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Abstract. An Inexact Alternating Direction Method of Multiplies (I-ADMM) with an expan-
sion linesearch step was developed for solving a family of separable minimization problems subject
to linear constraints, where the objective function is the sum of a smooth but possibly nonconvex
function and a possibly nonsmooth nonconvex function. Global convergence and linear convergence
rate of the I-ADMM were established under proper conditions while inexact relative error criterion
was used for solving the subproblems. In addition, a Unified Proximal Gradient (UPG) method
with momentum acceleration was proposed for solving the smooth but possibly nonconvex subprob-
lem. This UPG method guarantees global convergence and will automatically reduce to an optimal
accelerated gradient method when the smooth function in the objective is convex. Our numerical
experiments on solving nonconvex quadratic programming problems and sparse optimization prob-
lems from statistical learning show that the proposed I-ADMM is very effective compared with other
state-of-the-art algorithms in the literature.
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1. Introduction. We consider the following separable nonconvex and nons-
mooth linearly constrained optimization problem

min
(x,y)∈Rnx×Rny

F (x,y) := f(x) + g(y) subject to Ax +By = b,(1.1)

where f : Rnx → R is Lipschitz continuously differentiable, but possibly nonconvex,
g : Rny → R is a proper, lower semi-continuous, possibly nonconvex and nonsmooth
function and A ∈ Rm×nx , B ∈ Rm×ny and b ∈ Rm are given data. Note that
constraints of the form y ∈ Y for a closed set Y ⊂ Rny can be incorporated in the
objective using g as an indicator function of Y. In recent years, problems in the form of
(1.1) have attracted sufficient attention both theoretically and numerically, simply due
to its special structure and many concrete important applications including statistical
learning [10, 20, 46], compressive sensing [64, 65, 67], machine learning [3, 42], phase
retrieval [63], image restoration and extraction [13, 69], etc.

It is well-known that the Alternating Direction Method of Multiplies (ADMM)
has obtained great success in both theory and numerical efficiency for solving linearly
constrained separable convex optimization. Hence, the original ADMM [22, 26] and
its variants for solving convex problems have been extended recently to solve the
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nonconvex structured optimization problem (1.1). Unlike the well-studied Augmented
Lagrangian Method (ALM) [41], ADMM can exploit the problem’s separable structure
and use the special properties of each component function in the objective. Directly
extending the original ADMM for solving the problem (1.1) performs the optimization
in the following alternative order:

yk+1 ∈ arg min
y

Lβ(xk,y,λk),

xk+1 ∈ arg min
x

Lβ(x,yk+1,λk),

λk+1 = λk − sβ
(
Axk+1 +Byk+1 − b

)
,

(1.2)

where s ∈ (0, 1+
√
5

2 ) denotes the stepsize of dual variable λ and Lβ(x,y,λ) is the
augmented Lagrangian with penalty parameter β > 0 defined as

Lβ(x,y,λ) = L(x,y,λ) +
β

2
∥Ax +By − b∥2(1.3)

and L(x,y,λ) is the Lagrangian function of (1.1) defined as

L(x,y,λ) = f(x) + g(y) − λT(Ax +By − b).

The global convergence and complexity of 2-block ADMM, such as (1.2) for solv-
ing convex problems have been well-studied [18, 39]. Multi-block ADMMs have al-
so received intensive research in both deterministic and stochastic setting including
[2, 4, 5, 12, 14, 17, 23, 27, 35, 38, 48, 49]. However, all the above mentioned work
focuses on convex optimization problems. The studies of ADMM for solving (1.1)
with nonconvex objective function are much limited despite its high demands in ap-
plications. Indeed, unlike solving convex problems, ADMM for solving nonconvex
problems could fail for arbitrary choice of the penalty parameter β > 0. However,
with proper choice of β, the excellent performance of nonconvex ADMM has been
observed in recent applications [61]. These mysteries of practical success in fact trig-
gered the recent rigorous study on ADMM for nonconvex optimization. For example,
under suitable assumptions, ADMM and its variants have been shown convergent
[30, 31, 44, 45] for solving two block and multi-block nonconvex problems. Moreover,
ADMMs have been applied to solve some special nonconvex models with particular
choices of A and B [43, 47] and certain nonconvex signal/image recovery problems
[6, 69]. Note that the dominant computation in each iteration of ADMM is to solve
its subproblems. Hence, how to solve these subproblems inexactly while still main-
taining nice convergence properties will be critical for the overall success of ADMM,
especially when no closed-form solution of the subproblem exists [33, 34, 64]. How-
ever, the current work of nonconvex ADMM for (1.1) still lacks sufficient rigorous
study on solving its subproblems inexactly in a more practical way. A nice theoretical
framework on nonconvex ADMM is discussed in [61], but the theories therein still
assume exact subproblem solution of the proposed ADMM and its global convergence
under the adaptive inexact criteria in [61] remains incomplete. Moreover, no numeri-
cal experiments and only unit dual stepsize are considered in [61], while larger range

of dual stepsize s ∈ (0,
√
5+1
2 ) is allowed in the original ADMM.

In this paper, motivated by the recent surged interests for studying nonconvex
ADMM and the adaptive relative error strategy used in ALM and convex ADMM
(Ex. [33]), we propose an Inexact ADMM (I-ADMM) framework with an expansion
linesearch step (see Alg. 3.1) to solve the nonconvex problem (1.1). Our proposed
I-ADMM has the following major features.
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(a) The proposed I-ADMM solves the subproblems inexactly to adaptive accuracy while
guarantees global convergence and linear convergence rate under proper conditions. In
the literature, unless special structure of f or g exits, almost all efficient ADMMs for
convex problems solve the subproblems inexactly [15, 18, 28, 37]. Among these inex-
act ADMMs, one usual way is to solve the subproblems to the accuracy based on some
absolute summable error criteria, but often without guidance on how to adaptively
select the error tolerance except requiring it to be summable. Moreover, ADMM is
just a splitting version of ALM, for which nice convergence theory and encouraging
numerical results are often obtained [19, 55] using adaptive relative subproblem stop-
ping criteria. Hence, ideally we should also solve the subproblems of I-ADMM to an
adaptive accuracy while maintaining desirable convergence properties. In this paper,
we establish global convergence and linear convergence rate of I-ADMM under a local
error bound condition and a weakly convex property of g.

(b) The proposed I-ADMM allows more flexible stepsize s ∈ (0, 2) of the dual variable
stepsize and applies an expansion linesearch step to accelerate the convergence. It is
well-known that the dual stepsize s of ADMM for solving convex optimization can
be arbitrary in the interval (0, (

√
5 + 1)/2) [26, 21, 2]. Hence, it is desirable to allow

a more flexible dual stepsize of I-ADMM while not losing convergence. But only
fixed dual stepsize s = 1 was discussed in almost all the current nonconvex ADMMs
[6, 43, 47, 61], except the methods in [69, 68] allow s ∈ (0, (

√
5 + 1)/2) for an image

recovery problem as original ADMM and s ∈ (0, 2) for a linearized ADMM. However,
both methods assume exact subproblem or linearized subproblem solution. In this
paper, applying a much different potential energy function, we show that the dual
stepsize interval can be (0, 2) even with inexact subproblem solution. In addition, an
expansion linesearch step (see step 6 of Alg. 3.1) is applied in our I-ADMM, which not
only improves the numerical performance but also reduces the sensitivity of algorithm
parameters as well.

