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1 Introduction

In multiobjective optimization, the primary goal is to optimize multiple objective functions

simultaneously. Generally, it is not feasible to identify a single solution that simultaneously

achieves optimal values for all objectives. Consequently, the notion of optimality is defined by

Pareto optimality or efficiency. A solution is Pareto optimal or efficient if no objective can be

improved without sacrificing the others. As society and the economy progress, the applications

of this type of problem have proliferated across a multitude of domains, such as engineering [25],

economics [18, 38], management science [13], and machine learning [31].

Solution strategies are pivotal in applications involving multiobjective optimization prob-

lems (MOPs). Over the past two decades, multiobjective gradient descent methods have gained

escalating attention within the multiobjective optimization community, as they provide common

descent directions for all objectives without requiring predefined parameters. Besides, this type

of method enjoys an attractive property, as pointed out by Attouch et al. [4], in fields like game

theory, economics, social science, and management: it improves each of the objective functions.

As far as we know, the study of multiobjective gradient descent methods can be traced back to

the pioneering works by Mukai [28] and Fliege and Svaiter [15]. The latter elucidated that the

multiobjective steepest descent direction reduces to the steepest descent direction when deal-

ing with a single objective. This observation inspired researchers to extend ordinary numerical

algorithms for solving MOPs (see, e.g., [2, 7, 9, 14, 16, 19, 22, 26, 27, 29, 30] and references

therein).

Although multiobjective gradient descent methods are derived from their single-objective

counterparts, a theoretical gap remains between the two types of approaches. Recently, Zeng et

al. [40] and Fliege et al. [17] established a linear convergence rate O(rk) of the steepest descent

method for MOPs (SDMO), where r =
√

1− µmin/Lmax, µmin := min{µi : i = 1, 2, · · · ,m}
and Lmax := max{Li : i = 1, 2, · · · ,m}, with µmin and Li representing the strongly convex and

smooth parameters, respectively. Tanabe et al. [36] obtained a similar result for the proximal

gradient method for MOPs (PGMO) [34]. Notably, when minimizing a µ-strongly convex and L-

smooth function using the vanilla gradient method, the rate of convergence in terms of {‖xk−x∗‖}
is
√

1− µ/L. This highlights that objective imbalances, stemming from the substantially distinct

curvature information of different objective functions, can result in a small value of µmin/Lmax.

Remarkably, even if each of the objective functions is not ill-conditioned (a relatively small Li/µi),

the imbalanced condition number Lmax/µmin can be tremendous. This theoretical gap between

first-order methods for single-objective optimization problems (SOPs) and MOPs elucidates why

each objective is relatively easy to optimize individually but challenging when attempting to

optimize them simultaneously. We emphasize that the objective imbalances are intrinsic to MOPs,

particularly in large-scale and real-world scenarios, imposing significant challenges for solving

MOPs via existing first-order methods [15, 19, 22, 34, 35]. This raises a critical question: How

can the theoretical gap between first-order methods for SOPs and MOPs be bridged?
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In this paper, we consider the question with the following generic model of unconstrained

multiobjective composite optimization problem:

min
x∈Rn

F (x), (MCOP)

where F : Rn → (R ∪+{∞})m is a vector-valued function. Each component Fi, i = 1, 2, · · · ,m,

is defined by

Fi := fi + gi,

with convex and continuously differentiable function fi : Rn → R and proper convex and lower

semicontinuous but not necessarily differentiable function gi : Rn → R ∪ +{∞}. This type of

problem finds wide applications in machine learning and statistics, and gradient descent methods

tailored for it have received increasing attention (see, e.g., [1, 3, 6, 8, 35]). To address the afore-

mentioned challenge, we incorporate curvature information to scale each objective within the

direction-finding subproblem and propose a scaled proximal gradient method for multiobjective

optimization (SPGMO). We analyze the convergence rates of SPGMO and offer new theoretical

insights, helping to explain its observed rapid convergence in practical applications. The primary

contributions of this paper are summarized as follows:

(i) When the smooth parameters are known, we apply them to scale each of objectives in the

SPGMO and prove that its rate of convergence in terms of ‖xk−x∗‖ is
√

1−mini=1,2,··· ,m {µi/Li}.
The improved linear convergence bridges the theoretical gap between first-order methods for

SOPs and MOPs, providing a theoretical basis for the superior performance of SPGMO over

PGMO. Additionally, we establish improved linear convergence for SPGMO when applied to

MOPs with both linear and strongly convex objectives. The convergence rate primarily depends

on the strongly convex objectives, with the influence of linear objectives mitigated through small

scaling. To our knowledge, this is the first result demonstrating linear convergence for descent

methods on this class of problems.

(ii) When the smooth parameters are unknown, we investigate the selection of scaling pa-

rameters in SPGMO with line search. We demonstrate that these scaling parameters are crucial

for the convergence rate of SPGMO with line search. Theoretical results indicate that optimal

linear convergence is achieved by choosing either {µi : i = 1, 2, ...,m} or {Li : i = 1, 2, ...,m} as

the scaling parameters. Notably, in practical applications, it is advisable to select each scaling

parameter from the interval [µi, Li] to better capture the local geometry of the problem. Conse-

quently, the Barzilai-Borwein method [5, 10] emerges as a judicious choice for scaling parameters.

(iii) We propose an accelerated SPGMO (ASPGMO) which unifies the convex and strongly

convex cases by employing different momentum parameters. In the context of convex problems,

the ASPGMO recovers the well-known sub-linear convergence rate O(1/k2), a result initially rig-

orously demonstrated by Tanabe et al. [35] for MOPs, with more recent advancements discussed

in [32, 33]. For strongly convex problems, we demonstrate that ASPGMO, with an appropriately

chosen momentum parameter, converges linearly at a rate of 1−
√

mini=1,2,··· ,m {µi/Li}.
The remainder of the paper is organized as follows. In section 2, we present some necessary

notations and definitions that will be used later. Section 3 recalls the PGMO [34]. In section
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4, we propose a scaled proximal gradient method for MOPs with known smooth parameters

and establish an improved linear convergence for strongly convex cases. Section 5 is devoted to

a scaled proximal gradient method for MOPs with unknown smooth parameters and discusses

the selection of scaling parameters in the proposed approach. In section 6, we incorporate Nes-

terov’s acceleration technique into SPGMO and analyze its convergence rates for both convex

and strongly convex scenarios. The numerical experiments are presented in section 7, demon-

strating the efficiency of the SPGMO and validating the theoretical results. Finally, we draw

some conclusions at the end of the paper.

2 Preliminaries

Throughout this paper, the n-dimensional Euclidean space Rn is equipped with the inner product

〈·, ·〉 and the induced norm ‖ · ‖. We denote by Jf(x) ∈ Rm×n the Jacobian matrix of f at x,

by ∇fi(x) ∈ Rn the gradient of fi at x. We denote [m] := {1, 2, · · · ,m}, and ∆m := {λ ∈ Rm+ :∑
i∈[m] λi = 1} the m-dimensional unit simplex. We define order relations � and ≺ in Rm as

u � v ⇔ v − u ∈ Rm+

and

u ≺ v ⇔ v − u ∈ Rm++,

respectively. We denote the level set of F on c ∈ Rm as

LF (c) := {x : F (x) � c}.

Next, we introduce optimality concepts for (MCOP) in the Pareto sense.

Definition 2.1 A vector x∗ ∈ Rn is called Pareto solution to (MCOP), if there exists no x ∈ Rn

such that F (x) � F (x∗) and F (x) 6= F (x∗).

Definition 2.2 A vector x∗ ∈ Rn is called weakly Pareto solution to (MCOP), if there exists

no x ∈ Rn such that F (x) ≺ F (x∗).

Definition 2.3 A differentiable function h : Rn → R is L-smooth if

h(y) ≤ h(x) + 〈∇h(x), y − x〉+
L

2
‖y − x‖2

holds for all x, y ∈ Rn. And h is µ-strongly convex if

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
µ

2
‖y − x‖2

holds for all x, y ∈ Rn.
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3 Proximal gradient method for MCOPs

For the (MCOP), Tanabe et al. [34] proposed the following proximal gradient subproblem:

min
x∈Rn

max
i∈[m]

{〈
∇fi(xk), d

〉
+ gi(x

k + d)− gi(xk) +
`

2
‖d‖2

}
, (1)

where ` > 0. Assume that fi is Li-smooth for i ∈ [m], denote Lmax := max{Li : i ∈ [m]}. When

{L1, · · · , Lm} is available, the complete proximal gradient method for MCOPs is described as

follows.

