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Abstract In this paper, by combining the inertial technique and subgradient extragradient
method with a new strategy of stepsize selection, we propose a novel extragradient method
to solve pseudomonotone equilibrium problems in real Hilbert spaces. Our method is de-
signed such that the stepsize sequence is increasing after a finite number of iterations. This
distinguishes our method from most other extragradient-type methods for equilibrium prob-
lems. The weak and strong convergence of new algorithms under standard assumptions are
established. We examine the performance of our methods on the Nash-Cournot oligopolistic
equilibrium models of electricity markets. The reported numerical results demonstrate the
efficiency of the proposed method.
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1 Introduction

Let C be a non-empty, closed and convex subset of a real Hilbert space H, f : H × H →
R∪ {+∞} is a bi-function such that C ⊂ int(domf(x, ·)) for every x ∈ H. An equilibrium
problem (in short, EP) for f on C is stated as follows:

Determine an element x∗ ∈ C such that f(x∗,y) ≥ 0 ∀y ∈ C. (1)

We denote the solutions set of EP (1) by Sol(f,C). The normal cone NC to C at a point
x ∈ C is defined by NC(x) = {w ∈ H : ⟨w,y − x⟩ ≤ 0, ∀y ∈ C}. This paper investigates the
algorithms and numerical results of the equilibrium problem under the following conditions:
(C1) f is pseudomonotone on C;
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(C2) f(·,y) is weakly upper semicontinuous on C;
(C3) f(x, ·) is convex and lower semicontinuous;
(C4) There exist positive numbers c1 and c2 such that the Lipschitz-type condition

f(x,y)+f(y,z) ≥ f(x,z)− c1∥x−y∥2 − c2∥y − z∥2 (2)
holds for all x,y,z ∈ H.
(C5) The solution set Sol(f,C) ̸= ∅.
(C6) Either f(x, .) is continuous at some point of C, or there is an interior point of C where
f(x, .) is finite for every x ∈ C.

It easy to see that conditions (C1) and (C4) imply that f(x,x) = 0 for all x ∈ C.
The phrase “equilibrium problem” was used in the research article by Muu and Oettli in
1992 [28], and it was further explored by Blum and Oettli [4]. The equilibrium problem is
of interest to researchers because it unifies many nonlinear problems, including fixed-point
problems, variational inequalities, Nash equilibrium problems in non-cooperative games,
vector and scalar minimization problems, complementarity problems, saddle point prob-
lems, etc (see [3, 4, 28] for more details). The equilibrium problem (shortly, EP) is also
known as the Ky Fan inequality since Fan [9] gave the first existence result of solutions of
(EP). Because of its applications, several authors have established and generalized many re-
sults concerning the existence of solutions for equilibrium problems (e.g., see [5,20] and the
references therein). An important direction in the equilibrium problem theory is the study of
efficient iterative algorithms for finding approximate solutions and their convergence analy-
sis. Several methods have been proposed to solve equilibrium problems in finite dimensional
spaces (e.g., see [1, 7, 17,33]) and infinite dimensional spaces (e.g., see [6, 15, 21,36]).

Recently, the authors in [8,11–13] introduced various methods for solving strongly pseu-
domonotone and Lipschitz-type bifunctions equilibrium problems. It is worth mentioning
that the step size of the methods often depends on c1 and c2. In general equilibrium prob-
lems, finding the constants c1 and c2 is not an easy task, a fact which might affect the
efficiency of the involved methods. To overcome this difficulty, Yang and Liu [46] intro-
duced the following method:

Algorithm 1.1 (Subgradient extragradient type method with self-adaptive stepsizes for EPs)
(Step 0) Take λ0 > 0,x0 ∈ H,µ ∈ (0,1).
(Step 1) Given the current iterate xn, compute

yn = argmin
{

λnf (xn,y)+ 1
2 ∥xn −y∥2 ,y ∈ C

}
= proxλnf(xn,.) (xn) .

(Step 2) Choose wn ∈ ∂2f (xn,yn) such that xn −λnwn −yn ∈ NC (yn), compute

zn = argmin
{

λnf (yn,y)+ 1
2 ∥xn −y∥2 ,y ∈ Tn

}
= proxλnf(yn,.) (xn) ,

where Tn = {v ∈ H | ⟨xn −λnwn −yn,v −yn⟩ ≤ 0}.
(Step 3) Compute tn = αnx0 + (1−αn)zn,xn+1 = βnzn + (1−βn)Stn, where S : H → H is
a mapping and

λn+1 =

min
{

µ(∥xn−yn∥2+∥zn−yn∥2)
2(f(xn,zn)−f(xn,yn)−f(yn,zn)) ,λn

}
, if f (xn, zn)−f (xn,yn)−f (yn, zn) > 0,

λn, otherwise.

Set n := n+1 and return to Step 1.
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Recently, Ngamkhum et al. [30] introduced the following algorithm with non-monotonic
step sizes and proved its strong convergence:

Algorithm 1.2 (Modified inertial extragradient algorithm with non-monotonic step sizes)
Initialization. Choose parameters λ1 > 0, τ ∈ [0,1),µ ∈ (0,1),σ ∈

(
0, 1

2µ

)
,η ∈

[
σ, 1

µ

)
,{γk} ⊂

[0,1] such that limk→∞ γk = 1,{αk} ⊂ (0,1) with 0 < inf αk ≤ supαk < 1, {ξk} ⊂ [1,∞) with∑∞
k=0 (ξk −1) < ∞,{ρk} ⊂ [0,∞) with ∑∞

k=0 ρk < ∞, and {ϵk} ⊂ [0,∞), {βk} ⊂ (0,1) such
that ∑∞

k=0 βk = ∞, limk→∞ βk = 0, and limk→∞
ϵk
βk

= 0. Pick x0,x1 ∈ H and set k = 1.
Step 1. Choose θk such that 0 ≤ θk ≤ θ̄k, where

θ̄k =

min
{
τ, ϵk

∥xk−xk−1∥

}
, if xk ̸= xk−1

τ, otherwise

and compute

wk = (1−βk)(xk + θk (xk −xk−1)) .

Step 2. Solve the strongly convex programs

yk = argmin
{

ηλkf (wk,y)+ 1
2 ∥y −wk∥2 : y ∈ C

}
zk = argmin

{
σλkf (yk,y)+ 1

2 ∥y −wk∥2 : y ∈ C
}

.

Step 3. Compute

λk+1 =


min

{
µ(∥wk−yk∥2+∥zk−yk∥2)

2(f(wk,zk)−f(wk,yk)−f(yk,zk)) , ξkλk +ρk

}
,

if f (wk, zk)−f (wk,yk)−f (yk, zk) > 0,

ξkλk +ρk, otherwise.

Step 4. Compute

vk = γkwk +(1−γk)Twk,

xk+1 = αkvk +(1−αk)Tzk,

where T : H → H is a mapping.
Step 5. Put k := k +1 and go to Step 1.

Other results related to this kind of stepsize, please consult [22,34,35,39,40,45] and the
references therein. However, the sequence {λn} generated by Algorithm 1.1 is a monoton-
ically decreasing sequence. If the stepsize is small then the computations could be expen-
sive and time demanding. Moreover, the line-search type projection method [7, 44] often
decreases to zeros that can make the convergence of the algorithm quite slowly at large
iterations. So, these observations lead us to phrase the following research question:

Question. Can we design algorithms such that the sequence of our stepsizes is in-
creasing from some fixed iteration?
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The goal of this paper is to answer the above question. Motivated and inspired by the
works of Yang and Liu [45], Hoai [15], Hoai et al. [16] and mentioned methods, we introduce
two subgradient extragradient type algorithms for solving problem (1). The main advan-
tage of our method is the increasing property of the sequence of adaptive stepsizes after a
finite number of iterations. This gives a new method which is able to overcome drawbacks
of some algorithms mentioned above.

The paper is organized as follows. We first recall some basic definitions and results in
Section 2. Our new iterative methods are proposed and analyzed in Section 3 and Section
4. In Section 5 we present an application to variational inequalities. Then, in Section 6
we illustrate the performances of our schemes with related methods for solving the Nash-
Cournot oligopolistic equilibrium model.

2 Preliminaries

In this section, we present some preliminary results that we will use in our upcoming results.
From now on, we assume that H is a real Hilbert space endowed with the inner product
⟨., .⟩ and the associated norm ∥.∥. It is easy to see that

∥αx̄+βȳ +γz̄∥2 = α∥x̄∥2 +β∥ȳ∥2 +γ∥z̄∥2 −αβ∥x̄− ȳ∥2

−βγ∥ȳ − z̄∥2 −αγ∥x̄− z̄∥2,

for all x̄, ȳ, z̄ ∈ H and for all α,β,γ ∈ R with α +β +γ = 1.
When {xk} is a sequence in H, we denote strong convergence of {xk} to x ∈ H by xk → x

and weak convergence by xk ⇀ x. For a given sequence {xk} ⊂ H, ωw(xk) denotes the weak
ω-limit set of {xk}, i.e.,

ωw(xk) := {x ∈ H : xkl ⇀ x for some subsequence {kl} of {k}}.

Let C be a nonempty closed convex subset of H. For every element x ∈ H, there exists a
unique nearest point in C, denoted by PCx, that is

||x−PCx|| = min{||x−y|| : y ∈ C}.

The operator PC is called the metric projection of H onto C and some of its properties
are summarized in the next lemma.

Lemma 2.1 Let C ⊆ H be a closed convex set, PC fulfils the following:

(1) ⟨x−PCx,y −PCx⟩ ≤ 0 for all x ∈ H and y ∈ C;

(2) ∥PCx−y∥2 ≤ ∥x−y∥2 −∥x−PCx∥2 for all x ∈ H, y ∈ C;

Let g : H → (−∞,∞] be a proper, convex, and lower semicontinuous function and γ > 0.

proxg(x) : H → H

x 7→ argmin
y∈C

{
g(y)+ 1

2γ
∥y −x∥2

}

is well-defined and is said to be the proximity operator of g.
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We also recall that the subdifferential of g : H → (−∞,∞] at x ∈ H is defined as the set
of all subgradient of g at x:

∂g(x) := {w ∈ H : g(y)−g(x) ≥ ⟨w,y −x⟩ ∀y ∈ H}.