(c) We propose a unified proximal gradient (UPG) method with momentum acceler-
ation to solve the nonconvex smooth x-subproblem. Our UPG method is motivated
by the extrapolation techniques for solving both convex and nonconvex optimization
[8, 62]. Uniform proximal gradient methods were also proposed in [24, 25]. However,
[24] requires all iterates must belong to a bounded set for global convergence and
the method in [25] could just reduce to a simple proximal descent method without
any momentum acceleration steps for nonconvex optimization. Our UPG method is
particularly designed for solving x-subproblem arising in our I-ADMM. This UPG
method guarantees global convergence for solving the smooth but possibly nonconvex
subproblem problem and will automatically reduce to an optimal gradient method,
maintaining optimal complexity, when the function f in the objective is convex.

(d) The framework of I-ADMM is more general and flexible than most of ADMMs in
the literature. When no expansion step ( Step 6 of Alg. 3.1) is used, this I-ADMM will
just reduce to a particular inexact version of nonconvex ADMM without a relaxation
step. But our linesearch expansion step often allows much larger stepsize than the
fixed relaxation stepsize used in [18, 36, 40]. Convergence of the ADMM-type methods
in [11, 47] were established for (1.1) with B = I and b = 0 under the Kurdyka-
 Lojasiewicz property, while we have used more general problem settings and different
assumptions for establishing global convergence and linear convergence rate. Although
the over-relaxation step was adopted in [29], the involved subproblems were also solved
exactly. Moreover, our numerical experiments show that the proposed I-ADMM is
very effective compared with other state-of-the-art algorithms in the literature and
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could obtain more accurate solution.

The paper is organized as follows. In Section 2, we introduce some notations,
definitions and some well-known results in the literature. Section 3 describes the
framework of our proposed I-ADMM algorithm. The global convergence and conver-
gence rate of I-ADMM are studied in Section 4. In Section 5, we propose a Unified
Proximal Gradient (UPG) method with momentum acceleration for solving the s-
mooth but possibly nonconvex subproblem. Numerical experiments on solving some
nonconvex quadratic programming problems and sparse optimization problems from
statistical learning are given in Section 6. Conclusions are drawn in Section 7.

2. Notation and preliminaries. Let R, Rn, and Rn×m be the sets of real
numbers, n dimensional real column vectors, and n ×m real matrices, respectively.
Let I denote the identity matrix and 0 denote zero matrix/vector. For symmetric
matrices A and B of the same dimension, A ≻ B (A ≽ B) means A−B is a positive
definite (semidefinite) matrix. For two vectors v and u in Rn, u > v (u ≥ v) means
u is component-wise larger (not less than) v. We use ∥ · ∥ and ⟨·, ·⟩ to denote the
standard Euclidean norm in Rn and the associated inner product. For any positive
semidefinite matrix D ≽ 0, let ∥x∥2D = xTDx. For a matrix A, Range(A) denotes
the range of A and for a nonempty closed set C ⊆ Rn, we use dist(x, C) to denote the
Euclidean distance from x to C, i.e., dist(x, C) = infz∈C ∥x − z∥. Given an extended
real-valued function h : Rn → [−∞,∞], dom h := {x ∈ Rn : h(x) < ∞} denotes its
effective domain. A function h is said to be proper if h(x) > −∞ for all x ∈ Rn and
dom h is nonempty. For a proper lower semi-continuous function h, its (limiting-)
subdifferential [54, Definition 8.3 (b)] at x ∈ dom h, denoted as ∂h(x), is defined as

∂h(x) :=
{
ν ∈ Rn : ∃xk → x, h(xk) → h(x),νk → ν with νk ∈ ∂̂h(xk)

}
,(2.1)

where ∂̂h(x) denotes the regular subdifferential [54, Definition 8.3 (a)] of h at x given
as

∂̂h(x) :=

{
ν ∈ Rn : lim inf

z→x,z ̸=x

h(z) − h(x) − ⟨ν, z− x⟩
∥z− x∥

≥ 0

}
.

It is well-known that the subdifferential (2.1) coincides with the classical subdiffer-
ential of a proper closed convex function h and is the gradient of h, denoted as ∇h,
when h is continuously differentiable. However, the limiting subdifferential plays a
much wider role in nonsmooth and nonconvex analysis and optimization [54, Exercise
8.8 and Proposition 8.12]. For example, the Fermat’s rule remains true, that is, if x
is a local minimizer of h, then 0 ∈ ∂h(x) [54, Theorem 10.1].

3. Algorithm description. We propose an inexact ADMM (I-ADMM, i.e.,
Alg. 3.1) with an expansion linesearch step to solve the possibly nonsmooth and
nonconvex problem (1.1). At each iteration, both the y-subproblem, i.e.,

min
y∈Rny

Lk
y(y) := Lβ(xk,y,λk) +

β

2
∥y − yk∥2Dk

y
,(3.1)

and the x-subproblem, i.e.,

min
x∈Rnx

Lk
x(x) := Lβ(x,yk+1,λk) +

β

2
∥x− xk∥2Dk

x
,(3.2)
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are allowed to be solved inexactly, where Dk
x ≽ 0 and Dk

y ≽ 0 could be two adaptively
chosen uniformly upper bounded positive semidefinite matrices. More precisely, in
Alg. 3.1, it requires the yk+1 generated at the k-th iteration satisfies

β

2
∥yk+1 − yk∥2Dy

+ Lβ(xk,yk+1,λk) ≤ Lβ(xk,yk,λk)(3.3)

for some positive definite matrix Dy ≻ 0, and there exists a positive constant cy > 0

and some ξk+1
y ∈ ∂yLβ(xk,yk+1,λk) such that

∥ξk+1
y ∥ ≤ cyβ∥yk+1 − yk∥.(3.4)

For inexact solution of x-subproblem, it requires the x̂k generated at the k-th iteration
of Alg. 3.1 satisfies

β

2
∥x̂k − xk∥2Dx

+ Lβ(x̂k,yk+1,λk) ≤ Lβ(xk,yk+1,λk)(3.5)

for some positive definite matrix Dx ≻ 0, and there exists a positive constant cx > 0
such that ξk+1

x = ∇xLβ(x̂k,yk+1,λk) satisfies

∥ξk+1
x ∥ ≤ cxβ

(
∥x̂k − xk∥ + ∥yk+1 − yk∥

)
.(3.6)

The algorithm stops when Rk+1 is sufficiently small, where

Rk+1 = ∥x̂k − xk∥ + ∥yk+1 − yk∥ + ∥r̂k+1∥,(3.7)

and r̂k+1 = Ax̂k + Byk+1 − b. Furthermore, we see that an expansion linesearch
step for x-iterates is applied in Step 6 of Alg. 3.1. From this expansion step, we have
ϕ(αk) = Lβ(xk+1,yk+1,λk+1), ϕ(1) = Lβ(x̂k,yk+1,λk+1) and the stepsize αk ≥ 1 is
chosen such that

Lβ(xk+1,yk+1,λk+1) ≤ Lβ(x̂k,yk+1,λk+1) − δβ∥xk+1 − x̂k∥2,(3.8)

where δ ∈ (0, 1) is an algorithm parameter. As standard linesearch techniques in op-
timization, this Armijo-type linesearch step could significantly improve the algorithm
performance as well as reduce the sensitivity of the choice of algorithm parameters.

