗ ✗ ✗

Tang et al. (2021) DB/HEB/BEB ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗
Li et al. (2022) BEB ✓ ✓ ✓ ✗ ✓ ✗ - ✓ ✗ ✗

Dirks et al. (2022) DB/BEB ✓ ✓ ✓ ✗ ✓ ✗ - ✓ ✗ ✗
Zhang et al. (2022) DB/BEB ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✗ ✗
Zhou et al. (2023) DB/HEB/BEB ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
He et al. (2023) BEB ✓ ✓ ✓ ✓ ✓ ✗ - ✓ ✓ ✗

This Paper DB/BEB/HFCB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DB: Diesel, BEB: Battery Electric, HFCB: Hydrogen Fuel Cell, CNG: Compressed Natural Gas, HEB: Hybrid Electric dummydummydumm

1.2. Our Approach and Contributions

In this paper, we develop a multi-stage stochastic program, in which the future costs and efficiencies of

competing clean technologies are represented as nodes in a scenario tree. Decisions regarding purchasing

and salvaging the buses and assigning them to routes will be made on a yearly basis, and a dynamic transition

plan will guide the fleet managers to make optimal decisions in each scenario throughout the planning

horizon. We then test our model on a large bus fleet in Istanbul, including BEBs utilizing ONC or FC

technology, as well as HFCBs. To account for operational feasibility of replacing diesel buses with electric

options, we pre-calculate the energy consumed by each type and version of BEB on a given route. Using a

heuristic method, we estimate the diesel-electric replacement ratio for each electric bus, on each route, and

under each scenario. We provide an extensive case study involving real data collected from various sources,

and conduct sensitivity analyses regarding the underlying stochastic process, the emission targets, budget

limitations and energy prices. Our main contributions to the literature are listed as below.

• We introduce a multi-stage stochastic program for the fleet replacement problem, and investigate the

effect of uncertain technological advances on the optimal long-term transition plan of vehicle fleets.
• We forecast the technological improvements of both BEBs and HFCBs in terms of cost reductions

and efficiency improvements, and cluster them into a number of scenarios.
• We test our model on the large bus network of Istanbul for a 25-year planning horizon with five stages,

involving details such as the energy consumption calculation of several versions of BEBs on each bus

line, energy consumption changes with seasonal variations, and ensuring operational feasibility by

finding the diesel-electric replacement ratios and recharge scheduling for FC electric buses.

We note that although we focus on a bus fleet transition problem in Istanbul, the idea of modeling technology

advances as scenarios and incorporating them into a multi-stage stochastic program is applicable to other

5



energy transition problems, emphasizing both the novelty and the generalization potential of our work.

The rest of this paper is organized as follows: Section 2 provides a detailed explanation of the problem

and our methodology. Section 3 describes the data requirements and how we obtain the parameters for our

case study. Section 4 presents the case study and sensitivity analysis. Finally, Section 5 concludes the paper.

2. Methodology

This section provides a detailed explanation of our methodological approach. We begin with a conceptual

description of the problem in Section 2.1, followed by the mathematical formulation in Section 2.2. Next,

in Section 2.3, we explain the method for estimating the amount of energy consumed by the BEBs with

different configurations, when assigned to each scheduled trip. Finally, in Section 2.4, we describe our

Bus-to-Route Simulator, which is run to obtain key parameters of our optimization model if a specific bus is

assigned to a route.

2.1. Problem Description

Bus fleet operators face the challenge of determining the optimal long-term transition plan from DBs to

zero-emission buses (ZEBs) such as BEBs and HFCBs. The goal is to minimize the total costs of manag-

ing the fleet over a planning horizon subject to emission targets, budget limitations and other operational

requirements. Let us denote T = {0,1, . . . ,T} as the time periods in the planning horizon, where decisions

on purchasing, salvaging, and assigning buses to routes are made at the beginning of each time period. Time

period 0 is used to initiate the existing fleet, and no actual decisions are made in this time period. From time

period 1 onwards, bus fleet operators must decide for each bus whether to keep it (if it has not reached its

economic lifetime) or to replace it with one of the available bus technologies in the market.

Accounting for the technological advancements of ZEBs is essential for planning a cost-effective transi-

tion as these advancements can significantly improve performance and reduce costs. However, the uncertain

nature of these advancements makes it challenging to determine the optimal timing for ZEB investments.

To tackle this complex task, we introduce a multi-stage stochastic program with S stages, where each stage

consists of a collection of time periods. We follow the classical scenario tree based representation (Shapiro

et al., 2021) where nodes within each stage represent possible states of all technologies over these periods

in terms of cost and efficiency. Although our formulation below works for any given scenario tree N , we

specify how we construct it according to our case study in Section 3.4.

Before formally providing our formulation, we list our assumptions below:

• Each time period represents a year, as bus fleet operators typically make decisions based on the yearly

budget. We further divide each year into subperiods (seasons) to account for potential differences in

route demand and variations in BEB and HFCB consumption rates due to seasonal factors.
• The time periods within each stage share the same stochastic characteristics.
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• Different versions may exist for each type of technology, reflecting variations such as the brand and

model of the bus. For example, one version of a BEB might be a 12-meter model with a 280 kWh

battery capacity, using fast-charging stations, with a 12-year lifespan, and priced at 440,000 USD.
• Investment costs of BEBs include charger cost upon purchase and battery replacements cost at their

mid-life. The manufacturer commits to providing battery replacements to account for battery degra-

dation.
• All BEBs, regardless of charging type, start the day with a full battery.
• A ZEB cannot be salvaged before reaching half of its economic lifetime.
• Demand is known in advance and is deterministic.
• Assuming the passenger capacity is the same for all buses of the same length, each bus can be replaced

only by another bus of the same length.
• As the cost and energy density of lithium-ion batteries (Li-ion) improve, larger batteries will be in-

stalled on BEBs while maintaining the same overall weight, but with a smaller unit cost. This will

allow a BEB to cover longer distances.
• As the cost and efficiency of fuel cell systems improve, purchase cost as well as O&M cost of HFCBs

will decrease due to the fact that improved efficiency of fuel cell systems will reduce the energy

consumption per unit distance.
• Recharging takes a fixed amount of time, depending on the battery capacity of the BEB versions.

We assume charging power also advances alongside BEB technological improvements so that the

recharging time remains consistent even after the improvement.
• Deadheading (trips with no passengers) between terminals is allowed, and buses consume less energy

in such trips. However, deadheading trips to and from garages are disregarded.
• Only tailpipe emissions are considered and the emissions related to electricity and hydrogen produc-

tion are not included.

2.2. Mathematical Formulation

In this section, we present the mathematical formulation of our multi-stage stochastic program for transi-

tioning to a clean bus fleet. The model aims to optimize decisions regarding the purchasing, salvaging, and

assigning of buses to routes while considering technological advancements over a planning horizon. We

present the index sets, decision variables and parameters used in our mathematical formulation in Tables 2,

3 and 4, respectively.

Table 2: List of index sets.

SetDescription Set Description
N Set of nodes, N = {0,1, . . . ,N} T Set of time periods, T = {0,1, . . . ,T}
N f Set of nodes in the final stage Tn Set of time periods containing node n
J Set of bus types T(t ′]Set of time periods t s.t. t ≤ t ′ and t +ω( j,t) > t ′

K j Set of versions for bus type j T[t ′)Set of time periods t s.t. t < t ′ and t +ω( j,t) ≥ t ′

R Set of routes T(t ′)Set of time periods t s.t. t < t ′ and t +ω( j,t) > t ′

Q Set of subperiods of each time period T −
[t ′)Set of time periods t s.t. t + ⌈ω( j,k,t)/2⌉ ≤ t ′ and t +ω( j,k,t) ≥ t ′
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Table 3: List of decision variables.

Variable Description
v+( j,k,t),n Number of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ Tn and node n ∈ N .

v( j,k,t),t ′,n Number of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ T and available in
time period t ′ ∈ Tn and node n ∈ N , subject to t ≤ t ′ < t +ω( j,k,t).

v′( j,k,t),t ′,r,q,nNumber of version k ∈K j of bus type j ∈J purchased in time period t ∈T and assigned to route
r ∈ R in subperiod q ∈ Q of time period t ′ ∈ Tn and node n ∈ N , subject to t ≤ t ′ < t +ω( j,k,t).

v−( j,k,t),t ′,n Number of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ T and salvaged in
time period t ′ ∈ Tn and node n ∈ N , subject to t + ⌈ω( j,k,t)/2⌉ ≤ t ′ ≤ t +ω( j,k,t).

Table 4: List of parameters.

