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Abstract

This paper revisits the generic structured primal-dual problem involving the infimal convo-
lution in real Hilbert spaces. For this purpose, we develop a stochastic primal-dual splitting
with variance reduction for solving this generic problem. Weak almost sure convergence of the
iterates is proved. The linear convergence rate of the primal-dual gap is obtained under an
additional condition like the strong convexity.
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1 Introduction

In this paper, we revisit the following saddle point problem in real Hilbert spaces.

Problem 1.1 Let
(
H, ⟨· | ·⟩

)
,

(
G, ⟨· | ·⟩

)
be separable real Hilbert spaces. Let f : H → ]−∞, +∞]

and g : G → ]−∞, +∞] be proper lower semicontinuous convex functions. Let h : H → R and
ℓ : G → R be convex differentiable functions. Let K : H → G be a non zero bounded linear operator.
The problem is to

min
x∈H

max
v∈G

G(x, v),

where the Lagrangian function G is defined by

G : H × G → R ∪ {−∞, +∞}
(x, v) 7→ h(x) + f(x) + ⟨Kx | v⟩ − g⋆(v) − ℓ(v), (1.1)
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where g⋆ denotes the Fenchel conjugate of the function g, see Section 2 for further details.

Various special cases of this problem with ℓ ≡ 0 can be found in [6, 8, 9, 11, 12, 15, 17, 19, 21]. These
special cases often arise in machine learning, image processing, statistics, game theory, portfolio
optimization [1, 12, 14, 16, 18, 19, 20, 27, 28, 33, 35, 36]. We first state additional assumptions
related to Problem 1.1 which will be used throughout this paper before motivating its investigation
by a couple of examples.

Assumption 1.2 The following assumptions will be used in this paper.

(i) There exists a point (x⋆, v⋆) ∈ H × G that verifies the following saddle point conditions for
the Lagrangian function G defined by (1.1):(

∀x ∈ H
)(

∀v ∈ G
)

G(x⋆, v) ≤ G(x⋆, v⋆) ≤ G(x, v⋆), (1.2)

Further, we denote by S the set of all points (x⋆, v⋆) such that conditions (1.2) are fully
satisfied.

(ii) The functions h and ℓ are defined by finite sums, i.e., h = 1
n

n∑
i=1

hi and ℓ = 1
n′

n′∑
j=1

ℓj , where n

and n′ are positive integers and hi : H → R and ℓj : G → R are differentiable convex functions
with µi and νj-Lipschitz gradient, respectively, ∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , n′}.

When n = n′ = 1, as mentioned above, various examples can be found in the literature. Below, we
present an example for the case when n′ > 1 and n > 1.

Example 1.3 [Regularized Wasserstein barycenter problem [32, Remark 5.8]] Let m, p, p′ and
(nk)1≤k≤p be strictly positive integer. Let ∆m be the standard simplex in H = Rm, ∆m ={
x ∈ Rm | x ≥ 0,

∑m
i=1 xi = 1

}
. For every k ∈ {1, . . . , p}, let F k : Rm → Rnk be a lin-

ear mapping. Let (θk)1≤k≤p be the observation of an unknown vector x ∈ ∆m through F k,
θk ≈ F kx. Let α = (αk)1≤k≤p ∈ ∆p. The regularized Wasserstein barycenter problem can
be formulated as the following saddle point problem in the real Hilbert spaces H = Rm and
G = Rn1 × . . . × Rnp × Rm1 × . . . × Rmp′ :

min
x∈∆m

max
η1∈Rn1 ,...,ηp∈Rnp

ζ1∈Rm1 ,...,ζp′ ∈R
mp′

p∑
k=1

[ 〈
αkηk | F kx

〉
−αkγk

nk∑
j=1

θk
j log

( nk∑
i=1

exp
(ηk

i − Ck
i,j

γk

))]

+
p′∑

r=1

[
⟨ζr | Brx⟩ − (Jr)⋆(ζr)

]
,

where (γk)1≤k≤p are strictly positive parameters, Ck = (Ck
i,j)1≤i,j≤nk

is a given matrix, Br : Rm →
Rmr is a linear mapping, and Jr : Rmr → ]−∞, +∞] is a proper lower semicontinous convex
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function. This problem formulation is an instance of Problem 1.1 with

n′ = p,

h = 0, f = ι∆m ,

v = (η1, . . . , ηp, ζ1, . . . , ζp′),

⟨K· | ·⟩ : (x, v) 7→
p∑

k=1

〈
αkηk | F kx

〉
+

p′∑
r=1

⟨ζr | Brx⟩ ,

g⋆ : v 7→
p′∑

r=1
(Jr)⋆(ζr),

ℓ : v 7→
p∑

k=1
αkγk

nk∑
j=1

θk
j log

( nk∑
i=1

exp
(ηk

i − Ck
i,j

γk

))
.

Indeed, it is proved in [32] that ℓ is a differentiable function with Lipschitz continuous gradient.

Example 1.4 [Entropy regularized LPBoost [33]] Let U = (ui,j)1≤i≤m,1≤j≤p be a given matrix;
α, β, γ are positive parameters. The problem is to find

min
x∈∆m,xi≤α

max
y∈∆p

xT Uy + β∥V x∥2 − γ∥Wy∥2,

where V and W are linear mappings on Rm and Rp, respectively. This problem can be formulated
as an instance of Problem 1.1 together with

H = Rm, G = Rp

h = β∥V x∥2, f = ιx∈∆m,xi≤α

⟨K· | ·⟩ : (x, y) 7→ xT Uy

g⋆ = 0, ℓ : y 7→ γ∥Wy∥2.

Example 1.5 Example for non-trivial, non-smooth g⋆ was given in [2, Section 5].

The saddle point problem has been investigated using Primal-dual Splitting (PDS) algorithms
in [3, 4, 5, 7, 11, 14, 34] and recently in [25, 26, 32]. PDS methods for solving monotone inclusion
problems are motivated by the fact that i) a wide variety of convex optimization problems such
as location problems, support vector machine problems for classication and regression, problems
in clustering and portfolio optimization as well as signal and image processing problems, all of
them potentially possessing nonsmooth terms in their objectives, can be reduced to the solving of
monotone inclusion problems blending linearly composed maximally monotone operators, parallel
sums of maximally monotone operators and/or single-valued Lipschitzian or cocoercive monotone
operators, and ii) classical splitting algorithms such as forward-backward algorithm [Bauschke,
H.H., Combettes, P.L], Tseng’s forward-backward-forward algorithm and Douglas-Rachford algo-
rithm and variants yield considerable limitations when employed on monotone inclusion problems
as they require computation of the resolvent(s) of linearly composed maximally monotone operators
or of parallel sums of maximally monotone operators, for which exact formulae are available only
in very exceptional situations; thus, simply inapplicable in practice. PDS methods overcome this

3



shortcoming by solving the primal-dual pair formed by the monotone inclusion and its dual (in
the sense of Attouch-Thera or the classical Fenchel–Rockafellar duality framework) reformulated
as a monotone inclusion problem in a corresponding product space. The PDS algorithmic scheme
follows by applying standard splitting algorithms in an appropriate way. Subsequently, primal-dual
splitting methods have been extensively investigated and have found many applications in applied
mathematics; see [3, 6, 7, 8, 11, 12, 15, 17, 34] for instances. The first PDS algorithmic framework
for solving structured composite problems involving infimal convolutions was proposed in [14]. This
prototypical problem was then further investigated in [11]. Further developments and convergence
analysis of the algorithmic framework developed in [14] can be found in [4].

Deterministic primal-dual splitting methods often evaluate the full gradient of h and ℓ. When n
and n′ remain relative small, Problem 1.1 can be solved efficiently by various deterministic primal-
dual algorithms; see [7, 14, 15, 34] for examples. However, when n and n′ are (very) large, the
evaluation of the full gradient of h and ℓ becomes prohibitive since the computational cost increases
with n and n′.

In turn, stochastic primal-dual splitting methods are often used alternatively. Recently, stochas-
tic methods have found large interest in solving various problems see [1, 20, 21, 26, 30, 31, 33] for
instances. Stochastic primal-dual splitting methods with variance reduction have been served as
a standard approach to improve their convergence profiles. The reason being that computing the
iterates of stochastic gradient does not ensure convergence to the solution without either ensuring
the sequence of stepsizes is decreasing or involving variance reduction techniques. Variance reduc-
tion methods use ∇hi(xk) to update an estimate tk of the gradient so that tk ≈ ∇h(xk) as opposed
to classical methods which use one or more ∇hi(xk) directly as an approximation of ∇h(xk). With
this gradient estimate, one then takes approximate gradient steps of the form xk+1 = xk − γtk,
where γ > 0 is the stepsize. To ensure its convergence with a constant stepsize, one verifies that
the variance of the gradient estimate tk converges to zero, that is E[∥tk − ∇h(xk)∥2] k→∞−−−→ 0, where
the expectation is taken with respect to all the random variables in the algorithm up to iteration
k. This property is responsible for the faster convergence of VR methods and ensures that the VR
method will stop when reaching the optimal point.