We now have the following comments regarding the conditions (3.3), (3.4), (3.5)
and (3.6) for the subproblem solutions. First, since {Dk

x} and {Dk
y} are chosen uni-

formly upper bounded, supposing functions Lk
x(·) and Lk

y(·) are bounded from below,

we can find yk+1 and x̂k such that (3.4) and (3.6) will be satisfied. In addition, if
Rk+1 = 0, we can derive that wk := (xk,yk,λk) is a stationary point of the problem
(1.1) (see definition (4.22)). On the other hand, if {Dk

x} and {Dk
y} are chosen such

that

∥x̂k − xk∥2Dk
x
≥ ηx∥x̂k − xk∥2 and ∥yk+1 − yk∥2Dk

y
≥ ηy∥yk+1 − yk∥2

for some constants ηx > 0 and ηy > 0, then for any x̂k satisfying Lk
x(x̂k) ≤ Lk

x(xk)
and any yk+1 satisfying Lk

y(yk+1) ≤ Lk
y(yk), the conditions (3.3) and (3.5) will hold

with Dx = ηxI and Dy = ηyI. Obviously, one simple choice could be letting Dk
x = ηxI

and Dk
y = ηyI for all k ≥ 0. However, under certain circumstances, it is not even

necessary to require positive definiteness of {Dk
x} or {Dk

y} in order to satisfy the
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Initialization: parameters β > 0, s ∈ (0, 2), δ ∈ (0, 1) and η > 1,

starting point w0 = (x0,y0,λ0).
For k = 0, 1, 2, . . .
1. Choose uniformly upper bounded matrices Dk

y ≽ 0 and Dk
x ≽ 0.

2. Solve yk+1 ≈ argminy∈Rny Lβ(xk,y,λk) + β
2 ∥y − yk∥2Dk

y
inexactly such

that (3.3) and (3.4) are satisfied.

3. Solve x̂k ≈ argminx∈Rnx Lβ(x,yk+1,λk) + β
2 ∥x− xk∥2Dk

x
inexactly such

that (3.5) and (3.6) are satisfied.

4. If Rk+1 defined in (3.7) is sufficiently small, stop.

5. Update the Lagrange multiplier:

λk+1 = λk − sβ(Ax̂k +Byk+1 − b).
6. Expansion step for the x-iterate:

xk+1 = xk + αkd̂
k
x, where d̂k = x̂k − xk and αk = ηj with j ≥ 0

being the largest integer such that

ϕ(αk) ≤ ϕ(1) − δβ∥xk+1 − x̂k∥2 and ϕ(α) = Lβ(xk + αd̂k
x,y

k+1,λk+1).
end

Alg. 3.1. An inexact ADMM (I-ADMM) for separable nonconvex optimization problem (1.1)

conditions (3.3) and (3.5). For instance, denoting L > 0 as the Lipschitz constant of
∇f , if ATA+Dk

x ≻ 0 and the parameter β is sufficiently large such that β(ATA+Dk
x) ≽

(L+2ηβ)I for some η > 0, the objective function Lk
x(·) of the x-subproblem (5.1) will

be uniformly strongly convex with modulus greater than 2ηβ > 0. Under this case, all
points sufficiently close to the minimizer of the x-subproblem (5.1) will satisfy (3.5)
with Dx = ηI. Hence, in the following, we assume that we can solve the subproblems
(3.1) and (3.2) inexactly to meet the conditions (3.3), (3.4), (3.5) and (3.6).

4. Convergence analysis. In this section, we would like to study the conver-
gence properties of Alg. 3.1. For the convergence analysis, we need the following
assumptions throughout the paper:

Assumption 4.1. The gradient of f is Lipschitz continuous, i.e., there exits a
constant L > 0 such that

∥∇f(z1) −∇f(z2)∥ ≤ L∥z1 − z2∥(4.1)

for any z1, z2 ∈ Rnx .
Assumption 4.2. (Range(B) ∪ b) ⊆ Range(A).
Based on Assumption 4.2, we have λk+1 − λk = −sβrk+1 ∈ Range(A), which

implies

∥λk+1 − λk∥ ≤ σ
− 1

2

A ∥AT(λk+1 − λk)∥,(4.2)

where σA is the smallest positive eigenvalue of ATA (or equivalently the smallest
positive eigenvalue of AAT). Certainly, Assumption 4.2 holds if A is nonsingular or
has full column or full row rank.

4.1. Technical preliminaries. In the following, to facilitate the analysis, for
all k ≥ 0 let us denote

d̂k
x := x̂k − xk, d̃k

x := xk+1 − x̂k, dk
y := yk+1 − yk and dk

λ := λk+1 − λk,
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and define

ψ1(s) = max

{
1,

s2

(2 − s)2

}
and ψ2(s) = max

{
1 − s

s
,
s− 1

2 − s

}
.(4.3)

It is easy to see that ψ1(s) > 0 and ψ2(s) ≥ 0 for any s ∈ (0, 2). Then, we have the
following lemma.

Lemma 4.1. Suppose the Assumption 4.1 holds and the sequence {wk} generated
by Alg. 3.1 satisfy the condition (3.6). Then, for all k ≥ 1, we have

∥ATdk
λ∥2 ≤ ψ2(s)

(
∥ATdk−1

λ ∥2 − ∥ATdk
λ∥2

)
+ 2ψ1(s)(L+ cxβ)2∥d̂k

x∥2

+8ψ1(s)L2∥d̃k−1
x ∥2 + 8ψ1(s)c2xβ

2
(
∥d̂k−1

x ∥2 + ∥dk
y∥2 + ∥dk−1

y ∥2
)
.(4.4)

Proof. By the definition of ξk+1
x = ∇xLβ(x̂k,yk+1,λk), we have

ξk+1
x = ∇f(x̂k) +AT

(
− λk + βr̂k+1

)
,

where r̂k+1 = Ax̂k +Byk+1 − b. Hence, we have

ATλk = ∇f(x̂k) − ξk+1
x + βATr̂k+1,

which follows from λk+1 = λk − sβr̂k+1 that

sATλk = s
(
∇f(x̂k) − ξk+1

x

)
+AT

(
λk − λk+1

)
.

So, we have

ATλk+1 = s
(
∇f(x̂k) − ξk+1

x

)
+ (1 − s)ATλk,

which by dk
λ = λk+1 − λk gives

ATdk
λ = sδk + (1 − s)ATdk−1

λ ,(4.5)

where

δk = ∇f(x̂k) −∇f(x̂k−1) − ξk+1
x + ξkx.(4.6)

In the following we consider two cases on s ∈ (0, 1] or s ∈ (1, 2).
Case 1: s ∈ (0, 1]. It follows from (4.5) and the convexity of ∥ · ∥2 that

∥ATdk
λ∥2 ≤ s∥δk∥2 + (1 − s)∥ATdk−1

λ ∥2.

By subtracting (1−s)∥ATdk
λ∥2 and dividing s from both sides of the above inequality,

we derive

∥ATdk
λ∥2 ≤ ∥δk∥2 +

1 − s

s

(
∥ATdk−1

λ ∥2 − ∥ATdk
λ∥2

)
.(4.7)

Case 2: s ∈ (1, 2). It follows from (4.5) that

∥ATdk
λ∥2 = (1 − s)2∥ATdk−1

λ ∥2 + s2∥δk∥2 + 2s(1 − s)⟨ATdk−1
λ , δk⟩.(4.8)
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Then, by (4.8) and Cauchy-Schwartz inequality, for an ν > 0 we have

∥ATdk
λ∥2 ≤ (1 − s)2∥ATdk−1

λ ∥2 + s2∥δk∥2 + s(s− 1)
(
ν∥ATdk−1

λ ∥2 +
1

ν
∥δk∥2

)
=

[
(1 − s)2 + s(s− 1)ν

]
∥ATdk−1

λ ∥2 +
(
s2 +

s(s− 1)

ν

)
∥δk∥2.(4.9)

By choosing ν = (2 − s)/s, we have

(1 − s)2 + s(s− 1)ν = s− 1 and s2 +
s(s− 1)

ν
=

s2

2 − s
.

So, we have from from (4.9) that

∥ATdk
λ∥2 ≤ (s− 1)∥ATdk−1

λ ∥2 +
s2

2 − s
∥δk∥2.