Algorithm 1: Proximal gradient method for MCOPs [34]

Require: x0 ∈ Rn, ` ≥ Lmax

1: for k = 0, ... do
2: Compute dk` by solving subproblem (1)

3: if dk` = 0 then

4: return xk

5: else
6: Update xk+1 := xk + dk`
7: end if
8: end for

When m = 1, Algorithm 1 reduces to the proximal gradient method for SOPs, it is known

that {xk} converges linearly to the unique minimizer when f1 is strongly convex with µ1 > 0.

Tanabe et al. [36] also established the linear convergence for Algorithm 1.

Theorem 3.1 (See Theorem 5.3 of [36]) Assume that fi is strongly convex with module

µi > 0 and Li-smooth for i ∈ [m], let {xk} be the sequence generated by Algorithm 1. Then there

exists a Pareto solution x∗ such that∥∥xk+1 − x∗
∥∥ ≤√1− µmin

Lmax

∥∥xk − x∗∥∥ .
Although Algorithm 1 enjoys linear convergence in strongly convex cases, the rate of conver-

gence can be very slow even if each of the objectives is well-conditioned. We clarify the statement

with the following example.

Example 3.1 Let us consider the following bi-objective problem:

min
x∈R2

(F1(x), F2(x)) ,

where f1(x) = 1
2x

2
1+ 1

2x
2
2, f2(x) = L

2 x
2
1+L

2 x
2
2 (L is a very large positive constant), g1(x) = g2(x) =

0. It is easy to see that Lmax = L, condition numbers of f1 and f2 are both 1, and the unique

Pareto solution is x∗ = (0, 0)T . For any noncritical point xk, we derive that xk+1 = (1− 1/L)xk,

i.e., ∥∥xk+1 − x∗
∥∥ =

(
1− 1

L

)∥∥xk − x∗∥∥ .
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Recall that L is a very large positive constant, thus the rate of linear convergence is very slow.

4 Scaled proximal gradient method for MCOPs

In this section, we propose a scaled proximal gradient method for (MCOP) with improved linear

convergence. Firstly, we emphasize that the slow convergence of Algorithm 1 is mainly due to

the global upper bound used in (1):

Fi(x
k + d)− Fi(xk) ≤

〈
∇fi(xk), d

〉
+ gi(x

k + d)− gi(xk) +
Lmax

2
‖d‖2

for all i ∈ [m], which may be too conservative for objectives with small global smoothness

parameters. Instead, we employ a separate global smoothness parameter for each objective to

devise the following scaled proximal gradient subproblem:

min
x∈Rn

max
i∈[m]

{〈
∇fi(xk), d

〉
+ gi(x

k + d)− gi(xk)

Li
+

1

2
‖d‖2

}
. (2)

This strategy can capture the curvature information of each objective and alleviate interference

among the objectives. The complete scaled proximal gradient method for MCOPs (SPGMO) is

described as follows.

Algorithm 2: Scaled proximal gradient method for MCOPs [34]

Require: x0 ∈ Rn

1: for k = 0, ... do
2: Compute dk by solving subproblem (2)
3: if dk = 0 then
4: return xk

5: else
6: Update xk+1 := xk + dk

7: end if
8: end for

Let us denote the following scaled multiobjective composite optimization problem:

min
x∈Rn

FL(x), (MCOPL)

where FL : Rn → (R ∪ {+∞})m is a vector-valued function. Each component FLi , i ∈ [m], is

defined by

FLi :=
fi + gi
Li

.

By scaling the objective functions, we note that Algorithm 2 for (MCOP) can be interpreted

as Algorithm 1 for (MCOPL). As a result, the convergence rates analysis for Algorithm 1 in

[36] also applies to Algorithm 2. Before we proceed with the convergence analysis, we will first

present several properties of (MCOPL).
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Proposition 4.1 For the (MCOPL), the following statements hold.

(i) x ∈ Rn is a Pareto critical point of (MCOPL) if and only if x ∈ Rn is a Pareto critical point

of (MCOP).

(ii) For i ∈ [m], if fi is Li-smooth, then fi/Li is 1-smooth.

(iii) For i ∈ [m], if fi is strongly convex with µi ≥ 0, then fi/Li is strongly convex with µi/Li.

Proof The proof can be easily derived by the definition of FL, we omit it here.

4.1 Improved linear convergence of SPGMO

Firstly, we establish a fundamental inequality.

Lemma 4.1 Assume that fi is strongly convex with modulus µi ≥ 0 and Li-smooth for i ∈ [m].

Let {xk} be the sequence generated by Algorithm 2. Then, there exists λk ∈ ∆m such that

∑
i∈[m]

λki
Fi(x

k+1)− Fi(x)

Li

≤ 1

2
‖xk − x‖2 − 1

2
‖xk+1 − x‖2 −

∑
i∈[m]

λki
µi

2Li
‖xk − x‖2, for all x ∈ Rn.

(3)

Proof The assertions can be obtained by using similar arguments as in the proof of [37, Lemma

5.2]

Theorem 4.1 Assume that fi is strongly convex with modulus µi > 0 and Li-smooth for i ∈
[m]. Let {xk} be the sequence generated by Algorithm 2 and x∗ be the Pareto solution satisfies

F (x∗) � F (xk) for all k ≥ 0. Then we have

‖xk+1 − x∗‖ ≤

√
1− min

i∈[m]

{
µi
Li

}
‖xk − x∗‖.

Proof By substituting x = x∗ into inequality (3), we obtain

∑
i∈[m]

λki
Fi(x

k+1)− Fi(x∗)
Li

≤ 1

2
‖xk − x∗‖2 − 1

2
‖xk+1 − x∗‖2 −

∑
i∈[m]

λki
µi

2Li
‖xk − x∗‖2 for all x ∈ Rn.

Applying F (x∗) � F (xk), it follows that

‖xk+1 − x∗‖ ≤
√

1−
∑
i∈[m]

λki
µi
Li
‖xk − x∗‖ ≤

√
1− min

i∈[m]

{
µi
Li

}
‖xk − x∗‖, (4)

where the last inequality holds due to the fact λk ∈ ∆m.
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Remark 4.1 In the following, we present two remarks on the linear convergence results of the

SPGMO and PGMO.

(i) When m = 1, both the SPGMO and the PGMO reduce to the proximal gradient method for

SOPs. In cases wherem 6= 1, the condition numbers κ̃ := Lmax/µmin and κ := maxi∈[m]{Li/µi}
are pivotal for the geometric convergence of PGMO and SPGMO, respectively. Notably, s-

ince κ̃ ≥ κ, the SPGMO exhibits improved linear convergence compared to the PGMO.

Furthermore, the SPGMO exhibits rapid linear convergence provided that all differentiable

components are not ill-conditioned. Conversely, in such scenarios, the PGMO may experience

slow convergence due to objective imbalances (see Example 3.1).

(ii) Objective imbalances pose a significant challenge to existing first-order methods in multi-

objective optimization, particularly in large-scale and real-world scenarios where objective

imbalances are intrinsic to MOPs. To quantify the objective imbalances in strongly convex

cases, we introduce the following parameter:

ζ :=
κ̃

κ
. (5)

A larger value of this parameter indicates a greater degree of objective imbalances in the

problem.

(iii) As outlined in Figure 4.1, for the function FL we have Lmax = 1 and µmin = mini∈[m]{µi/Li}.
Consequently, Theorem 4.1 follows as a corollary of Theorem 3.1, resulting in an objective

imbalances parameter ζ of FL is 1.