ParameterDescription
πn Probability of node n ∈ N

µ(n,t) The node corresponding to the ancestor of node n ∈ N at time t ∈ T
βnominal Nominal discount rate applied to time periods

ζ Inflation rate applied to time periods
βreal Real discount rate, calculated as βreal =

1+βnominal
1+ζ

−1
β Discount factor, calculated as β = 1

1+βreal

δ
+
( j,k,t),n Investment cost of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ Tn at node

n ∈ N
δ
−
( j,k,t),t ′,n Salvage value of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ T and salvaged

in time period t ′ ∈ Tn at node n ∈ N
δ( j,k,t),t ′,r,q,n Operational and maintenance costs of version k ∈K j of bus type j ∈J purchased in time period

t ∈ T , operated in time period t ′ ∈ Tn, assigned to route r ∈ R in subperiod q ∈ Q, and at node
n ∈ N

ω( j,k,t) Economic life of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ Tn

λ( j,k,t),t ′,r,q,nDemand satisfaction ratio of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ T ,
operated in time period t ′ ∈ Tn, assigned to route r ∈ R in subperiod q ∈ Q, and at node n ∈ N

∆t,r,q Demand in subperiod q ∈ Q of route r ∈ R at time period t ∈ T
γt Available budget for time period t ∈ T

ε( j,k,t),t ′ Emissions of version k ∈ K j of bus type j ∈ J purchased in time period t ∈ T and operated in
time period t ′ ∈ T

ηt Maximum allowable emissions for time period t ∈ T
φ j,k Initial fleet size of version k ∈ K j of bus type j ∈ J
ψ Maximum desired average age of the fleet at the end of the planning horizon

We now present our multi-stage stochastic program as below:

min
N

∑
n=1

πn ∑
j∈J

∑
k∈K j

 ∑
t∈Tn

β
(t−1)

δ
+
( j,k,t),nv+( j,k,t),n + ∑

t ′∈Tn

∑
t∈T(t′]

∑
r∈R

∑
q∈Q

β
(t ′−1)

δ( j,k,t),t ′,r,q,nv′( j,k,t),t ′,r,q,n

− ∑
t ′∈Tn

∑
t∈T[t′)

β
(t ′−1)

δ
−
( j,k,t),t ′,nv−( j,k,t),t ′,n

 (1a)
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s.t. ∑
j∈J

∑
k∈K j

∑
t∈T(t′]

λ( j,k,t),t ′,r,q,n v′( j,k,t),t ′,r,q,n ≥ ∆t ′,r,q, t ′ ∈ Tn,r ∈ R,q ∈ Q,n ∈ N (1b)

∑
r∈R

v′( j,k,t),t ′,r,q,n ≤ v( j,k,t),t ′,n, j ∈ J ,k ∈ K j,q ∈ Q, t ′ ∈ Tn, t ∈ T(t ′],n ∈ N (1c)

v( j,k,t),t,n = v+( j,k,t),n, j ∈ J ,k ∈ K j, t ∈ Tn,n ∈ N (1d)

v( j,k,t),t ′,n = v( j,k,t),t ′−1,µ(n,t′−1)
− v−( j,k,t),t ′,n, n ̸= 0, j ∈ J ,k ∈ K j, t ′ ∈ Tn, t ∈ T(t ′],n ∈ N (1e)

v−( j,k,t),t ′,n = v( j,k,t),t ′−1,µ(n,t′−1)
, n ̸= 0, j ∈ J ,k ∈ K j, t ′ ∈ Tn, t ∈ T(t ′], t

′ = t +ω( j,k,t),n ∈ N (1f)

∑
j∈J

∑
k∈K j

δ
+
( j,k,t),n v+( j,k,t),n ≤ γt , t ∈ Tn,n ∈ N (1g)

∑
j∈J

∑
k∈K j

∑
t∈T(t′]

∑
r∈R

∑
q∈Q

ε( j,k,t),t ′ v′( j,k,t),t ′,r,q,n ≤ ηt ′ , t ′ ∈ Tn,n ∈ N (1h)

v+( j,k,0),0 = φ j,k, v−( j,k,0),0,0 = 0, j ∈ J ,k ∈ K j (1i)

∑
j∈J

∑
k∈K j

∑
t∈T(T ]

(T − t +1) v( j,k,t),T,n ≤ ψ ∑
j∈J

∑
k∈K j

∑
t∈T(T ]

v( j,k,t),T,n, n ∈ N f (1j)

v+( j,k,t),n ∈ Z+, j ∈ J ,k ∈ K j, t ∈ Tn,n ∈ N (1k)

v−( j,k,t),t ′,n ∈ Z+, j ∈ J ,k ∈ K j, t ′ ∈ Tn, t ∈ T[T ),n ∈ N (1l)

v( j,k,t),t ′,n ∈ Z+, v′( j,k,t),t ′,n ∈ Z+, j ∈ J ,k ∈ K j, t ′ ∈ Tn, t ∈ T(T ],n ∈ N . (1m)

The terms in the objective function (1a) represent the investment costs of the buses, the operational and

maintenance costs, and the salvage revenue, respectively. Constraints (1b) require that the number of buses

assigned to a route in each time period and node meets the required demand. Constraints (1c) specify that

the number of assigned buses should not exceed the number of buses available. Constraints (1d) and (1e)

maintain the balance of buses for each type and version in every time period. Constraints (1f) ensure that the

buses will be salvaged once they reach their economic lifetime. Constraints (1g) restrict the total purchasing

costs to stay within the allocated budget for each time period, and constraints (1h) ensure that emissions

remain within the limits for each time period. Constraints (1i) define the initial fleet size for each type and

version of the bus, and make sure that no buses are salvaged at stage 0. To mitigate end-of-horizon effects,

constraints (1j) limit the average age of the buses at the end of the planning horizon. Finally, constraints (1k),

(1l), and (1m) ensure that decision variables take non-negative integer values.

2.3. Energy Requirement Calculation

In order to ensure operational feasibility of assigning buses to routes, and optimizing the assignment deci-

sions, it is crucial to account for the amount of energy consumed by each version of BEBs on scheduled

trips of different routes. We now present our physics-based approach to calculate the energy requirement of

a specific BEB assigned to a given service trip, which impacts the O&M costs and the demand satisfaction

ratio parameters. Table 5 provides the notations used in this section.
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Table 5: List of parameters for traction power and battery power calculations.

ParameterDescription ParameterDescription
fr Rolling resistance coefficient ρair Air density (kg/m3)

CD Drag coefficient g Gravitational acceleration (m/s2)
A f Frontal area of the bus (m2) ηt Transmission efficiency
ηm Motor and inverter efficiency ηrb Regenerative braking efficiency
m Mass of the bus (kg) meq Equivalent mass (kg)
α Road grade (rad) a(τ) Bus acceleration rate at time τ (m/s2)

v(τ) Speed of the bus at time τ (m/s) Pw(τ) Traction power at time τ (W)

To calculate the energy requirement for a bus on a specific service trip, we first divide the trip into a set

S of segments, where each segment represents the path between two consecutive bus stops. We assume

that the bus will accelerate between the time interval [0,τ1] with a constant rate of a > 0, maintain a constant

speed between [τ1,τ2], and decelerate with rate −a between [τ2,τ1 + τ2]. For each segment, we minimize

the duration τ1+τ2 to cover its distance subject to the constraints on maximum speed and maximum power,

where the traction power Pw(τ) at time τ is calculated as

Pw(τ) =
(
mgsin(α)+ frmgcos(α)+0.5ρairCDA f v(τ)2 +meqa(τ)

)
v(τ).

Here, traction power Pw(τ) refers to the power required at the wheels to overcome resistance forces acting on

the bus when traveling at a speed of v(τ), and accelerate an equivalent mass of meq, which accounts for the

inertial resistance of the rotating masses in the vehicle, with an acceleration of a(τ). Required traction power

is provided by the battery at a higher rate due to losses at the electric motor and transmission elements before

reaching the wheels. In addition, during braking or travelling downhill, BEBs can recuperate some of the

power that otherwise would be lost as heat via their regenerative braking system. The power required from

the battery during traction (or recuperated by the battery during regenerative braking) Pbat(τ) is given by

Pbat(τ) =


Pw(τ)
ηt ηm

, if Pw(τ)≥ 0

Pw(τ) ·ηt ·ηm ·ηrb, if Pw(τ)< 0
.

To find the energy requirement Es of segment s, we integrate Pbat(τ) over the segment duration as Es =∫
τ1+τ2
0 Pbat(τ)dτ . Finally, the total energy required during the trip is the sum of the energy requirements for

all segments, computed as Etrip = ∑s∈S Es. We also account for the variation in energy requirements due to

seasonal changes by multiplying the nominal consumption value by a constant that depends on the ambient

temperature. We provide the details of power and energy calculations in the Supplementary Material.
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2.4. Bus-to-Route Simulator

We develop a simple simulator, Algorithm 1, to estimate key parameters if a version k of bus type j is

assigned to a certain route r in a subperiod q. Since the outcome of such an assignment changes over the

planning horizon due to technological advances, we run this algorithm for every node n in the scenario tree

in an offline manner before solving our optimization model.

Inputs of the Bus-to-Route Simulator are the the specifications of a bus (such as the type, version,

charging scheme in case of BEBs, energy consumption, etc.) and the characteristics of the route (such as

the trip schedule, road profile, etc.). The simulator aims to minimize the necessary number of buses in a

heuristic manner for each assignment while considering operational feasibility of each bus type.

The algorithm outputs the number of necessary buses and their daily task assignments, using which we

obtain several parameters used in our optimization model: i) Demand satisfaction ratio λ( j,k,t),t ′,r,q,n, defined

as the number of buses needed of a specific type-version pair divided by the number of DBs needed. ii)

Charger-to-bus ratio for fast-charging BEBs, used in the calculation of the investment cost δ
+
( j,k,t),n. iii)

Average daily distance covered, used in the calculation of the O&M cost δ( j,k,t),t ′,r,q,n.

3. Data Collection and Processing

In this section, we present the data used in our case study in Section 4. We start by discussing the bus

network data provided by the public bus fleet operator of Istanbul in Section 3.1, including a description

of the preprocessing steps. Section 3.2 details the initial bus-specific cost information included in our case

study. In Section 3.3, we provide the data required for forecasting future technological advancements in

BEBs and HFCBs, along with an explanation of our forecasting approach. Finally, in Section 3.4, we

explain how the scenarios of our stochastic program are obtained using the resulting projections. We note

that the Supplementary Material contains more detailed datasets, analyses and results.

3.1. Public Bus Transit in Istanbul

The buses operated by the Istanbul Electricity, Tram and Tunnel Establishments (IETT), the authority re-

sponsible for public bus transportation in Istanbul, carry nearly 5 million people daily and cover approxi-

mately 1.2 million kilometers (IETT, 2023). IETT provided us the following datasets:

1. Trip Schedule: This dataset includes the details of service trips scheduled for both March 15, 2023

(Winter Schedule) and August 3, 2023 (Summer Schedule). The summer schedule is assumed to be

used only for 92 days during the summer, while the winter schedule is utilized for the remainder of

the year. The specific information provided in this dataset is the route code, trip ID, scheduled route

start times, scheduled distance, vehicle depot (when available) and vehicle length group.