By subtracting (s − 1)∥ATdk
λ∥2 and dividing 2 − s from both sides of the above

inequality, we derive

∥ATdk
λ∥2 ≤ s2

(2 − s)2
∥δk∥2 +

s− 1

2 − s

(
∥ATdk−1

λ ∥2 − ∥ATdk
λ∥2

)
.(4.10)

Now, combining (4.7) and (4.10) and noticing the definition of functions ψ1 and
ψ2 in (4.3), we have

∥ATdk
λ∥2 ≤ ψ1(s)∥δk∥2 + ψ2(s)

(
∥ATdk−1

λ ∥2 − ∥ATdk
λ∥2

)
.(4.11)

In addition, by (3.6), (4.1), x̂k − x̂k−1 = d̂k
x + d̃k−1

x and the definition of δk in (4.6),
we have

∥δk∥2 = ∥∇f(x̂k) −∇f(x̂k−1) − ξk+1
x + ξkx∥2

≤
(
L∥d̂k

x + d̃k−1
x ∥ + cxβ

(
∥d̂k

x∥ + ∥d̂k−1
x ∥ + ∥dk

y∥ + ∥dk−1
y ∥

))2

(4.12)

≤
[
(L+ cxβ)∥d̂k

x∥ + L∥d̃k−1
x ∥ + cxβ

(
∥d̂k−1

x ∥ + ∥dk
y∥ + ∥dk−1

y ∥
) ]2

≤ 2(L+ cxβ)2∥d̂k
x∥2 + 8L2∥d̃k−1

x ∥2 + 8c2xβ
2
(
∥d̂k−1

x ∥2 + ∥dk
y∥2 + ∥dk−1

y ∥2
)
.

Finally, the conclusion (4.4) follows from the above inequality and (4.11).
Now, let us denote wk = (xk,yk,λk), ŵk = (x̂k−1,yk,λk) and define the poten-

tial energy functions as

Êk+1 = Lβ(ŵk+1) + Γ̂k and Ek+1 = Lβ(wk+1) + Γk,(4.13)

where

Γ̂k =
8(1 + τ)ψ1(s)c2xβ

sσA

(
∥d̂k

x∥2 + ∥dk
y∥2

)
+

(1 + τ)ψ2(s)

sβσA
∥ATdk

λ∥2,

Γk = Γ̂k +
8(1 + τ)ψ1(s)L2

sβσA
∥d̃k

x∥2
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and τ is any constant satisfying 0 < τ < δ < 1. Then, based on the previous lemma,
we can derive the following potential energy reduction theorem.

Theorem 4.2. Suppose the Assumptions 4.1-4.2 hold and the sequence {wk}
generated by Alg. 3.1 satisfy the conditions (3.3), (3.5) and (3.6). For any δ ∈ (0, 1),

let τ ∈ (0, δ) be the constant in the potential energies Ek and Êk defined in (4.13). If
the parameters in Alg. 3.1 are chosen such that

D̂x :=
1 − τ

2(1 + τ)
Dx −

ψ1(s)
[
2(L/β + cx)2 + 8c2x

]
sσA

I ≽ 0,(4.14)

Dy :=
1 − τ

16(1 + τ)
Dy − ψ1(s)c2x

sσA
I ≽ 0,(4.15)

and

D̃x :=

(
δ − τ

1 + τ
− 8ψ1(s)(L/β)2

sσA

)
I ≽ 0.(4.16)

Then, for all k ≥ 1, we have

Ek+1 ≤ Ek − τβ

2
∥d̂k

x∥2Dx
− τβ

2
∥dk

y∥2Dy
− τ

sβ
∥dk

λ∥2 − τβ∥d̃k
x∥2(4.17)

and

Êk+1 ≤ Êk − τβ

2
∥d̂k

x∥2Dx
− τβ

2
∥dk

y∥2Dy
− τ

sβ
∥dk

λ∥2 − τβ∥d̃k−1
x ∥2.(4.18)

Proof. First, by (3.3), (3.5) and (4.2), we have

Lβ(ŵk+1) − Lβ(wk)

= Lβ(x̂k,yk+1,λk+1) − Lβ(x̂k,yk+1,λk) + Lβ(x̂k,yk+1,λk)

−Lβ(xk,yk+1,λk) + Lβ(xk,yk+1,λk) − Lβ(xk,yk,λk)

≤ 1 + τ

sβ
∥dk

λ∥2 −
β

2
∥d̂k

x∥2Dx
− β

2
∥dk

y∥2Dy
− τ

sβ
∥dk

λ∥2

≤ 1 + τ

sβσA
∥ATdk

λ∥2 −
β

2
∥d̂k

x∥2Dx
− β

2
∥dk

y∥2Dy
− τ

sβ
∥dk

λ∥2.(4.19)

In addition, by (4.4), we obtain

1 + τ

sβσA
∥ATdk

λ∥2(4.20)

≤ (1 + τ)ψ1(s)

sβσA

[
2(L+ cxβ)2∥d̂k

x∥2 + 8c2xβ
2
(
∥d̂k−1

x ∥2 + ∥dk
y∥2 + ∥dk−1

y ∥2
)

+8L2∥d̃k−1
x ∥2

]
+

(1 + τ)ψ2(s)

sβσA

(
∥ATdk−1

λ ∥2 − ∥ATdk
λ∥2

)
.

Then, plugging (4.20) into (4.19), by (3.8) and d̃k
x = xk+1 − x̂k, we have

Lβ(wk+1) − Lβ(wk)
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≤ Lβ(ŵk+1) − Lβ(wk) − δβ∥xk+1 − x̂k∥2

≤ 8(1 + τ)ψ1(s)c2xβ

sσA

(
∥d̂k−1

x ∥2 − ∥d̂k
x∥2 + ∥dk−1

y ∥2 − ∥dk
y∥2

)
+

8(1 + τ)ψ1(s)L2

sβσA

(
∥d̃k−1

x ∥2 − ∥d̃k
x∥2

)
−τβ

2
∥d̂k

x∥2Dx
− τβ

2
∥dk

y∥2Dy
− τ

sβ
∥dk

λ∥2 − τβ∥d̃k
x∥2

−(1 + τ)β
(
∥d̂k

x∥2D̂x
+ 8∥dk

y∥2Dy
+ ∥d̃k

x∥2D̃x

)
+

(1 + τ)ψ2(s)

sβσA

(
∥ATdk−1

λ ∥2 − ∥ATdk
λ∥2

)
,(4.21)

where 0 < τ < δ < 1, D̂x ≽ 0, Dy ≽ 0 and D̃x are defined in (4.14) (4.15) and (4.16),
respectively. Then, (4.17) follows from (4.21) and the definition of Ek+1 in (4.13).

Similarly, by (3.8) and d̃k
x = xk − x̂k−1, we have

Lβ(ŵk+1) − Lβ(ŵk) ≤ Lβ(ŵk+1) − Lβ(wk) − δβ∥xk − x̂k−1∥2

= Lβ(ŵk+1) − Lβ(wk) − δβ∥d̃k−1
x ∥2.

So, plugging (4.20) into (4.19), we can similarly derive by the definition of Êk+1 in
(4.13) that (4.18) holds.