4.2 Linear convergence with some linear objective functions

In addition to strongly convex cases, linear objectives often introduce significant objective imbal-

ances in MOPs, decelerating the convergence of first-order methods [10, Examples 2 and 3]. In

what follows, we confirm that a small scaling parameter is beneficial to mitigate the influence of

the linear objectives from a theoretical perspective. Consider the linear constrained MOP with

linear objective functions, which is described as follows:

min
x∈X

f(x), (LCMOP)

where f : Rn 7→ Rm is a vector-valued function; the component fi is linear for i ∈ L, and µi-

strongly convex and Li-smooth for i ∈ [m] \ L, respectively; X = {x : Ax ≤ a, Bx = b} with

A ∈ R|J |×n, B ∈ R|E|×n. This type of problem has wide applications in portfolio selection [24]

and can be reformulated as (MCOP) with Fi = fi + IX for i ∈ [m], where

IX (x) :=

{
0, x ∈ X ,

+∞, x /∈ X .
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Regarding the first inequality in (4), the linear convergence rate in terms of ‖xk−x∗‖ is ac-

tually
√

1−
∑
i∈[m] λ

k
i
µi
Li

for Algorithm 2. Consequently, Algorithm 2 exhibits linear convergence

as long as
∑
i∈[m] λ

k
i
µi
Li

> 0. A similar statement holds for PGMO. However, such a statement

holds under the restrictive condition
∑
i∈[m] λ

k
i
µi
Li
> 0, which is equivalent to

∑
i∈[m]\L λ

k
i > 0. In

what follows, we will prove that a small value of Li for i ∈ L leads to larger value of
∑
i∈[m]\L λ

k
i

in SPGMO.

When minimizing (LCMOP) using SPGMO, the subproblem (2) can be expressed as follows:

min t+
1

2
‖d‖2

s.t.

〈
∇fi(xk)

Li
, d

〉
≤ t, i ∈ [m],

A(xk + d) ≤ a,

Bd = 0,

where Li = αmin for i ∈ L, and αmin is a very small positive constant1. By KKT conditions, we

obtain

dk = −

∑
i∈[m]

λki
∇fi(xk)

Li
+
∑
j∈J

ηkjAj +
∑
e∈E

ξkeBe

 ,

where ATj and BTe is the j-th and e-th row of A and B, respectively. The vector (λk, ηk, ξk) ∈
Rm+|J |+|E| is a solution of the following Lagrangian dual problem:

min
1

2

∥∥∥∥∥∥
∑
i∈[m]

λi
∇fi(xk)

Li
+
∑
j∈J

ηjAj +
∑
e∈E

ξeBe

∥∥∥∥∥∥
2

−
∑
j∈J

ηj
(〈
Aj , x

k
〉
− aj

)
s.t. (λ, η, ξ) ∈ ∆m × R|J |+ × R|E|.

And complementary slackness condition gives that

ηkj
(〈
Aj , x

k + dk
〉
− aj

)
= 0 for all j ∈ J . (6)

Denote J k := {j ∈ J :
〈
Aj , x

k
〉

= aj}, this together with (6) and the fact that xk+1 = xk + dk

implies

dk = −

∑
i∈[m]

λki
∇fi(xk)

Li
+

∑
j∈J k+1

ηkjAj +
∑
e∈E

ξkeBe

 .

1 The upper bound fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉 ≤ Li ‖y − x‖2 holds for i ∈ L with any Li ≥ 0,.
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Before presenting the linear convergence of SPGMO for (LCMOP), let us first define the following

multiobjective linear programming problem:

min
x∈X

fL(x), (MLP)

where fL : Rn → R|L| is the linear component of f . As a result, every weakly Pareto solution of

(MLP) is also a weakly Pareto solution of (LCMOP).

Proposition 4.2 Let {xk} be the sequence generated by Algorithm 2 with Li = αmin, i ∈ L for

(LCMOP) and x∗ be the weakly Pareto solution satisfies F (x∗) � F (xk) for all k ≥ 0. If x∗ is

not a weakly Pareto solution of (MLP), then

‖xk+1 − x∗‖ ≤

√
1− (1− c1αmin) min

i∈[m]\L

{
µi
Li

}
‖xk − x∗‖,

where c1 := max
i∈[m]\L

2(‖∇fi(x0)‖+LiR)
εLi

.

Proof We refer to Theorem 4.1(ii), which states

‖xk+1 − x∗‖ ≤
√

1−
∑
i∈[m]

λki
µi
Li
‖xk − x∗‖. (7)

Given that x∗ is not a weakly Pareto solution of (MLP), we deduce 0 /∈ Ck := {
∑
i∈L λigi +∑

j∈J k ηjAj +
∑
e∈E ξeBe : λ ∈ ∆|L|, η ∈ R|J

k|
+ , ξ ∈ R|E|}, where gi represents the gradient of

the linear function fi, i ∈ L. Furthermore, since J k ⊂ J , we can infer that |{Ck}| is finite.

Consequently, we can define ε := minx∈{Ck} ‖x‖ > 0. By direct calculation, we have

‖dk‖ =

∥∥∥∥∥∥
∑

i∈[m]

λki
∇fi(xk)
Li

+
∑

j∈Jk+1

ηkjAj +
∑
e∈E

ξkeBe

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
∑
i∈L

λki
gi

Li
+

∑
j∈Jk+1

ηkjAj +
∑
e∈E

ξkeBe

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑

i∈[m]\L
λki
∇fi(xk)
Li

∥∥∥∥∥∥
=

∑
i∈L

λki

αmin

∥∥∥∥∥∥∥
∑
i∈L

λki∑
i∈L

λki
gi +

∑
j∈Jk+1

αminη
k
j∑

i∈L
λki

Aj +
∑
e∈E

αminξ
k
e∑

i∈L
λki

Be

∥∥∥∥∥∥∥−
∥∥∥∥∥∥
∑

i∈[m]\L
λki
∇fi(xk)
Li

∥∥∥∥∥∥
≥
ε
∑
i∈L

λki

αmin
−

∥∥∥∥∥∥
∑

i∈[m]\L
λki
∇fi(xk)
Li

∥∥∥∥∥∥ ,

(8)
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where the second equality follows from the fact that Li = αmin for all i ∈ L, and the last

inequality is given by the definition of ε. By simple calculation, we have

1

2
‖dk‖2 =

1

2

∥∥∥∥∥∥
∑
i∈[m]

λki
∇fi(xk)

Li
+
∑
j∈J

ηkjAj +
∑
e∈E

ξkeBe

∥∥∥∥∥∥
2

≤ 1

2

∥∥∥∥∥∥
∑
i∈[m]

λki
∇fi(xk)

Li
+
∑
j∈J

ηkjAj +
∑
e∈E

ξkeBe

∥∥∥∥∥∥
2

−
∑
j∈J

ηkj
(〈
Aj , x

k
〉
− aj

)
≤ 1

2
max

i∈[m]\L

∥∥∥∥∇fi(xk)

Li

∥∥∥∥2 ,
where the second inequality follows by the non-negativeness of ηkj and aj −

〈
Aj , x

k
〉
, and the

last inequality is due to the fact that (λk, ηk, ξk) is a solution of the dual problem. This together

with (8) implies

ε
∑
i∈L

λki

αmin
≤ max
i∈[m]\L

∥∥∥∥∇fi(xk)

Li

∥∥∥∥+

∥∥∥∥∥∥
∑

i∈[m]\L

λki
∇fi(xk)

Li

∥∥∥∥∥∥ ≤ 2 max
i∈[m]\L

∥∥∥∥∇fi(xk)

Li

∥∥∥∥ .
Notice that fi is strongly convex for i ∈ [m] \ L, then we deduce that LF (F (x0)) is bounded.

Denoting R := max{‖x− y‖ : x, y ∈ LF (F (x0))}, and utilizing the Li-smoothness of fi, i ∈
[m] \ L, we derive an upper bound of ‖∇fi(xk)‖:

‖∇fi(xk)‖ ≤ ‖∇fi(x0)‖+ ‖∇fi(xk)−∇fi(x0)‖ ≤ ‖∇fi(x0)‖+ LiR.

Therefore, we obtain ∑
i∈L

λki ≤ max
i∈[m]\L

2(‖∇fi(x0)‖+ LiR)

εLi
αmin. (9)

Substituting the preceding bound into (7), the desired result follows.