Challenges: As mentioned there are several primal-dual splitting (PDS) methods that can be used
for solving Problem 1.1 in both deterministic and stochastic setting. The main challenge addressed
in this paper resides in the use of variance reduction with both primal function h and dual function
ℓ to improve the convergence profile. This issue was partly addressed in [25] albeit without strong
guarantees for the convergence of the iteration sequence. We highlight below the existing framework
proposed to solve the saddle-point Problem 1.1 in the stochastic setting for nontrivial functions ℓ.

(i) The work in [25] structured a stochastic Bregman PDS method for solving Problem 1.1. This
work exploited the variance reduction technique and obtain the convergence of the primal-dual
function only.

(ii) The work in [32] developed a stochastic Bregman PDS method for solving Problem 1.1. This
work can be viewed as a stochastic extension of the work in [15, 34] with Bregman distance.
However, this work does not exploit the variance reduction technique; hence, it imposes a
quite strong condition on the variance.

(iii) The work in [26, Section 4] is an alternative method for solving Problem 1.1. However, here
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too, this work does not exploit the variance reduction technique and imposes consequently a
quite strong condition on the variance.

Main objective Recently, several stochastic variance reduction algorithms [1, 10, 24, 25, 33] have
appeared that can be used to solve Problem 1.1. The objective of this paper is to develop a novel
stochastic primal-dual splitting method with variance reduction for solving Problem 1.1 when n
and n′ are very large and investigate its convergence properties.

Contribution In this paper, we develop new stochastic primal-dual splitting methods for solving
Problem 1.1, which incorporate the following features: (i) Using the acceleration technique in
terms of variance reduction to obtain a faster convergence rate; (ii) The proposed algorithm is full
splitting. Further, we prove the almost sure convergence of the iteration sequence for the general
case. In the strongly convex case, we obtain the linear convergence in expectation of the primal-dual
sequences.

Structure The remainder of this paper is organized as follows. In Section 2, we recall the base
notions in convex analysis that will be used in the proof of the convergence of the proposed stochastic
primal-dual splitting algorithm with variance reduction. Subsequently, in Section 3, we detail the
proposed algorithm and the obtained convergence results.

2 Preliminaries

In this paper, we use the notations ⟨. | .⟩ and ∥.∥ for inner product and norm in the spaces H, G.
The conjugate of the operator K is denoted by K⋆. The domain of a function f : H → ]−∞, +∞]
is dom(f) =

{
x ∈ H | f(x) < +∞

}
. This function is proper if dom(f) ̸= ∅. We denote Γ0(H) the

class of all proper lower semicontinuous convex functions f from H to ]−∞, +∞]. We define by
H × G the standard product space equipped with the norm (x, v) 7→

√
∥x∥2 + ∥v∥2.

Let A be a set-valued operator on H, i.e. A : H → 2H, the inverse of the operator A is defined
as A−1 : u 7→

{
x ∈ H | u ∈ Ax

}
. Denote 1, n = {1, 2, 3, . . . , n}.

Definition 2.1 A mapping T : H → H is α−cocoercive (α ∈]0, +∞[) if

(∀x ∈ H)(∀y ∈ H) ⟨Tx − Ty | x − y⟩ ≥ α∥Tx − Ty∥2.

If α = 1, T is firmly nonexpansive or equivalently

(∀x ∈ H)(∀y ∈ H) ∥Tx − Ty∥2 ≤ ∥x − y∥2 − ∥(Id −T )x − (Id −T )y∥2.

Definition 2.2 For f ∈ Γ0(H):

(i) The conjugate (or Fenchel conjugate) of the function f is

f⋆ : a 7→ sup
x∈H

(
⟨a | x⟩ − f(x)

)
.
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(ii) The subdifferential of f is

∂f : H → 2H : x 7→
{
u ∈ H | (∀y ∈ H) ⟨y − x | u⟩ + f(x) ≤ f(y)

}
with inverse given by (∂f)−1 = ∂f⋆

(iii) The proximity operator of f is

proxf : H → H : x 7→ argmin
y∈H

(
f(y) + 1

2∥x − y∥2)
.

Note: proxf = Id − proxf⋆ = (Id +∂f)−1 and proxf is firmly nonexpansive.

(iv) The infimal convolution of two functions ℓ and g from H to ]−∞, +∞] is

ℓ □ g : x 7→ inf
y∈H

(ℓ(y) + g(x − y)).

Note: If g and ℓ are in Γ0(G), the conjugate of the function ℓ □ g is (ℓ □ g)⋆ = g⋆ + ℓ⋆.

Definition 2.3 The function f : H →] − ∞, +∞] is said to be strongly convex if there exists α ∈
]0, +∞[ such that f − α ∥ · ∥2 /2 is convex.

Definition 2.4 The Lagrangian function G is α−strongly convex-concave (α ∈]0, +∞[) if(
∀x ∈ H

)(
∀v ∈ G

)
G(x, v⋆) − G(x⋆, v) ≥ α

2
(
∥x − x⋆∥2 + ∥v − v⋆∥2

)
.

Let (Ω1,F1,P1) be a probability space where Ω1 = {1, . . . , n}, F1 = 2Ω1 , and P1 =
{q1, q2, . . . , qn} with qi ∈ ]0, 1[ ,

∑n
i=1 qi = 1. Let (Ω2,F2,P2) be a probability space where

Ω2 = {1, . . . , n′}, F2 = 2Ω2 , and P2 = {q′
1, q′

2, . . . , q′
n′} with q′

j ∈ ]0, 1[ ,
∑n′

j=1 q′
i = 1. Then

(Ω,F,P) = (Ω1 × Ω2,F1 ⊗ F2,P1 × P2) defines a probability space. A H-valued random vari-
able is a measurable function X : Ω → H, where H is endowed with the Borel σ-algebra. The
σ−algebra generated by a family Φ of random variables is denoted by σ(Φ). The expectation of a
random variable X is denoted by E [X]. The conditional expectation of X given a σ-field A ⊂ F

is denoted by E[X|A]. See [23] for more details on probability Theory in Hilbert spaces. The
abbreviation a.s. stands for ”almost surely”.

Lemma 2.5 ([29, Theorem 1]) Let (Fn)n∈N be an increasing sequence of sub-σ-algebras of F, let
(zn)n∈N, (λn)n∈N, (ζn)n∈N and (tn)n∈N be [0, +∞[-valued random sequences such that, for every
n ∈ N, zn, ξn, ζn and tn are Fn-measurable. Assume moreover that

∑
n∈N tn < +∞,

∑
n∈N ζn <

+∞ a.s. and

(∀n ∈ N) E[zn+1|Fn] ≤ (1 + tn)zn + ζn − λn a.s..

Then (zn)n∈N converges a.s. to a random variable z∞ and (λn)n∈N is summable a.s..

The following lemma can be viewed as direct consequence of [13, Proposition 2.3].

Lemma 2.6 Let C be a non-empty closed subset of H and let (xn)n∈N be a H-valued random se-
quence. Suppose that, for every x ∈ C, (∥xn+1 − x∥)n∈N converges a.s.. Suppose that the set of
weak sequentially cluster points of (xn)n∈N is a subset of C a.s.. Then (xn)n∈N converges weakly
a.s. to a C-valued random vector.
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3 Algorithm and convergence properties

Problem 1.1 can be written following the formulation introduced in [14].

Problem 3.1 Let H, G be separable real Hilbert spaces. Let f : H → ]−∞, +∞] and g : G →
]−∞, +∞] be proper lower semicontinuous convex functions. Let h : H → R and ℓ : G → R be
convex differentiable functions. Let K : H → G be a bounded linear operator. The primal problem
is to

minimize
x∈H

h(x) + (ℓ⋆□g)(Kx) + f(x),

and the dual problem (in the sense of Fenchel-Rockafellar) is to

minimize
v∈G

(h + f)⋆(−K⋆v) + g⋆(v) + ℓ(v).

In Problem 3.1, the functions h and ℓ are given by finite sums, i.e., h = 1
n

n∑
i=1

hi and ℓ = 1
n′

n′∑
j=1

ℓj ,

where n and n′ are positive integers and hi : H → R and ℓj : G → R are differentiable convex
functions with µi and νj-Lipschitz gradient, respectively, ∀i ∈ [1, n] and j ∈ [1, n′].

3.1 Variance reduction step

Before detailing our algorithm, we present the variance reduction step and derive some proper-
ties which need to be proven in order to demonstrate the convergence properties of the proposed
algorithm.