4.2. Global convergence and sublinear convergence rate. We say w∗ =
(x∗,y∗,λ∗) is a stationary point of the problem (1.1) if 0 ∈ ∂L(w∗), i.e.,

0 = ∇f(x∗) −ATλ∗, 0 ∈ ∂g(y∗) −BTλ∗ and Ax∗ +By∗ = b.(4.22)

Then, it is obvious that wk = (xk,yk,λk) is a stationary point of (1.1) if Rk+1 = 0,
where Rk is defined in (3.7). Hence, in the following global convergence theorem, we
assume Rk ̸= 0 for all k and an infinite sequence {wk} is generated by Alg. 3.1. And,
in the following, we denote

rk := Axk +Byk − b and dk
x := xk+1 − xk = d̃k

x + d̂k
x.(4.23)

Theorem 4.3. Suppose the Assumptions 4.1-4.2 hold and the sequence {wk}
generated by Alg. 3.1 satisfy the conditions (3.3), (3.4), (3.5) and (3.6). If the pa-

rameters in Alg. 3.1 are chosen such that (4.14), (4.15) and (4.16) hold, and {Êk}
defined in (4.13) is bounded from below, then there exists a F ∗ such that

lim
k→∞

L(xk,yk,λk) = lim
k→∞

Lβ(xk,yk,λk) = lim
k→∞

Ek = lim
k→∞

Êk = F ∗.(4.24)

In addition, we have

lim
k→∞

dist(0, ∂L(wk)) = lim
k→∞

dist(0, ∂Lβ(wk)) = 0(4.25)

and any limit point w∗ of {wk} is a stationary point of the problem (1.1).

Proof. If {Êk} is bounded from below, we obtain from (4.18) that

c
K∑

k=1

{
∥d̂k

x∥2Dx
+ ∥dk

y∥2Dy
+ ∥dk

λ∥2 + ∥d̃k−1
x ∥2

}
≤ Ê1 − ÊK+1 ≤ Ê1 − P ,(4.26)
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where c = min{τβ/2, τ/(sβ)} > 0 and P is the lower bound of Ek. Then, (4.26),
Dx ≻ 0 and Dy ≻ 0 imply that

lim
k→∞

∥d̃k
x∥ = 0, lim

k→∞
∥d̂k

x∥ = 0, lim
k→∞

∥dk
y∥ = 0 and lim

k→∞
∥dk

λ∥ = 0.(4.27)

In addition, by (4.27), dk
λ = −sβr̂k+1 and the definition of Rk in (3.7), we have

lim
k→∞

∥r̂k∥ = 0 and lim
k→∞

Rk = lim
k→∞

(∥d̂k−1
x ∥ + ∥dk−1

y ∥ + ∥r̂k∥) = 0.(4.28)

So, we have from rk = r̂k +Ad̃k−1
x , ∥dk

x∥ ≤ ∥d̃k
x∥ + ∥d̂k

x∥ (4.27) and (4.28) that

lim
k→∞

∥rk∥ = 0 and lim
k→∞

∥dk
x∥ = 0,(4.29)

where rk and dk
x are defined in (4.23). By (4.17), we have {Êk}∞k=1 is a monotonically

nonincreasing sequence, which together with the assumption that {Êk} being bounded

from below implies limk→∞ Êk = F ∗ for some F ∗. Then, it follows from the definition
of Ek, (4.27) and (4.29) that (4.24) holds.

Now, by direct calculation, we have

∂xLβ(wk) = ∂xL(wk) + βATrk = ∇f(xk) −ATλk + βATrk

= ∇xLβ(x̂k−1,yk,λk−1) −ATdk−1
λ + (∇f(xk) −∇f(x̂k−1)),

∂yLβ(wk) = ∂yL(wk) + βBTrk = ∂yg(yk) −BTλk + βBTrk

= ∂yLβ(xk−1,yk,λk−1) −BT(dk−1
λ − βAdk−1

x ),

∂λLβ(wk) = ∂λL(wk) = −rk.(4.30)

Then, it follows from (3.4), (3.6), (4.27) and (4.29) that (4.25) holds. In addition,
for any limiting point w∗ of {wk}, it follows from (4.25) and the definition of the
limiting-subdifferential ∂L(w∗) that (4.22) holds. Hence, w∗ is a stationary point of
(1.1).

From Theorem 4.3 and (4.28), we can see that for any limiting stationary point
w∗ of {wk}, we have L(x∗,y∗,λ∗) = F (x∗,y∗) = f(x∗) + g(y∗) = F ∗. In addition,
we can observe from (4.26) that

min
k∈{1,...,K}

{
∥d̃k−1

x ∥2 + ∥d̂k
x∥2 + ∥dk

y∥2 + ∥r̂k+1∥2
}

= O(1/K),

which together with (3.4) and (3.6) implies

min
k∈{1,...,K}

{
dist(0, ∂L(wk))

}
= O(1/

√
K).

In Theorem 4.3, we assume the parameters in Alg. 3.1 are chosen such that the poten-
tial energy sequence {Êk} is uniformly bounded from below. The following theorem

gives a sufficient condition to ensure the uniform lower bound of {Êk}, which in turn

also implies the uniform lower bound of {Ek} since limk→∞ ∥d̂k∥ = limk→∞ ∥d̃k∥ = 0.
Theorem 4.4. Suppose there exists a constant β > 0 such that

inf

{
f(x̂k−1) + g(yk) +

β

2
∥Ax̂k−1 +Byk − b∥2

}
=: P > −∞.(4.31)
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Then, under the conditions of Theorem 4.2 and β ≥ β, we have Êk ≥ P for all k ≥ 1.
Proof. Since β ≥ β, it follows from λk = λk−1− sβ(Ax̂k−1 +Byk−b) and (4.31)

that

Lβ(ŵk) = Lβ(x̂k−1,yk,λk)

≥ f(x̂k−1) + g(yk) − (λk)T(Ax̂k−1 +Byk − b) +
β

2
∥Ax̂k−1 +Byk − b∥2

≥ P +
1

sβ
(λk)T(λk − λk−1)

= P +
1

2sβ

(
∥λk∥2 − ∥λk−1∥2 + ∥λk − λk−1∥2

)
.

Hence, by the definition of Êk in (4.13) and the above inequality, we have

∞∑
k=1

(
Êk − P

)
≥

∞∑
k=1

(
Lβ(ŵk) − P

)
≥ − 1

sβ
∥λ0∥2.(4.32)

By Theorem 4.2, {Êk}∞k=1 is monotonically decreasing. So, if there exists a k ≥ 1 such

that Êk < P , we will have Êk < P for all k > k, which implies
∑∞

k=1

(
Êk−P

)
= −∞.

This will contradict (4.32). Hence, we have Êk ≥ P for all k.
Remark 4.1. The condition (4.31) in Theorem 4.4 is obviously satisfied if

inf f(x) + g(y) +
β

2
∥Ax +By − b∥2 > −∞(4.33)

for all x and y. And in many applications, the function F (x,y) = f(x) + g(y) is
uniformly bounded from below and therefore, (4.33) holds. For example, in statistical
learning both the graph-guided fused lasso model [42] and the smoothly clipped absolute
deviation (SCAD) model [66] have nonnegative objective function value.

4.3. Linear convergence rate. In this subsection, we discuss the linear conver-
gence of {Ek} and {wk} under proper conditions. Let Ω∗ be the set of all stationary
points of the problem (1.1) satisfying (4.22), i.e.,

Ω∗ = {(x∗,y∗,λ∗) : ATλ∗ = ∇f(x∗), BTλ∗ ∈ ∂g(y∗), Ax∗ +By∗ = b}.

Note that Ω∗ is a closed set. In the following, let us denote w∗ = (x∗,y∗,λ∗) ∈ Ω∗.
For studying linear convergence, we need the following additional assumption.