Remark 4.2 From Proposition 4.2, the sum of dual variables of linear objectives
∑
i∈L λ

k
i is

dominated by αmin. Consequently, the impact of the linear objectives can be effectively mitigated

by employing a small scaling parameter αmin in the direction-finding subproblems.

Remark 4.3 The assumption x∗ is not a weakly Pareto solution of (MLP) seems restrictive. In

practice, the Pareto set of (LCMOP) can be a (m− 1)-dimensional manifold, and the Pareto set

of (MLP) can be a (|L| − 1)-dimensional sub-manifold within the (m− 1)-dimensional manifold.

As a result, for a random initial point x0, the probability that x∗ is not a weakly Pareto solution

of (MLP) can be 1. Additionally, when |J | = 0, meaning (MLP) has no inequality constraints,

then the problem either has no weakly Pareto solution or every feasible point is a weakly Pareto

solution. In other words, SPGMO converges linearly for equality constrained and unconstrained

(LCMOP).
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In the following, we also analyze the convergence rate of PGMO for (LCMOP).

Proposition 4.3 Let {xk} be the sequence generated by Algorithm 1 for (LCMOP) and x∗ be

the weakly Pareto solution satisfies F (x∗) � F (xk) for all k ≥ 0. If x∗ is not a weakly Pareto

solution of (MLP), then there exists κ ∈ (0, 1) such that ‖xk − x∗‖ ≤ κk‖x0 − x∗‖.

Proof Setting Li = Lmax in SPGMO, it coincides with PGMO. Consequently, (7) collapses to

‖xk+1 − x∗‖ ≤
√

1−
∑

i∈[m]

λki
µi

Lmax
‖xk − x∗‖. (10)

Substituting Li = Lmax into (8), it follows that

ε
∑
i∈L

λki ≤

∥∥∥∥∥∥
∑

i∈[m]\L
λki∇fi(xk)

∥∥∥∥∥∥+ Lmax‖dk‖

≤

 ∑
i∈[m]\L

λki

 max
i∈[m]\L

{
‖∇fi(x0)‖+ LiR

}
+ Lmax‖dk‖.

Rearranging the above inequality, we have

∑
i∈L

λki ≤
max

i∈[m]\L

{
‖∇fi(x0)‖+ LiR

}
+ Lmax

∥∥dk∥∥
max

i∈[m]\L
{‖∇fi(x0)‖+ LiR}+ ε

.

Since {xk} converges to a weakly Pareto point, it follows that dk → 0. Then there exists K > 0

such that ‖dk‖ ≤ ε
2Lmax

for all k ≥ K. This implies that∑
i∈L

λki ≤ c2 for all k ≥ K,

where c2 :=
max

i∈[m]\L
{‖∇fi(x0)‖+LiR}+ ε

2

max
i∈[m]\L

{‖∇fi(x0)‖+LiR}+ε < 1. By substituting the above bound into (10), we obtain

‖xk+1 − x∗‖ ≤

√√√√
1− (1− c2)

min
i∈[m]\L

µi

Lmax
‖xk − x∗‖ for all k ≥ K.

Without loss of generality, there exists κ ∈ (0, 1) such that ‖xk − x∗‖ ≤ κk‖x0 − x∗‖.

From Proposition 4.3, PGMO only achieves R-linear convergence. The following example

illustrates that
∑
i∈L λ

k
i = 1 at the early stage in the iterations. In other words, we can not obtain

Q-linear convergence of the method for (LCMOP). Beside, the rate of R-linear convergence can

be very slow.

Example 4.1 Consider the following multiobjective optimization problem:

min
x∈X

(f1(x), f2(x)) ,
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where f1(x) = 1
2x

2
1+ 1

2x
2
2, f2(x) = cx1 (c is a relative small positive constant), and X = {(x1, x2) :

x1 ≥ 0, x2 = 0}. By simple calculations, we have

∇f1(x) = (x1, x2)T , ∇f2(x) = (c, 0)T , Lmax = 1

and the unique Pareto solution is (0, 0)T . Given a feasible x0, at the early stage (xk1 > c)

of PGMO without line search, we have λk2 = 1, and dk = (−c, 0). At this stage, we have∥∥xk+1 − x∗
∥∥/∥∥xk − x∗∥∥ = (xk1 − c)/xk1 , which tends to 1 for sufficient small c.

5 Scaled proximal gradient method with unknown smoothness parameters for

MCOPs

In the previous section, global smoothness parameters were employed to scale each objective;

however, these parameters are often unknown and can be overly conservative. This section is

devoted to a scaled proximal gradient method with unknown smoothness parameters.

5.1 Estimating the local smoothness parameters

Firstly, we propose a backtracking method to estimate the local smoothness parameters.

Algorithm 3: Backtracking

Require: 0 < αki ≤ Li, si = 0, i ∈ [m], τ > 1
1: repeat
2: Update αki = τsiαki , i ∈ [m]

3: Update xk+1 := arg min
x∈Rn

max
i∈[m]

{
〈∇fi(xk),x−xk〉+gi(x)−gi(xk)

αki
+ 1

2‖x− x
k‖2
}

4: for i = 1, · · · ,m do

5: if fi(x
k+1)− fi(xk) >

〈
∇fi(xk), xk+1 − xk

〉
+

αki
2 ‖x

k+1 − xk‖2 then
6: Update si = si + 1
7: end if
8: end for
9: until fi(x

k+1)− fi(xk) ≤
〈
∇fi(xk), xk+1 − xk

〉
+

αki
2 ‖x

k+1 − xk‖2, i ∈ [m]

Since fi is Li-smooth for i ∈ [m], the repeat loop terminates in a finite number of iterations,

and αki < τLi, i ∈ [m]. A notable advantage of this approach is its ability to adapt to the local

smoothness based on the trajectory of the iterations. However, the use of backtracking increases

the computational cost per iteration due to the repeated solving of subproblems.

5.2 Line search

To avoid solving a subproblem in each backtracking procedure, we apply the Armijo line search

proposed by Tanabe et al. [34].
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Algorithm 4: Armijo line search

Require: xk ∈ Rn, dk ∈ Rn, Jf(xk) ∈ Rm×n, σ ∈ (0, 1), tk = 1
1: while F (xk + tkd

k)− F (xk) 6� tkσ(Jf(xk)dk + g(xk + dk)− g(xk)) do
2: Update tk := tk/2
3: end while
4: return tk

The scaled proximal gradient method with line search for MCOPs is described as follows.

Algorithm 5: Scaled proximal gradient method with line search for MCOPs

Require: x0 ∈ Rn
1: for k = 0, · · · do
2: Update αk ∈ Rm++

3: Update dk := arg min
x∈Rn

max
i∈[m]

{
〈∇fi(xk),d〉+gi(xk+d)−gi(xk)

αki
+ 1

2‖d‖
2

}
4: if dk = 0 then
5: return xk

6: else
7: Update tk := Armijo line search

(
xk, dk, Jf(xk)

)
8: Update xk+1 := xk + tkd

k

9: end if
10: end for

It is worth noting that we don’t specify how to select αk in Algorithm 5. The direct question

arises: Does αk affect the performance of Algorithm 5? In the following, we will examine the role

that αk plays in the Algorithm 5.

Firstly, we prove that dk is a descent direction for F .

Lemma 5.1 For the dk in Algorithm 5, we have〈
∇fi(xk), dk

〉
+ gi(x

k + dk)− gi(xk) ≤ −αki ‖dk‖2 for all i ∈ [m]. (11)

Proof The assertion can be obtained by using the same arguments as in the proof of [34, Lemma

4.1].

Next, we give a lower bound of stepsize in each iteration.

Lemma 5.2 Assume fi is Li-smooth for i ∈ [m], then the k-th stepsize generated by Algorithm

4 satisfies tk ≥ tmin
k := min

{
mini∈[m]{(1− σ)αki /Li}, 1

}
.