The function g is called subdifferentiable at x if ∂g(x) ̸= ∅, g is said to be subdifferentiable
on a subset C ⊂ H if it is subdifferentiable at each point x ∈ C, and it is said to be
subdifferentiable, if it is subdifferentiable at each point x ∈ H, i.e., if D(∂g) = H.

We now recall some classical concepts of monotonicity for nonlinear operators.

Definition 2.1 An operator A : H → H with domA ⊇ C is said to be

(1) (see Minty [26]) monotone on C if

⟨Ax−Ay,x−y⟩ ≥ 0 ∀x,y ∈ C.

(2) (see Karamardian [18]) pseudomonotone on C if

⟨Ax,y −x⟩ ≥ 0 =⇒ ⟨Ay,x−y⟩ ≤ 0 ∀x,y ∈ C.

Analogous to Definition 2.1, we have the following concepts for bifunctions.

Definition 2.2 Let C be a nonempty closed convex subset of H and f : H×H → R∪{+∞}
such that C ×C is contained in the domain of f . Then f is said to be

(1) (see Blum and Oettli [4]) monotone on C if

f(x,y)+f(y,x) ≤ 0 ∀x,y ∈ C.

(2) (see Bianchi and Schaible [2]) pseudomonotone on C if

f(x,y) ≥ 0 =⇒ f(y,x) ≤ 0 ∀x,y ∈ C.

Remark 2.1 It is obvious that if A : H → H is monotone (pseudomonotone) on C in the
sense of Definition 2.1 then the corresponding bifunction defined by f(x,y) = ⟨Ax,y −x⟩ is
monotone (pseudomonotone) on C in the sense of Definition 2.2.

In the proof of the strong convergence theorem, we will use the subdifferential inequality:

∥x+y∥2 ≤ ∥x∥2 +2⟨y,x+y⟩, (3)

for all x,y ∈ H.
The following lemmas will be useful for proving the convergence results of this paper.

Lemma 2.2 (Proposition 3.61 [31]) Let C be a nonempty closed convex subset of a real
Hilbert space H and let g : H → R∪ {+∞} be proper, lower-semicontinuous, and convex.
Assume either that g is continuous at some point of C, or that there is an interior point of
C where g is finite. Then, x∗ is a solution of the convex optimization problem

min{g(x) : x ∈ C}

if and only if
0 ∈ ∂g(x∗)+NC(x∗).
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Lemma 2.3 (Opial [29]) Let H be a real Hilbert space and {xk} a sequence in H such that
there exists a nonempty closed set S ⊂ H satisfying

(1) For every z ∈ S, lim
k→∞

∥xk − z∥ exists;

(2) Any weak cluster point of {xk} belongs to S.

Then, there exists x̄ ∈ S such that {xk} converges weakly to x̄.

Lemma 2.4 (See [37]) Assume that {ak} and {bk} are two sequences of nonnegative num-
bers such that ak+1 ≤ ak + bk ∀k ∈ N. If ∑∞

k=1 bk < ∞ then limk→∞ ak exists.

Lemma 2.5 ( [23, 42])Let {ak}∞
k=0 and {ck}∞

k=0 are sequences of nonnegative real numbers
such that

ak+1 ≤ (1− δk)ak + bk + ck, k ≥ 0,

where {δk}∞
k=0 is a sequence in (0,1) and {bk}∞

k=0 is a sequence in R. Assume ∑∞
k=0 ck < ∞.

Then the following results hold:

(1) If bk ≤ δkM for some M ≥ 0, then {ak}∞
k=0 is a bounded sequence.

(2) If ∑∞
k=0 δk = ∞ and limsupk→∞ bk/δk ≤ 0, then limk→∞ ak = 0.

Lemma 2.6 ( [24, Lemma 2.2]) Let the sequences {ϕk}∞
k=0 ⊂ [0,+∞) and {δk}∞

k=0 ⊂ [0,+∞)
which satisfy:

(1) ϕk+1 −ϕk ≤ θk(ϕk −ϕk−1)+ δk,

(2)
∞∑

k=1
δk < ∞,

(3) {θk}∞
k=0 ⊂ [0, θ], where θ ∈ [0,1).

Then {ϕk}∞
k=0 is a converging sequence and

∞∑
k=1

[ϕk+1 − ϕk]+ < ∞, where [t]+ := max{t,0}

(for any t ∈ R).

Lemma 2.7 ( [24]) Let {ak}∞
k=0 be a sequence of real numbers that does not decrease at

infinity, in the sense that there exists a subsequence {akj
}∞

j=0 of {ak}∞
k=0 such that akj

<
akj+1 for all j ≥ 0. Also consider the sequence of integers {τ(k)}k≥k0 defined by

τ(k) = max{i ≤ k : ai < ai+1}.

Then {τ(k)}k≥k0 is a nondecreasing sequence verifying lim
k→∞

τ(k) = ∞ and, for all k ≥ k0,

max{aτ(k),ak} ≤ aτ(k)+1.
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3 Algorithm and its convergence

Inspired by the algorithms in [14, 15, 43, 45], we propose the following algorithm for pseu-
domonotone equilibrium problems:

Algorithm 3.1 (Subgradient extragradient method with novel stepsizes for EPs)
Step 0 (Initialization). Select λ0 > 0, µ1 < µ0 < σ < 1/2, θ ∈ [0,1). Take positive sequences
{ϵk},{ξk} ⊂ [0,∞) satisfying

∞∑
k=0

ϵk < ∞,
∞∑

k=0
ξk < ∞.

Choose initial iterates x0,x1 ∈ C and set k = 1.
Step 1. Given the current iterates xk−1 and xk (k ≥ 1), choose αk such that 0 ≤ αk ≤ ᾱk,
where

ᾱk =


min

{
θ,

ξk

∥xk −xk−1∥

}
if xk ̸= xk−1,

θ otherwise.

Compute 
wk = xk +αk(xk −xk−1),

yk = argmin
y∈C

{
λkf(wk,y)+ 1

2∥y −wk∥2
}

.

If yk = wk then terminate: wk is a solution. Otherwise, go to Step 2.
Step 2. Take ξk ∈ ∂2f(wk,yk) such that wk −λkξk −yk ∈ NC(yk). Construct the half-space

Tk = {x ∈ H : ⟨wk −λkξk −yk,x−yk⟩ ≤ 0}.

Calculate

xk+1 = argmin
y∈Tk

{
λkf(yk,y)+ 1

2∥y −wk∥2
}

,

ηk = f(wk,xk+1)−f(wk,yk)−f(yk,xk+1),
δk = ∥wk −yk∥2 +∥yk −xk+1∥2

and update λk by

λk+1 =

µ1
δk

ηk
, if ηk > µ0

λk
δk,

(1+ ϵk)λk, otherwise.
(4)

Set k := k +1, and return to Step 1.

The following lemma shows that if the algorithm terminates at iteration k, then wk is
a solution.
Lemma 3.1 If yk = wk then yk ∈ Sol(f,C).
Proof We have

yk = argmin
y∈C

{
λkf(wk,y)+ 1

2∥y −wk∥2
}

.
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Therefore, from Lemma 2.2 we have

0 ∈ ∂2

[
λkf(wk, .)+ 1

2∥.−wk∥2
]
(yk)+NC(yk),

i.e.,
0 ∈ ∂2(λkf(wk, .))(yk)+yk −wk +NC(yk).

Hence, there exists ξk ∈ ∂2(f(wk, .))(yk) such that

wk −λkξk −yk ∈ NC(yk),

which implies that
⟨wk −λkξk −yk,y −yk⟩ ≤ 0 ∀y ∈ C.

If yk = wk then
⟨ξk,y −yk⟩ ≥ 0 ∀y ∈ C.

By the assumption (C3), we get

f(yk,y) = f(yk,y)−f(yk,yk) ≥ ⟨ξk,y −yk⟩ ≥ 0 ∀y ∈ C,

which means that yk ∈ Sol(f,C). ⊓⊔

Remark 3.1 From the proof of Lemma 3.1 we have C ⊂ Tk.

Lemma 3.2 Let {λk} be the stepsize sequence generated by Algorithm 3.1. Then

(i) for all k ≥ 1 we have λk ≥ λmin := min
{

µ1
max{c1,c2} ,λ0

}
> 0;

(ii) {λk} is convergent;

(iii) there exists a positive integer k0 such that λk+1 ≥ λk for all k ≥ k0.

Proof (i) Indeed, since f satisfies the Lipschitz type inequality (2), we obtain

µ1
∥wk −yk∥2 +∥yk −xk+1∥2

ηk
≥ µ1

∥wk −yk∥2 +∥yk −xk+1∥2

c1∥wk −yk∥2 + c2∥yk −xk+1∥2

≥ µ1
max{c1, c2}

for all n.
Hence

λ1 ≥
{

µ1
max{c1, c2}

,λ0

}
.

By induction, we obtain that the sequence {λk} is bounded below by min
{

µ1
max{c1,c2} ,λ0

}
.

(ii) The proof is similar to that of [14,15]. We provide it here for completeness. Let

uk = lnλk+1 − lnλk ∀k ≥ 0,

we have uk = u+
k −u−

k , where

u+
k = max{0,uk} ≥ 0 and u−

k = −min{0,uk} ≥ 0 for all k ≥ 0.
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From the definition of λk in Algorithm 3.1, we derive that

uk = ln λk+1
λk

≤ ln(1+ ϵk) ≤ ϵk ∀k ≥ 0,

which implies u+
k ≤ ϵk. Since

+∞∑
k=0

ϵk is convergent, we obtain
+∞∑
k=0

u+
k < +∞. Observing that

+∞∑
k=0

u−
k is a nonnegative series and using the following relation

lnλk+1 − lnλ0 =
k∑

i=0
ui =

k∑
i=0

(u+
i −u−

i ) =
k∑

i=0
u+

i −
k∑

i=0
u−

i , (5)

we see that if lim
k→+∞

k∑
i=0

u−
i = +∞ then

lim
k→+∞

(lnλk+1) = −∞,

i.e.,
lim

k→+∞
λk = 0.