2. Stop Sequence with Coordinates: This dataset provides the sequence of stops for each route and

route type, along with their latitudes and longitudes. Furthermore, we use the Open-Elevation API
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Algorithm 1: Bus-to-Route Simulator.
Input: Bus parameters, trip schedule, trip information, terminal-terminal trip information
Output: Bus assignments, recharge details for fast-charging (FC) BEBs, deadheading details

1 for each trip in the scheduled trips do
2 if no buses are yet assigned then
3 Assign the first bus to the first trip. Move on to the next trip.
4 else
5 for each assigned bus do
6 if the bus’s garage location and length match with that of the scheduled trip and the bus

can reach the trip’s start point on time after completing its previous trip, considering
deadheading then

7 if bus is electric then
8 if battery is insufficient for the trip then
9 if bus type is ONC then

10 Skip this bus due to insufficient battery.

11 else if bus type is FC then
12 if the bus can start the trip with the recharge time added then
13 if bus has enough energy to get to the starting point of the trip then
14 Plan a recharge at the starting point of the trip.

15 else
16 Plan a recharge where the bus finishes its previous assigned trip.

17 Record recharge details (location, start and end times). Assign the
trip to the bus. Update cumulative energy consumed. Reset battery
capacity. Move on to the next trip.

18 else
19 Skip this bus due to insufficient time for recharging.

20 Assign the trip to this bus. if bus is electric then
21 Update cumulative energy consumed. Update remaining battery capacity.

22 Move on to the next trip.
23 else
24 Skip this bus.

25 if no current buses can be assigned then
26 Assign a new bus to this trip.

27 for each bus do
28 Calculate the assigned distances and energy consumed (if bus is electric), including

deadheading. if the total assigned distance is less than 10 km then
29 Disregard that bus.

30 Record recharge summary for all fast-charging electric buses and all locations.
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(Open-Elevation API, 2020) to determine the elevation of each stop.

3. Vehicle Information: This dataset includes information on 3,351 buses operated by IETT, detailing

the number of buses at each depot, along with their brand, model, and manufacturing year. It does not

cover 3,076 buses under a private bus brand of IETT, for which the detailed data is not available.

We process the above datasets to obtain the following pieces of information.

1. Estimation of Missing Distances: As we do not have the full information about the specific routing

of each vehicle, we estimate some distances related to the deadheading services using the Haversine

approximation when needed in Algorithm 1 in addition to the distance between consecutive stops.

2. Estimation of Travel Time: Through our preliminary study and dataset received from IETT, we deter-

mine that the average speed of buses is approximately 25 km/h. Consequently, we assume a maximum

speed of 30 km/h.

3. Calculating Bus Demand: We run our simulator, Algorithm 1, to estimate the number of buses needed

of each version to meet the scheduled trips in each route, for both summer and winter schedules. We

present the summary of results in Table 6 for DBs. As the total number of buses owned by IETT in

2023 is reported to be 6,652 (IETT, 2023) the algorithm provides a reliable estimation of the actual

demand.

Table 6: Total DB demand by length for winter and summer schedules.

Bus Length (m) 6.5-8 8-9 10-11 11-14 14-19 Total
Winter/Summer Schedule 280/26926/23 12/15 4540/43491695/1418 6553/6071

4. Route Aggregation: As a preprocessing step, we aggregate routes based on a metric related to the de-

mand satisfaction ratio (DSR). For each route, we calculate the minimum DSR for each BEB version

across all bus lengths and seasons using today’s technology. These minimum DSRs are then averaged

across all BEB versions to create a single metric for each route. Routes are then grouped into 12 clus-

ters based on this metric as follows: {{1.00}, [0.95,1.00), [0.90,0.95), . . . , [0.50,0.55), [0.38,0.50)}.

As an example, cluster with the metric of 1.00 represents the routes where even the BEB with the

smallest battery capacity can cover the scheduled trips in all seasons and all bus length groups used.

Since only 13 routes have a metric smaller than 0.50, we group them together into one cluster.

3.2. Initial Bus-Specific Costs

We consider four bus models across different length groups: an 8m model for the 6.5-8m group, a 10m

model for both the 8-9 and 10-11m groups, a 12m model for the 11-14m group, and an 18m model for the

14-19m group. Bus purchase costs are estimated from recent tenders in Turkey and Europe, information

gathered from local bus manufacturers and technical reports, and given in Table 7. The investment costs of

BEBs include battery replacement and charger costs, in addition to the bus purchase costs. We assume that

each BEB requires one battery replacement at the end of year six of its operation that is adjusted for the
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discount rate. The initial battery pack cost, denoted by BC, is assumed to be 500USD/kWh. For charging

infrastructure, our study includes regular chargers with 50kW charging power, priced at 20,000 USD per

unit for ONC buses, and fast chargers with 350kW charging power, priced at 45,000 USD per unit for fast

charging buses. Each ONC bus requires one dedicated charger while charger-to-bus ratio for FC buses with

a specific version is estimated using Algorithm 1 and the total charger cost is distributed across all buses.

Recharging times for FC buses are based on a full recharge, assuming a 90% charging efficiency. Finally,

we assume that salvage values depreciate yearly by 15% for all buses.

Table 7: Purchase costs (USD) for DBs, BEBs, and HFCBs.

Model DB BEB Fast Charging BEB Overnight Charging HFCB
Length 140 kWh210 kWh280 kWh350 kWh420 kWh280 kWh350 kWh420 kWh490 kWh560 kWh

8m 135,000 305,000 340,000 - - - 375,000 410,000 - - - 500,000
10m 170,000 340,000 375,000 410,000 - - 410,000 445,000 480,000 - - 600,000
12m 200,000 370,000 405,000 440,000 475,000 - 440,000 475,000 510,000 545,000 - 700,000
18m 300,000 470,000 505,000 540,000 575,000 610,000 540,000 575,000 610,000 645,000 680,000 1,000,000

The O&M costs include energy, maintenance, and driver costs. We use Algorithm 1 to determine the

average daily distance the buses of a specific version cover when assigned a specific route. This information

along with the average energy requirement for BEBs is used to calculate the total energy costs and mainte-

nance costs, where the unit costs are given in Table 8. We assume that the energy consumption estimation is

done in spring/fall, and increase BEB and HFCB consumption rates by 15% for winter and 5% for summer,

consistent with Istanbul’s climate. Regarding the driver cost, the information gathered from IETT Activity

Reports and Financial Statements suggest that the approximate salary is nearly double the minimum wage.

Additionally, the number of drivers is about 20% more than the number of buses. Therefore we assume the

driver cost per bus to be 2.4 times the minimum wage, approximately 40 USD/day.

Table 8: Maintenance costs, energy consumption and energy costs for all bus types.

Bus Type Energy Consumption Maintenance Cost (USD/km) Energy Cost (USD per unit)
DB 0.435 L/km (Ma et al., 2021) 0.58 (Holland et al., 2021) 1.29 USD/L (Petrol Ofisi, 2024)

BEB Varies with route and version 0.34 (Holland et al., 2021) 0.16 USD/kWh (Encazip, 2024)
HFCB 0.09 kg/km (Ajanovic et al., 2021) 0.29 (Collins & Post, 2022) 10.00 USD/kg

3.3. Technological Change Forecasts

In this section, we examine the cost and efficiency trends of BEBs and HFCBs. We quantify these trends

for each year with respect to five years prior, consistent with our case study (Section 4). Specifically, for

each year, the efficiency improvement rate is calculated as the natural logarithm of the year’s value divided

by the value from five years earlier, while cost improvement is calculated as the negative logarithm of the

same ratio. We then plot the scatter plot of these improvement rates, which highlights distinct patterns

and trends across five-year periods. Clustering techniques are applied to group the data points based on
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their similarities, with each cluster representing a possible scenario of technological advancement. The

probabilities associated with each cluster indicate the proportion of data points that belong to that cluster.

3.3.1. BEB Technological Change

The cost of Li-ion batteries per kilowatt-hour has significantly decreased over the years while their energy

density has steadily increased. Figure 1a presents the data on energy density and battery cost from 1991

onwards, extracted from the charts in reference Walter et al. (2023) using the WebPlotDigitizer tool (Au-

tometris, 2023). Given the cost and energy density values, we compute the five-year improvement ratios

as described above. Then, these ratios are clustered into two and three different groups by minimizing the

sum of squared Euclidean distances between each data point and its assigned cluster centers can be seen in

Figures 1b and 1c. As an example, let us consider the two-cluster setting, in which case the probabilities for

the fast improvement cluster (F) and the slow improvement cluster (S) are 0.46 and 0.54, respectively. In fast

improvement cluster, the energy density and cost improvement rates are 0.27 and 1.05, respectively. Taking

the exponential of these rates, we get an energy density multiplier of 1.31 and a cost multiplier of 0.35.
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Figure 1: BEB technology improvement charts. Cluster centers are marked with solid marks in (b) and (c),
and can be distinguished by the abbreviations of Slow, Fast and Medium.

3.3.2. HFCB Technological Change

Fuel cell systems used in HFCBs have also improved in terms of cost and efficiency. However, since these

systems are only being used for heavy duty purposes recently, the data is scarce. Instead, we use the cost

figures for light duty fuel cell systems (Huya-Kouadio & James, 2023) and the efficiency of a specific

producer (Ballard) as a proxy as shown in Figure 2a. We then follow a similar approach to Li-ion batteries:

We compute five-year cost and efficiency improvements (for the common years in two datasets), and obtain

the clusters in Figures 2b and 2c.
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Figure 2: HFCB technology improvement charts.

3.4. Scenario Tree Generation

We now formalize how we obtain the scenarios of our multi-stage stochastic program using the technological

change forecasts. Our approach is built on a two-step procedure: In the first step, we obtain technology

trees for each bus type illustrating future projections while in the second step, we combine these individual

projections to build the scenario tree.