Algorithm 3.2 Let m be a strictly positive integer, let (θk)0≤k≤m−1 and (γk)0≤k≤m−1 be strictly
positive real numbers. Let (x, x0, x−1) ∈ H3 and (v, v0, v−1) ∈ G3. Let Q = {q1, . . . , qn} and
Q′ = {q′

1, . . . , q′
n′} be the probabilities on {1, . . . , n} and {1, . . . , n′}, respectively and iterate

For k = 0, 1, . . . , m − 1
Select ik ∈ {1, . . . , n} randomly according to Q
Select jk ∈ {1, . . . , n′} randomly according to Q′

Compute 

yk = xk + θk(xk − xk−1)

zk = ∇hik
(yk) − ∇hik

(x̄)
qik

n
+ ∇h(x̄)

uk = vk + θk(vk − vk−1)

tk = ∇ℓjk
(uk) − ∇ℓjk

(v̄)
q′

jk
n′ + ∇ℓ(v̄)

Update {
xk+1 = (Id +γk∂f)−1(xk − γkzk − γkK⋆uk)
vk+1 = (Id +γk∂g⋆)−1(vk − γktk + γkKyk).
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end

Hereunder, we prove some results for the convergence of the variance of the H-valued random
sequences (zk)k∈N and (tk)k∈N, and derive the main estimation of the difference G(xk+1, v⋆) −
G(x⋆, vk+1) for (x⋆, v⋆) ∈ S. For this purpose, we need to consider the following results.

Lemma 3.3 [25, Lemma 3.3] Suppose Assumption 1.2 is satisfied. Set LQ = max
i∈1,n

µi/(qin), LQ′ =

max
j∈1,n′

νj/(q′
jn′). Then, for (x, v) ∈ dom(f) × dom(g⋆) and (x⋆, v⋆) ∈ S, we have

1
n

n∑
i=1

1
nqi

∥∇hi(x) − ∇hi(x⋆)∥2 ≤ 2LQ[G(x, v⋆) − G(x⋆, v⋆)],

and
1
n′

n′∑
j=1

1
n′q′

j

∥∇ℓj(v) − ∇ℓj(v⋆)∥2 ≤ 2LQ′ [G(x⋆, v⋆) − G(x⋆, v)].

Corollary 3.4 Under the same assumptions as in Lemma 3.3. Let (xk)k∈N, (yk)k∈N, (uk)k∈N,
(vk)k∈N, (zk)k∈N (tk)k∈N be sequences generated by Algorithm 3.2. Let Eik

and Ejk
be the con-

ditional expectations of ik and jk with respect to the history {(i0, j0), . . . , (ik−1, jk−1)}. Then,
(∀k ∈ N) Eik

[zk] and Ejk
[tk] are unbiased estimators of ∇h(yk) and ∇ℓ(uk), respectively, i.e.,

we have
(∀k ∈ N) Eik

[zk] = ∇h(yk) and Ejk
[tk] = ∇ℓ(uk). (3.1)

Moreover, set L1 = max{LQ, LQ′}, L2 = max
i∈1,n, j∈1,n′

{µ2
i /(qin), ν2

j /(q′
jn′)}. Then, the following

inequalities hold
Eik

∥zk − ∇h(yk)∥2 ≤ 2L2(θ2
k + θk)∥xk − xk−1∥2 + 4(1 + θk)L1[G(xk, v⋆) − G(x⋆, v⋆)]

+4L1[G(x̄, v⋆) − G(x⋆, v⋆))
Ejk

∥tk − ∇ℓ(uk)∥2 ≤ 2L2(θ2
k + θk)∥vk − vk−1∥2 + 4(1 + θk)L1[G(x⋆, v⋆) − G(x⋆, vk)]

+4L1[G(x⋆, v⋆) − G(x⋆, v̄)).

Proof. We take the conditional expectation with respect to ik to obtain

Eik

[ 1
nqik

∇hik
(yk)

]
=

n∑
i=1

qi

nqi
∇hi(yk) =

n∑
i=1

1
n

∇hi(yk) = ∇h(yk).

Similarly, we have Eik
[(1/(nqik

))∇hik
(x̄)] = ∇h(x̄). Therefore,

Eik
[zk] = Eik

[∇hik
(yk) − ∇hik

(x̄)
nqik

+ ∇h(x̄)
]

= ∇h(yk).
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Using the same argument, we also obtain Ejk
[tk] = ∇ℓ(uk). Hence, (3.1) is proved. Next, we bound

the variance.

Eik

[
∥zk − ∇h(yk)∥2

]
= Eik

[∥∥ 1
nqik

(
∇hik

(yk) − ∇hik
(x̄)

)
+ ∇h(x̄) − ∇h(yk)

∥∥2
]

= Eik

[ 1
(nqik

)2 ∥∇hik
(yk) − ∇hik

(x̄)∥2 − ∥∇h(yk) − ∇h(x̄)∥2
]

≤ Eik

[ 1
(nqik

)2 ∥∇hik
(yk) − ∇hik

(x̄)∥2
]

= 1
n

n∑
i=1

1
nqi

∥∇hi(yk) − ∇hi(x̄)∥2

≤ 2
n

n∑
i=1

1
nqi

(
∥∇hi(yk) − ∇hi(x⋆)∥2 + ∥∇hi(x̄) − ∇hi(x⋆)∥2)

. (3.2)

We have

∥∇hi(yk) − ∇hi(x⋆)∥2 = ∥∇hi(yk) − ∇hi(xk)∥2 + ∥∇hi(xk) − ∇hi(x⋆)∥2

+ 2 ⟨∇hi(yk) − ∇hi(xk) | ∇hi(xk) − ∇hi(x⋆)⟩
≤ ∥∇hi(yk) − ∇hi(xk)∥2 + ∥∇hi(xk) − ∇hi(x⋆)∥2

+ 2∥∇hi(yk) − ∇hi(xk)∥∥∇hi(xk) − ∇hi(x⋆)∥
≤ ∥∇hi(yk) − ∇hi(xk)∥2 + ∥∇hi(xk) − ∇hi(x⋆)∥2

+ 2∥∇hi(yk) − ∇hi(xk)∥∥∇hi(xk) − ∇hi(x⋆)∥.

Using the Lipschitzianity of ∇hi, and yk − xk = θk(xk − xk−1), we derive

∥∇hi(yk) − ∇hi(x⋆)∥2 ≤ µ2
i θ2

k∥xk − xk−1∥2 + ∥∇hi(xk) − ∇hi(x⋆)∥2

+ 2µiθk∥xk − xk−1∥∥∇hi(xk) − ∇hi(x⋆)∥.

≤ µ2
i θ2

k∥xk − xk−1∥2 + ∥∇hi(xk) − ∇hi(x⋆)∥2

+ θk

(
µ2

i ∥xk − xk−1∥2 + ∥∇hi(xk) − ∇hi(x⋆)∥2)
= µ2

i (θ2
k + θk)∥xk − xk−1∥2 + (1 + θk)∥∇hi(xk) − ∇hi(x⋆)∥2. (3.3)

Relations (3.2) and (3.3) together with Lemma 3.3 imply that

Eik

[
∥zk − ∇h(yk)∥2

]
≤ 2

n

n∑
i=1

1
nqi

(
µ2

i (θ2
k + θk)∥xk − xk−1∥2 + (1 + θk)∥∇hi(xk) − ∇hi(x⋆)∥2)

+ 2
n

n∑
i=1

1
nqi

∥∇hi(x̄) − ∇hi(x⋆)∥2

≤ 2(θ2
k + θk)
n

n∑
i=1

µ2
i

nqi
∥xk − xk−1∥2 + 4(1 + θk)LQ[G(xk, v⋆) − G(x⋆, v⋆)]

+ 4LQ[G(x̄, v⋆) − G(x⋆, v⋆)]
≤ 2L2(θ2

k + θk)∥xk − xk−1∥2 + 4(1 + θk)L1[G(xk, v⋆) − G(x⋆, v⋆)]
+ 4L1[G(x̄, v⋆) − G(x⋆, v⋆)].
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Here, the second inequality is obtained by using Lemma 3.3.
Similarly, we also have

Ejk

[
∥tk − ∇ℓ(uk)∥2

]
≤ 2L2(θ2

k + θk)∥vk − vk−1∥2

+ 4(1 + θk)L1[G(x⋆, v⋆) − G(x⋆, vk)] + 4L1[G(x⋆, v⋆) − G(x⋆, v̄)).

Hence, the proof is completed.

Remark 3.5 In Corollary 3.4, when θk ≡ 0 or θk ≡ 1, it is shown in [25, Corollary 3.4].

The gradient of the functions h and ℓ are, respectively, µ and ν-Lipschitz continuous, where

µ = 1
n

n∑
i=1

µi, and ν = 1
n′

n′∑
j=1

νj .

Lemma 3.6 Suppose that Assumption 1.2 is satisfied. Let (xk)k∈N, (yk)k∈N, (uk)k∈N, (vk)k∈N,
(zk)k∈N, (tk)k∈N be sequences generated by Algorithm 3.2. Let x = (x, v) ∈ H × G and set{

x̂k+1 = (Id +γk∂f)−1(xk − γk∇h(yk) − γkK∗uk),
v̂k+1 = (Id +γk∂g∗)−1(vk − γk∇ℓ(uk) + γkKyk).

Define

(
∀k ∈ N)



xk = (xk, vk), yk = (yk, uk), x̂k = (x̂k, v̂k),
rk = (zk, tk),
Rk = (∇h(yk), ∇ℓ(uk)),
L : H × G → H × G : (x, v) 7→ (K∗v, −Kx),
bk(x) = ⟨L(xk − xk−1), xk − x⟩.