This contradicts (i) and hence
+∞∑
k=0

u−
k must be convergent. Finally, from (5) we get the

desired conclusion that lim
k→+∞

λk = λ∗, where λmin ≤ λ∗ < +∞.

(iii) We show that there exists k0 such that

ηk ≤ µ0
λk

δk ∀k ≥ k0.

Then
λk+1 = (1+ ϵk)λk ≥ λk.

Suppose by contradiction that there exists {kl},kl → +∞ such that

ηkl
>

µ0
λkl

δkl
.

For this case
λkl+1 = µ1

δkl

ηkl

Therefore
µ1δkl

λkl+1
= ηkl

>
µ0
λkl

δkl
,

i.e.,
λkl+1
λkl

<
µ1
µ0

∀kl.

From (ii), we have

lim
l→+∞

λkl
= lim

l→+∞
λkl+1 = lim

k→+∞
λk = λ∗.

Hence we deduce that
λ∗

λ∗ ≤ µ1
µ0

< 1.

It is a contradiction and we finish the proof.
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Remark 3.2 The stepsize sequence generated by Algorithm 3.1 is increasing after a finite
number of iterations. Therefore, our method is different from other extragradient-type meth-
ods for equilibrium problems.

The next statement plays a crucial role in proving the convergence result.

Lemma 3.3 Let {xk} and {yk} be the sequences generated by Algorithm 3.1 and z ∈ C. Then
the following inequality holds.

∥xk+1 − z∥2 ≤ ∥wk − z∥2 −
(

1−2σ
λk

λk+1

)
∥wk −yk∥2 −

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2

+2λkf(yk, z),

for all k ≥ n1.

Proof It follows from xk+1 = argmin
y∈Tk

{
λkf(yk,y)+ 1

2∥y −wk∥2
}

and Lemma 2.2 that

0 = λkgk +xk+1 −wk + qk,

where gk ∈ ∂f(yk, .)(xk+1) and qk ∈ NTk
(xk+1).

From the definition

NTk
(xk+1) = {q ∈ H : ⟨q,y −xk+1⟩ ≤ 0, ∀y ∈ Tk}

and the fact that C ⊂ Tk, we have

⟨wk −xk+1 −λkgk, z −xk+1⟩ ≤ 0.

Consequently,

⟨wk −xk+1, z −xk+1⟩ ≤ λk⟨gk, z −xk+1⟩ ≤ λk(f(yk, z)−f(yk,xk+1)).

We have

∥xk+1 − z∥2 = ∥wk − z∥2 +∥xk+1 −wk∥2 +2⟨xk+1 −wk,wk − z⟩
= ∥wk − z∥2 −∥xk+1 −wk∥2 +2⟨xk+1 −wk,xk+1 − z⟩
≤ ∥wk − z∥2 −∥xk+1 −wk∥2 +2λk(f(yk, z)−f(yk,xk+1))
= ∥wk − z∥2 −∥xk+1 −wk∥2 +2λk[f(wk,yk)−f(wk,xk+1)]+

+2λk[f(wk,xk+1)−f(wk,yk)−f(yk,xk+1)]+2λkf(yk, z)
= ∥wk − z∥2 −∥xk+1 −wk∥2 +A+B +2λkf(yk, z), (6)

where

A = 2λk[f(wk,yk)−f(wk,xk+1)],
B = 2λk[f(wk,xk+1)−f(wk,yk)−f(yk,xk+1)].

From the definition of Tk and xk+1 ∈ Tk, we obtain

⟨wk −λkξk −yk,xk+1 −yk⟩ ≤ 0,
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where ξk ∈ ∂f(wk, .)(yk). Using the definition of the subdifferential we arrive at
f(wk,y)−f(wk,yk) ≥ ⟨ξk,y −yk⟩, ∀y ∈ H.

Therefore,
2λk[f(wk,xk+1)−f(wk,yk)] ≥ 2λk⟨ξk,xk+1 −yk⟩

≥ 2⟨wk −yk,xk+1 −yk⟩. (7)
It follows that

A ≤ 2⟨yk −wk,xk+1 −yk⟩
= ∥xk+1 −wk∥2 −∥wk −yk∥2 −∥xk+1 −yk∥2. (8)

Now, since the positive series
+∞∑
k=0

ϵk converges and 0 < µ0 < σ then one can choose n1 ∈N

such that
ϵk <

σ

µ0
−1 ∀k ≥ n1.

The way of choosing n1 like that helps us to show the correctness of the following
inequality

B ≤ 2σ
λk

λk+1
[∥wk −yk∥2 +∥yk −xk+1∥2], ∀k ≥ n1. (9)

Indeed, if ηk > µ0
λk

δk then by (4) we get

B = 2λk[f(wk,xk+1)−f(wk,yk)−f(yk,xk+1)]

= 2µ1
λk

λk+1
[∥wk −yk∥2 +∥yk −xk+1∥2]

< 2σ
λk

λk+1
[∥wk −yk∥2 +∥yk −xk+1∥2] (10)

Otherwise, we have ηk ≤ µ0
λk

δk and

B = 2λk[f(wk,xk+1)−f(wk,yk)−f(yk,xk+1)]
≤ 2µ0[∥wk −yk∥2 +∥yk −xk+1∥2]

< 2 σ

1+ ϵk
[∥wk −yk∥2 +∥yk −xk+1∥2]

= 2σ
λk

λk+1
[∥wk −yk∥2 +∥yk −xk+1∥2]. (11)

From (10) and (11) we obtain (9). It follows from (6), (8) and (9) that

∥xk+1 − z∥2 ≤ ∥wk − z∥2 −
(

1−2σ
λk

λk+1

)
∥wk −yk∥2 −

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2+

+2λkf(yk, z), (12)
for all k ≥ n1.

If z ∈ Sol(f,C) then it follows from the pseudomonotonicity of f that f(yk, z) ≤ 0. Then
the inequality (12) implies

∥xk+1 − z∥2 ≤ ∥wk − z∥2 −
(

1−2σ
λk

λk+1

)
∥wk −yk∥2 −

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2, (13)

for all k ≥ n1.
The proof is complete. ⊓⊔
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Using the above lemmas we can state and prove the following convergence result for the
algorithm.
Theorem 3.1 Let C be a nonempty closed convex subset in a real Hilbert space, f : H ×
H → R∪{+∞} be a bifunction satisfying (C1)-(C6). Then the sequence {xk} generated by
Algorithm 3.1 converges weakly to a solution of equilibrium problem EP (f,C).

Proof Let z ∈ Sol(f,C). We first show that lim
k→∞

∥xk − z∥ exists. Indeed, we first consider
the limit

lim
k→∞

(
1−2σ

λk

λk+1

)
= 1−2σ > 0, (14)

therefore, there exists n2 > n1 such that
(

1 − 2σ
λk

λk+1

)
> 0 for all k ≥ n2. It follows from

(13) that

∥xk+1 − z∥ ≤ ∥wk − z∥

for all k ≥ n2.
Hence, we have

∥xk+1 − z∥ ≤ ∥xk − z∥+αk∥xk −xk−1∥.

for all n ≥ n2.
Applying Lemma 2.4 with the data ak := ∥xk −z∥, bk := αk∥xk −xk−1∥ we deduce that

lim
k→∞

∥xk − z∥ exists. Hence {xk} is bounded.
On the other hand, by a simple calculation, we get

∥wk − z∥2 = ∥(1+αk)(xk − z)−αk(xk−1 − z)∥2

= (1+αk)∥xk − z∥2 −αk∥xk−1 − z∥2 +αk(1+αk)∥xk −xk−1∥2

≤ (1+αk)∥xk − z∥2 −αk∥xk−1 − z∥2 +2αk∥xk −xk−1∥2. (15)

Moreover, from (13), we obtain

0 ≤
(

1−2σ
λk

λk+1

)
∥wk −yk∥2 +

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2

≤ ∥wk − z∥2 −∥xk+1 − z∥2

≤ ∥xk − z∥2 −∥xk+1 − z∥2 +αk[∥xk − z∥2 −∥xk−1 − z∥2]+2αk∥xk −xk−1∥2. (16)

Passing to the limit in (16) and taking into account that {∥xk − z∥2} is convergent, we
obtain

lim
k→+∞

∥wk −yk∥ = lim
k→+∞

∥xk+1 −yk∥ = 0. (17)

hence, we infer that
lim

k→∞
∥wk −xk+1∥ = 0. (18)

By Lemma 2.3, it remains to show that any weak cluster point of the sequence {xk}
belongs to the solution set Sol(f,C). Let x̄ be an arbitrary weakly cluster point of {xk}.
Since {xk} is bounded, there exists a subsequence {xkl} of {xk} such that xkl ⇀ x̄. It follows
from (18) that ykl ⇀ x̄ ∈ C.
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It follows from
xk+1 = argmin

y∈Tk

{
λkf(yk,y)+ 1

2∥y −wk∥2
}

and Lemma 2.2 that there exist uk ∈ ∂f(yk, .)(xk+1) and qk ∈ NTk
(xk+1) such that

0 = λkuk +xk+1 −wk + qk.

From the definition of NTk
(xk+1), we deduce that

⟨wk −xk+1 −λkuk,y −xk+1⟩ ≤ 0 ∀y ∈ Tk.

Since C ⊂ Tk, we have

⟨wk −xk+1 −λkuk,y −xk+1⟩ ≤ 0 ∀y ∈ C,

⟨wk −xk+1,y −xk+1⟩ ≤ ⟨λkuk,y −xk+1⟩ ∀y ∈ C.