Algorithm 2: Technology Tree Construction Algorithm
Input: Improvement distribution of technology j, the number of stages S.

Output: Technology tree.

1 Set θ c
j1 = θ e

j1 = θ
p
j1 = 1, ID = 1 and L = {1}.

2 for s = 1, . . . ,S−1 do
3 Set L ′ = /0.

4 for ℓ ∈ L do
5 for b = 1, . . . ,B j do
6 Set ID = ID+1, h = ID.

7 Set θ c
jh = θ c

jℓΘ
c
jb, θ e

jh = θ e
jℓΘ

e
jb, θ

p
jh = θ

p
jℓΘ

p
jb.

8 Set L ′ = L ′∪{ID}.

9 L = L ′.

Let us start with the first step. For a bus technology j ∈ J , let us denote its cost and efficiency im-

provement multipliers for each stage by random variables Θc
j and Θe

j, respectively, which are assumed to be

independent from each other. We will assume that each pair of random variables take values from a joint dis-
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crete probability distribution with a sample space consisting of elements (Θc
jb,Θ

e
jb) w.p. Θ

p
jb, b = 1, . . . ,B j.

In particular, for a technology j with a given support size B j, we use the clustering approach from Sec-

tion 3.3 with B j clusters, and use efficiency and cost multipliers of each cluster b as (Θc
jb,Θ

e
jb) values and

the fraction of points in each cluster b as Θ
p
jb. We run Algorithm 2 to construct a perfect B j-ary tree denoted

by N ( j), which we will call as the technology tree. Figure 3 illustrates exemplary technology trees for

DBs, BEBs and HFCBs for S = 2 stages with respect to the data reported in Section 3.3.
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Figure 3: Technology trees of DB (B1 = 1), BEB (B2 = 2) and HFCB (B3 = 2) with S = 2 stages.

In the second step, once the technology trees are at hand for each j ∈J , we obtain the scenario tree N

by taking the Cartesian product of each node of the technology tree N ( j) at the same level. We label

the nodes in the scenario tree in lexicographic order with respect to the node IDs in the technology tree to

establish the bijection n ∈ N ↔ (n1,n2, . . . ,n|J |) ∈ N (1)×N (2)×·· ·N (|J |). This construction can

be best explained with an example: Let us consider the scenario tree in Figure 4, which is obtained from the

technology trees in Figure 3. The labels of nodes 2, 3, 4, 5 in the scenario tree corresponds to the node ID

triplets (2,2,2), (2,2,3), (2,3,2), (2,3,3) in the technology trees.
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Figure 4: Scenario tree with two stages.

Finally, for each n ∈ N and j ∈ J , we set πn = ∏ j∈J θ
p
j,n j

and (ϑ c
jn,ϑ

e
jn) = (θ c

j,n j
,θ e

j,n j
). We note that in

a general situation with |J | many technologies with respective branches of B j over S stages, the scenario

tree will contain (∏J
j=1 B j)

S−1 leaf nodes (or scenarios), which grows exponentially.

We are now ready to explain how the uncertain parameters are affected in each scenario. We use the

abbreviation IC for investment cost, which does not change for DBs over the planning horizon.
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For BEBs, technological advances affect the battery capacity (as we assume that the total bus weight

remains unchanged) and investment cost. For a specific version with initial battery capacity of C1, the

battery capacity in node n becomes Cn =C1 ×ϑ e
BEB,n. Then, we run Algorithm 1 to determine the new DSR

with battery capacity Cn. Regarding the IC of a BEB of length L in node n with battery capacity Cn, we use

ICBEB,n(L,Cn) = ICDB,1(L)+CC+(1+β
ω/2)[PC+BC×Cn]ϑ

c
BEB,n. (2)

Here, PC refers to the cost of other components of the electrified powertrain except the battery and CC

stands for the charger cost.

For HFCBs, technological advances affect the investment and O&M costs. In particular, the IC of a

HFCB of length L in node n is computed as ICHFCB,n(L) = ICDB,1(L)+ [ICHFCB,1(L)− ICDB,1(L)]ϑ c
HFCB,n

and its consumption rate per distance (CR), which affects the unit energy cost, becomes CRHFCB,n =

CRHFCB,1/ϑ e
HFCB,n.

4. Case Study

This section presents our case study that focuses on the clean fleet transition in Istanbul public bus network.

After we provide our computational setup in Section 4.1, we present the detailed results about our base

case in Section 4.2. Then, we provide a thorough sensitivity analyses regarding some key parameters in our

case study in Section 4.3. Finally, we compare our stochastic programming model with other approaches in

Section 4.4.

4.1. Computational Setup

We conduct our computational experiments in the Python programming language using a 64-bit workstation

with two Intel(R) Xeon(R) Gold 6248R CPU (3.00GHz) processors (256 GB RAM). Due to the large-

scale nature of the multi-stage stochastic program (1), we relax the integrality restrictions and solve it as a

linear program (LP) utilizing Gurobi 11. Since we cluster the routes into categories with a reasonably large

demand, continuous variables provide an accurate approximation that can be rounded to obtain practical

solutions. In fact, in all cases considered, the difference between the optimal value of the LP relaxation,

denoted by zLP and the objective function value of the rounded solution, denoted by zround, is at most 0.23%.

4.2. Base Case

In the Base Case, we obtain a dynamic strategic plan of Istanbul’s transition to a clean fleet, spanning a

planning horizon of 25 years (2025-2049) divided into five stages. We utilize the input data described in

Section 3, and set the investment budget in million USD as γt = min{50t,250} for t = 1, . . . ,25. We also

include yearly emission targets, reducing the yearly emission gradually to zero up to year 2049 at a linear rate

starting from year 2035. We set the inflation rate ζ = 0.04 and the nominal discount rate as βnominal = 0.05.
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The initial fleet consists of 2,072 7-year-old, 2,817 11-year-old, 318 14-year-old, 635 16-year-old, and 711

18-year-old DBs. The maximum lifetime for buses with an initial age of 11 years or less is assumed to be

16 years, while buses that are 14 years or older are assumed to have a maximum lifetime of 20 years. The

remaining lifetime of the initial buses is adjusted accordingly based on these assumptions. Since the fleet

is quite old, we assume zero salvage value the existing buses. For newly purchased buses, the economic

lifetime is set at 12 years for BEBs and HFCBs, and 15 years for diesel buses. The maximum average fleet

age at the end of the planning horizon is capped at 9 years.
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Figure 5: Base Case results. Buses purchased are reported with bars and the cost figures are reported with
markers.

We consider three technology alternatives: DBs, BEBs and HFCBs. We assume that the cost of DBs do

not change, but the cost and efficiency of BEBs and HFCBs improve as explained in Section 3.3 with respect

to two clusters each. Therefore, we consider (1× 2× 2)5−1 = 256 scenarios in our multi-stage stochastic

program. The resulting model contains more than 23 million variables and 3 million constraints. The CPU

time is 5,435 seconds, and the expected objective values are zLP = 14.126B USD and zround = 14.154B

USD, indicating only a 0.2% difference. For each scenario, we report the number of buses purchased of

each technology type along with the total purchase and O&M costs over the planning horizon in Figure 5.

Results indicate that the O&M costs are more than twice of the investments costs, which is expected for

public buses heavily utilized in Istanbul. In addition, BEBs dominate across all scenarios, while HFCBs are
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purchased in small numbers and only in a few scenarios.
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Figure 6: Base Case-four specific scenarios.

We also provide detailed results for four particular scenarios in Figure 6: i) Fast-Fast, ii) Fast-Slow, iii)

Slow-Fast, iv) Slow-Slow. Here, Fast-Slow refers to the scenario where BEBs improves fast while HFCBs

improve slow in each stage (the other three scenarios are defined accordingly). These four scenarios provide
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extreme cases and help us illustrate the effect of stochasticity in the dynamic strategic plans. As the initial

fleet is quite old, most of the buses need to be retired within the first six years and the budget limitation is

most influential in this time frame for all scenarios. We recall that heavily-utilized city buses typically have

higher O&M cost in their economic lifetime compared to the initial investment cost. The purchase of BEBs,

even in the first year (albeit in small quantities due to budget limitations), shows their advantage over DBs

in saving O&M costs. This is especially true for routes where electrification can happen without needing

many more buses, that is, routes with DSR values close to 1. We also observe that the fleet size peaks in year

15 for the Fast-Fast and Fast-Slow scenarios, and in year 17 for the Slow-Fast and Slow-Slow scenarios. In

the following years, the fleet size slightly decreases due to the higher battery capacities of BEBs purchased

in the final stage. The transition to ZEBs is almost complete by year 18 even under the Slow-Slow scenario.

Therefore, the zero-emission target can be easily achieved and the adoption to BEBs is also economically

justified due to their low O&M costs compared to DBs and HFCBs. Note that HFCBs are only purchased

in the last few time periods of the planning horizon, and only in scenarios where the HFCB technology

improves fast and BEB technology improves slowly. Even in the most favorable scenario for HFCBs, less

than 0.4% of the fleet will be HFCBs in the end.

In Figure 7, We present the bus fleet composition for the first year of Stage 2 through Stage 5, corre-

sponding to years 6, 11, 16, and 21, across two extreme scenarios: Fast-Fast and Slow-Fast. (The results

of Fast-Slow and Slow-Slow are omitted, as they are almost identical to those of Fast-Fast and Slow-Fast,

respectively.) This figure shows the number of buses of each technology assigned to each cluster during the

winter of those years. Recall that Cluster 1 has a DSR value of 1, meaning that it can be electrified with the

same number of DBs, while larger cluster labels indicate smaller DSR values, which correspond to routes

that may require additional BEBs compared to DBs. The results show that in all scenarios, the transition to

BEBs does not begin for clusters 5 through 12 within the first 6 years of the planning period due to their

lower DSR values. Additionally, the last four clusters are still using diesel buses during the first 11 years.