Proof It is sufficient to prove tk < 1, then backtracking is conducted, leading to the inequality:

Fi
(
xk + 2tkd

k
)
− Fi(xk) > 2σtk(

〈
∇fi(xk), dk

〉
+ gi(x

k + dk)− gi(xk)) (12)
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for some i ∈ [m]. Since fi is Li-smooth for i ∈ [m], we can derive the following inequalities:

Fi
(
xk + 2tkd

k
)
− Fi(xk)

≤ 2tk
〈
∇fi(xk), dk

〉
+ gi(x

k + 2tkd
k)− gi(xk) +

Li
2

∥∥2tkd
k
∥∥2

≤ 2tk(
〈
∇fi(xk), dk

〉
+ gi(x

k + dk)− gi(xk)) +
Li
2

∥∥2tkd
k
∥∥2 ,

(13)

where the second inequality follows from the convexity of gi and the fact that 2tk ∈ (0, 1].

Combining this inequality with (12), we obtain

(σ − 1)(
〈
∇fi(xk), dk

〉
+ gi(x

k + dk)− gi(xk)) ≤ Litk
∥∥dk∥∥2

for some i ∈ [m]. Utilizing (11), we arrive at

tk ≥
(1− σ)αki

Li
(14)

for some i ∈ [m], it holds that tk ≥ tmin. This completes the proof.

Before presenting the convergence analysis of Algorithm 5, we introduce two types of merit

functions for (MCOP) that quantify the gap between the current point and the optimal solution.

uα0 (x) := sup
y∈Rn

min
i∈[m]

{
Fi(x)− Fi(y)

αi

}
, (15)

wα` (x) := max
y∈Rn

min
i∈[m]

{
〈∇fi(x), x− y〉+ gi(x)− gi(y)

αi
− `

2
‖x− y‖2

}
, (16)

where α ∈ Rm++, ` > 0.

We can demonstrate that uα0 and wα` serve as merit functions, satisfying the criteria of weak

Pareto and critical points, respectively.

Proposition 5.1 Let uα0 and wα` be defined as (15) and (16), respectively. Then, for all α ∈ Rm++

and ` > 0 the following statements hold.

(i) x ∈ Rn is a weak Pareto solution of (MCOP) if and only if uα0 (x) = 0.

(ii) x ∈ Rn is a Pareto critical point of (MCOP) if and only if wα` (x) = 0.

Proof The assertions (i) and (ii) can be obtained by using similar arguments as in the proofs

of [37, Theorem 3.1] and [37, Theorem 3.9], respectively.

Proposition 5.2 Let wα` be defined as (16). If 0 < ` ≤ r, then

wαr (x) ≤ wα` (x) ≤ r

`
wαr (x) for all x ∈ Rn.

Proof The assertion can be obtained by using the similar arguments as in the proof of [37,

Theorem 4.2].
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We are now in a position to establish the linear convergence of Algorithm 5.

Theorem 5.1 Assume that fi is Li-smooth and strongly convex with modulus µi > 0, for i ∈ [m].

Let {xk} be the sequence generated by Algorithm 5. Then, we have

uα
k

0 (xk+1) ≤
(
1− σtmin

k rk
)
uα

k

0 (xk)

for all k ≥ 0, where rk := min{mini∈[m]{µi/αki }, 1}.

Proof The Armijo line search satisfies

Fi(x
k+1)− Fi(xk) ≤ tkσ(

〈
∇fi(xk), dk

〉
+ gi(x

k + dk)− gi(xk)).

A direct calculation gives

Fi(x
k+1)− Fi(xk)

αki

≤ tkσ

(〈
∇fi(xk), dk

〉
+ gi(x

k + dk)− gi(xk)

αki
+

1

2
‖dk‖2

)

≤ tkσ max
i∈[m]

{〈
∇fi(xk), dk

〉
+ gi(x

k + dk)− gi(xk)

αki
+

1

2
‖dk‖2

}
= −tkσwα

k

1 (xk)

≤ −tmin
k σwα

k

1 (xk).

(17)

Furthermore, due to the strong convexity of fi for i ∈ [m], we have

Fi(x
k)− Fi(x)

αki

≤
〈
∇fi(xk), xk − x

〉
+ gi(x

k)− gi(x)

αki
−

mini∈[m]{µi/αki }
2

‖x− xk‖2
(18)

for all i ∈ [m] and x ∈ Rn. Taking the supremum and minimum with respect to x ∈ Rn and

i ∈ [m] on both sides, respectively, we obtain

sup
x∈Rn

min
i∈[m]

{
Fi(x

k)− Fi(x)

αki

}
≤ sup
x∈Rn

min
i∈[m]

{〈
∇fi(xk), xk − x

〉
+ gi(x

k)− gi(x)

αki
−

mini∈[m]{µi/αki }
2

‖x− xk‖2
}

≤ 1

rk
sup
x∈Rn

min
i∈[m]

{〈
∇fi(xk), xk − x

〉
+ gi(x

k)− gi(x)

αki
− 1

2
‖x− xk‖2

}
,

where the second inequality is due to Proposition 5.2. The above inequalities can be rewritten as

uα
k

0 (xk) ≤ 1

rk
wα

k

1 (xk).
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Together with (17), the preceding inequality yields

Fi(x
k+1)− Fi(xk)

αki
≤ −σtmin

k rku
αk

0 (xk).

Then, for all x ∈ Rn, we have

Fi(x
k+1)− Fi(x)

αki
≤ Fi(x

k)− Fi(x)

αki
− σtmin

k rku
αk

0 (xk).

Taking the supremum and minimum with respect to x ∈ Rn and i ∈ [m] on both sides, respec-

tively, we obtain

uα
k

0 (xk+1) ≤
(
1− σtmin

k rk
)
uα

k

0 (xk).

This completes the proof.

The following theorem shows that αk ∈ Rm++ plays a significant role in the convergence rate

of Algorithm 5.

Theorem 5.2 Assume that fi is Li-smooth and strongly convex with modulus µi > 0, for i ∈ [m].

Let {xk} be the sequence generated by Algorithm 5. Then, the following statements hold.

(i) For any αk ∈ R++, we have

(1− σ) min

{
αkminµmin

αkmaxLmax
,
αkmin

Lmax
,
µmin

αkmax

}
≤ tmin

k rk ≤ (1− σ) min
i∈[m]

{
µi
Li

}
,

where αkmin := min{αki , i ∈ [m]} and αkmax := max{αki , i ∈ [m]}.
(ii) If αki = ` > 0 for i ∈ [m], we have tmin

k rk = (1− σ) min
{
µmin

Lmax
, `
Lmax

, µmin

`

}
, then

u0(xk+1) ≤
(

1− σ(1− σ) min

{
µmin

Lmax
,

`

Lmax
,
µmin

`

})
u0(xk).

(iii) If αki = µi for i ∈ [m] or αki = Li for i ∈ [m], we have tmin
k rk = (1− σ) mini∈[m] µi/Li, then

uα
k

0 (xk+1) ≤
(

1− σ(1− σ) min
i∈[m]

{
µi
Li

})
uα

k

0 (xk).

Proof (i) Firstly, we prove the right hand side of the inequality. With loss of generality, let us

assume that
µ1

L1
= min
i∈[m]

{
µi
Li

}
.

Recall the definition of tmin
k and rk, we have tmin

k ≤ (1−σ)αk1/L1 and rk ≤ µ1/α
k
1 , it follows that

tmin
k rk ≤ (1− σ)

µ1

L1
= (1− σ) min

i∈[m]

{
µi
Li

}
.

For the left hand side of the inequality, we distinguish three cases: (a) αkmax ≤ µmin, (b) Lmax ≤
αkmin and (c) µmin < αkmax and αkmin < Lmax. If (a) holds, we have rk = 1 and tmin

k ≥ (1 −
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σ)αkmin/Lmax, it follows that

tmin
k rk ≥ (1− σ)

αkmin

Lmax
.

If (b) holds, we derive that rk ≥ µmin/α
k
max and tmin

k ≥ (1− σ), therefore,

tmin
k rk ≥ (1− σ)µmin/α

k
max.

If (c) holds, we deduce that rk > µmin/α
k
max and tmin

k > (1− σ)αkmin/Lmax, then

tmin
k rk ≥ (1− σ)

αkminµmin

αkmaxLmax
.

Consequently, the left hand side of the inequality in (i) holds.