On the other hand, since uk ∈ ∂f(yk, .)(xk+1), we get

⟨uk,y −xk+1⟩ ≤ f(yk,y)−f(yk,xk+1) ∀y ∈ C.

Hence, we arrive at

⟨wk −xk+1,y −xk+1⟩
λk

≤ f(yk,y)−f(yk,xk+1) ∀y ∈ C. (19)

From (9) and (7) we have

2λkf(yk,xk+1) ≥ 2λk[f(wk,xk+1)−f(wk,yk)]−2σ
λk

λk+1
[∥wk −yk∥2 +∥yk −xk+1∥2]

≥ 2⟨wk −yk,xk+1 −yk⟩−2σ
λk

λk+1
[∥wk −yk∥2 +∥yk −xk+1∥2]. (20)

Combining (19) and (20) we get

⟨wk −xk+1,y −xk+1⟩ ≤ λkf(yk,y)−⟨wk −yk,xk+1 −yk⟩

+2σ
λk

λk+1
[∥wk −yk∥2 +∥yk −xk+1∥2] ∀y ∈ C. (21)

Replacing k in (21) by kl we get

⟨wkl −xkl+1,y −xkl+1⟩ ≤ λkl
f(ykl ,y)−⟨wkl −ykl ,xkl+1 −ykl⟩

+σ
λkl

λkl+1
[∥wkl −ykl∥2 +∥ykl −xkl+1∥2] ∀y ∈ C. (22)

Passing to the limit when l tending to ∞ in (22) and using weak lower semicontinuity
of the function f(.,y) together with (17) we obtain

f(x̄,y) ≥ 0 ∀y ∈ C.

It means that x̄ ∈ Sol(f,C). Since x̄ is an arbitrary weak cluster point we can conclude
that the set of all weak cluster points belongs to the solution set Sol(f,C). Hence, it follows
from Lemma 2.3 that the sequence {xk} converges weakly to a solution of EP (1). The
proof thus is complete. ⊓⊔
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Now, motivated by Alogorithm 2.1 of [40], in Algorithm 3.1, we can choose the parameter
θ in another way as follows:

Algorithm 3.2 (Novel inertial subgradient extragradient method for equilibrium problems)
Step 0 (Initialization). Select λ0 > 0, µ1 < µ0 < σ < 1/2, θ ∈

[
0, 1√

τ

)
, τ ≥ 1, α ∈ (0,1). Take

a positive sequence {ϵk} satisfying ∑∞
k=0 ϵk < ∞. Choose initial iterates x0,x1 ∈ C and set

k = 1.
Step 1. Given the current iterates xk−1 and xk (k ≥ 1), compute

wk = xk + θ(xk −xk−1),

yk = argmin
y∈C

{
λkf(wk,y)+ 1

2∥y −wk∥2
}

.

If yk = wk then terminate: wk is a solution. Otherwise, go to Step 2.
Step 2. Take ξk ∈ ∂2f(wk,yk) such that wk −λkξk −yk ∈ NC(yk). Construct the half-space

Tk = {x ∈ H : ⟨wk −λkξk −yk,x−yk⟩ ≤ 0}.

Calculate

zk = argmin
y∈Tk

{
λkf(yk,y)+ 1

2∥y −wk∥2
}

,

xk+1 = (1−α)wk +αzk, (23)
ηk = f(wk,xk+1)−f(wk,yk)−f(yk,xk+1), (24)
δk = ∥wk −yk∥2 +∥yk −xk+1∥2

and update λk by

λk+1 =

µ1
δk

ηk
, if ηk > µ0

λk
δk,

(1+ ϵk)λk, otherwise.

Set k := k +1, and return to Step 1.

Theorem 3.2 Let C be a nonempty closed convex subset in a real Hilbert space, f : H×H →
R∪{+∞} be a bifunction satisfying (C1)-(C6). If

α ∈
(

0,

√
τθ2 − (τ +1)θ +

√
τ√

τθ2 − (τ +1)θ +
√

τ + θ(1+ θ)

)

then the sequence {xk} generated by Algorithm 3.2 converges weakly to a solution of equi-
librium problem EP (f,C).

Proof Arguing as in Lemma 3.3 we obtain

∥zk − z∥2 ≤ ∥wk − z∥2 −
(

1−2σ
λk

λk+1

)
∥wk −yk∥2 −

(
1−2σ

λk

λk+1

)
∥zk −yk∥2, (25)

for all k ≥ k1.
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We follow the line of the proof in [40, Theorem 3.1]. By (14), there exists k2 > k1 such
that

1−2σ
λk

λk+1
> 0

for all k ≥ k2.
From (23) we have

∥∥∥xk+1 − z
∥∥∥2

=
∥∥∥(1−α)wk +αzk − z

∥∥∥2

=
∥∥∥(1−α)

(
wk − z

)
+α

(
zk − z

)∥∥∥2

= (1−α)
∥∥∥wk − z

∥∥∥2
+α

∥∥∥zk − z
∥∥∥2

− (1−α)α
∥∥∥zk −wk

∥∥∥2
. (26)

Combining (25) and (26) we get

∥∥∥xk+1 − z
∥∥∥2

≤
∥∥∥wk − z

∥∥∥2
−
(

1−2σ
λk

λk+1

)
α
∥∥∥wk −yk

∥∥∥2

−
(

1−2σ
λk

λk+1

)
α
∥∥∥zk −yk

∥∥∥2
− (1−α)α

∥∥∥zk −wk
∥∥∥2

. (27)

We find from (23) that zk −wk = 1
α

(
xk+1 −wk

)
, which together with (27) implies that

∥∥∥xk+1 − z
∥∥∥2

≤
∥∥∥wk − z

∥∥∥2
−
(

1−2σ
λk

λk+1

)
α
∥∥∥wk −yk

∥∥∥2

−
(

1−2σ
λk

λk+1

)
α
∥∥∥zk −yk

∥∥∥2
− 1−α

α

∥∥∥xk+1 −wk
∥∥∥2

≤
∥∥∥wk − z

∥∥∥2
− 1−α

α

∥∥∥xk+1 −wk
∥∥∥2

=
∥∥∥wk − z

∥∥∥2
−ρ

∥∥∥xk+1 −wk
∥∥∥2

∀k ≥ k2, (28)

where ρ := 1−α
α .

Moreover, we obtain
∥∥∥wk − z

∥∥∥2
=
∥∥∥xk + θ

(
xk −xk−1

)
− z

∥∥∥2

=
∥∥∥(1+ θ)

(
xk − z

)
− θ

(
xk−1 − z

)∥∥∥2

= (1+ θ)
∥∥∥xk − z

∥∥∥2
− θ

∥∥∥xk−1 − z
∥∥∥2

+(1+ θ)θ
∥∥∥xk −xk−1

∥∥∥2
. (29)

Besides, we have
∥∥∥xk+1 −wk

∥∥∥2
=
∥∥∥xk+1 −xk − θ

(
xk −xk−1

)∥∥∥2

=
∥∥∥xk+1 −xk

∥∥∥2
+ θ2

∥∥∥xk −xk−1
∥∥∥2

−2θ
〈
xk+1 −xk,xk −xk−1

〉
≥
∥∥∥xk+1 −xk

∥∥∥2
+ θ2

∥∥∥xk −xk−1
∥∥∥2

−2θ
∥∥∥xk+1 −xk

∥∥∥∥∥∥xk −xk−1
∥∥∥

≥ (1− θ
√

τ)
∥∥∥xk+1 −xk

∥∥∥2
+
(

θ2 − θ√
τ

)∥∥∥xk −xk−1
∥∥∥2

. (30)
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Combining (28), (29) and (30) we arrive at∥∥∥xk+1 − z
∥∥∥2

≤ (1+ θ)
∥∥∥xk − z

∥∥∥2
− θ

∥∥∥xk−1 − z
∥∥∥2

+(1+ θ)θ
∥∥∥xk −xk−1

∥∥∥2

−ρ(1− θ
√

τ)
∥∥∥xk+1 −xk

∥∥∥2
−ρ

(
θ2 − θ√

τ

)∥∥∥xk −xk−1
∥∥∥2

= (1+ θ)
∥∥∥xk − z

∥∥∥2
− θ

∥∥∥xk−1 − z
∥∥∥2

−ρ(1− θ
√

τ)
∥∥∥xk+1 −xk

∥∥∥2

+
[
(1+ θ)θ −ρ

(
θ2 − θ√

τ

)]∥∥∥xk −xk−1
∥∥∥2

∀k ≥ k2. (31)

This leads to the following estimation:
∥∥∥xk+1 − z

∥∥∥2
− θ

∥∥∥xk − z
∥∥∥2

+
[
(1+ θ)θ −ρ

(
θ2 − θ√

τ

)]∥∥∥xk+1 −xk
∥∥∥2

≤
∥∥∥xk − z

∥∥∥2
− θ

∥∥∥xk−1 − z
∥∥∥2

+
[
(1+ θ)θ −ρ

(
θ2 − θ√

τ

)]∥∥∥xk −xk−1
∥∥∥2

−
[
ρ(1− θ

√
τ)− (1+ θ)θ +ρ

(
θ2 − θ√

τ

)]∥∥∥xk+1 −xk
∥∥∥2

∀k ≥ k2. (32)

Setting

Γk =
∥∥∥xk − z

∥∥∥2
− θ

∥∥∥xk−1 − z
∥∥∥2

+
[
(1+ θ)θ −ρ

(
θ2 − θ√

τ

)]∥∥∥xk −xk−1
∥∥∥2

and

γ = ρ(1− θ
√

τ)− (1+ θ)θ +ρ

(
θ2 − θ√

τ

)

= ρ
(√

τθ2 − (τ +1)θ +
√

τ√
τ

)
− θ(1+ θ).