(3.4)

Set µ0 = max {µ, ν}. Then, the following inequality holds (∀k ∈ {0, . . . , m − 1}),

2γk[G(xk+1, v) − G(x, vk+1)] ≤ 2γkbk+1(x) − 2γkθkbk(x) + ∥xk − x∥2 − ∥xk+1 − x∥2

−
(
1 − γkθk∥K∥ − γkµ0(1 + θk)

)
∥xk+1 − xk∥2

+
(
γkθk∥K∥ + γkµ0(θ2

k + θk)
)
∥xk − xk−1∥2

+ 2γ2
k∥rk − Rk∥2 + 2γk⟨x̂k+1 − x, Rk − rk⟩. (3.5)

Proof. Let k ∈ 0, m − 1. We have vk+1 = (Id +γk∂g⋆)−1(vk − γktk + γkKyk), which is equivalent to

Kyk − tk + 1
γk

(vk − vk+1) ∈ ∂g⋆(vk+1).

Since g⋆ is convex, which implies that, for every v ∈ G,

g⋆(v) ≥ g⋆(vk+1) +
〈

Kyk − tk + 1
γk

(vk − vk+1) | v − vk+1

〉
.

Therefore,

g⋆(vk+1) − g⋆(v) ≤ ⟨tk − Kyk | v − vk+1⟩ + 1
γk

⟨vk − vk+1 | vk+1 − v⟩

= ⟨tk − Kyk | v − vk+1⟩ + 1
2γk

(
∥v − vk∥2 − ∥vk+1 − vk∥2 − ∥v − vk+1∥2)

. (3.6)
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Since ℓ is convex and continuously differentiable with ν-Lipschitz gradient, we have

ℓ(vk+1) − ℓ(v) ≤ ⟨vk+1 − v, ∇ℓ(uk)⟩ + ν

2∥vk+1 − uk∥2. (3.7)

We derive from (3.6) and (3.7) that

G(xk+1, v)−G(xk+1, vk+1) = ⟨Kxk+1 | v − vk+1⟩ − g⋆(v) + g⋆(vk+1) − ℓ(v) + ℓ(vk+1)

≤ ⟨K(xk+1 − yk) | v − vk+1⟩ + 1
2γk

(
∥v − vk∥2 − ∥vk+1 − vk∥2 − ∥v − vk+1∥2)

+ ν

2∥vk+1 − uk∥2 + ⟨∇ℓ(uk) − tk | vk+1 − v⟩ . (3.8)

Similar to (3.8), we have, for every x ∈ H,

G(xk+1, vk+1)−G(x, vk+1) = h(xk+1) − h(x) + ⟨K(xk+1 − x) | vk+1⟩ + f(xk+1) − f(x)

≤ ⟨K(xk+1 − x) | vk+1 − uk⟩ + 1
2γk

(
∥x − xk∥2 − ∥xk+1 − xk∥2 − ∥x − xk+1∥2)

+ µ

2 ∥xk+1 − yk∥2 + ⟨xk+1 − x | ∇h(yk) − zk⟩ . (3.9)

Adding (3.8) and (3.9), we obtain

G(xk+1, v) − G(x, vk+1) ≤
(

⟨K(xk+1 − x) | vk+1 − uk⟩ + ⟨K(xk+1 − yk) | v − vk+1⟩
)

+ 1
2γk

(
∥x − xk∥2 − ∥xk+1 − xk∥2 − ∥x − xk+1∥2 + ∥v − vk∥2 − ∥vk+1 − vk∥2 − ∥v − vk+1∥2

)
+ µ

2 ∥xk+1 − yk∥2 + ν

2∥vk+1 − uk∥2 + ⟨xk+1 − x | ∇h(yk) − zk⟩ + ⟨∇ℓ(uk) − tk | vk+1 − v⟩ .

(3.10)

The first term in the right-hand side of (3.10) can be expressed as

⟨K(xk+1 − x) | vk+1 − uk⟩ = ⟨K(xk+1 − x) | vk+1 − vk − θk(vk − vk−1)⟩
= ⟨K(xk+1 − x) | vk+1 − vk⟩ − θk ⟨K(xk+1 − x) | vk − vk−1⟩
= ⟨K(xk+1 − x) | vk+1 − vk⟩ − θk ⟨K(xk − x) | vk − vk−1⟩

− θk ⟨K(xk+1 − xk) | vk − vk−1⟩ . (3.11)

Similar to (3.11), for the second term of (3.10), we also have

⟨K(xk+1 − yk) | v − vk+1⟩ = ⟨K(xk+1 − xk) | v − vk+1⟩ − θk ⟨K(xk − xk−1) | v − vk⟩
− θk ⟨K(xk − xk−1) | vk − vk+1⟩ . (3.12)

For the next to the last term in (3.10), we rewrite the formulas of x̂k+1 and xk+1 as{
x̂k+1 = (Id +γk∂f)−1(xk − γk∇h(yk) − γkK⋆uk),
xk+1 = (Id +γk∂f)−1(xk − γkzk − γkK⋆uk).

Using the non-expansiveness property of proxf , we have

∥x̂k+1 − xk+1∥ ≤ γk∥zk − ∇h(yk)∥. (3.13)
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In turn,

⟨xk+1 − x | ∇h(yk) − zk⟩
= ⟨xk+1 − x̂k+1 | ∇h(yk) − zk⟩ + ⟨x̂k+1 − x | ∇h(yk) − zk⟩
≤ ∥zk − ∇h(yk)∥∥xk+1 − x̂k+1∥ + ⟨x̂k+1 − x | ∇h(yk) − zk⟩
≤ γk∥zk − ∇h(yk)∥2 + ⟨x̂k+1 − x | ∇h(yk) − zk⟩ . (3.14)

By the same way,

⟨∇ℓ(uk) − tk | vk+1 − v⟩ ≤ γk∥tk − ∇ℓ(uk)∥2 + ⟨∇ℓ(uk) − tk | v̂k+1 − v⟩ . (3.15)

From (3.11), (3.12) and the definitions provided in (3.4), we derive the following identity

⟨K(xk+1 − x) | vk+1 − uk⟩ + ⟨K(xk+1 − yk) | v − vk+1⟩ = bk+1 − θkbk + θk⟨L(xk+1 − xk), xk − xk−1⟩
(3.16)

Therefore, from (3.14), (3.15), (3.16), using µ0 = max {µ, ν}, (3.10) implies

2γk[G(xk+1, v) − G(x, vk+1)] ≤ 2γkbk+1 − 2γkθkbk + 2γkθk⟨L(xk+1 − xk), xk − xk−1⟩
+ ∥xk − x∥2 − ∥xk+1 − x∥2 − ∥xk+1 − xk∥2

+ γkµ0∥xk+1 − yk∥2 + 2γ2
k∥rk − Rk∥2 + 2γk⟨x̂k+1 − x, Rk − rk⟩

(3.17)

Using the Cauchy-Schwartz inequality and the identity ∥L∥ = ∥K∥, we have

⟨L(xk+1 − xk), xk − xk−1⟩ ≤ ∥L∥∥xk+1 − xk∥∥xk − xk−1∥

≤ ∥K∥
2

(
∥xk+1 − xk∥2 + ∥xk − xk−1∥2)

and

∥xk+1 − yk∥2 = ∥xk+1 − xk − θk(xk − xk−1)∥2

≤ ∥xk+1 − xk∥2 + θ2
k∥xk − xk−1∥2 + 2θk∥xk+1 − xk∥∥xk − xk−1∥

≤ (1 + θk)∥xk+1 − xk∥2 + (θ2
k + θk)∥xk − xk−1∥2.

Hence, we derive from (3.17)

2γk[G(xk+1, v) − G(x, vk+1)] ≤ 2γkbk+1 − 2γkθkbk + γkθk∥K∥
(
∥xk+1 − xk∥2 + ∥xk − xk−1∥2)

+ ∥xk − x∥2 − ∥xk+1 − x∥2 − ∥xk+1 − xk∥2

+ γkµ0
(
(1 + θk)∥xk+1 − xk∥2 + (θ2

k + θk)∥xk − xk−1∥2)
+ 2γ2

k∥rk − Rk∥2 + 2γk⟨x̂k+1 − x, Rk − rk⟩,

which implies the desired result. The proof is completed.
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3.2 Proposed algorithm

We propose the following stochastic primal-dual splitting algorithm, where the main step was
already presented in Algorithm 3.2, for solving Problem 3.1.

Algorithm 3.7 Let m be a strictly positive integer, ∀k ∈ {−1, 0, 1, . . . , m}; let (γs
k)s∈N, and (θs

k)s∈N
be bounded strictly positive sequences. Let (x̄0, v̄0) ∈ H×G, (xs

0, xs
−1)s∈N, (vs

0, vs
−1)s∈N be sequences

in H2 and G2 with x0
0 = x0

−1 = x̄0, v0
0 = v0

−1 = v̄0. Let Q = {q1, . . . , qn} and Q′ = {q′
1, . . . , q′

n′} be
the probabilities on {1, . . . , n} and {1, . . . , n′}, respectively.