Cluster 4 is electrified more in the first 6 years than the previous three clusters, likely due to greater savings

in O&M costs and the higher age of the initial fleet corresponding to these clusters, among other factors.

We also observe that the few HFCBs purchased in the Slow-Fast scenario are bought in years 22-24 and

are almost entirely assigned to cluster 12 to reduce the fleet size in that cluster.

4.3. Sensitivity Analysis

We now present the results of our extensive sensitivity analyses, in which we change some key determin-

istic parameters of the multi-stage stochastic program that are exogenously determined such as the budget

restrictions, emission targets and hydrogen prices. The choice of these parameters are also motivated by

our findings from the Base Case: i) Budget restrictions are influencing the initial investment decisions,

and forcing the model to choose DBs over BEBs due to the lower investment cost of the former despite the

lower lifetime cost of the latter. ii) Emission targets are mostly redundant, which enables the model to make

the best economical decisions that happen to address the environmental concerns as well. iii) HFCBs are
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quite expensive in terms of their O&M costs even without the consideration of potential infrastructure costs,

which results in BEBs being the prominent choice for the transition.
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Figure 7: Fleet composition in years 6, 11, 16, 21 under different scenarios with respect to route clusters.

These observations motivate us to explore the answers of the following questions: i) If IETT can spare

more budget annually, how much cost benefit can be expected overall? ii) If even more strict emission targets

are enforced, how much cost increase can be expected overall? ii) If hydrogen prices drop drastically, can

HFCBs become the prominent ZEB choice and how much cost decrease can be expected overall?

To answer these questions, we re-run our multi-stage stochastic model three times for the following

cases by keeping everything else the same:

i) Relaxed Budget: Budget is chosen 300 Million USD annually.

ii) Strict Emissions: Zero emission target is enforced in year 2040 with intermediate targets starting

from year 2030.
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iii) Low Hydrogen Price: Hydrogen price is set at 2 USD/kg.

In Table 9, we provide a summary of the sensitivity analysis conducted while the detailed results are available

in the Supplementary Material. We observe that “%Gap", defined as 100× zround−zLP
zround

, is consistently small,

which suggests that our rounding scheme is quite successful in the new cases as well. In addition, we also

report “%Change", which is the percentage change of a new case with respect to the Base Case in terms

of the objective function value of the rounded solution. As expected, in the Relaxed Budget Case, the

change is negative, which indicates that an increased budget helps to obtain a more economical plan with

3.80% lower expected cost. Interestingly, the change in the Strict Emission Case is very small, which

suggests that an even earlier transition to ZEBs can be achieved with increasing the overall cost marginally

by 0.08%. Finally, the change in the expected total cost for the Low Hydrogen Price Case is also small

(-0.17%), which shows the limited effect the hydrogen price has on the overall outcome.

Table 9: Summary results for different cases.

Case Time (sec) zLP zround %Gap%Change
Base 5,435 14,126,110,52714,154,103,467 0.20 -

Relaxed Budget 5,888 13,586,698,67113,615,884,770 0.21 -3.80
Strict Emission 4,877 14,133,211,49114,165,320,511 0.23 0.08

Low Hydrogen Price 6,133 14,099,073,37314,129,697,437 0.22 -0.17

We also report the changes in the fleet decomposition and cost figures for the new cases with respect to

the Base Case under four specific scenarios in Figure 8.
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Base Case for four specific scenarios in different cases. FF, FS, SF, SS are respectively the abbreviations
of Fast-Fast, Fast-Slow, Slow-Fast, Slow-Slow scenarios as described earlier.
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In the Relaxed Budget Case, we observe an increase in the number of BEBs purchased across all

scenarios as BEBs are economically more advantageous than DBs in their economic lifetime despite their

higher investment cost. This is clear from the moderate increase in the investment cost and the substantial

decrease in the O&M cost, which is even more pronounced in the Slow-Fast and Slow-Slow scenarios.

In the Strict Emission Case, slightly more BEBs are being purchased, with the difference only being

non-negligible in scenarios when BEBs improve slowly. This is due to the need to purchase BEBs between

2030 and 2040 to meet emission constraints, even in scenarios where improvements are slow. The small

changes with this respect to the Base Case illustrate that BEBs are not only environmentally benefical but

also cost effective.

In the Low Hydrogen Price Case, results indicate that the number of HFCBs purchased increases in

most scenarios. In particular, for the four specific scenarios, HFCB purchases increase in three of them,

but remain at zero in the Fast-Slow scenario. We also observe that HFCB purchases begin in year 6 in

the Slow-Fast scenario, where HFCBs are expected to make up 24.4% of the fleet by the final time period.

Nevertheless, as the expected total cost reduction is very small overall, this case suggests that HFCBs will

not be dominantly more preferable over BEBs, even if we ignore potential infrastructure costs and potential

difficulties regarding hydrogen supply chain.

4.4. Model Comparison

4.4.1. Comparison with a Deterministic Model

To analyze the effect of stochasticity, we solve a deterministic version of our problem and compare its so-

lution with that of the multi-stage stochastic program. In the deterministic model, the technology improve-

ments described in Section 3.3 are represented as a single scenario, reflecting the average of all historical

advancements. Specifically, the anticipated cost multipliers for BEBs and HFCBs are 0.48 and 0.74, respec-

tively while the efficiency multipliers are 1.26 and 1.08, respectively. The model solves in 6.4 seconds, and

the objective function values are obtained as zLP = 13.233B USD and zround = 13.256B USD. We observe

that the deterministic problem’s zround value is 0.91B USD (6.43%) lower than that of the stochastic pro-

gram. This indicates that the solution of deterministic problem cannot be feasible for the stochastic program

and we quantify these infeasibilities as described below.

First, we apply the solution of the deterministic problem to each scenario of the stochastic program.

To do this, we adjust the battery capacities of BEBs in each scenario based on the capacities from the

deterministic solution. However, since energy density improvements vary across scenarios, we need to

adjust the bus weights accordingly to reflect the expected improvements in each stochastic scenario. Then,

using equation 2, we calculate the BEB investment costs, where Cn (the battery capacity in node n) comes

from the deterministic solution, and ϑ c
BEB,n (the efficiency improvement) relates to each specific scenario.

We observe that the deterministic solution violates the budget constraints in 160 out of 256 scenarios of

the stochastic program in at least one time period by more than 1%. Considering the probabilities of these

scenarios, this means that there is a 67.41% probability that the deterministic solution will not be feasible
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due to insufficient budget. Note that these budget violations are even underestimated because, in scenarios

where energy density improves more slowly than in the deterministic case, heavier batteries are required,

necessitating more buses to meet demand.

Table 10 details the budget violations of the deterministic solution in the stochastic program. Since

no HFCBs are purchased in the deterministic problem, it suffices to consider a reduced scenario tree with

25−1 = 16 scenarios, in which only BEB improvements are considered. In particular, scenarios in Table 10

represent BEB improvements from stage 2 to stage 5 (e.g., FSSF refers to fast improvement in stage 2, slow

in stages 3 and 4, and fast again in stage 5). The table shows the percentage of budget violations under

different scenarios, and for each year within the stage. For example, the numbers 6.11, 6.76, 6.17, 4.87,

5.15 correspond to the percentage budget violations in years 6, 7, 8, 9, 10 respectively, and under the eight

specified BEB improvement scenarios. The observed infeasibilities highlight the importance of stochastic

modelling and dynamic planning in strategic decision making. By accounting for uncertainty in technology

improvements, the stochastic model avoids the infeasibilities that arise when applying the deterministic

solution, ensuring a more robust and feasible plan.

Table 10: Percent violations of budget constraints in different stages under different scenarios. A non-empty
cell gives the yearly violations in that stage while the symbol ‘-’ indicates that there is no violation in the
corresponding year. An empty cell indicates that there is no violation in that stage.

Stage 2 6.11,6.76,6.17,4.87,5.15
Stage 3 11.96,11.98,-,11.43,9.39
Stage 4 1.25,1.42,1.44,1.40,- 1.25,1.42,1.44,1.40,-1.25,1.42,1.44,1.40,-11.32,12.23,12.36,12.18,-
Stage 5 2.60,-,-,-,- 2.60,-,-,-,- 2.60,-,-,-,- 2.60,-,-,-,- 9.32,-,-,-,-

FFFFFFFSFFSFFFSSFSFFFSFSFSSF FSSS SFFFSFFSSFSF SFSS SSFF SSFS SSSF SSSS

4.4.2. Comparison with Other Stochastic Models

To better understand the impact of scenarios on the optimal solution, we extend the scenario tree and solve

the stochastic model using two extended versions. In the first version called the 3-by-2 Case, we include

3 branches for BEB improvements at each stage (corresponding to Figure 1c) and 2 branches for HFCBs.

The second version called the 2-by-3 Case maintains 2 branches for BEBs and extends the number of

HFCB branches to 3 (corresponding to Figure 2c). In both versions, the number of scenarios increases to

(1×2×3)5−1 = 1296, making the problem size significantly larger complex. To manage this, we simplify

certain assignment decisions. Specifically, for route-bus length pairs with higher demand in the winter

schedule, assignment variables for other seasons are excluded. Instead, we assume that buses assigned to a

cluster remain there across all seasons, with their usage adjusted based on seasonal demand, to account for

lower O&M costs during other seasons. The detailed results are reported in the Supplementary Material.

We observe that in both extended cases the overall transition plan is similar to the Base Case as BEBs

are still the dominant choice. However, in the Fast-Fast and Fast-Slow scenarios of the 3-by-2 Case, the

transition is nearly complete in year 14, as the Fast improvement branch of BEBs is faster in the 3-by-2

Case than the Base Case. We also observe that HFCB purchases are almost identical in the 3-by-2 Case
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to the Base Case, meaning only a few buses being purchased in the final stage and under the Slow-Fast

scenario, out of the 4 extreme scenarios. This is because the Slow improvement branch of BEBs in the

3-by-2 Case is not much different than that of the Base Case.