In view of θ ∈
[
0, 1√

τ

)
and

α ∈
(

0,

√
τθ2 − (τ +1)θ +

√
τ√

τθ2 − (τ +1)θ +
√

τ + θ(1+ θ)

)
,

it is easy to see that

γ = ρ
(√

τθ2 − (τ +1)θ +
√

τ√
τ

)
− θ(1+ θ) > 0. (33)

Hence (32) becomes

Γk+1 −Γk ≤ −γ
∥∥∥xk+1 −xk

∥∥∥2
∀k ≥ k2. (34)

This means that the sequence {Γk} is nonincreasing for all k ≥ k2. We also note that

Γk =
∥∥∥xk − z

∥∥∥2
− θ

∥∥∥xk−1 − z
∥∥∥2

+
[
(1+ θ)θ −ρ

(
θ2 − θ√

τ

)]
︸ ︷︷ ︸

> 0

∥∥∥xk −xk−1
∥∥∥2

≥
∥∥∥xk − z

∥∥∥2
− θ

∥∥∥xk−1 − z
∥∥∥2

.
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Therefore, we get for all k ≥ k2 that
∥∥∥xk − z

∥∥∥2
≤ θ

∥∥∥xk−1 − z
∥∥∥2

+Γk

≤ θ
∥∥∥xk−1 − z

∥∥∥2
+Γk2

≤ ·· · ≤ θk−k2
∥∥∥xk2 − z

∥∥∥2
+Γk2

(
θk−k2−1 + · · ·+1

)
≤ θk−k2

∥∥∥xk2 − z
∥∥∥2

+ Γk2

1− θ
. (35)

On the other hand, we have

Γk+1 =
∥∥∥xk+1 − z

∥∥∥2
− θ

∥∥∥xk − z
∥∥∥2

+
[
(1+ θ)θ −ρ

(
θ2 − θ√

2

)]∥∥∥xk −xk−1
∥∥∥2

≥ −θ
∥∥∥xk − z

∥∥∥2
. (36)

It follows from (35) and (36) that

−Γk+1 ≤ θ
∥∥∥xk − z

∥∥∥2
≤ θk−k2+1

∥∥∥xk2 − z
∥∥∥2

+ θΓk2

1− θ
.

Moreover, from (34) we have

γ
k∑

j=k2

∥∥∥xk+1 −xk
∥∥∥2

≤ Γk2 −Γk+1 ≤ θk−k2+1
∥∥∥xk2 − z

∥∥∥2
+ Γk2

1− θ
∀k ≥ k2

≤
∥∥∥xk2 − z

∥∥∥2
+ Γk2

1− θ
∀k ≥ k2.

We infer that ∑∞
k=1

∥∥∥xk+1 −xk
∥∥∥2

< +∞. Hence, we get
∥∥∥xk+1 −xk

∥∥∥→ 0. Further,

∥∥∥xk+1 −wk
∥∥∥2

=
∥∥∥xk+1 −xk

∥∥∥2
+ θ2

∥∥∥xk −xk−1
∥∥∥2

−2θ
〈
xk+1 −xk,xk −xk−1

〉
.

This implies that
∥∥∥xk+1 −wk

∥∥∥→ 0 and

lim
k→∞

∥∥∥zk −wk
∥∥∥= 1

α
lim

k→∞

∥∥∥xk+1 −wk
∥∥∥= 0, (37)∥∥∥wk −xk

∥∥∥2
= θ2

∥∥∥xk −xk−1
∥∥∥2

→ 0 as k → ∞.

From (31), we get
∥∥∥xk+1 − z

∥∥∥2
≤ (1+ θ)

∥∥∥xk − z
∥∥∥2

− θ
∥∥∥xk−1 − z

∥∥∥2

+
[
(1+ θ)θ −ρ

(
θ2 − θ√

τ

)]∥∥∥xk −xk−1
∥∥∥2

∀k ≥ k2. (38)

Applying Lemma 2.6 to (38) with data

ϕk := ∥xk − z∥2, δk :=
[
(1+ θ)θ −ρ

(
θ2 − θ√

τ

)]∥∥∥xk −xk−1
∥∥∥2

, θk := θ
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we deduce that limk→∞
∥∥∥xk − z

∥∥∥2
exists. We also get from (29) that limk→∞

∥∥∥wk − z
∥∥∥2

exists.
From this and (37) we have

∥∥∥wk − z
∥∥∥2

−
∥∥∥zk − z

∥∥∥2
=
(∥∥∥wk − z

∥∥∥+
∥∥∥zk − z

∥∥∥)(| wk − z∥−∥zk − z∥
)

≤
(
| wk − z∥+∥zk − z∥

)∥∥∥wk − zk
∥∥∥→ 0 as k → ∞, (39)

i.e.,

lim
k→∞

∥∥∥wk − z
∥∥∥2

−
∥∥∥zk − z

∥∥∥2
= 0.

Therefore, from (25), we obtain
(

1−σ
λk

λk+1

)∥∥∥yk −wk
∥∥∥2

+
(

1−σ
λk

λk+1

)∥∥∥zk −yk
∥∥∥2

≤
∥∥∥wk − z

∥∥∥2
−
∥∥∥zk − z

∥∥∥2
→ 0 as k → ∞,

i.e.,

lim
k→∞

(1−σ
λk

λk+1

)∥∥∥yk −wk
∥∥∥2

+
(

1−σ
λk

λk+1

)∥∥∥zk −yk
∥∥∥2
]

= 0.

This yields that

lim
k→∞

∥∥∥yk −wk
∥∥∥= 0 and lim

k→∞

∥∥∥zk −yk
∥∥∥= 0.

Similarly to (21), we have

⟨wk − zk,y − zk⟩ ≤ λkf(yk,y)−⟨wk −yk, zk −yk⟩

+2σ
λk

λk+1
[∥wk −yk∥2 +∥yk − zk∥2] ∀y ∈ C.

The rest of the proof is similar to that of Theorem 3.1. Thus, we come to the conclusion
of Theorem 3.2.

Remark 3.3 From Algorithm 3.2 and Theorem 3.2 we see that

1. In some cases, the selection of θ = θ(τ) and the suitable parameter τ in our method
allows us to increase the parameter α in (23). So we can say that our choice of α is
more flexible than that of Algorithm 2.1 in [40]. Please see the comparision of numerical
results with different parameters in Example 6.1.

2. Arguing as in the proof of Theorem 3.2 of [40], we can establish the linear convergence
rate of Algorithm 3.2 under a strong pseudomonotonicity assumption of f .

4 Strong convergence result

In this section, we give a viscosity version of Algorithm 3.1 to obtain a new strong conver-
gence result for equilibrium problems.
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Algorithm 4.1 (Viscosity-type subgradient extragradient method with novel stepsizes)
Step 0 (Initialization). Let φ : H → H be a contraction (i.e., there exists a constant α ∈ [0,1)
such that ∥φ(x) − φ(y)∥ ≤ α∥x − y∥ for all x,y ∈ H). Select λ0 > 0, µ1 < µ0 < σ < 1/2,
θ ∈ [0,1). Take positive sequences {ϵk},{ξk},{αk} ⊂ [0,∞) satisfying

∞∑
k=0

ϵk < ∞,
∞∑

k=0
ξk < ∞,

∞∑
k=0

αk = ∞, lim
k→∞

αk = 0, lim
k→∞

ξk

αk
= 0.

Choose initial iterates x0,x1 ∈ C and set k = 1.
Step 1. Given the current iterates xk−1 and xk (k ≥ 1), choose θk such that 0 ≤ θk ≤ θ̄k,
where

θ̄k =


min

{
θ,

ξk

∥xk −xk−1∥

}
if xk ̸= xk−1,

θ otherwise.

Compute 
wk = xk + θk(xk −xk−1),

yk = argmin
y∈C

{
λkf(wk,y)+ 1

2∥y −wk∥2
}

.

If yk = wk then terminate: wk is a solution. Otherwise, go to Step 2.
Step 2. Take ξk ∈ ∂2f(wk,yk) such that wk −λkξk −yk ∈ NC(yk). Construct the half-space

Tk = {x ∈ H : ⟨wk −λkξk −yk,x−yk⟩ ≤ 0}.

Calculate

zk = argmin
y∈Tk

{
λkf(yk,y)+ 1

2∥y −wk∥2
}

,

xk+1 = αkφ(wk)+(1−αk)zk,

ηk = f(wk, zk)−f(wk,yk)−f(yk, zk), δk = ∥wk −yk∥2 +∥yk − zk∥2

and update λk by

λk+1 =

µ1
δk

ηk
, if ηk > µ0

λk
δk,

(1+ ϵk)λk, otherwise.

Set k := k +1, and return to Step 1.

Theorem 4.1 Under the conditions (C1)-(C6), the sequence {xk} generated by Algorithm
4.1 converges strongly to an element of Sol(f,C).

Proof First, from Proposition 2 of [10], we have that the solution set Sol(f,C) is closed and
convex. We now show that {xk} is bounded. Let z = PSol(f,C)(φ(z)). From (13) we obtain

∥zk − z∥2 ≤ ∥wk − z∥2 −
(

1−2σ
λk

λk+1

)
∥wk −yk∥2 −

(
1−2σ

λk

λk+1

)
∥zk −yk∥2.
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Hence, for all k ∈ N,

∥zk − z∥ ≤ ∥wk − z∥.

We note that

∥xk+1 − z∥ ≤ (1−αk)∥zk − z∥+αk∥φ(wk)− z∥
≤ (1−αk)∥wk − z∥+αk(∥φ(wk)−φ(z)∥+∥φ(z)− z∥)
≤ (1−αk)∥wk − z∥+αk(α∥wk − z∥+∥φ(z)− z∥)
= (1− (1−α)αk)∥wk − z∥+αk∥φ(z)− z∥.