Assumption 4.3. (a) For any ξ ≥ infw Lβ(w), there exist ϵ > 0 and κ > 0 such
that

dist(w,Ω∗) ≤ κdist(0, ∂Lβ(w)),

whenever dist(0, ∂Lβ(w)) ≤ ϵ and Lβ(w) ≤ ξ.
(b) Ω∗ is nonempty and there exists ω∗ > 0 such that ∥w1 −w2∥ ≥ ω∗ whenever w1,
w2 ∈ Ω∗ and F (x1,y1) ̸= F (x2,y2).
(c) Function g is locally weakly convex near

Ω∗
y := {y : there exist x and λ such that (x,y,λ) ∈ Ω∗},

that is, there exist ε, σ > 0 such that for any y1,y2 with dist(y1,Ω
∗
y) ≤ ϵ, dist(y2,Ω

∗
y) ≤

ϵ and ∥y1 − y2∥ ≤ ε and for any ν ∈ ∂g(y2), it has

g(y1) ≥ g(y2) + ⟨ν,y1 − y2⟩ − σ∥y1 − y2∥2.
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We have the following comments on Assumption 4.3. Assumption 4.3 (a) is a
local error bound condition and [57, Lemma 7] provides certain sufficient conditions
to ensure this assumption when analyzing linear convergence rate of a nonconvex al-
gorithm. Similar local error bound conditions have been often used in the convergence
rate analysis of many algorithms [7, 45, 50, 51, 58, 62]. Assumption 4.3 (b) essentially
requires that the isocost surface of F restricted on Ω∗ are properly separated. For
more examples and discussions on functions satisfying the error bound conditions and
the isocost properties, one may refer to references [57, 58, 62, 70]. Assumption 4.3 (c)
requires that g is locally weakly convex near the projection of the stationary point set
Ω onto the y-coordinates. Convex functions and Lipschitz continuously differential
functions obviously satisfies this requirement. For more properties on weakly convex
functions as well as its relations to lower-C2 functions, one may refer to references
[1, 52, 53, 59].

We now give the following linear convergence theorem on the energy sequence
{Ek}. The linear convergence of energy sequence {Êk} can be similarly proved.

Theorem 4.5. Suppose the conditions in Theorem 4.3 and Assumption 4.3 hold.
Then, for the sequence {wk} generated by Alg. 3.1, we have

(i) limk→∞ dist(wk,Ω∗) = 0;
(ii) if {wk} has at least one cluster point, then for all k sufficiently large,

0 ≤ Ek+1 − F ∗ ≤ θ(Ek − F ∗),(4.34)

where θ ∈ (0, 1) is some constant, Ek is defined in (4.13) and F ∗ = limk→∞Ek

is defined in (4.24).
Proof. By (4.24) and (4.25), there exists a ζ ≥ infw Lβ(w) such that Lβ(wk) ≤

ζ for all k and limk→∞ dist(0, ∂Lβ(wk)) = 0. Hence, conclusion (i) follows from
Assumption 4.3 (a) with ξ = ζ.

We now prove conclusion (ii). For any iterate wk, let us define a wk ∈ Ω∗

such that dist(wk,Ω∗) = ∥wk − wk∥. Since Ω∗ is closed, such wk exists. Then, by
conclusion (i), we have

lim
k→∞

∥wk −wk∥ = 0.(4.35)

In addition, we have from (4.27) and ∥wk −wk−1∥ ≤ ∥d̃k−1
x ∥ + ∥d̂k−1

x ∥ + ∥dk−1
y ∥ +

∥dk−1
λ ∥ that

lim
k→∞

∥wk −wk−1∥ = 0.(4.36)

Therefore, we have from ∥wk−wk−1∥ ≤ ∥wk−wk∥+∥wk−wk−1∥+∥wk−1−wk−1∥,
(4.35) and (4.36) that

lim
k→∞

∥wk −wk−1∥ = 0.

So, by Assumption 4.3 (b) and wk ∈ Ω, there exists a constant F
∗

such that

Lβ(wk) = Lβ(xk,yk,λ
k
) = F (xk,yk) = F

∗
(4.37)

for all k sufficiently large. Now, suppose {wk} has a cluster point w∗, i.e., there
exists a subsequence {wki} converging to w∗. Then, we have from Theorem 4.3 that
w∗ ∈ Ω, and in addition, by (4.35), we have

lim
i→∞

∥wki −w∗∥ ≤ lim
i→∞

(
∥wki −wki∥ + ∥wki −w∗∥

)
= 0.
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Hence, we have from (4.37), w∗ ∈ Ω and Assumption 4.3 (b) again that Lβ(w∗) = F
∗
.

So, by the lower semicontinuity of the function Lβ(·), we have

F
∗

= Lβ(w∗) ≤ lim
i→∞

Lβ(wki) = F ∗,(4.38)

where F ∗ = limk→∞Ek = limk→∞ Lβ(wk) is defined in Theorem 4.3.

By the definition of Lβ(x,y,λ) in (1.3) and the update of λk in Alg. 3.1, we have

Lβ(x̂k−1,yk,λk) − Lβ(x̂k−1,yk,λ) =
1

sβ
(λ− λk)T(λk−1 − λk),(4.39)

Lβ(x̂k−1,yk,λ) − Lβ(x̂k−1,y,λ) = g(yk) − g(y) + λTB(y − yk)(4.40)

+
β

2

(
∥Ax̂k−1 +Byk − b∥2 − ∥Ax̂k−1 +By − b∥2

)
,

and

Lβ(x̂k−1,y,λ) − Lβ(x,y,λ) = f(x̂k−1) − f(x) + λTA(x− x̂k−1)(4.41)

+
β

2

(
∥Ax̂k−1 +By − b∥2 − ∥Ax +By − b∥2

)
.

Then, by setting (x,y,λ) = wk in (4.39), (4.40) and (4.41), for all k sufficiently large,
we have from (4.37) and (4.38) that

Lβ(x̂k−1,yk,λk) − F ∗

≤ Lβ(x̂k−1,yk,λk) − F
∗

= Lβ(x̂k−1,yk,λk) − Lβ(xk,yk,λ
k
)

≤ 1

sβ
(λ

k − λk)T(λk−1 − λk) +
L

2
∥xk − x̂k−1∥2

+
1

2s2β
∥dk−1

λ ∥2 + g(yk) − g(yk) + ⟨BTλ
k
,yk − yk⟩,(4.42)

where the inequality comes from Lipschitz continuity of f , ATλ
k

= ∇f(xk), Axk +
Byk = b and dk−1

λ = −sβr̂k. From (3.4), there exists a ξky ∈ ∂yLβ(xk−1,yk,λk−1),
i.e.,

νk := ξky +BTλk−1 − βBT(Axk−1 +Byk − b) ∈ ∂g(yk)

with ∥ξky∥ ≤ cyβ∥dk−1
y ∥. So, we have

∥νk −BTλ
k∥ ≤ ∥ξky∥ + ∥BT(λk−1 − λ

k
)∥ + β∥BT(Axk−1 +Byk − b)∥

≤ cyβ∥dk−1
y ∥ + ∥B∥

(
∥dk−1

λ ∥ + ∥λk − λ
k∥
)

+ β∥B∥
(
∥r̂k∥ + ∥Ad̂k−1

x ∥
)
.(4.43)