The 2-by-3 Case results are nearly identical to the Base Case. We observe that in the four extreme

scenarios, only in the Slow-Fast scenario HFCBs are purchased, and the number of purchases is identical to

the Slow-Fast scenario of the Base Case.

5. Conclusion

In this study, we propose a multi-stage stochastic program for the bus fleet replacement problem where we

consider the uncertainties in the technology advancements and cost improvements of different bus technolo-

gies. We present a forecasting approach where we examine historical cost and efficiency trends of different

technology options and compute the improvement ratios over the years. These ratios are then clustered into

different groups which are provided to the multi-stage stochastic program as scenarios. We use our model

to plan the transition of municipal bus network in Istanbul to clean alternatives (BEBs and HFCBs) over

a planning horizon of 25 years with a zero-emission target in 2050. In our plan, we consider the changes

in the energy consumption of BEBs on different routes and at different seasons, and we ensure operational

feasibility by finding the diesel-electric replacement ratios and recharge scheduling for FC electric buses.

We perform sensitivity analyses to test the effect of certain exogenously determined parameters and inputs

on our results. We also compare our stochastic programming approach with a deterministic model, and show

its advantage in providing feasible dynamic strategic transition plans.

Our results from the multi-stage stochastic program indicate that BEBs are viable alternatives to replace

DBs to achieve zero emission bus fleet goals. BEBs can already satisfy the demand in most of the routes in

Istanbul without the need to plan new bus lines or timetables even at today’s technology level. Their lower

O&M cost compared to DBs make them advantageous in the long term across all scenarios we implemented.

Although DBs are needed to be purchased initially due to the old age of the fleet and higher investment costs

of BEBs, as costs improve BEBs can replace all DBs and transition to an all-electric fleet can be completed

in less than 20 years in most scenarios. The advantages of BEBs also manifest themselves in the sensitivity

analyses we performed. When the available budget is higher, more BEBs are purchased accross all sce-

narios, proving that once initial investment barrier is overcome, BEBs are better alternatives to DBs over

their lifetime. We also observe that under tighter emission constraints the number of BEBs increase only

negligibly under most scenarios, showing BEBs are not only environmentally beneficial but also cost effec-

tive. We acknowledge that other adoption challenges such as potential need for grid investments, recharging

scheduling and personnel training can pose certain barriers and slow down the transition in practice.

HFCBs do not prove to be preferable over BEBs across our scenarios- even under the most favorable

scenario, less than 0.4% of the fleet consists of HFCBs. Higher investment and operational costs both play

a role in this result. When the energy costs are decreased by one fifth, the fleet can consist of up to 24% of
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HFCBs in the most favorable scenario but HFCBs still cannot be dominant due to their higher initial costs.

There are some limitations of our work that should be considered while interpreting our results. In this

study, we assumed that the municipality is not responsible for building hydrogen transmission and storage

infrastructure, or potential grid investments necessary for increased electricity demand. In a setting where

the municipality has to invest in infrastructure, transition to cleaner alternatives might be slower. In addition,

our results are based on scenarios obtained using limited historical HFCB cost and technological develop-

ment trends compared to BEBs. According to these trends, even slow improvement in BEBs is faster than in

HFCBs. However, our scenarios assume constant improvements based on past data and HFCBs are still at

their early adoption stages being produced at limited numbers. It is possible that BEBs will reach a saturation

in improvement sooner than HFCBs, which might change the results in favor of HFCBs in the future.

While this study focuses on strategical planning of the transition to zero emission buses, it can be en-

hanced by adding more tactical and operational aspects. For example, bus-to-route simulator might be

improved by including recharge and maintenance scheduling optimization as well as battery degradation

aspects. In our study, we assume each bus is changed with a bus of the same length, trip schedules do

not change with transition and chargers are available at the last stop of every route when needed. Each of

these assumptions pose an optimization problem by themselves: optimal bus size selection and assignment

problem, optimizing trip schedules and charge location optimization. Our future work will focus on these

problems and investigate how to integrate them into our model.

Finally, we will also investigate how to solve the large-scale multi-stage stochastic program more effi-

ciently. This is especially important if one needs to include more technology options and construct larger

technology trees that might provide a more realistic case study, albeit with a significantly larger scenario tree.

In this case, obtaining structural results to systematically eliminate variables and constraints, and developing

decomposition methods may prove to be necessary.
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Appendix A. Energy Requirement Calculation

Appendix A.1. Determining the Segment Duration

To find τ1 and τ2, we can solve an optimization problem that minimizes the time spent within a segment of

length d and a fixed acceleration a satisfying the condition that V (τ)≤Vmax and

Pw(τ) =
(
mgsin(α)+ frmgcos(α)+0.5ρairCDA f v(τ)2 +meqa(τ)

)
v(τ)≤ min{Pmax,κV (τ)}

for τ ∈ [0,τ1 + τ2]. To simplify, let us rewrite Pw(τ) as

Pw(τ) =
(
A+Bv(τ)2 +Ca(τ)

)
v(τ).

Since the air resistance is much smaller than the other components (that is, Bv(τ)2 ≪ |A+Ca(τ)| for the

bus specifications and speed profiles we are interested in), we can formulate this optimization problem as

follows when α > 0 (for α < 0, the power constraint is redundant):

min{τ1 + τ2 : aτ1 ≤Vmax, aτ1τ2 = d, τ2 ≥ τ1, Pw(τ1)≤ min{Pmax,κaτ1)}}.

We can eliminate τ2 by substituting d
aτ1

:

min

{
τ1 +

d
aτ1

: aτ1 ≤Vmax,
d

aτ1
≥ τ1, Pw(τ1)≤ Pmax,τ ≤

√
κ −A−Ca

Ba2

}
.

Note that τ1 +
d

aτ1
is a convex function with its minimizer at τ1 =

√
d
a . Since the cubic polynomial Pw(τ1) is

increasing under our assumptions, there exists a single root for Pw(τ1) = Pmax, which we denote by τR (note

that we can search for that root in the interval [0, Vmax
a ]). Finally, we conclude that the optimal solution is

τ
∗
1 = min

{√
d
a
,
Vmax

a
,

√
κ −A−Ca

Ba2 ,τR

}
and τ

∗
2 =

d
aτ∗

1
.

Appendix A.2. Calculating the Energy Consumption for BEBs

• In the acceleration phase, that is τ ∈ [0,τ1], we have a(τ) = a, v(τ) = aτ , and we are interested in the

following integral: ∫
τ1

0
Pw(τ)dτ =

∫
τ1

0
(A+Ba2

δ
2 +Ca)aτdτ.
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– If A+Ca ≥ 0, we have∫
τ1

0
Pbat(τ)dτ =

1
ηtηm

∫
τ1

0
Pw(τ)dτ =

1
ηtηm

∫
τ1

0

(
A+B(aτ)2 +Ca

)
(aτ)dτ

=
1

ηtηm

[
1
2
(A+Ca)aτ

2
1 +

1
4

Ba3
τ

4
1

]
.

– If A+Ca < 0 and τ̄ :=
√

−(A+Ca)
Ba2 ≥ τ1, we have

∫
τ1

0
Pbat(τ)dτ = ηtηmηrb

∫
τ1

0
Pw(τ)dτ = ηtηmηrb

[
1
2
(A+Ca)aτ

2
1 +

1
4

Ba3
τ

4
1

]
.

– If A+Ca < 0 and τ̄ :=
√

−(A+Ca)
Ba2 < τ1, we have

∫
τ1

0
Pbat(τ)dτ = ηtηmηrb

∫
τ̄

0
(A+Ba2

δ
2 +Ca)aδdδ +

1
ηtηm

∫
τ1

τ̄

(A+Ba2
δ

2 +Ca)aδdδ

= ηtηmηrb

[
1
2
(A+Ca)aτ̄

2 +
1
4

Ba3
τ̄

4
]
+

1
ηtηm

[
1
2
(A+Ca)a(τ2

1 − τ̄
2)+

1
4

Ba3(τ4
1 − τ̄

4)

]
.

• In the constant speed phase, that is τ ∈ [τ1,τ2], we have a(τ) = 0 and v(τ) = aτ1, and we are interested

in the following integral:∫
τ2

τ1

Pw(τ)dτ =
∫

τ2

τ1

(
A+B(aτ1)

2)(aτ1)dτ =
(
A+B(aτ1)

2)(aτ1)(τ2 − τ1) =: C .

– If C ≥ 0, we have ∫
τ2

τ1

Pbat(τ)dτ =
1

ηtηm

∫
τ2

τ1

Pw(τ)dτ =
1

ηtηm
C .

– If C < 0, we have ∫
τ2

τ1

Pbat(τ)dτ = ηtηmηrb

∫
τ2

τ1

Pw(τ)dτ = ηtηmηrbC .

• In the deceleration phase, that is τ ∈ [τ2,τ1 + τ2], we have a(τ) = −a and v(τ) = a(τ1 + τ2 − t). Let

us first apply change of variables δ = τ1 + τ2 − τ so that we are interested in the following integral:∫
τ1+τ2

τ2

Pw(τ)dτ =
∫

τ1

0
Pw(τ1 + τ2 −δ )dδ =

∫
τ1

0
(A+Ba2

δ
2 −Ca)aδdδ .

– If A−Ca ≥ 0, we have∫
τ1+τ2

τ2

Pbat(τ)dτ =
1

ηtηm

∫
τ1

0
(A+Ba2

δ
2 −Ca)aδdδ =

1
ηtηm

[
1
2
(A−Ca)aτ

2
1 +

1
4

Ba3
τ

4
1

]
.
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– If A−Ca < 0 and δ̄ :=
√

Ca−A
Ba2 ≥ τ1, we have

∫
τ1+τ2

τ2

Pbat(τ)dτ =ηtηmηrb

∫
τ1

0
(A+Ba2

δ
2−Ca)aδdδ =ηtηmηrb

[
1
2
(A−Ca)aτ

2
1 +

1
4

Ba3
τ

4
1

]
.