(ii) By distinguishing three cases as in the proof of (i) with αkmax = αkmax = `, the desire

result follows.

(iii) If αki = µi for i ∈ [m], we have tmin
k = (1 − σ) mini∈[m]{µi/Li} and rk = 1. While

αki = Li for i ∈ [m], we have tmin
k = (1− σ) and rk = mini∈[m]{µi/Li}. In both cases, we have

tmin
k rk = (1− σ) min

i∈[m]

{
µi
Li

}
.

The desire result follows.

Remark 5.1 Theorem 5.2 demonstrates that the scaling parameters {αki : i ∈ [m]} are pivotal

in determining the linear convergence rate of Algorithm 5. The primary conclusions can be

summarized as follows.

(i) If αki = ` > 0 for i ∈ [m], then the SPGMO with line search reduces to the PGMO with

line search [34]. Consequently, Theorem 5.2 (ii) indicates that the PGMO with line search is

unable to address objective imbalances.

(ii) By setting αki = µi for i ∈ [m] or αki = Li for i ∈ [m], we derive the objective imbalances

parameter ζ = 1 for scaled problems FL and Fµ, thereby completely mitigating objective im-

balances. In these scenarios, the SPGMO with line search achieves optimal linear convergence

and enjoys favorable performance for well-conditioned problems.

(iii) The convergence rate in Theorem 5.2 (iii) is attributable to the global upper and lower bounds

employed in (13) and (18), respectively. As a result, setting µi ≤ αki ≤ Li leverages the

problem’s local geometry, whereas αki = µi or αki = Li is too conservative as the curvature

of fi can be pretty different. Intuitively, the linear convergence rate for Algorithm 5 with

µi ≤ αki ≤ Li for i ∈ [m] is, roughly speaking, not less than 1− σ(1− σ) mini∈[m] {µi/Li}.

6 Scaled proximal method with Nesterov’s acceleration for MCOPs

Tanabe et al. [35] proposed an accelerated proximal gradient method for MCOPs (APGMO),

and established the well-known O(1/k2) for convex scenarios. The crux of the APGMO lies in
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the subproblem:

min
x∈Rn

max
i∈[m]

{〈
∇fi(yk), x− yk

〉
+ gi(x) + fi(y

k)− Fi(xk) +
Lmax

2
‖x− yk‖2

}
, (19)

where the inside of max operator approximates Fi(x)−Fi(yk) rather that Fi(x)−Fi(xk), which

deeply affects the proof in the multiobjective case. We refer the reader to [35] for more details. It

is worth noting that the linear convergence of APGMO for strongly convex cases was not analyzed

in [35]. This raises an intriguing question: Does the APGMO with an appropriate momentum

parameter exhibit the linear convergence O((1−
√
µmin/Lmax)k) for strongly convex scenarios?

6.1 Accelerated scaled proximal gradient method for MCOPs

In this subsection, we propose an accelerated scaled proximal method that alleviate the objective

imbalances. Inspired by the work of Tanabe et al. [35], the subproblem is defined as follows:

min
x∈Rn

max
i∈[m]

{〈
∇fi(yk), x− yk

〉
+ gi(x) + fi(y

k)− Fi(xk)

Li
+

1

2
‖x− yk‖2

}
. (20)

Assume that fi is strongly convex with module µi ≥ 0 and Li-smooth for i ∈ [m], we define

µ̂ := min
i∈[m]

{
µi
Li

}
.

It is evident that 0 ≤ µ̂ ≤ 1. The accelerated scaled proximal gradient method for MCOPs

(ASPGMO) is described as follows.

Algorithm 6: Accelerated scale proximal gradient method for MCOPs

Require: x−1 = x0 ∈ Rn
1: for k = 0, · · · do

2: γk = (θk−µ̂)(1−θk−1)
(1−µ̂)θk−1

3: yk = xk + γk(xk − xk−1)
4: Compute xk+1 by solving subproblem (20)
5: if xk+1 = yk then
6: return xk+1

7: end if
8: end for

Remark 6.1 Algorithm 6 unifies the convex and strongly convex cases by employing distinct

values of θk in the momentum parameter. When the smooth parameters are unknown, we can

update the scaling parameters through backtracking.
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6.2 Convergence analysis of ASPGMO

Before proceeding with the complexity analysis, we define the following auxiliary sequences:

σLk (z) := min
i∈[m]

{
Fi(x

k)− Fi(z)
Li

}
,

ρk(z) :=

∥∥∥∥ 1

θk
xk+1 − 1− θk

θk
xk − z

∥∥∥∥2 .
Next, we present two lemmas that will be utilized in the complexity analysis.

Lemma 6.1 Assume that fi is strongly convex with modulus µi ≥ 0 and Li-smooth for i ∈ [m].

Let {xk} and {yk} be sequences generated by Algorithm 6. Then, we have

σLk+1(z) ≤
〈
xk+1 − yk, z − yk

〉
− µ̂

2

∥∥yk − z∥∥2 − 1

2

∥∥xk+1 − yk
∥∥2 , (21)

and

σLk+1(z)− σLk (z) ≤
〈
xk+1 − yk, xk − yk

〉
− 1

2

∥∥xk+1 − yk
∥∥2 (22)

for all z ∈ Rn and k ≥ 0.

Proof By using strong convexity in (21), the assertions can be obtained by using similar argu-

ments as in the proof of [35, Lemma 7].

Lemma 6.2 (See Theorem 9 of [35]) Let {xk} be sequence generated by Algorithm 6. Then,

we have xk ∈ LF (F (x0)) for all k ≥ 0.

Using Lemma 6.1, we establish an auxiliary inequality as follows.

Lemma 6.3 Assume that fi is strongly convex with modulus µi ≥ 0 and Li-smooth for i ∈ [m].

Let {xk} and {yk} be sequences generated by Algorithm 6 with θk ≥ µ̂ for all k ≥ 0. Then, we

have

σLk+1(z) +
θ2k
2
ρk(z) ≤ (1− θk)σLk (z) +

θk(θk − µ̂)

2
ρk−1(z) (23)

for all z ∈ Rn and k ≥ 0.

Proof Multiplying inequality (21) by θk and inequality (22) by (1 − θk) and adding them

together, we have

σLk+1(z)− (1− θk)σLk (z)

≤ −1

2

∥∥xk+1 − yk
∥∥2 − θkµ̂

2

∥∥yk − z∥∥2 +
〈
xk+1 − yk, (1− θk)xk + θkz − yk

〉
= −1

2

∥∥xk+1 − yk
∥∥2 − θkµ̂

2

∥∥yk − z∥∥2 +
1

2
(
∥∥xk+1 − yk

∥∥2 +∥∥(1− θk)xk + θkz − yk
∥∥2 − ∥∥xk+1 − (1− θk)xk − θkz

∥∥2)

= −θkµ̂
2

∥∥yk − z∥∥2 +
θ2k
2

(∥∥∥∥1− θk
θk

xk + z − 1

θk
yk
∥∥∥∥2 − ρk(z)

)
,

(24)
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where the first inequality is due to the relation 2 〈a, b〉 ≤ ‖a‖2+‖b‖2−‖a− b‖2 with a := xk+1−yk

and b := (1 − θk)xk + θkz − yk. By reorganizing the terms in 1−θk
θk

xk + z − 1
θk
yk carefully, we

obtain

θ2k
2

∥∥∥∥1− θk
θk

xk + z − 1

θk
yk
∥∥∥∥2

=
θ2k
2

∥∥∥∥ µ̂θk (z − yk) +
θk − µ̂
θk

(
z +

1− θk
θk − µ̂

xk − 1− µ̂
θk − µ̂

yk
)∥∥∥∥2

≤ θkµ̂

2

∥∥z − yk∥∥2 +
θk(θk − µ̂)

2

∥∥∥∥z +
1− θk
θk − µ̂

xk − 1− µ̂
θk − µ̂

yk
∥∥∥∥2

=
θkµ̂

2

∥∥z − yk∥∥2 +
θk(θk − µ̂)

2
ρk−1(z),

where the inequality is due to the facts that θk > µ̂ and the convexity of ‖·‖2, and the last

equality follows by the definition of yk in Algorithm 6. Substituting the above inequality into

(24), we derive

σLk+1(z)− (1− θk)σLk (z) ≤ θk(θk − µ̂)

2
ρk−1(z)− θ2k

2
ρk(z).