Now, by (4.35), we have limk→∞ ∥yk −yk∥ = 0 and limk→∞ dist(yk,Ωy) = 0. Hence,
it follows from Assumption 4.3 (c) that

g(yk) ≥ g(yk) + ⟨νk,yk − yk⟩ − σ∥yk − yk∥2

for all k sufficiently large, where σ > 0 is a constant, which implies

g(yk) − g(yk) + ⟨BTλ
k
,yk − yk⟩

= g(yk) − g(yk) + ⟨νk,yk − yk⟩ + ⟨BTλ
k − νk,yk − yk⟩

≤ σ∥yk − yk∥2 + ∥BTλ
k − νk∥∥yk − yk∥.
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Hence, by (4.42), (4.43), ∥xk−x̂k−1∥2 ≤ 2
(
∥xk−xk∥2+∥d̃k−1

x ∥2
)

and dk−1
λ = −sβr̂k,

there exit two constants c1 > 0 and c2 > 0 such that

Lβ(x̂k−1,yk,λk) − F ∗ ≤ 1

sβ
(λ

k − λk)T(λk−1 − λk) +
L

2
∥xk − x̂k−1∥2

+
1

2s2β
∥dk−1

λ ∥2 + σ∥yk − yk∥2 + ∥BTλ
k − νk∥∥yk − yk∥

≤ c1
(
∥d̂k−1

x ∥2 + ∥dk−1
y ∥2 + ∥dk−1

λ ∥2 + ∥d̃k−1
x ∥2

)
+ c2∥wk −wk∥2(4.44)

for all k sufficiently large. By (3.4), (3.6), (4.30), dk−1
λ = −sβr̂k, rk = r̂k + Ad̃k−1

x ,

and dk−1
x = d̃k−1

x + d̂k−1
x , we have

dist(0, ∂Lβ(wk))

≤ ∥∇xLβ(x̂k−1,yk,λk−1) −ATdk−1
λ ∥ + ∥∇f(xk) −∇f(x̂k−1)∥ + ∥rk∥

+dist
(
BT(dk−1

λ − βAdk−1
x ), ∂yLβ(xk−1,yk,λk−1)

)
≤ cxβ(∥d̂k−1

x ∥ + ∥dk−1
y ∥) + ∥ATdk−1

λ ∥ + cyβ∥dk−1
y ∥ + ∥BT(dk−1

λ − βAdk−1
x )∥

+L∥d̃k−1
x ∥ +

1

sβ
∥dk−1

λ ∥ + ∥Ad̃k−1
x ∥

≤ c3(∥d̂k−1
x ∥ + ∥dk−1

y ∥ + ∥dk−1
λ ∥ + ∥d̃k−1

x ∥),

where c3 = max
{

(cx+∥BTA∥)β, (cx+cy)β, 1/(sβ)+∥A∥+∥B∥, L+∥A∥+β∥BTA∥
}
>

0. So, by Assumption 4.3 (a), we have

∥wk−wk∥ = dist(wk,Ω) ≤ κdist(0, ∂Lβ(wk)) ≤ κc3
(
∥d̂k−1

x ∥+∥dk−1
y ∥+∥dk−1

λ ∥+∥d̃k−1
x ∥

)
for all k sufficiently large, which together with (4.44) gives

Lβ(x̂k−1,yk,λk) − F ∗ ≤ c
(
∥d̂k−1

x ∥2 + ∥dk−1
y ∥2 + ∥dk−1

λ ∥2 + ∥d̃k−1
x ∥2

)
,(4.45)

where c = c1 + 4c2c
2
3κ

2. Hence, defining dk := ∥d̂k
x∥2 + ∥dk

y∥2 + ∥dk
λ∥2 + ∥d̃k

x∥2, it

follows from the definition of Ek in (4.13), (3.8) and (4.45) that

Ek+1 − F ∗ ≤ Lβ(x̂k,yk+1,λk+1) − δβ∥xk+1 − x̂k∥2 − F ∗ +
(1 + τ)ψ2(s)

sβσA
∥ATdk

λ∥2

+
8(1 + τ)ψ1(s)β

sσA

(
c2x(∥d̂k

x∥2 + ∥dk
y∥2) + (L/β)2∥d̃k

x∥2
)

≤ γ dk,(4.46)

where γ = c+ max
{

(8(1 + τ)ψ1(s)(c2xβ
2 +L2), (1 + τ)∥A∥2ψ2(s)

}
/(sβσA). Addition-

ally, we have by (4.17), Dx ≻ 0 and Dy ≻ 0 that Ek ≥ F ∗ for all k ≥ 1 and

Ek+1 ≤ Ek − γdk,(4.47)

where γ = min{ τβ
2 σDx ,

τβ
2 σDy ,

τ
sβ , τβ} > 0, σDx > 0 and σDy > 0 are the smallest

eigenvalue of Dx and Dy, respectively. Thus, by (4.46) and (4.47), for k sufficiently
large, we have 0 ≤ Ek+1 − F ∗ ≤ θ(Ek − F ∗), where θ = γ/(γ + γ) ∈ (0, 1).

Based on the linear convergence result in the previous theorem, we can establish
the following linear convergence of the sequence {wk}.
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Theorem 4.6. Suppose the conditions in Theorem 4.3 and Assumption 4.3 hold.
If the sequence {wk} generated by Alg. 3.1 has one cluster point, then {wk} converges
R-linearly to a stationary point of the problem (1.1).

Proof. We have from Dx, Dy ≻ 0, (4.17) and Ek ≥ F ∗ for all k ≥ 1 that

∥d̂k
x∥2 ≤ 2

τβσDx

(Ek − Ek+1) ≤M1(Ek − F ∗),

∥dk
y∥2 ≤ 2

τβσDy

(Ek − Ek+1) ≤M1(Ek − F ∗),

∥dk
λ∥2 ≤ sβ

τ
(Ek − Ek+1) ≤M1(Ek − F ∗),

∥d̃k
x∥2 ≤ 1

τβ
(Ek − Ek+1) ≤M1(Ek − F ∗)(4.48)

where M1 = max{2/(τβσDx), 2/(τβσDy), sβ/τ, 1/(τβ)}. In addition, by Theorem 4.5,
there exists a constant M2 > 0 such that 0 ≤ Ek − F ∗ ≤ M2θ

k for all k ≥ 0, where
θ ∈ (0, 1) is the constant in (4.34). Hence, it follows from (4.48) that

∥d̂k
x∥ ≤Mqk, ∥dk

y∥ ≤Mqk, ∥dk
λ∥ ≤Mqk and ∥d̃k

x∥ ≤Mqk,

where M =
√
M1M2 and q =

√
θ ∈ (0, 1). Therefore, we have

∥wk+1 −wk∥ ≤ ∥d̂k
x∥ + ∥d̃k

x∥ + ∥dk
y∥ + ∥dk

λ∥ ≤ 4Mqk.

Then, for any m2 > m1 ≥ 1, we have

∥wm2 −wm1∥ ≤
m2−1∑
k=m1

∥wk+1 −wk∥ ≤ 4M

1 − q
qm1 ,

which implies the sequence {wk} is a Cauchy sequence and hence convergent. Suppose
{wk} converges to w∗. Letting m2 → ∞ in the above inequality, we have

∥w∗ −wm1∥ ≤ 4M

1 − q
qm1 ,

which shows {wk} converges R-linearly to w∗. Finally, Theorem 4.3 ensures that w∗

is a stationary point of (1.1).

5. Inexact subproblem solution. Depending on various (e.g. smooth, convex
and sparse) properties of the function g, one can design different algorithms to solve
the y-subproblem (3.1) inexactly to find yk+1 satisfying the conditions (3.3) and
(3.4). Here, in this subsection, we just propose a gradient method with extrapolation
to find an inexact solution satisfying (3.5) and (3.6) of the x-subproblem. Note that
the x-subproblem (3.2) is equivalent to

min
x∈Rnx

Φk(x) := f(x) +
β

2
∥x− xk∥Dk

x
+ xTpk +

β

2
∥x− xk∥2ATA

= hk(x) + ϕk(x),(5.1)

where pk = −AT
[
λk − β(Axk +Byk+1 − b)

]
, ϕk(x) = xTpk + β

2 ∥x− xk∥2ATA and

hk(x) = f(x) +
β

2
∥x− xk∥Dk

x
.(5.2)
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Initialization: Choose Θ > Λ; Set x̆1 = x1 = xk and τ = 1 −
√

Θ−µ
Θ+µ.