Hence,

∥xk+1 − z∥ ≤ (1− (1−α)αk)∥wk − z∥+αk∥φ(z)− z∥
= (1− (1−α)αk)∥xk + θk(xk −xk−1)− z∥+αk∥φ(z)− z∥
≤ (1− (1−α)αk)∥xk − z∥+(1− (1−α)αk)θk∥xk −xk−1∥+αk∥φ(z)− z∥

= (1− (1−α)αk)∥xk − z∥+(1−α)αk

(
σk + ∥φ(z)− z∥

1−α

)
,

where
σk =

(
1− (1−α)αk

1−α

)
θk

αk
∥xk −xk−1∥.

By the condition of parameters ξk and αk, we see that

lim
k→∞

σk = lim
k→∞

(
1− (1−α)αk

1−α

)
θk

αk
∥xk −xk−1∥ = 0,

which implies that the sequence {σk} is bounded. Setting

M = max
{

∥φ(z)− z∥
1−α

, sup
n∈N

σk

}

and using Lemma 2.5 (1), we thus conclude that the sequence {∥xk −z∥} is bounded, which
implies that the sequence {xk} is bounded and so is {wk}.

By (15) and 0 ≤ θk < 1 (hence, θk(1+ θk) < 2θk) we have

∥wk − z∥2 ≤ ∥xk − z∥2 + θk(∥xk − z∥2 −∥xk−1 − z∥2)+2θk∥xk −xk−1∥2.

On the other hand, using the inequality (3) with the data x := zk − z, y := φ(wk) − z,
we have

∥xk+1 − z∥2 = ∥(1−αk)(zk − z)+αk(φ(wk)− z)∥2

≤ (1−αk)∥zk − z∥2 +2αk⟨φ(wk)− z,xk+1 − z⟩
≤ (1−αk)∥wk − z∥2 +2αk⟨φ(wk)− z,xk+1 − z⟩

−
(

1−2σ
λk

λk+1

)
∥zk −yk∥2 −

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2

≤ (1−αk)∥xk − z∥2 +(1−αk)θk(∥xk − z∥2 −∥xk−1 − z∥2)
+2(1−αk)θk∥xk −xk−1∥2 +2αk⟨φ(wk)− z,xk+1 − z⟩

−
(

1−2σ
λk

λk+1

)
∥zk −yk∥2 −

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2
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Putting ak := ∥xk − z∥2 for all n ∈ N we have(
1−2σ

λk

λk+1

)
∥zk −yk∥2 +

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2 ≤ ak −ak+1

+2αk⟨φ(wk)− z,xk+1 − z⟩+(1−αk)θk(ak −ak−1)+2(1−αk)θk∥xk −xk−1∥2. (40)

Now, we consider two possible cases:
Case 1. Assume that there exists n0 ≥ 0 such that for each k ≥ n0, ak+1 ≤ ak. In this case,
limk→∞ ak exists and limk→∞(ak −ak+1) = 0.

Since limk→∞ αk = 0 and limk→∞ θk∥xk −xk−1∥2 = 0, it follows from (40) that

lim
k→∞

[(
1−2σ

λk

λk+1

)
∥zk −yk∥2 +

(
1−2σ

λk

λk+1

)
∥xk+1 −yk∥2

]
= 0.

From the assumption infk→∞ βk(1−βk −γk) > 0, we obtain

lim
k→∞

∥zk −yk∥2 = 0, (41)

lim
k→∞

∥xk+1 −yk∥2 = 0.

We have

∥yk −xk∥ ≤ ∥yk − zk∥+∥zk −xk∥
≤ ∥yk − zk∥+αk∥φ(wk)−wk∥+(1−αk)∥wk −xk∥
≤ ∥yk − zk∥+αk∥φ(wk)−wk∥+(1−αk)θk∥xk −xk−1∥.

This means limk→∞ ∥xk − yk∥ = 0 Let x̄ be an arbitrary weakly cluster point of {xk}.
Since {xk} is bounded, there exists a subsequence {xkl} of {xk} such that xkl ⇀ x̄ ∈ C and
hence ykl ⇀ x̄. It follows from (41) that xkl+1 ⇀ x̄. Following similar arguments as in the
proof of Theorem 3.1 we conclude that ωw(xk) ⊂ Sol(f,C). Since z = PSol(f,C)(φ(z)), by the
characterization of the metric projection (Lemma 2.1 (1)), we get that

limsup
k→∞

⟨φ(z)− z,xk+1 − z⟩ = max
x̄∈ωw(xk)

⟨φ(z)− z, x̄− z⟩ ≤ 0.

On the other hand, we see that

∥xk+1 − z∥2 = ⟨xk+1 − z,xk+1 − z⟩
= αk⟨φ(wk)−φ(z),xk+1 − z⟩+αk⟨φ(z)− z,xk+1 − z⟩

+(1−αk)⟨zk − z,xk+1 − z⟩
≤ αkα∥wk − z∥∥xk+1 − z∥+αk⟨φ(z)− z,xk+1 − z⟩

+(1−αk)∥zk − z∥∥xk+1 − z∥
≤ αkα∥wk − z∥∥xk+1 − z∥+αk⟨φ(z)− z,xk+1 − z⟩

+(1−αk)∥wk − z∥∥xk+1 − z∥
≤ (1−αk(1−α))∥wk − z∥∥xk+1 − z∥+αk⟨φ(z)− z,xk+1 − z⟩

≤ (1−αk(1−α))
(∥wk − z∥2

2 + ∥xk+1 − z∥2

2

)
+αk⟨φ(z)− z,xk+1 − z⟩,
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which gives

∥xk+1 − z∥2 ≤ 1−αk(1−α)
1+αk(1−α)∥wk − z∥2 + 2αk

1+αk(1−α)⟨φ(z)− z,xk+1 − z⟩

≤ 1−αk(1−α)
1+αk(1−α)(∥xk − z∥+ θk∥xk −xk−1∥)2 + 2αk

1+αk(1−α)⟨φ(z)− z,xk+1 − z⟩

=
(

1− 2αk(1−α)
1+αk(1−α)

)
(∥xk − z∥2 +2θk∥xk −xk−1∥∥xk − z∥+ θ2

k∥xk −xk−1∥2)

+ 2αk

1+αk(1−α)⟨φ(z)− z,xk+1 − z⟩. (42)

Put M1 = sup
k∈N

∥xk − z∥ and γk = 2αk(1−α)
1+αk(1−α) for all k ∈ N. It is easily checked that for

large enough k, γk ∈ (0,1). Without loss of generality, assume 0 < γk < 1 for all k ≥ n0 and
∞∑

k=1
γk = ∞. From (42), it follows that

ak+1 ≤ (1−γk)ak +2θk∥xk −xk−1∥M1 + θ2
k∥xk −xk−1∥2

+ 2αk

1+αk(1−α)⟨φ(z)− z,xk+1 − z⟩. (43)

We have from the selection of θk that θk∥xk −xk−1∥ → 0. Therefore

lim
k→∞

[2θk∥xk −xk−1∥M1 + θ2
k∥xk −xk−1∥2] = 0. (44)

By applying Lemma 2.5 to (43) with the data:

āk := ∥xk − z∥2, δ̄k := γk, c̄k := 0,

b̄k := 2θk∥xk −xk−1∥M1 + θ2
k∥xk −xk−1∥2 + 2αk

1+αk(1−α)⟨φ(z)− z,xk+1 − z⟩,

we immediately deduce that the sequence {xk} converges strongly to z = PSol(C,f)(φ(z)).
Case 2. Assume that there exists a subsequence {akl

} ⊂ {ak} such that akl
≤ akl+1 for all

l ∈ N. In this case, we can define τ : N → N by

τ(k) = max{i ≤ k : ai < ai+1}.

Then we have from Lemma 2.7 that τ(k) → ∞ as k → ∞ and aτ(k) < aτ(k)+1. So, we
have from (40) that(

1−2σ
λτ(k)

λτ(k)+1

)
∥zτ(k) −yτ(k)∥2 +

(
1−2σ

λτ(k)
λτ(k)+1

)
∥xτ(k)+1 −yτ(k)∥2 ≤ aτ(k) −aτ(k)+1

+2ατ(k)⟨φ(wτ(k))− z,zτ(k) − z⟩+(1−ατ(k))θτ(k)(aτ(k) −aτ(k)−1)
+2(1−ατ(k))θτ(k)∥xτ(k) −xτ(k)−1∥2

≤ 2ατ(k)⟨φ(wτ(k))− z,zτ(k) − z⟩+(1−ατ(k))θτ(k)∥xτ(k) −xτ(k)−1∥
(√

aτ(k) +
√

aτ(k)−1
)

+2(1−ατ(k))θτ(k)∥xτ(k) −xτ(k)−1∥2. (45)
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Following the same lines as in the proof of Case 1, we get from (45) that

lim
k→∞

∥zτ(k) −yτ(k)∥ = 0,

lim
k→∞

∥xτ(k)+1 −yτ(k)∥ = 0.

lim
k→∞

∥xτ(k) −yτ(k)∥ = 0,

limsup
k→∞

⟨φ(z)− z,xτ(k)+1 − z⟩ = max
z̃∈ωw({xτ(k)})

⟨φ(z)− z, z̃ − z⟩ ≤ 0 (46)

and

aτ(k)+1 ≤ (1−γτ(k))aτ(k) +2θτ(k)∥xτ(k) −xτ(k)−1∥M1 + θ2
τ(k)∥xτ(k) −xτ(k)−1∥2

+
2ατ(k)

1+ατ(k)(1−α)⟨φ(z)− z,xτ(k)+1 − z⟩. (47)

Since aτ(k) < aτ(k)+1, we have from (47) that

γτ(k)aτ(k) ≤ 2θτ(k)∥xτ(k) −xτ(k)−1∥M1 + θ2
τ(k)∥xτ(k) −xτ(k)−1∥2

+
2ατ(k)

1+ατ(k)(1−α)⟨φ(z)− z,xτ(k)+1 − z⟩

and hence

∥xτ(k) − z∥2 = aτ(k) ≤ 2
θτ(k)
γτ(k)

∥xτ(k) −xτ(k)−1∥M1 +
θ2

τ(k)
γτ(k)

∥xτ(k) −xτ(k)−1∥2

+ 1
1−α

⟨φ(z)− z,xτ(k)+1 − z⟩ (48)

Relation (44) and the boundedness of {γk} yield

lim
k→∞

[
2

θτ(k)
γτ(k)

∥xτ(k) −xτ(k)−1∥M1 +
θ2

τ(k)
γτ(k)

∥xτ(k) −xτ(k)−1∥2
]

= 0. (49)

Combining (46), (48) and (49) gives

limsup
k→∞

∥xτ(k) − z∥2 ≤ 0,

and hence
lim

k→∞
∥xτ(k) − z∥2 = 0.