Hence, the inequality (23) holds for all z ∈ Rn and k ≥ 0.

We define a Lyapunov function for µi = 0, i ∈ [m]:

Ek+1(z) :=
σLk+1(z)

θ2k
+

1

2
ρk(z). (25)

We will show that Ek+1(z) ≤ Ek(z) for all k ≥ 0 and establish the convergence rate in the

following theorem.

Theorem 6.1 Assume that fi is convex and Li-smooth for i ∈ [m]. Let θk = 2/(k + 2) in

Algorithm 6, i.e., γk = (k − 1)/(k + 2). Then, we have

Ek+1(z) ≤ Ek(z)

for all k ≥ 0. If the level set LF (F (x0)) is bounded, then

uL0 (xk) ≤ 2R2

(k + 1)2

for all k ≥ 0, where R := max
{
‖x− y‖ : x, y ∈ LF (x0)

}
.

Proof In this case, we have µ̂ = 0, thus θk ≥ µ̂ holds for all k ≥ 0. By substituting µ̂ = 0 into

(23), it follows that

σLk+1(z) +
θ2k
2
ρk(z) ≤ (1− θk)σLk (z) +

θ2k
2
ρk−1(z).



22 Jian Chen et al.

Dividing both sides of the above inequality by θ2k, we have

σLk+1(z)

θ2k
+

1

2
ρk(z) ≤ 1− θk

θ2k
σLk (z) +

1

2
ρk−1(z).

Recall that θk = 2
k+2 , then we can deduce 1−θk

θ2k
≤ 1

θ2k−1
. This together with the above inequality

implies

Ek+1(z) ≤ Ek(z).

Notice that ρk−1(z) ≥ 0 and x0 = x−1, the above inequality implies

σLk (z) ≤ θ2k−1
(
σL0 (z)

θ2−1
+

1

2

∥∥x0 − z∥∥2) .
Setting 1/θ2−1 = 0, and selecting xk∗ ∈ arg maxz∈Rn mini∈[m]

{
(Fi(x

k)− Fi(z))/Li
}

, the previous

inequality implies

uLk (xk) ≤
2
∥∥x0 − xk∗∥∥2
(k + 1)2

.

Then, the desired result follows by F (xk∗) � F (xk) and xk ∈ LF (F (x0)).

We also define a Lyapunov function for µi > 0, i ∈ [m]:

Eµk+1(z) :=
1

(1−
√
µ̂)k+1

(
σLk+1(z) +

µ̂

2
ρk(z)

)
. (26)

We will show that Eµk+1(z) ≤ Eµk (z) for all k ≥ 0 and establish the convergence rate in the

following theorem.

Theorem 6.2 Assume that fi is strongly convex with module µi > 0 and Li-smooth for i ∈ [m].

Let θk =
√
µ̂ in Algorithm 6, i.e., γk = (1−

√
µ̂)/(1 +

√
µ̂). Then, we have

Eµk+1(z) ≤ Eµk (z),

and

uL0 (xk) ≤
(

1−
√
µ̂
)k (

uL0 (x0) +
µ̂

2
R2

)
for all k ≥ 0, where R := max

{
‖x− y‖ : x, y ∈ LF (F (x0))

}
.

Proof Since θk =
√
µ̂ and µ̂ ≤ 1, thus θk ≥ µ̂ holds for all k ≥ 0. By substituting θk =

√
µ̂ into

(23), it follows that

σLk+1(z) +
µ̂

2
ρk(z) ≤ (1−

√
µ̂)σLk (z) +

√
µ̂(
√
µ̂− µ̂)

2
ρk−1(z).

Dividing both sides of the above inequality by (1−
√
µ̂)k+1, we have

Eµk+1(z) ≤ Eµk (z).
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Notice that ρk−1(z) ≥ 0 and x0 = x−1, the above inequality implies

σLk (z) ≤
(

1−
√
µ̂
)k (

σL0 (z) +
µ̂

2

∥∥x0 − z∥∥2) .
Selecting xk∗ ∈ arg maxz∈Rn mini∈[m]

{
(Fi(x

k)− Fi(z))/Li
}

, the previous inequality implies

uL0 (xk) ≤
(

1−
√
µ̂
)k (

σL0 (x∗) +
µ̂

2

∥∥x0 − xk∗∥∥2)
≤
(

1−
√
µ̂
)k (

uL0 (x0) +
µ̂

2

∥∥x0 − xk∗∥∥2) ,
where the second inequality is due to the definition of uL0 . Notice that fi is strongly convex and

gi is convex for i ∈ [m], we conclude that LF (x0) is bounded. Then, the desired result follows by

the facts that F (xk∗) � F (xk) and xk ∈ LF (x0).

Remark 6.2 By setting γk = (1−
√
µmin/Lmax)/(1 +

√
µmin/Lmax) in APGMO, the method

demonstrates a linear convergence rate of O((1−
√
µmin/Lmax)k) for strongly convex cases.

7 Numerical experiments

In this section, we present numerical results to illustrate the performance of SPGMO across

various problems. All numerical experiments were implemented in Python 3.7 and executed on a

personal computer with an Intel Core i7-11390H, 3.40 GHz processor, and 16 GB of RAM. For

the SPGMO with line search, we selected scaling parameters using the Barzilai-Borwein method

[10]. The subproblems of the tested algorithms were solved via dual problems (see [35] for more

details), which can be efficiently solved by Frank-Wolfe method. We set σ = 10−4 in the line

search procedure and employed stopping criteria of ‖dk‖ ≤ 10−4 or
∥∥xk+1 − yk

∥∥ ≤ 10−4 for all

tested algorithms to ensure termination after a finite number of iterations. Additionally, we set

the maximum number of iterations to 500.

7.1 Common examples

In this subsection, we compare PGMO, APGMO, SPGMO and ASPGMO with line search across

several common examples. Each objective function in the tested problems consists of two compo-

nents, where gi = 1
n‖x‖1 for i ∈ [m], and the details of f are provided in Table 1. The recorded

averages from 200 runs include the number of iterations, the number of function evaluations, and

the CPU time.

Table 2 presents the average number of iterations (iter), average number of function evalua-

tions (feval) and average CPU time (time (ms)) for each tested algorithm across various problems

with line search. In both the non-accelerated and accelerated cases, the numerical results indicate

that SPGMO consistently outperforms PGMO. Additionally, PGMO demonstrates poor perfor-

mance on problems such as DD1, Deb, FDS, imbalance2, and WIT1-3, which exhibit imbalanced
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Table 1: Description of all test problems used in numerical experiments.

Problem n m xL xU Reference
DD1 5 2 (-20,...,-20) (20,...,20) [11]
Deb 2 2 (0.1,0.1) (1,1) [12]
Far1 2 2 (-1,-1) (1,1) [21]
FDS 5 3 (-2,...,-2) (2,...,2) [14]
FF1 2 2 (-1,-1) (1,1) [21]
Hil1 2 2 (0,0) (1,1) [20]
Imbalance1 2 2 (-2,-2) (2,2) [10]
Imbalance2 2 2 (-2,-2) (2,2) [10]
VU1 2 2 (-3,-3) (3,3) [21]
WIT1 2 2 (-2,-2) (2,2) [39]
WIT2 2 2 (-2,-2) (2,2) [39]
WIT3 2 2 (-2,-2) (2,2) [39]

Table 2: Number of average iterations (iter), number of average function evaluations (feval) and
average CPU time (time (ms)) of test algorithms on different test problems with line search.