For s = 0, 1, 2, . . .
x̄ := x̄s, x0 := xs

0, x−1 := xs
−1

v̄ := v̄s, v0 := vs
0, v−1 := vs

−1
For k = 0, 1, . . . , m − 1

Select ik ∈ {1, . . . , n} randomly according to Q
Select jk ∈ {1, . . . , n′} randomly according to Q′

Compute 

yk = xk + θk(xk − xk−1)

zk = ∇hik
(yk) − ∇hik

(x̄)
qik

n
+ ∇h(x̄)

uk = vk + θk(vk − vk−1)

tk = ∇ℓjk
(uk) − ∇ℓjk

(v̄)
q′

jk
n′ + ∇ℓ(v̄)

where (γk, θk) stands for (γs
k, θs

k)

Update {
xk+1 = (Id +γk∂f)−1(xk − γkzk − γkK⋆uk)
vk+1 = (Id +γk∂g⋆)−1(vk − γktk + γkKyk)

end
where for any k ∈ {0, 1, 2, . . . , m − 1} , (yk, zk, uk, tk) stands for (ys

k, zs
k, us

k, ts
k)

and, for any k ∈ {−1, 0, 1, 2, . . . , m}, (xk, vk) stands for (xs
k, vs

k)
Update 

x̄s+1 =
( ∑m−1

k=0 γkxk+1

)
/

( ∑m−1
k=0 γk

)
v̄s+1 =

( ∑m−1
k=0 γkvk+1

)
/

( ∑m−1
k=0 γk

)
.

end
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Note that in Algorithm 3.7, the full gradients ∇h(x̄) and ∇ℓ(v̄) have to be computed only once per
iteration s.

Related work. Recently, a series of primal-dual stochastic methods to solve the convex-concave
saddle point problems have been proposed; see [1, 10, 20, 22, 24, 26, 30, 31, 33, 37, 38] for instances
and the references therein. These methods are different from our proposed algorithm. We highlight
here the comparisons to the one in [25] which is the closest to us. Basically, Algorithm 3.7 shares
the same structure as the one proposed in [25]. The main differences are listed below.

(i) The work in [25] considered only the case when θk ≡ 0 or θk ≡ 1 and γk ≡ γ in non-Euclidean
spaces with Bregman distances.

(ii) The updating rule of (xs+1, vs+1) in the strongly convex case is different from the work in
[25].

3.3 Convergence results

The convergence of Algorithm 3.7 depends on the choices of (θs
k)s∈N, and (γs

k)s∈N
(∀k ∈ {0, . . . , m − 1}, m ∈ N) as well as the choices of (xs

0, xs
−1)s∈N, and (vs

0, vs
−1)s∈N. Here below,

we prove the almost sure weak convergence of the sequence (x̄s, v̄s)s∈N in the general case, i.e., the
Lagrangian function G is convex-concave.

Our proof technique of the almost sure weak convergence relies on the reduction of the variance
with respect to the Lagrangian function G. A main advantage of this approach is that one can
remove the condition imposed on the summability of the variance in [26].

Theorem 3.8 Suppose Assumption 1.2 is satisfied. Let (x̄s)s∈N, (v̄s)s∈N be sequences generated by
Algorithm 3.7 with xs+1

−1 = xs
m−1, xs+1

0 = xs
m. Assume that

(i) (∀s ∈ N), 
γs

k+1 = γs
k/θs

k+1 ∀k ∈ {0, . . . , m − 1},

γs
m = γs

m−1 = γs+1
0 ,

θs
m = θs+1

0 = 1.

(3.18)

and
m−1∑
k=0

γs
k ≥

m−1∑
k=0

γs+1
k . (3.19)

(ii) There exist positive constants c, α, γ, θ such that

(∀s ∈ N, ∀k ∈ {0, . . . , m})


α ≤ γs

k ≤ γ

θs
k ≤ θ

(γs
k)2 ≤ cγγs

k−1

(3.20)

14



and {
2γθ∥K∥ + γµ0(θ + 1)2 + 4(θ2 + θ)L2γ2 < 1
4L1γ

(
(1 + θ)c + 1

)
< 1.

(3.21)

Then (x̄s, v̄s)s∈N converges weakly to a point in S a.s..

Proof. At stage s, for k ∈ {0, 1, 2, . . . , m − 1}, we rewrite (3.5) with x = x⋆, v = v⋆, using
γk = θk+1γk+1, we get

2γk[G(xk+1, v⋆) − G(x⋆, vk+1)] ≤ 2γk+1θk+1bk+1 − 2γkθkbk + ∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

−
(
1 − γkθk∥K∥ − γkµ0(1 + θk)

)
∥xk+1 − xk∥2

+
(
γkθk∥K∥ + γkµ0(θ2

k + θk)
)
∥xk − xk−1∥2

+ 2γ2
k∥rk − Rk∥2 + 2γk⟨x̂k+1 − x⋆, Rk − rk⟩. (3.22)

Denote ξk = (ik, jk). Let Eξk
:= Eξs

k
be the conditional expectation with respect to the history

{(i0, j0), . . . , (ik−1, jk−1)}. Using Corollary 3.4 and the fact x̂k+1 is ξk-measurable, we derive

Eξk
[∥rk−Rk∥2] ≤ 2L2(θ2

k+θk)∥xk−xk−1∥2+4L1(1+θk)[G(xk, v⋆)−G(x⋆, vk)]+4L1[G(x̄, v⋆)−G(x⋆, v̄)].

Therefore, inequality (3.22) implies

2γkEξk
[G(xk+1, v⋆) − G(x⋆, vk+1)]
≤ ∥xk − x⋆∥2 − 2γkθkbk − Eξk

[∥xk+1 − x⋆∥2] + 2γk+1θk+1Eξk
[bk+1]

−
(
1 − γθ∥K∥ − γµ0(1 + θ)

)
Eξk

[∥xk+1 − xk∥2]
+

(
γθ∥K∥ + γµ0(θ2 + θ) + 4L2(θ2 + θ)γ2)

∥xk − xk−1∥2

+ 8(1 + θ)L1γ2
k [G(xk, v⋆) − G(x⋆, vk)] + 8L1γ2

k [G(x̄, v⋆) − G(x⋆, v̄)]
≤ ek − Eξk

[ek+1] + 8(1 + θ)L1γ2
k [G(xk, v⋆) − G(x⋆, vk)]

+
(
2γθ∥K∥ + γµ0(θ + 1)2 + 4(θ2 + θ)L2γ2 − 1

)
∥xk − xk−1∥2

+ 8L1γ2
k [G(x̄, v⋆) − G(x⋆, v̄)], (3.23)

where

ek := es
k = ∥xs

k − x⋆∥2 − 2γs
kθs

kbs
k + (1 − γθ∥K∥ − γµ0(1 + θ))∥xs

k − xs
k−1∥2

= ∥xk − x⋆∥2 − 2γkθkbk + (1 − γθ∥K∥ − γµ0(1 + θ))∥xk − xk−1∥2.

Using the Cauchy-Schwarz inequality, we have that

2γkθkbk = 2γkθk ⟨L(xk − xk−1) | xk − x⋆⟩
≤ 2γθ∥K∥∥xk − xk−1∥∥xk − x⋆∥
≤ γθ∥K∥(∥xk − xk−1∥2 + ∥xk − x⋆∥2).

Hence, from the first condition in (3.21), we obtain

ek ≥ (1 − γθ∥K∥)∥xk − x⋆∥2 +
(
1 − 2γθ∥K∥ − γµ0(1 + θ)

)
∥xk − xk−1∥2 ≥ ∥xk − x⋆∥2

2 ≥ 0. (3.24)
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Set Sk := Ss
k = G(xs

k, v⋆)−G(x⋆, vs
k) = G(xk, v⋆)−G(x⋆, vk). Taking the expectation with respect to

all the history in the stage s (denote the resulting expectation by Es), summing the inequality (3.23)
from k = 0 to m−1, and using the condition (3.21), i.e. 2γθ∥K∥+γµ0(θ+1)2+4(θ2+θ)L2γ2−1 < 0,
we obtain

2
m−1∑
k=0

γkEs[Sk+1] ≤ e0 − Es[em] + 8(1 + θ)L1

m−1∑
k=0

γ2
kEs[Sk] + 8L1

m−1∑
k=0

γ2
k

[
G(x̄s, v⋆) − G(x⋆, v̄s)

]
≤ (e0 + 8(1 + θ)L1γ2

0S0) − (Es[em] + 8(1 + θ)L1γ2
mEs[Sm]) + 8(1 + θ)L1

m∑
k=1

γ2
kEs[Sk]

+ 8L1

m−1∑
k=0

γ2
k

[
G(x̄s, v⋆) − G(x⋆, v̄s)

]
. (3.25)

Using the condition (3.20), we derive from (3.25)

2
(
1 − 4(1 + θ)cγ.L1

) m−1∑
k=0

γkEs[Sk+1] ≤ (e0 + 8(1 + θ)L1γ2
0S0) − (Es[em] + 8(1 + θ)L1γ2

mEs[Sm])

+ 8L1γ
m−1∑
k=0

γk

[
G(x̄s, v⋆) − G(x⋆, v̄s)

]
.