– If A−Ca < 0 and δ̄ :=
√

Ca−A
Ba2 < τ1, we have

∫
τ1+τ2

τ2

Pbat(τ)dτ = ηtηmηrb

∫
δ̄

0
(A+Ba2

δ
2 −Ca)aδdδ +

1
ηtηm

∫
τ1

δ̄

(A+Ba2
δ

2 −Ca)aδdδ

= ηtηmηrb

[
1
2
(A−Ca)aδ̄

2 +
1
4

Ba3
δ̄

4
]
+

1
ηtηm

[
1
2
(A−Ca)a(τ2

1 − δ̄
2)+

1
4

Ba3(τ4
1 − δ̄

4)

]
.

For the energy requirement calculations, we use the parameters listed in Table A.11 for BEBs. Vehicle

mass m includes the body mass mbody and the energy capacity multiplied with the unit battery mass mbat .

Table A.11: List of parameters for traction power and battery power calculations (acceleration and vehicle
body mass are given for 8, 10, 12, 18 m bus groups, respectively).

Parameter Value Parameter Value
fr 0.01 ρair 1.225 kg/m3

CD 0.7 g 9.81 m/s2

A f 0.85×3.25×2.55 = 7.04m2 ηt 0.9
ηm 0.9 ηrb 0.25

mbody 9.5, 15, 16, 25 tonnes mbat 5 kg/kWh
meq 1.1×m a 2.1, 1.8, 1.7, 1.5 m/s2

33



Appendix B. Data

Appendix B.1. IETT Data Details

Here is a snapshot of the “Trip Schedule" dataset:

Figure B.9: Snapshot of the “Trip Schedule" dataset.

Summary statistics of the “Trip Schedule" dataset are provided in Table B.12.

Table B.12: Trip schedule summaries for March 15 and August 3, 2023. On March 15, service trips were
planned for 2,863 route types with a total of 13,467 different bus stops visited, while on August 3, services
were planned for 2,704 route types with 13,501 different bus stops visited.

Bus Length Group (m) Summer Schedule (August 3, 2023) Winter Schedule (March 15, 2023)
Total PlannedTotal PlannedTotal AssignedTotal PlannedTotal PlannedTotal Assigned

Services Distance (km) Routes Services Distance (km) Routes
6.5-8 2,898 63,525 38 2,948 61,200 37
8-9 277 4,320 14 275 4,308 14

10-11 76 3,086 8 64 2,635 6
11-14 35,761 823,868 738 36,578 853,222 736

11-14 natural gas 1,464 26,448 129 1,554 30,263 145
14-19 7,727 274,523 79 9,130 317,813 98
Total 48,203 1,192,684 820 50,549 1,269,441 819

Here is a snapshot of the “Stop Sequence with Coordinates" dataset:

Figure B.10: Snapshot of the “Stop Sequence with Coordinates” dataset.
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Appendix B.2. Technological Change

Appendix B.2.1. BEB Technological Change

Table B.13: Technological change for BEBs over the years (energy density is given in Wh/kg and battery
cell cost is given wrt 2023 USD/kWh).

YearEnergy Density Cost YearEnergy Density Cost YearEnergy Density Cost
1991 98.208805.20 2002 188.181327.70 2013 243.23472.73
1992 102.757166.22 2003 193.371014.27 2014 251.54409.52
1993 107.865756.38 2004 209.99 909.97 2015 248.43280.86
1994 112.986451.60 2005 202.72 788.02 2016 259.85235.02
1995 118.666068.66 2006 207.92 675.05 2017 276.47170.31
1996 126.625151.87 2007 222.46 644.22 2018 293.09142.60
1997 130.594398.27 2008 218.30 673.49 2019 313.87119.58
1998 144.803541.91 2009 222.46 580.73 2020 334.64111.57
1999 156.372741.66 2010 230.77 533.49 2021 389.70107.44
2000 160.132576.53 2011 238.04 499.68 2022 444.75119.23
2001 179.871832.35 2012 243.23 507.12 2023 499.80100.63

Table B.14: Clustering results for BEBs.

Clusters Cluster Energy Density Cost Energy Density Cost
ProbabilityImprovement RateImprovement Rate Change Change

2 Clusters
F (0.46) 0.27 1.05 1.31 0.35
S (0.54) 0.19 0.45 1.21 0.63

3 Clusters
F (0.32 ) 0.25 1.14 1.28 0.32
M (0.25) 0.24 0.79 1.27 0.45
S (0.429) 0.21 0.39 1.24 0.68

Appendix B.2.2. HFCB Technological Change

Table B.15: Technological change for HFCBs over the years (fuel cell system cost is given wrt 2016
USD/kW).

YearEfficiencyCost YearEfficiencyCost YearEfficiencyCost
2010 175 2015 99 2020 0.57 76
2011 142 2016 99 2021 0.57
2012 0.50 122 2017 0.55 78 2022 71
2013 0.50 119 2018 79 2023 0.57
2014 107 2019 79 2024 0.60
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Table B.16: Clustering results for HFCBs.

Clusters Cluster Efficiency Cost Efficiency Cost
ProbabilityImprovement RateImprovement Rate Change Change

2 Clusters
F (0.83) 0.09 0.35 1.09 0.71
S (0.17) 0.04 0.09 1.04 0.91

3 Clusters
F (0.33) 0.10 0.43 1.11 0.65
M (0.50) 0.08 0.29 1.08 0.75
S (0.17) 0.04 0.09 1.04 0.91

Appendix B.3. Scenario Table

Table B.17 shows the technological improvements across different stages of each scenario, along with the

scenario’s probability (in percent). The columns labeled S2, S3, S4, and S5 refer to stages 2, 3, 4, and 5,

respectively. In each stage, the first letter represents the BEB improvement, and the second letter refers to

the HFCB improvement. For example, “FS” means that BEBs improve fast, while HFCBs improve slow.
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ID S2 S3 S4 S5 Prob. (%) ID S2 S3 S4 S5 Prob. (%) ID S2 S3 S4 S5 Prob. (%) ID S2 S3 S4 S5 Prob. (%)
1 FF FF FF FF 2.12493 65 FS FF FF FF 0.43523 129 SF FF FF FF 2.49448 193 SS FF FF FF 0.51092
2 FF FF FF FS 0.43523 66 FS FF FF FS 0.08914 130 SF FF FF FS 0.51092 194 SS FF FF FS 0.10465
3 FF FF FF SF 2.49448 67 FS FF FF SF 0.51092 131 SF FF FF SF 2.92830 195 SS FF FF SF 0.59977
4 FF FF FF SS 0.51092 68 FS FF FF SS 0.10465 132 SF FF FF SS 0.59977 196 SS FF FF SS 0.12284
5 FF FF FS FF 0.43523 69 FS FF FS FF 0.08914 133 SF FF FS FF 0.51092 197 SS FF FS FF 0.10465
6 FF FF FS FS 0.08914 70 FS FF FS FS 0.01826 134 SF FF FS FS 0.10465 198 SS FF FS FS 0.02143
7 FF FF FS SF 0.51092 71 FS FF FS SF 0.10465 135 SF FF FS SF 0.59977 199 SS FF FS SF 0.12284
8 FF FF FS SS 0.10465 72 FS FF FS SS 0.02143 136 SF FF FS SS 0.12284 200 SS FF FS SS 0.02516
9 FF FF SF FF 2.49448 73 FS FF SF FF 0.51092 137 SF FF SF FF 2.92830 201 SS FF SF FF 0.59977