Problem PGMO APGMO SPGMO ASPGMO
iter feval time iter feval time iter feval time iter feval time

DD1 41.21 70.65 135.31 67.75 132.46 400.16 4.52 4.90 31.02 6.43 7.27 65.31
Deb 26.52 253.17 83.67 14.39 30.44 58.75 5.97 9.86 28.83 5.15 8.04 31.80
Far1 6.06 21.09 16.88 8.06 17.75 29.38 6.76 7.86 9.92 7.97 14.41 19.53
FDS 175.75 778.54 1350.16 55.15 107.88 737.89 3.44 3.82 2.16 7.36 12.00 54.53
FF1 3.41 3.55 2.42 4.13 5.44 3.05 2.10 2.26 2.27 2.93 4.00 5.55
Hil1 8.71 18.62 27.50 7.02 15.81 30.07 7.49 8.26 13.91 7.88 12.24 25.00
Imbalance1 2.92 5.63 42.81 7.79 13.80 134.53 2.44 3.11 34.69 3.82 5.35 39.14
Imbalance2 83.56 589.13 1180.39 21.09 42.18 149.84 1.00 1.00 1.79 1.00 1.00 2.65
VU1 8.52 8.59 1.72 6.20 10.47 9.69 2.08 2.15 3.36 3.61 5.31 7.42
WIT1 27.63 145.06 118.98 20.05 41.14 51.64 2.94 3.24 7.11 4.83 6.71 15.73
WIT2 48.07 286.20 193.67 19.22 39.65 83.36 3.14 3.34 9.84 4.91 6.49 19.69
WIT3 18.58 79.78 74.30 35.51 71.72 124.68 3.92 4.13 14.22 5.33 7.64 17.89

objective functions. Given the performance of SPGMO on these problems, it is well-suited for

addressing such challenges. Table 2 also shows that APGMO surpasses PGMO, validating the

effectiveness of Nesterov’s acceleration technique in MOPs. However, we note that Nesterov’s

acceleration technique slightly hampers the performance of SPGMO. We infer that the primary

reasons for this may be the Barzilai-Borwein method utilized in SPGMO and the simplicity of

the problems tested.

7.2 Quadratic examples

In the following, we compare different test problem with known smooth parameters. Consider a

series of quadratic problems defined as follows:

fi(x) =
1

2
〈x,Aix〉+ 〈bi, x〉 , gi(x) =

1

n
‖x‖1, i = 1, 2,

where Ai ∈ Rn×n is a positive definite matrix. Here we use, Ai = HiDiH
T
i where Hi is a orthogo-

nal matrix and Di is a diagonal matrix with positive components. More details of f are provided

in Table 1, where κ and ζ denote the condition number and objective imbalances parameter,
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respectively. QPa is a well-conditioned problem without objective imbalances, while QPb-f ex-

hibit objective imbalances with a parameter value of 100. Additionally, QPd and QPf display

significant ill-conditioning, which poses challenges for first-order methods. For each problem, we

conducted 200 computations using the same initial points across the different tested algorithms.

The initial points were randomly selected within the specified lower and upper bounds. The

recorded averages from the 200 runs include the number of iterations and the CPU time.

Table 3: Description of quadratic problems

Problem n (κ, ζ) xL xU
QPa 10 (10, 1) 10[-1,...,-1] 10[1,...,1]
QPb 10 (10, 102) 10[-1,...,-1] 10[1,...,1]
QPc 10 (102, 102) 10[-1,...,-1] 10[1,...,1]
QPd 10 (104, 102) 10[-1,...,-1] 10[1,...,1]
QPe 100 (102, 102) 100[-1,...,-1] 100[1,...,1]
QPf 100 (103, 102) 100[-1,...,-1] 100[1,...,1]

Table 4: Number of average iterations (iter) and average CPU time (time (ms)) of tested algo-
rithms implemented on different test problems with known smooth parameters.

Problem PGMO APGMO APGMO-sc SPGMO ASPGMO ASPGMO-sc
iter time iter time iter time iter time iter time iter time

QPa 43.07 94.92 33.42 99.14 20.56 60.47 43.07 100.31 33.42 105.16 20.56 59.53
QPb – – – – 196.03 477.42 48.44 89.21 34.30 82.03 21.21 62.81
QPc – – – – – – 367.21 210.78 149.33 144.53 68.97 74.22
QPd – – – – – – – – – – 422.72 25.70
QPe – – – – – – 326.31 368.20 186.47 320.54 81.66 219.61
QPf – – – – – – – – – – 262.87 351.25

Table 4 provides the average number of iterations (iter) and average CPU time (time (ms))

for each tested algorithm across the various problems with known smooth parameters, where “–”

indicates that the tested algorithm failed to meet the stopping criteria within 500 iterations. As

noted in Table 4, we conclude that PGMO exhibits slow convergence on imbalanced problems

in both the non-accelerated and accelerated scenarios. The subpar performance of APGMO on

imbalanced problems further confirms that Nesterov’s acceleration technique is inadequate for

addressing objective imbalances. In comparing the performances of SPGMO and ASPGMO, we

conclude that the performance of SPGMO with known smooth parameters is enhanced by the in-

corporation of Nesterov’s acceleration technique. Remarkably, even for the highly ill-conditioned

problems QPd and QPf, the ASPGMO with strongly convex momentum (ASPGMO-sc) shows

commendable performance.
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(a) kmax = 50 (b) kmax = 500

Fig. 1: Value space for different maximum numbers of iterations kmax = 50, 500 for QPd.

(a) Function values of F1 (b) Function values of F2

Fig. 2: Function values of iterations for QPd.

(a) Function values of F1 (b) Function values of F2

Fig. 3: Function values of iterations for QPf.
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(a)
∥∥xk+1 − yk

∥∥ for problem QPd (b)
∥∥xk+1 − yk

∥∥ for problem QPf

Fig. 4:
∥∥xk+1 − yk

∥∥ for problems QPd and QPf.

In Figure 1, we utilize the same 50 random starting points for SPGMO, ASPGMO, and

ASPGMO-sc. For these experiments, we apply different maximal numbers of iterations kmax. As

shown in Figure 1 (a), the points generated by ASPGMO-sc progress significantly faster than

those produced by SPGMO and ASPGMO in the initial stages. In Figure 1 (b), we observe

that the points generated by SPGMO are consistently outperformed by both ASPGMO and

ASPGMO-sc. Although SPGMO and ASPGMO do not meet the stopping criteria within 500

iterations on the QPe and QPf problems, Figures 2 and 3 indicate that the function values pro-

duced by ASPGMO decrease more rapidly at the outset compared to SPGMO. Moreover, from

Figures 2 and 3, we note that the function values of ASPGMO and ASPGMO-sc exhibit a slower

decrease after 100 iterations and converge to similar values. However, as illustrated in Figure 4,

both ASPGMO and ASPGMO-sc converge more rapidly than the non-accelerated SPGMO, de-

spite some oscillations. Additionally, ASPGMO-sc demonstrates superior performance compared

to ASPGMO, successfully reaching the stopping criteria within 500 iterations for the QPd and

QPf problems.

8 Conclusions

We develop a scaled method to mitigate objective imbalances that lead to the slow convergence of

existing multiobjective first-order methods. It is proven that the SPGMO converges linearly at a

rate of
√

1−mini∈[m] {µi/Li}, whereas the linear convergence rate of PGMO is
√

1− µmin/Lmax.

We also establish improved linear convergence in both linear and accelerated cases. To the best

of our knowledge, the improved linear convergence is the first theoretical result that bridges

the theoretical gap between first-order methods for SOPs and MOPs. Notably, scaling serves

as a flexible manipulation that opens new avenues for exploring efficient descent methods in

multiobjective optimization.

For future work, several points warrant consideration:

– Objective imbalances are intrinsic to MOPs that reflect differences among objectives. This

paper quantifies objective imbalances by (5) for first-order methods in strongly convex cases.
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It would be interesting to study objective imbalances in non-convex scenarios as well as in

high-order methods.

– The line search method described in Remark 5.1 (iii) suggests selecting appropriate scaling

parameters to capture the problem’s local geometry. However, line search methods often im-

pose significant computational burdens. By extending the fully adaptive method introduced in

[23] to determine scaling parameters, developing an adaptive SPGMO could be an interesting

avenue for exploration.

– Numerical results indicate that the ASPGMO performs well for ill-conditioned MOPs when

the strongly convex parameters are known. However, these parameters are frequently unknown

and challenging to estimate. It would be worthwhile to develop efficient ASPGMO algorithms

that do not require knowledge of the strongly convex parameters.
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