Using the convex-concave property of the Lagrangian function G, we obtain

2
m−1∑
k=0

γk(1 − 4(1 + θ)cγL1)Es[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)]

≤ (e0 + 8(1 + θ)L1γ2
0S0) − (Es[em] + 8(1 + θ)L1γ2

mEs[Sm]) + 8L1γ
m−1∑
k=0

γk

[
G(x̄s, v⋆) − G(x⋆, v̄s)

]
.

(3.26)

Set T s =
m−1∑
k=0

γs
k. It follows from condition (3.19) that T s ≥ T s+1 (∀s ∈ N). Hence, we obtain from

(3.26)

2T s+1((1 − 4(1 + θ)cγL1)Es[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)]
≤ (e0 + 8(1 + θ)L1γ2

0S0) − (Es[em] + 8(1 + θ)L1γ2
mEs[Sm]) + 8L1γT s[

G(x̄s, v⋆) − G(x⋆, v̄s)
]
.

(3.27)

Note that by the choices of (xs
0)s∈N and (xs

−1)s∈N, we have

Es[es
m] + 8(1 + θ)L1(γs

m)2Es[Ss
m] = Es[es+1

0 ] + 8(1 + θ)L1(γs+1
0 )2Es[Ss+1

0 ].

Hence, we can rewrite (3.27) as

Es
[
es+1

0 + 8(1 + θ)L1(γs+1
0 )2Ss+1

0 + 2T s+1((1 − 4(1 + θ)cγL1)(G(x̄s+1, v⋆) − G(x⋆, v̄s+1))
]

≤ es
0 + 8(1 + θ)L1(γs

0)2Ss
0 + 2T s(1 − 4(1 + θ)cγL1)(G(x̄s, v⋆) − G(x⋆, v̄s))

+ 2T s(4L1(1 + θ)cγ + 4L1γ − 1)(G(x̄s, v⋆) − G(x⋆, v̄s)). (3.28)
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Using condition (3.21) and Lemma 2.5, we derive from the above inequality that

es
0 + 8(1 + θ)L1(γs

0)2Ss
0 + 2T s(1 − 4(1 + θ)cγL1)(G(x̄s, v⋆) − G(x⋆, v̄s)) converges a.s.

and ∑
s∈N

(G(x̄s, v⋆) − G(x⋆, v̄s)) < +∞ a.s..

Let us consider the stage s + 1, ∀k ∈ {1, 2, . . . , m}, it follows from (3.23) and condition (3.21)
that

Eξs+1
k−1

[2γk−1
(
G(xk, v⋆) − G(x⋆, vk)

)
+ ek] ≤ 2γk−2

(
G(xk−1, v⋆) − G(x⋆, vk−1)

)
+ ek−1

+ 8γ2L1[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)].

Let Fs
k be σ− algebra generated by (xj

i , vj
i ) for all i ∈ {−1, 0, . . . , m}, j ∈ {0, 1, . . . , s − 1} and

(xs
i , vs

i ) for all i = {−1, 0, 1, . . . , k}. Taking the conditional expectation on both sides of the above
inequality sequentially k times, we deduce

E[2γk−1
(
G(xs+1

k , v⋆) − G(x⋆, vs+1
k )

)
+ es+1

k |Fs+1
0 ]

≤ 2γ−1
(
G(x0, v⋆) − G(x⋆, v0)

)
+ e0 + 8kγ2L1[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)]

= 2γs
m

(
G(xs

m, v⋆) − G(x⋆, vs
m)

)
+ es

m + 8kγ2L1[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)]. (3.29)

In stage s, using (3.23) again, we have

E
[
2γm−1

(
G(xs

m, v⋆) − G(x⋆, vs
m)

)
+ es

m|Fs
k

]
≤ 2γk−1

(
G(xs

k, v⋆) − G(x⋆, vs
k)

)
+ es

k +
(
8(1 + θ)L1γ2

k − 2γk−1
)(

G(xs
k, v⋆) − G(x⋆, vs

k)
)

+
(
2γθ∥K∥ + γµ0(θ + 1)2 + 4(θ2 + θ)L2γ2 − 1

)
∥xs

k − xs
k−1∥2 + 8γ2L1(m − k)[G(x̄s, v⋆) − G(x⋆, v̄s)].

(3.30)

Combining (3.29) and (3.30), we derive, for ∀k ∈ {1, 2, . . . , m}

E
[
2γs+1

k−1
(
G(xs+1

k , v⋆) − G(x⋆, vs+1
k )

)
+ es+1

k |Fs
k

]
≤ 2γs

k−1
(
G(xs

k, v⋆) − G(x⋆, vs
k)

)
+ es

k +
(
8(1 + θ)L1(γs

k)2 − 2γs
k−1

)(
G(xs

k, v⋆) − G(x⋆, vs
k)

)
+

(
2γθ∥K∥ + γµ0(θ + 1)2 + 4(θ2 + θ)L2γ2 − 1

)
∥xs

k − xs
k−1∥2 + 8γ2L1(m − k)[G(x̄s, v⋆) − G(x⋆, v̄s)]

+ 8kγ2L1E[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)|Fs
k]. (3.31)

Taking the expectation on both sides of (3.28), we obtain∑
s∈N

E[G(x̄s, v⋆) − G(x⋆, v̄s)] < +∞, (3.32)

which implies ∑
s∈N

E[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)|Fs
k] < +∞ a.s..

From (3.31), condition (3.21), and using Lemma 2.5, the following limits exist

lim
s→+∞

2γs
k−1

(
G(xs

k, v⋆) − G(x⋆, vs
k)

)
+ es

k a.s. (3.33)
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and

lim
s→∞

[G(xs
k, v⋆) − G(x⋆, vs

k)] = lim
s→∞

∥xs
k − xs

k−1∥ = 0 a.s.. (3.34)

Then, from (3.33) and (3.34), ∀k ∈ {1, 2, . . . , m}, there exists

lim
s→∞

es
k a.s..

We recall the definition of es
k, i.e., es

k = ∥xs
k −x⋆∥2 −2γs

kθs
kbs

k +(1−γθ∥K∥−γµ0(1+θ))∥xs
k −xs

k−1∥2.
It follows from (3.24) and (3.33) that (∥xs

k − x⋆∥)s∈N is bounded, which implies lim
s→∞

bs
k = 0 a.s..

Therefore, ∀k ∈ {1, 2, . . . , m}, there exists

lim
s→∞

∥xs
k − x⋆∥2 a.s..

Suppose that x̂ = (x̂, v̂) is a weak sequential cluster point of the sequence (xs
k)s∈N. We rewrite

(3.13) and the same inequality

∥x̂k+1 − xk+1∥ ≤ γk∥zk − ∇h(yk)∥,

∥v̂k+1 − vk+1∥ ≤ γk∥tk − ∇ℓ(uk)∥,

which implies

∥xk+1 − x̂k+1∥2 ≤ γ2
k∥rk − Rk∥2.

Taking the conditional expectation Eξk
and using Corollary 3.4, we have

Eξk
[∥xk+1 − x̂k+1∥2] ≤ 2L2(θ2 + θ)γ2

k∥xk − xk−1∥2 + 4L1(1 + θ)γ2
k [G(xs

k, v⋆) − G(x⋆, vs
k)]

+ 4L1γ2
k [G(x̄, v⋆) − G(x⋆, v̄)].

Hence

E[∥xk+1 − x̂k+1∥2] ≤ 2L2(θ2 + θ)γ2E[∥xk − xk−1∥2] + 4L1(1 + θ)γ2E[G(xs
k, v⋆) − G(x⋆, vs

k)]
+ 4L1γ2E[G(x̄, v⋆) − G(x⋆, v̄)]. (3.35)

Taking the expectation on both sides of (3.31), we derive

E
[
2γs+1

k−1
(
G(xs+1

k , v⋆) − G(x⋆, vs+1
k )

)
+ es+1

k

]
≤ E

[
2γs

k−1
(
G(xs

k, v⋆) − G(x⋆, vs
k)

)
+ es

k

]
+

(
8(1 + θ)L1(γs

k)2 − 2γs
k−1

)
E[G(xs

k, v⋆) − G(x⋆, vs
k)]

+
(
2γθ∥K∥ + γµ0(θ + 1)2 + 4(θ2 + θ)L2γ2 − 1

)
E[∥xs

k − xs
k−1∥2] + 8γ2L1(m − k)E[G(x̄s, v⋆) − G(x⋆, v̄s)]

+ 8kγ2L1E[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)]. (3.36)

From (3.20), we have

8(1 + θ)L1(γs
k)2 − 2γs

k−1 ≤ 2γs
k−1(4(1 + θ)cγ − 1) < 0.

Hence, using (3.32), i.e. ∑
s∈N

E[G(x̄s, v⋆) − G(x⋆, v̄s)] < +∞, we can deduce from (3.36) that

{∑
s∈N E[G(xs

k, v⋆) − G(x⋆, vs
k)] < +∞∑

s∈N E[∥xs
k − xs

k−1∥2] < +∞.
(3.37)
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Therefore, (3.35) implies ∑
s∈N

E[∥xs
k+1 − x̂s

k+1∥2] < +∞

which, in turn, implies

lim
s→∞

∥xs
k+1 − x̂s

k+1∥ = 0 a.s..