From (47), we have

limsup
k→∞

∥xτ(k)+1 − z∥2 ≤ limsup
k→∞

∥xτ(k) − z∥2.

Thus
lim

k→∞
∥xτ(k)+1 − z∥2 = 0.

Therefore, by Lemma 2.7, we obtain

0 ≤ ∥xk − z∥ ≤ max{∥xτ(k) − z∥,∥xk − z∥} ≤ ∥xτ(k)+1 − z∥ → 0.

Consequently, {xk} converges strongly to z = PSol(f,C)(φ(z)) and the proof is complete.
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5 Application to the variational inequality problem

In this section, we consider the following variational inequality problem (VIP):

Find x∗ ∈ C : ⟨Ax∗,y −x∗⟩ ≥ 0 ∀ y ∈ C, (50)

where A : H → H.
Then, for each pair x,y ∈ H, we define the bifunction f by taking

f(x,y) :=

⟨Ax,y −x⟩, if x ∈ C,

+∞, otherwise.
(51)

Suppose that

(C51) A is pseudomonotone on C;

(C52) A is F -hemicontinuous ( [25]), i.e., for all y ∈ C, the function x 7→ ⟨A(x),x − y⟩ is
weakly lower semicontinuous on C ((or equivalently, x 7→ ⟨A(x),y −x⟩ is weakly upper
semicontinuous on C);

(C53) A is Lipschitz continuous on C with a Lipschitz constant L;

(C54) The solution set Sol(C,A) = {x ∈ C : ⟨Ax,y −x⟩ ≥ 0 ∀y ∈ C} ̸= ∅.

It is easy to see that any weak-to-strong continuous mapping is F -hemicontinuous, but
vice-versa not, as the following example shows.

Example 5.1 ( [19]) We consider the Hilbert space l2 = {x = (xi)i∈N :
∞∑

i=1
|xi|2 < ∞} and A:

l2 → l2 be the identity operator. Let {xn} ⊆ l2 be a sequence converging weakly to x. Since
the function x 7−→ ∥x∥2 is continuous and convex, it is weakly lower semicontinuous. Hence,

∥x∥2 ≤ liminf
n→∞ ∥xn∥2,

which clearly implies
⟨x,x−y⟩ ≤ liminf

n→∞ ⟨xn,xn −y⟩,

for all y ∈ l2, i.e., A is F -hemicontinuous.
On the other hand, we take xn = en = (0,0, ...,0,1,0, ...) with 1 in the nth position. It

is obvious that en ⇀ 0, but {en} does not have any strongly convergent subsequence, as
∥en − em∥ =

√
2 for m ̸= n. Therefore, A is not weak-to-strong continuous.

Remark 5.1 To our best knowledge, there is no information on the relationship between
weakly continuous operators and F -hemicontinuous operators.

Then it is not hard to see that the variational inequality (50) takes the form of equi-
librium problem (51) and the conditions (C1)-(C6) are satisfied for (C51)-(C54). Then
Algorithm 3.1 reduces to the following one.
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Algorithm 5.1 (Subgradient extragradient method with novel stepsizes for VIPs)
Step 0 (Initialization). Select λ0 > 0, µ1 < µ0 < σ < 1/2, θ ∈ [0,1). Take positive sequences
{ϵk},{ξk} ⊂ [0,∞) satisfying

∞∑
k=0

ϵk < ∞,
∞∑

k=0
ξk < ∞.

Choose initial iterates x0,x1 ∈ C and set k = 1.
Step 1. Given the current iterates xk−1 and xk (k ≥ 1), choose αk such that 0 ≤ αk ≤ ᾱk,
where

ᾱk =


min

{
θ,

ξk

∥xk −xk−1∥

}
if xk ̸= xk−1,

θ otherwise.

Compute wk = xk +αk(xk −xk−1),
yk = PC(wk −λkAwk).

If yk = wk then terminate: xk is a solution. Otherwise, go to Step 2.
Step 2. Construct the half-space

Tk = {x ∈ H : ⟨wk −λkAwk −yk,x−yk⟩ ≤ 0}.

Calculate

xk+1 = PTk
(wk −Ayk),

ηk = ⟨Awk −Ayk,xk+1 −yk⟩, δk = ∥wk −yk∥2 +∥yk −xk+1∥2

and update λk by

λk+1 =

µ1
δk

ηk
, if ηk > µ0

λk
δk,

(1+ ϵk)λk, otherwise.

Set k := k +1, and return to Step 1.

The following result is a direct consequence of Theorem 3.1.

Corollary 5.1 Let C be a nonempty closed convex subset of a real Hilbert space H, A : H → H
a mapping satisfying conditions (C51)-(C54). Let {xk}, {yk} be the sequences generated
by Algorithm 5.1. Then the sequences {xk} and {yk} converge weakly to the same point
x∗ ∈ Sol(A,C).

6 Numerical results

In this section, we will apply Algorithms 3.1 (NISEM) and 3.2 (SEMNS) to solve an equi-
librium problem arising from Nash-Cournot oligopolistic equilibrium models of electricity
markets. This problem has been investigated in many research papers (see, e.g. [32]). We
use the cost function as in [41]. It is a convex but nonsmooth function. Hence the result-
ing equilibrium problem cannot be transformed into a variational inequality problem. Our
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numerical experiments are implemented in MATLAB R2022b on a PC Desktop with an
Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz 1.19 GHz, RAM 4.00 GB.

Example 6.1 (Applications to Nash–Cournot semi-oligopolistic equilibrium models of elec-
tricity markets). We consider a Nash–Cournot semi-oligopolistic equilibrium model of elec-
tricity markets [41]. Assume that electrical power for a city is provided by N companies
and a solar panel system. The total power generation is ξ = ∑N

k=1 xk + a, where xk is the
power generation level of company n (k = 1, . . . ,N) and a is the power generation level of
the solar panel system, which is assumed to be a constant. Suppose that the electric price
δ is computed by

δ(x) = 378.4−2
 N∑

k=1
xk +a

 ,

where x = (x1, . . . ,xN )T is the power generation of N companies and the production cost
of company n is computed by

ρn(xk) := max{ρ̂n(xk), ρ̄n(xk)},

where

ρ̂n(xk) := µ̂n

2 x2
k + α̂nxk + β̂n;

ρ̄n(xk) :=µ̄nxk + ᾱn

ᾱn +1 β̄−1/ᾱn
n (xk)(ᾱn+1)/ᾱn .

Let N = 6. The constants µ̂n, α̂n, β̂n, µ̄n, ᾱn and β̄n are chosen as shown in Table 1. We

j µ̂n α̂n β̂n µ̄n ᾱn β̄n

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000
2 0.0350 1.75 0.00 1.7500 1.0000 28.5714
3 0.1250 1.00 0.00 1.0000 1.0000 8.0000
4 0.0116 3.25 0.00 3.2500 1.0000 86.2069
5 0.0500 3.00 0.00 3.0000 1.0000 20.0000
6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

Table 1: Constants of the cost function

define the profit function νn of company n as

νn(x) := δ(x)xk −ρn(xk) =
378.4−2

 N∑
k=1

xk +a

xk −ρn(xk).

Suppose that xk ∈ [xmin
n ,xmax

n ], where xmin
n ,xmax

n ,k = 1, . . . ,N are given in Table 2.
Let C :=∏N

k=1[xmin
n ,xmax

n ]. We find a point x∗ ∈ C such that

νn(x∗
1, . . . ,x∗

n−1,yn,x∗
n+1, . . . ,x∗

N ) ≤ νn(x∗
1, . . . ,x∗

N ) ∀y

= (y1, . . . ,yN ) ∈ C, ∀k = 1, . . . ,N.

Following the idea from [32], we can prove that this Nash equilibrium problem can be
reformulated as an equilibrium problem:

find x∗ ∈ C such that f(x∗,y) ≥ 0 ∀y ∈ C, (52)
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n 1 2 3 4 5 6

xmin
n 0 0 0 0 0 0

xmax
n 90 70 100 60 110 50

Table 2: Values of xmin
n , xmax

n

where f(x,y) = ⟨(A+ 3
2B)x+ 1

2By + s,y −x⟩+ρ(y)−ρ(x), and

A :=2
N∑

k=1
σ̄n(σn)T, B := 2

N∑
k=1

σn(σn)T,

s :=(2a−378.4)
N∑

k=1
σn, ρ(x) :=

N∑
k=1

ρn(xk).

Here, the vectors σn := (σn
1 , . . . ,σn

N ) and σ̄n := (σ̄n
1 , . . . , σ̄n

N ) are defined by

σn
m =

{
1 iff n = m,
0 iff n ̸= m

and σ̄n
m = 1 − σn

m for all n,m = 1, . . . ,N . It is easy to see that the function f satisfies all
conditions (A1)-(A8). The function ρ is subdifferentiable, and its subdifferential at x is
given by ∂ρ(x) = (∂ρ1 (x1) , . . . ,∂ρN (xN ))T where, for each j = 1, . . . ,N

∂ρj (xj) =



{µ̂jxj + α̂j}, if ρ̂j (xj) > ρ̄j (xj) ,µ̂jxj + α̂j , µ̄j +
(

xj

β̄j

)1/ᾱj
, if ρ̂j (xj) = ρ̄j (xj) ,

{
µ̄j +

(
xj

β̄j

)1/ᾱj
}

, if ρ̂j (xj) < ρ̄j (xj) .