10 FF FF SF FS 0.51092 74 FS FF SF FS 0.10465 138 SF FF SF FS 0.59977 202 SS FF SF FS 0.12284
11 FF FF SF SF 2.92830 75 FS FF SF SF 0.59977 139 SF FF SF SF 3.43757 203 SS FF SF SF 0.70408
12 FF FF SF SS 0.59977 76 FS FF SF SS 0.12284 140 SF FF SF SS 0.70408 204 SS FF SF SS 0.14421
13 FF FF SS FF 0.51092 77 FS FF SS FF 0.10465 141 SF FF SS FF 0.59977 205 SS FF SS FF 0.12284
14 FF FF SS FS 0.10465 78 FS FF SS FS 0.02143 142 SF FF SS FS 0.12284 206 SS FF SS FS 0.02516
15 FF FF SS SF 0.59977 79 FS FF SS SF 0.12284 143 SF FF SS SF 0.70408 207 SS FF SS SF 0.14421
16 FF FF SS SS 0.12284 80 FS FF SS SS 0.02516 144 SF FF SS SS 0.14421 208 SS FF SS SS 0.02954
17 FF FS FF FF 0.43523 81 FS FS FF FF 0.08914 145 SF FS FF FF 0.51092 209 SS FS FF FF 0.10465
18 FF FS FF FS 0.08914 82 FS FS FF FS 0.01826 146 SF FS FF FS 0.10465 210 SS FS FF FS 0.02143
19 FF FS FF SF 0.51092 83 FS FS FF SF 0.10465 147 SF FS FF SF 0.59977 211 SS FS FF SF 0.12284
20 FF FS FF SS 0.10465 84 FS FS FF SS 0.02143 148 SF FS FF SS 0.12284 212 SS FS FF SS 0.02516
21 FF FS FS FF 0.08914 85 FS FS FS FF 0.01826 149 SF FS FS FF 0.10465 213 SS FS FS FF 0.02143
22 FF FS FS FS 0.01826 86 FS FS FS FS 0.00374 150 SF FS FS FS 0.02143 214 SS FS FS FS 0.00439
23 FF FS FS SF 0.10465 87 FS FS FS SF 0.02143 151 SF FS FS SF 0.12284 215 SS FS FS SF 0.02516
24 FF FS FS SS 0.02143 88 FS FS FS SS 0.00439 152 SF FS FS SS 0.02516 216 SS FS FS SS 0.00515
25 FF FS SF FF 0.51092 89 FS FS SF FF 0.10465 153 SF FS SF FF 0.59977 217 SS FS SF FF 0.12284
26 FF FS SF FS 0.10465 90 FS FS SF FS 0.02143 154 SF FS SF FS 0.12284 218 SS FS SF FS 0.02516
27 FF FS SF SF 0.59977 91 FS FS SF SF 0.12284 155 SF FS SF SF 0.70408 219 SS FS SF SF 0.14421
28 FF FS SF SS 0.12284 92 FS FS SF SS 0.02516 156 SF FS SF SS 0.14421 220 SS FS SF SS 0.02954
29 FF FS SS FF 0.10465 93 FS FS SS FF 0.02143 157 SF FS SS FF 0.12284 221 SS FS SS FF 0.02516
30 FF FS SS FS 0.02143 94 FS FS SS FS 0.00439 158 SF FS SS FS 0.02516 222 SS FS SS FS 0.00515
31 FF FS SS SF 0.12284 95 FS FS SS SF 0.02516 159 SF FS SS SF 0.14421 223 SS FS SS SF 0.02954
32 FF FS SS SS 0.02516 96 FS FS SS SS 0.00515 160 SF FS SS SS 0.02954 224 SS FS SS SS 0.00605
33 FF SF FF FF 2.49448 97 FS SF FF FF 0.51092 161 SF SF FF FF 2.92830 225 SS SF FF FF 0.59977
34 FF SF FF FS 0.51092 98 FS SF FF FS 0.10465 162 SF SF FF FS 0.59977 226 SS SF FF FS 0.12284
35 FF SF FF SF 2.92830 99 FS SF FF SF 0.59977 163 SF SF FF SF 3.43757 227 SS SF FF SF 0.70408
36 FF SF FF SS 0.59977 100 FS SF FF SS 0.12284 164 SF SF FF SS 0.70408 228 SS SF FF SS 0.14421
37 FF SF FS FF 0.51092 101 FS SF FS FF 0.10465 165 SF SF FS FF 0.59977 229 SS SF FS FF 0.12284
38 FF SF FS FS 0.10465 102 FS SF FS FS 0.02143 166 SF SF FS FS 0.12284 230 SS SF FS FS 0.02516
39 FF SF FS SF 0.59977 103 FS SF FS SF 0.12284 167 SF SF FS SF 0.70408 231 SS SF FS SF 0.14421
40 FF SF FS SS 0.12284 104 FS SF FS SS 0.02516 168 SF SF FS SS 0.14421 232 SS SF FS SS 0.02954
41 FF SF SF FF 2.92830 105 FS SF SF FF 0.59977 169 SF SF SF FF 3.43757 233 SS SF SF FF 0.70408
42 FF SF SF FS 0.59977 106 FS SF SF FS 0.12284 170 SF SF SF FS 0.70408 234 SS SF SF FS 0.14421
43 FF SF SF SF 3.43757 107 FS SF SF SF 0.70408 171 SF SF SF SF 4.03541 235 SS SF SF SF 0.82653
44 FF SF SF SS 0.70408 108 FS SF SF SS 0.14421 172 SF SF SF SS 0.82653 236 SS SF SF SS 0.16929
45 FF SF SS FF 0.59977 109 FS SF SS FF 0.12284 173 SF SF SS FF 0.70408 237 SS SF SS FF 0.14421
46 FF SF SS FS 0.12284 110 FS SF SS FS 0.02516 174 SF SF SS FS 0.14421 238 SS SF SS FS 0.02954
47 FF SF SS SF 0.70408 111 FS SF SS SF 0.14421 175 SF SF SS SF 0.82653 239 SS SF SS SF 0.16929
48 FF SF SS SS 0.14421 112 FS SF SS SS 0.02954 176 SF SF SS SS 0.16929 240 SS SF SS SS 0.03467
49 FF SS FF FF 0.51092 113 FS SS FF FF 0.10465 177 SF SS FF FF 0.59977 241 SS SS FF FF 0.12284
50 FF SS FF FS 0.10465 114 FS SS FF FS 0.02143 178 SF SS FF FS 0.12284 242 SS SS FF FS 0.02516
51 FF SS FF SF 0.59977 115 FS SS FF SF 0.12284 179 SF SS FF SF 0.70408 243 SS SS FF SF 0.14421
52 FF SS FF SS 0.12284 116 FS SS FF SS 0.02516 180 SF SS FF SS 0.14421 244 SS SS FF SS 0.02954
53 FF SS FS FF 0.10465 117 FS SS FS FF 0.02143 181 SF SS FS FF 0.12284 245 SS SS FS FF 0.02516
54 FF SS FS FS 0.02143 118 FS SS FS FS 0.00439 182 SF SS FS FS 0.02516 246 SS SS FS FS 0.00515
55 FF SS FS SF 0.12284 119 FS SS FS SF 0.02516 183 SF SS FS SF 0.14421 247 SS SS FS SF 0.02954
56 FF SS FS SS 0.02516 120 FS SS FS SS 0.00515 184 SF SS FS SS 0.02954 248 SS SS FS SS 0.00605
57 FF SS SF FF 0.59977 121 FS SS SF FF 0.12284 185 SF SS SF FF 0.70408 249 SS SS SF FF 0.14421
58 FF SS SF FS 0.12284 122 FS SS SF FS 0.02516 186 SF SS SF FS 0.14421 250 SS SS SF FS 0.02954
59 FF SS SF SF 0.70408 123 FS SS SF SF 0.14421 187 SF SS SF SF 0.82653 251 SS SS SF SF 0.16929
60 FF SS SF SS 0.14421 124 FS SS SF SS 0.02954 188 SF SS SF SS 0.16929 252 SS SS SF SS 0.03467
61 FF SS SS FF 0.12284 125 FS SS SS FF 0.02516 189 SF SS SS FF 0.14421 253 SS SS SS FF 0.02954
62 FF SS SS FS 0.02516 126 FS SS SS FS 0.00515 190 SF SS SS FS 0.02954 254 SS SS SS FS 0.00605
63 FF SS SS SF 0.14421 127 FS SS SS SF 0.02954 191 SF SS SS SF 0.16929 255 SS SS SS SF 0.03467
64 FF SS SS SS 0.02954 128 FS SS SS SS 0.00605 192 SF SS SS SS 0.03467 256 SS SS SS SS 0.00710

Table B.17: Scenario Table
37



Appendix C. Detailed Results of the Sensitivity Analysis

Appendix C.1. Relaxed Budget
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Figure C.11: Relaxed Budget

Figure C.11 represents the case where the annual budget is set at 300 million USD. The optimization process

took 5,888 seconds, resulting in an objective function value of 13,586,698,671 USD. After rounding the

variables, the objective function value increased to 13,615,884,770 USD.
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Figure C.12: Relaxed Budget -four specific scenarios.
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Appendix C.2. Strict Emission Constraints
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Figure C.13: Strict Emission Constraints

Figure C.13 represents the case with only zero emission limits in the final period, and without any inter-

mediate targets. The optimization process took 4,877 seconds, resulting in an objective function value of

14,133,211,491 USD. After rounding the variables, the objective function value increased to 14,165,320,512

USD.
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Figure C.14: Strict Emission Constraints
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Appendix C.3. Reduced Hydrogen Price
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Figure C.15: Reduced Hydrogen Price

Figure C.15 represents the case where hydrogen price is reduced to 2 USD per kg. The optimization process

took 6,133 seconds, resulting in an objective function value of 14,099,073,373 USD. After rounding the

variables, the objective function value increased to 14,129,697,437 USD.
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Figure C.16: Reduced Hydrogen Price
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Appendix D. Detailed Results of Model Comparison

Appendix D.1. Base Case - Simplified Assignments

0 50 100 150 200 250
0

0.5

1

1.5

·104

scenario index

#b
us

es
pu

rc
ha

se
d

DB BEB HFCB

0

2

4

6

8

10

12

C
ost(in

B
illion

U
SD

)

Investment O&M

Figure D.17: Base Case with Simplified Assignments

Figure D.17 represents the simplified assignments version of the Base Case. In this case, we assume that for

route-bus length pairs with a higher demand in the winter, the buses assigned to a cluster will remain in that

cluster on all other seasons. However, we adjust the O&M costs based on the seasonal difference in demand.

The optimization process took 1,770 seconds, resulting in an objective function value of 14,111,317,685

USD. After rounding the variables, the objective function value increased to 14,136,930,170 USD.
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Figure D.18: Base Case - Simplified Assignments
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Appendix D.2. Extended Scenario Tree - 3 By 2

We present the results of the Extended Scenario Tree - 3 By 2 case in Figure D.19. In this case, three

branches for BEB technological improvements and 2 branches for HFCB technological improvements are

considered in each stage. Similar to Appendix D.1, we simplify the assignment decisions for route-bus

length combinations having higher demand in the winter. CPU time is 17,673 seconds, the total expected

costs is 13,265,506,356 USD, which increases to 13,288,586,164 USD after rounding the variables.
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Figure D.19: Extended Scenario Tree - 3 By 2

Appendix D.3. Extended Scenario Tree - 2 By 3

We present the results of the Extended Scenario Tree - 2 By 3 case in Figure D.20. In this case, two

branches for BEB technological improvements and three branches for HFCB technological improvements

are considered in each stage. We used simplified assignment decisions, similar to the simplified base case
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(Section Appendix D.1).
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Figure D.20: Extended Scenario Tree - 2 By 3

CPU time is 26,039 seconds and the total expected cost is 14,111,360,587 USD, which increases to

14,137,237,734 USD after rounding the variables.
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