Using the triangle inequality ∥x̂s
k+1 − ys

k∥ ≤ ∥xs
k+1 − x̂s

k+1∥ + ∥xs
k+1 − xs

k∥ + ∥xs
k − xs

k−1∥, we also have
lim

s→∞
∥x̂s

k+1 − ys
k∥ = 0. a.s.. From the definition of x̂s

k+1, we obtain

xs
k − x̂s

k+1
γ

− ∇h(ys
k) + ∇h(x̂s

k+1) ∈ ∂f(x̂s
k+1) + ∇h(x̂s

k+1) + K∗us
k

which implies 0 ∈ ∂f(x̂) + ∇h(x̂) + K⋆v̂. We also have 0 ∈ ∂g⋆(v̂) + ∇ℓ(v̂) − Kx̂. Therefore,
(x̂, v̂) ∈ S.

Using Lemma 2.6, the sequence (xs
k, vs

k)s∈N converges weakly to a point in S. From (3.37)∑
s∈N

E[∥xs
k − xs

k−1∥2] < +∞,

we have that: for all k ∈ {1, 2, . . . , m}, the limit of the sequence (xs
k, vs

k) when s → +∞ is the same
a.s.. Hence, (x̄s, v̄s) converges weakly to a point in S a.s..
The proof is completed.

Remark 3.9 We show some cases of sequences (θs
k)s∈N and (γs

k)s∈N that satisfy the conditions of
Theorem 3.8 .

(i) In the constant-case, γs
k = γ, θs

k = 1, (∀k, ∀s), the conditions of Theorem 3.8 become{
4γµ0 + 2γ∥K∥ + 8L2γ2 < 1,

12γL1 < 1.
(3.38)

In [25], with condition (3.38), the authors proved the convergence of the primal-dual function
only. Here, we show the convergence of the iterative sequence.

(ii) Let (βk)k∈N be a non-increasing positive sequence. Assume there exist positive constants
α, γ, θ such that

(∀k ∈ N)

α ≤ βk ≤ γ
γk

γk+1
≤ θ.

At stage s ∈ N, we choose γk = βs(m−1)+k, θk+1 = γk
γk+1

(∀k ∈ {0, . . . , m − 1}). Then the
conditions (3.18), (3.19), (3.20) of Theorem 3.8 are satisfied for c = 1 and the condition (3.21)
becomes {

2γθ∥K∥ + γµ0(θ + 1)2 + 4θγ2L2(θ + 1) < 1
4L1γ(θ + 2) < 1.
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(iii) Let (ζk) be a positive sequence (k ∈ {0, . . . , m − 1}). Set θ = max
i ̸=j

ζi
ζj

. For s ∈ N, let (γs
k) be

a permutation of (ζk) such that γs
m−1 = γs+1

0 . Set θs
k+1 = γs

k
γs

k+1
. Then the conditions (3.18),

(3.19), (3.20) of Theorem 3.8 are satisfied for c = θ and the condition (3.21) becomes{
2γθ∥K∥ + γµ0(θ + 1)2 + 4θγ2L2(θ + 1) < 1
4L1γ

(
θ(1 + θ) + 1

)
< 1.

(3.39)

We can choose (ζk) that satisfies (3.39) by scaling this sequence with an arbitrarily large
constant.

3.3.1 Particular case: G is α−strongly convex-concave

For the particular case where G is α−strongly convex-concave (α > 0) and (∀s ∈ N), xs
0 = xs

−1 =
x̄s, vs

0 = vs
−1 = v̄s, γs

k = γs+1
k = γk, (∀k ∈ {0, . . . , m−1}. Here below we prove the linear convergence

rate in expectation of the difference of the Lagragian function.

Theorem 3.10 Let (x̄s)s∈N, and (v̄s)s∈N be sequences generated by Algorithm 3.7 with xs
0 = xs

−1 =
x̄s, vs

0 = vs
−1 = v̄s. Suppose that (γk)k∈N is a non-increasing sequence. Set θ = supk∈N |θk| < +∞,

and c = supk∈N |γk − γk+1θk+1|/γk. Let M be such that M >
∥K∥c

α
. Assume that

γ0µ0(θ + 1)2 + 2γ0θ∥K∥ + γ0∥K∥cM + 4L2(θ2 + θ)γ2
0 ≤ 1,

1 − ∥K∥c

Mα
− 4L1(θ + 1)γ0 > 0,

(3.40)

and

ρ = 1

α(1 − ∥K∥c
Mα − 4L1(θ + 1)γ0)(

m−1∑
k=0

γk)
+

4L1
( m−1∑

k=1
γ2

k + (θ + 2)γ2
0
)

(1 − ∥K∥c
Mα − 4L1(θ + 1)γ0)(

m−1∑
k=0

γk)
< 1, (3.41)

then
E

[
G(x̄s+1, v⋆) − G(x⋆, v̄s+1)

]
≤ ρs+1[

G(x̄0, v⋆) − G(x⋆, v̄0)
]
. (3.42)

Proof. First, we rewrite (3.5) with x = x⋆, v = v⋆, we get

2γk[G(xk+1, v⋆) − G(x⋆, vk+1)] ≤ 2γk+1θk+1bk+1 − 2γkθkbk + ∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

+ 2(γk − γk+1θk+1)bk+1

−
(
1 − γkθk∥K∥ − γkµ0(1 + θk)

)
∥xk+1 − xk∥2

+
(
γkθk∥K∥ + γkµ0(θ2

k + θk)
)
∥xk − xk−1∥2

+ 2γ2
k∥rk − Rk∥2 + 2γk⟨x̂k+1 − x⋆, Rk − rk⟩. (3.43)
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We have

2|bk+1| = 2| ⟨L(xk+1 − xk) | xk+1 − x⋆⟩ |
≤ 2∥K∥∥xk+1 − x⋆∥∥xk+1 − xk∥

≤ ∥K∥
(
M∥xk+1 − xk∥2 + ∥xk+1 − x⋆∥2

M

)
≤ ∥K∥M∥xk+1 − xk∥2 + 2∥K∥

Mα
[G(xk+1, v⋆) − G(x⋆, vk+1)],

where the last inequality is derived from the α−strongly convex-concave property of G. Then (3.43)
implies that

2γk

(
1 − ∥K∥c

Mα

)
[G(xk+1, v⋆) − G(x⋆, vk+1)]

≤ 2γk+1θk+1bk+1 − 2γkθkbk + ∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

− (1 − γkµ0(1 + θk) − γkθk∥K∥ − γk∥K∥cM)∥xk+1 − xk∥2

+ (γkµ0(θ2
k + θk) + γkθk∥K∥)∥xk − xk−1∥2

+ 2γ2
k∥rk − Rk∥2 + 2γk⟨x̂k+1 − x⋆, Rk − rk⟩. (3.44)

Using Corollary 2.5, we have

Eξk
[∥rk − Rk∥2] ≤ 2(θ2

k + θk)L2∥xk − xk−1∥2 + 4(θk + 1)L1[G(xk, v⋆) − G(x⋆, vk)]
+ 4L1[G(x̄, v⋆) − G(x⋆, v̄)].

Therefore, by taking the conditional expectation on both sides of (3.44) and using the condition
(3.40), we get

2γk

(
1 − ∥K∥c

Mα

)
Eξk

[
G(xk+1, v⋆) − G(x⋆, vk+1)

]
≤ 2γk+1θk+1Eξk

[bk+1] − 2γkθkbk + ∥xk − x⋆∥2 − Eξk
[∥xk+1 − x⋆∥2]

− (1 − γkµ0(1 + θk) − γkθk∥K∥ − γk∥K∥cM)Eξk
[∥xk+1 − xk∥2]

+ (γkµ0(θ2
k + θk) + γkθk∥K∥ + 4L2γ2

k(θ2
k + θk))∥xk − xk−1∥2

+ 8L1γ2
k(θk + 1)[G(xk, v⋆) − G(x⋆, vk)] + 8L1γ2

k

(
G(x̄, v⋆) − G(x⋆, v̄)

)
≤ ck − Eξk

[ck+1] + 8L1γ2
k(θk + 1)[G(xk, v⋆) − G(x⋆, vk)] + 8L1γ2

k

(
G(x̄, v⋆) − G(x⋆, v̄)

)
, (3.45)

where we set

ck = ∥xk − x⋆∥2 − 2γkθkbk +
(
γkµ0(θ2

k + θk) + γkθk∥K∥ + 4L2γ2
k(θ2

k + θk)
)
∥xk − xk−1∥2.

We have

|bk| ≤ ∥L∥∥xk − xk−1∥∥xk − x⋆∥

≤ ∥K∥
2

(
∥xk − xk−1∥2 + ∥xk − x⋆∥2)

.