In what follows, we will study the convergence of Algorithm 3.1 and 3.2 and give a com-
parison with five algorithms, namely, AISEM recommended in [35, Algorithm 2.1], EPSM
considered in [34, Algorithm 1], ISEM showed in [40, Algorithm 2.1], NAKM proposed
in [39, Algorithm 3.1], SEM presented in [46, Algorithm 3.1].

Test 1. In this experiment, we take a = 110 and consider three cases for the starting
point

xa = (0,0,0,0,0,0)T , xb = (2,2,2,2,2,2)T , xc = (1,0,1,0,1,0)T .

The parameters are chosen as follows:

In Alg. AISEM, µ = 0.5, θ = 0.45(1−µ), λ1 = 17, x1 = x0 = x0.

In Alg. EPSM, θ = 0.05, αk = 0.2 ∀k ≥ 0, ϱ = 0.55, κ0 = κ1 = 0.01, u−1 = u0 = v0 = x0.

In Alg. ISEM, µ = 0.9, α = 0.1, τ = 0.88, λ1 = 0.01, x0 = x1 = x0.

In Alg. NAKM, δ = 2.1, α = δ−
√

2δ
10δ , θ = 0.9, τ = 0.99

1+δ , µ = 0.4, λ1 = 0.7, x1 = x0 = x0.

In Alg. SEM, µ = 0.99, λ0 = 0.7, αk = 1
104(k+5) ∀k ≥ 1, x0 = x0.

In Alg. NISEM, θ = 0.9, µ0 = 0.49, µ1 = 0.48, α = 0.91, λ0 = 0.01, ϵk = 1
k1.01 ∀k ≥ 1,

x1 = x0.
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In Alg. SEMNS, θ = 0.5, µ0 = 0.48, µ1 = 0.47, λ0 = 0.2, ξk = ϵk = 1
k1.01 ∀k ≥ 1, x1 = x0.

We use the condition ∥xk −x∗∥ ≤ 10−5 or when the CPU time of the algorithms exceeds
50s as the stopping rule for all algorithms, where

x∗ = (11.3361,11.4868,11.3533,10.8748,10.7930,10.7930)T

is the approximate solution of problem (52). The test results are shown in Tables 3, 4, and
Figure 1.

Algorithm Approximate solution x∗ ∥xk −x∗∥
AISEM 11.3361 11.4869 11.3533 10.8748 10.7930 10.7930 1.6434e-05
EPSM 11.3362 11.4869 11.3533 10.8749 10.7931 10.7931 1.6500e-04
ISEM 11.3360 11.4866 11.3532 10.8749 10.7932 10.7932 1.1539e-05

NAKM 11.3361 11.4868 11.3533 10.8748 10.7930 10.7930 1.0788e-05
SEM 11.3361 11.4868 11.3533 10.8748 10.7930 10.7930 9.1780e-06

NISEM 11.3361 11.4868 11.3533 10.8748 10.7930 10.7930 9.9631e-06
SENMS 11.3361 11.4868 11.3533 10.8748 10.7930 10.7930 8.6399e-06

Table 3: Results of seven algorithms with x0 = xb in Example 6.1

x0 = xa x0 = xb x0 = xc

Times Iter. Error Times Iter. Error Times Iter. Error

Alg. AISEM 50.1593 434 1.7823e-05 50.0231 641 1.6434e-05 19.2622 148 9.6747e-06
Alg. EPSM 50.0414 423 1.8360e-04 39.5654 439 1.6500e-04 49.1020 365 1.8249e-04
Alg. ISEM 48.6476 565 9.8638e-06 50.0476 557 1.1539e-05 50.2284 367 9.3285e-04
Alg. NAKM 50.0074 432 1.1672e-05 50.0277 558 1.0788e-05 49.4926 388 9.6446e-06
Alg. SEM 17.7749 111 9.1414e-06 25.7378 112 9.1780e-06 19.2080 111 8.7619e-06
Alg. NISEM 10.3225 84 9.8823e-06 9.6250 83 9.9631e-06 12.7461 85 9.6491e-06
Alg. NSEM 10.3658 55 8.5917e-06 9.5109 53 8.6399e-06 10.3028 55 8.7515e-06

Table 4: Comparision of the algorithms in Example 6.1

Fig. 1: Comparison of NISEM and SEMNS with some existing algorithms with x0 = xb

Test 2. In the next numerical experiment, we change the value of the α parameter for
Algorithm 3.2 and Algorithm 2.1 in [40]. The results are shown in the Table 5 and Figure
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x0 = (1,1,1,1,1,1)T x0 = (1,0,1,0,0,0)

Times Iter. Error Times Iter. Error

Alg. ISEM: α = 0.6, τ = 0.1428 50.0424 516 0.0168 50.0542 514 0.0238
Alg. ISEM: α = 0.3, τ = 0.5568 50.0751 506 2.0252e-04 50.0035 552 1.3191e-04
Alg. ISEM: α = 0.2, τ = 0.7272 50.0828 594 1.2666e-05 50.0720 570 2.6494e-05
Alg. ISEM: α = 0.1, τ = 0.8800 48.2636 565 9.8638e-06 50.0574 557 1.0657e-05
Alg. NISEM: τ = 1,θ = 0.6,α = 0.1428 31.2201 235 9.7433e-06 38.8243 237 9.7250e-06
Alg. NISEM: τ = 2,θ = 0.2,α = 0.7800 10.6962 86 9.7387e-06 12.0562 87 9.6570e-06
Alg. NISEM: τ = 3,θ = 0.05,α = 0.9669 12.2118 84 9.5251e-06 10.5570 85 9.3631e-06
Alg. NISEM: τ = 4,θ = 0.05,α = 0.9709 9.6315 84 9.0968e-06 8.4241 84 9.8708e-06

Table 5: Numerical results of NISEM and ISEM algorithms with different values of the
parameter α and x0 = (1,0,1,0,0,0)T

3. It is seen that changing the value of α significantly impacts the computational cost of
Algorithm 2.1 in [40].

Fig. 2: Numerical results of NISEM and ISEM algorithms with different values of the
parameter α

Example 6.2 In this example, we will study the convergence of Algorithm 4.1 (VSEM) and
give a comparison with five algorithms, namely EMIEgA considered in [27, Algorithm 3],
MIEM showed in [30, Algorithm 1], IEM suggested in [22, Algorithm 3.1], ISEA presented
in [38, Algorithm 3.2], and SEM recommended in [46, Algorithm 3.1].

Let H := L2([0,1]), the Hilbert space of square-integrable real-valued functions on [0,1],
equipped with the inner product

⟨x,y⟩ :=
1∫

0
x(t)y(t)dt x,y ∈ H,

and its induced norm ∥ · ∥. Consider problem (1) with C := {x ∈ H : ∥x∥ ≤ 1} and the
bifunctions

f : C ×C → R, f(x,y) :=
〈(3

2 −∥x∥
)

x,y −x
〉

+∥y∥4 −∥x∥4, ∀x,y ∈ C.

It is easy to see that these bifunctions satisfy all the conditions to ensure the convergence
of algorithms. Furthermore, the orthogonal projection onto C has an explicit formula, for
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example

PC(x(t)) =

x(t), if ∥x(t)∥ ≤ 1,
x(t)

∥x(t)∥ , if ∥x(t)∥ > 1.

In this experiment, we consider three cases for the starting point

x0 = 1
100e2t sin3t, x0 = 1

255t4e−t, x0 = t2.

The parameters are chosen as follows:

In Alg. EMIEgA, κ = 0.1, ζk = 1
10(k+2) , ϵk = logk

(k+1)1.05 ∀k ≥ 1, u−1 = u0 = x0.

In Alg. MIEM, λ1 = τ = σ = η = 0.6, µ = 0.4, γk = 1− 1
k+2 , αk = 0.01+ 1

k+1 , ϵk = 1
(k+1)2 ,

ξk = 1+ 1
(k+1)1.1 , ρk = 1

(k+1)1.1 , βk = 1
k+1 ∀k ≥ 1, x0 = x1 = x0.

In Alg. IEM, λ1 = 5000,ρ = 0.003, µ = 0.9, τk = 1
(k+1)2 ∀k ≥ 1, u0 = u1 = x0.

In Alg. ISEA, λ1 = 0.1, µ = 0.9, τk = logk
(k+1)1.05 , θk = 0.01, βk = 1

100(k+5) ∀k ≥ 1, x0 = x1 =
x0.

In Alg. SEM, λ0 = 0.5, µ = 0.9, βk = 0.01, αk = 1
100(k+5) ∀k ≥ 1, S = I, x0 = x0.

In Alg. VSEM, φ(x) = 1
8x, λ0 = 0.1, µ0 = 0.2, µ1 = 0.15, ϵk = logk

(k+1)1.05 , ξk = 1
k1.05 , αk =

1
k0.1 ∀k ≥ 1, x1 = x0.

We use the estimate ∥xk − x∗∥ ≤ 10−3 or when the CPU time exceeds 20s as the stopping
rule for all algorithms. Numerical results of three algorithms are presented in Table 6 and
Figure 3.

x0 = 1
100e2t sin3t x0 = 1

255t4e−t x0 = t2

Times Iter. Error Times Iter. Error Times Iter. Error

EMIEgA 20.0072 164 0.0057 20.0470 163 0.0057 20.0322 162 0.0057
MIEM 20.0255 190 0.0041 20.0565 180 0.0040 20.0448 185 0.0039
IEM 20.0417 131 0.0022 20.1158 127 0.0022 20.0506 129 0.0022
ISEA 20.0860 139 0.1531 20.0712 136 0.0103 20.0297 133 1.6774
SEM 20.0356 141 0.0013 20.0486 144 0.0013 20.0296 133 0.0013
VSEM 2.5160 3 1.9719e−04 1.8715 2 1.1580e−04 2.1409 5 4.9019e−04

Table 6: Comparison of the algorithms of Example 6.2
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