So the condition (3.40) implies that ck ≥ 0 ∀k ∈ N.
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By summing both sides of (3.45) over k = 0, . . . , m−1, using the decrease of (γk)k∈N, we obtain

2
(

1 − ∥K∥c

Mα

) m−1∑
k=0

γkEs[G(xk+1, v⋆) − G(x⋆, vk+1)]

≤ c0 − Es[cm] + 8L1

m−1∑
k=0

(θk + 1)γ2
kEs[G(xk, v⋆) − G(x⋆, vk)] + 8L1

m−1∑
k=0

γ2
k [G(x̄, v⋆) − G(x⋆, v̄)]

≤ c0 − Es[cm] + 8L1(θ + 1)
m−1∑
k=0

γ2
kEs[G(xk+1, v⋆) − G(x⋆, vk+1)]

+ 8L1
( m−1∑

k=0
γ2

k + (θ + 1)γ2
0
)
[G(x̄, v⋆) − G(x⋆, v̄)].

For the choice x0 = x−1 = x̄, we get c0 = ∥x̄ − x⋆∥2. Thus, using the strongly convex-concave
property of G, we derive

2
(

1 − ∥K∥c

Mα
− 4L1(θ + 1)γ0

) m−1∑
k=0

γkEs[G(xk+1, v⋆) − G(x⋆, vk+1)]

≤ ∥x̄ − x⋆∥2 + 8L1
( m−1∑

k=1
γ2

k + (θ + 2)γ2
0
)
[G(x̄, v⋆) − G(x⋆, v̄)]

≤
( 2

α
+ 8L1

( m−1∑
k=1

γ2
k + (θ + 2)γ2

0
))

[G(x̄s, v⋆) − G(x⋆, v̄s)],

which is equivalent to

Es[G(x̄s+1, v⋆) − G(x⋆, v̄s+1)]

≤
( 1

α
(
1 − ∥K∥c

Mα − 4L1(θ + 1)γ0
) m−1∑

k=0
γk

+
4L1

( m−1∑
k=1

γ2
k + (θ + 2)γ2

0
)

(
1 − ∥K∥c

Mα − 4L1(θ + 1)γ0
) m−1∑

k=0
γk

)
[G(x̄s, v⋆) − G(x⋆, v̄s)].

Using this inequality recursively, we obtain (3.42).

Remark 3.11 Here are some remarks.

(i) For the strongly convex-concave case, we also obtain the linear convergence rate in expectation
of the primal-dual function as in [25]. However, our algorithm is completely different from
the one in [25].

(ii) Here are some examples where we provide some cases of the stepsizes and m ensuring ρ < 1.

• In case θk ≡ 0, by choosing 0 < γ0 < 1
8L1

(
1 − ∥K∥

Mα

)
and ∑

k∈N
γk = +∞. Then, when m is
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large enough, we have

ρ = 1

α
(
1 − ∥K∥

Mα − 4γ0L1
) m−1∑

k=0
γk

+ 4γ2
0L1(

1 − ∥K∥
Mα − 4γ0L1

) m−1∑
k=0

γk

+
4L1

m−1∑
k=0

γ2
k(

1 − ∥K∥
Mα − 4γ0L1

) m−1∑
k=0

γk

≤ 1

α
(
1 − ∥K∥

Mα − 4γ0L1
) m−1∑

k=0
γk

+ 4γ2
0L1(

1 − ∥K∥
Mα − 4γ0L1

) m−1∑
k=0

γk

+ 4γ0L1(
1 − ∥K∥

Mα − 4γ0L1
) < 1.

• In case θk ≡ 1 and γk ≡ γ. Then, we have c = 0. Hence, the conditions (3.40) and
(3.41), respectively, become{

4γµ0 + 2γ∥K∥ + 8L2γ2 < 1,

1 − 8L1γ > 0,

and
ρ = 1

α(1 − 8L1γ)mγ
+ 4L1γ(m + 2)

(1 − 8L1γ)m < 1.

Therefore, when 0 < γ < 1
12L1

and m is large enough, we obtain ρ < 1.

(iii) Note that in every stage, the choice of two initial values is different from that of Theorem
3.8.

Theorem 3.12 Under the same conditions as Theorem 3.10. Then the gap

sup
x∈H,v∈G

(
G(x̄s, v) − G(x, v̄s)

)
converges linearly to 0 in expectation.

The sequence produced by the algorithm converges (in expectation) to a point (x̄s, v̄s) such
that supv infx G(x, v) ≤ G(x̄s, v̄s) ≤ infx supv G(x, v). Hence, the Saddle point Theorem applies.

Proof. From the definition of the Lagrangian function G, we have(
G(x̄s+1, v) − G(x̄s+1, v⋆)

)
−

(
G(x⋆, v) − G(x⋆, v⋆)

)
= ⟨K(x̄s+1 − x⋆) | v − v⋆⟩ ,(

G(x, v̄s+1) − G(x⋆, v̄s+1)
)

−
(
G(x, v⋆) − G(x⋆, v⋆)

)
= ⟨K(x − x⋆) | v̄s+1 − v⋆⟩ . (3.46)

Hence (
G(x̄s+1, v) − G(x̄s+1, v⋆)

)
−

(
G(x, v̄s+1) − G(x⋆, v̄s+1)

)
= G(x⋆, v) − G(x, v⋆) + ⟨K(x̄s+1 − x⋆) | v − v⋆⟩ − ⟨K(x − x⋆) | v̄s+1 − v⋆⟩ . (3.47)
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Using the Cauchy-Schwarz inequality, we get

⟨K(x̄s+1 − x⋆) | v − v⋆⟩ − ⟨K(x − x⋆) | v̄s+1 − v⋆⟩
≤ ∥K∥∥x̄s+1 − x⋆∥∥v − v⋆∥ + ∥K∥∥x − x⋆∥∥v̄s+1 − v⋆∥

≤
(∥K∥2

2α
∥x̄s+1 − x⋆∥2 + α

2 ∥v − v⋆∥2
)

+
(∥K∥2

2α
∥v̄s+1 − v⋆∥2 + α

2 ∥x − x⋆∥2
)

= ∥K∥2

2α
(∥x̄s+1 − x⋆∥2 + ∥v̄s+1 − v⋆∥2) + α

2 (∥x − x⋆∥2 + ∥v − v⋆∥2). (3.48)

The strong convexity-concavity of the function G imply that

G(x, v⋆) − G(x⋆, v) ≥ α

2 (∥x − x⋆∥2 + ∥v − v⋆∥2), (3.49)

and

G(x̄s+1, v⋆) − G(x⋆, v̄s+1) ≥ α

2 (∥x̄s+1 − x⋆∥2 + ∥v̄s+1 − v⋆∥2). (3.50)

We derive from (3.47), (3.48), (3.49), and (3.50) that(
G(x̄s+1, v) − G(x, v̄s+1)) −

(
G(x̄s+1, v⋆) − G(x⋆, v̄s+1)

)
≤ ∥K∥2

α2

(
G(x̄s+1, v⋆) − G(x⋆, v̄s+1)

)
,

which implies

G(x̄s+1, v) − G(x, v̄s+1) ≤
(
1 + ∥K∥2

α2

)(
G(x̄s+1, v⋆) − G(x⋆, v̄s+1)

)
.

From the linear convergence of G(x̄s+1, v⋆) − G(x⋆, v̄s+1) in Theorem 3.10, we deduce that
G(x̄s+1, v) − G(x, v̄s+1) converges linearly to 0. The proof is completed.

Corollary 3.13 Under the same conditions as Theorem 3.10. The sequences (x̄s)s∈N and (v̄s)s∈N
converges linearly in expectation to x⋆ and v⋆, respectively.

Proof. We have
∥x̄s − x⋆∥2 + ∥v̄s − v⋆∥2 ≤ 2

α

(
G(x̄s, v⋆) − G(x⋆, v̄s)

)
. (3.51)

Since the difference G(x̄s, v⋆) − G(x⋆, v̄s) converges linearly in expectation to 0 by Theorem 3.10.
We derive from (3.51) that both (x̄s)s∈N and (v̄s)s∈N converge linearly in expectation to x⋆ and v⋆,
respectively.

3.3.2 Related methods

Linear convergence in expectation of the primal-dual gap was established in [25, 33] for Bregman
distance and for a different stochastic variance reduction algorithm. In [25, 33], the authors require
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the stepsize γk is constant and θk = 0 for ∀k ∈ N. Our Algorithm is more general, i.e. γk is not
constant and θk ̸= 0. We also update the value x̄s+1 which is different that in [25, 33], our update
is more simple and more natural than the update of x̄s+1 in [25, 33].

The authors in [1, 16] also proposed a stochastic variance reduction algorithm for saddle point
problems with linear convergence in expectation of the iterates. Here, we also obtain the linear
convergence of the iteration sequence as formalized in Corollary 3.13.

For a special case of Problem 3.1 where f = 0, g⋆ = 0 and H = Rd1 , G = Rd2 ; under the
additional assumption that the operator K is full rank, i.e. rank(K) = d1, the method proposed in
[18] also achieves convergence rate that is linear but only when the function ℓ is strongly convex.

In the particular case where θk ≡ 0, K = 0, γk = γ, g⋆ = 0, ℓ = 0, our results recover [35,
Theorem 1] as a special case. Indeed, the condition (3.40) becomes{

γµ ≤ 1,

1 − 4L1γ > 0,
(3.52)

Following the fact that µ ≤ L1, (3.52) is equivalent to the condition γ < 1
4L1

as in [35, Theorem1].
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