For t = 1, 2, 3, . . .

Set βt = max{βt, τ}, where βt = 2/(t+ 1).
x̂t = βtx̆t + (1 − βt)xt.

Set γt = βtΘ(t+ 1)/t.

x̆t+1 = argmin
{
⟨∇h(x̂t),x⟩ + γt

2 ∥x− x̆t∥2 + ϕ(x)
}
.

xt+1 = βtx̆t+1 + (1 − βt)xt.

end

Alg. 5.1. A unified proximal gradient (UPG) method for solving x-subproblem (5.1)

In this section, we make the following assumptions.
Assumption 5.1. (a) The optimal value of the x-subproblem is bounded from

below, i.e., Φ∗ = minx∈Rnx Φk(x) > −∞, where the function Φk is defined in (5.1).
(b) There exist constants L1 > 0 and L2 > 0 such that for any z1, z2 ∈ Rnx , it holds

−L1

2
∥z1 − z2∥2 ≤ f(z2) − f(z1) − ⟨∇f(z1), z2 − z1⟩ ≤

L2

2
∥z1 − z2∥2.

Obviously, by (4.1) we have max{L1, L2} ≤ L.
Assumption 5.2. The proximal matrix Dk

x chosen in the x-subproblem is positive
definite and upper bounded, i.e.,

ηI ≽ Dk
x ≽ ηI for some η ≥ η > 0.(5.3)

Under Assumptions 5.1 and 5.2, it follows from the definition hk in (5.2) that

−µ
2
∥z1 − z2∥2 ≤ hk(z2) − hk(z1) − ⟨∇hk(z1), z2 − z1⟩ ≤

Λ

2
∥z1 − z2∥2(5.4)

for any z1, z2 ∈ Rnx , where µ = max{L1 − βη, 0} and Λ = L2 + βη.
Since we focus on solving the x-subproblem, where the outer iteration number

k is fixed, for notation simplicity, in the following of this section we simply denote
Φk, hk, ϕk and Λk as Φ, h, ϕ and Λ, respectively. Then, our algorithm for solving (5.1)
is described in Alg. 5.1, which is a generalization of the accelerated gradient method
proposed in [33] for solving convex subproblems of ADMM to the case when f is not
necessarily convex.

Theorem 5.1. Suppose Assumptions 5.1 and 5.2 hold. Then, for the sequence
{xt} generated by Alg. 5.1, we have

lim
t→∞

∥∇Φ(xt)∥ = lim
t→∞

∥∇Φ(x̂t)∥ = 0.(5.5)

Proof. First, apparently, by the definitions in (5.4), we have Λ > µ ≥ 0 since η > 0.
When µ = 0, we have h is a convex function, and it follows from Alg. 5.1 that τ = 0 and
βt = βt for all t ≥ 1. In this case, Alg. 5.1 will just reduce to a standard accelerated
gradient method (see algorithms developed in [33, 34]) for solving convex composite
optimization which guarantees limt→∞ Φ(xt) = limt→∞ Φ(x̂t) = Φ∗ > −∞. Hence,
(5.5) holds.
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In the following, we discuss the convergence of Alg. 5.1 when µ > 0. From the
updates of xt+1 and x̂t, we have

βt(x̆t+1 − x̂t) + (1 − βt)(xt − x̂t) = xt+1 − x̂t = βtst,(5.6)

where st = x̆t+1 − x̆t. Then, by (5.4) and (5.6), the following relations hold

h(xt+1) ≤ h(x̂t) + ⟨∇h(x̂t),xt+1 − x̂t⟩ +
Λ

2
∥xt+1 − x̂t∥2

= h(x̂t) + ⟨∇h(x̂t),xt − x̂t⟩ + ⟨∇h(x̂t),xt+1 − xt⟩ +
Λβ2

t

2
∥st∥2

≤ h(xt) +
µ

2
∥xt − x̂t∥2 + ⟨∇h(x̂t),xt+1 − xt⟩ +

Λβ2
t

2
∥st∥2 .(5.7)

Furthermore, by (5.6), (5.7), xt+1 = βtx̆t+1 +(1−βt)xt and the convexity of function
ϕ, we have

Φ(xt+1) = h(xt+1) + ϕ(xt+1)

≤ βt
[
h(xt) +

⟨
∇h(x̂t), x̆t+1 − xt

⟩
+ ϕ(x̆t+1)

]
+ (1 − βt)

[
h(xt) + ϕ(xt)

]
+
µ

2
∥xt − x̂t∥2 +

Λβ2
t

2
∥st∥2

= βt

[
h(xt) + ⟨∇h(x̂t), x̆t+1 − xt⟩ +

γt
2
∥st∥2 + ϕ(x̆t+1)

]
+(1 − βt)Φ(xt) +

µ

2
∥xt − x̂t∥2 +

Λβ2
t − γtβt

2
∥st∥2.(5.8)

Now, it follows from

x̆t+1 = arg min
{
⟨∇h(x̂t),x⟩ +

γt
2
∥x− x̆t∥2 + ϕ(x)

}
and st = x̆t+1 − x̆t that

⟨∇h(x̂t), x̆t+1 − xt⟩ +
γt
2
∥st∥2 + ϕ(x̆t+1)

≤ γt
2

(
∥xt − x̆t∥2 − ∥xt − x̆t+1∥2

)
+ ϕ(xt) −

1

2
∥xt − x̆t+1∥2M ,(5.9)

where M = βATA and

∇h(x̂t) + γtst + ∇ϕ(x̆t+1) = 0.(5.10)

By (5.8) and (5.9), we have

Φ(xt+1) ≤ βt

[
h(xt) +

γt
2

(
∥xt − x̆t∥2 − ∥xt − x̆t+1∥2

)
+ ϕ(xt) −

1

2
∥xt − x̆t+1∥2M

]
+(1 − βt)Φ(xt) +

µ

2
∥xt − x̂t∥2 +

Λβ2
t − γtβt

2
∥st∥2

≤ Φ(xt) +
µ

2
∥xt − x̂t∥2 +

βtγt
2

(
∥xt − x̆t∥2 − ∥xt − x̆t+1∥2

)
−βt

2
∥xt − x̆t+1∥2M − (Θ − Λ)β2

t

2
∥st∥2,(5.11)
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where the last inequality follows from

γtβt − Λβ2
t = β2

t Θ(t+ 1)/t− Λβ2
t ≥ (Θ − Λ)β2

t .

Now, note that

x̆t − xt =
1

βt
(x̂t − xt) and x̆t+1 − xt =

1

βt
(xt+1 − xt).(5.12)

Then, we have from (5.11) that

Φ(xt+1) ≤ Φ(xt) +
µ+ γt/βt

2
∥xt − x̂t∥2 −

γt/βt
2

∥xt+1 − xt∥2

−βt
2
∥x̆t+1 − xt∥2M − (Θ − Λ)β2

t

2
∥st∥2.(5.13)

For t ≥ 2, by (5.12), we obtain

x̂t − xt = βt(x̆t − xt) = βt(x̆t − xt−1 + xt−1 − xt)

= βt

(
1

βt−1
(xt − xt−1) + xt−1 − xt

)
= θt(xt − xt−1),(5.14)

where θt = βt

βt−1
(1 − βt−1). In addition, by defining β0 = 1 and x0 = x1, we can see

(5.14) holds for all t ≥ 1. Hence, for t ≥ 1 it follows from (5.13) that

Φ(xt+1) ≤ Φ(xt) +
(γt/βt + µ)θ2t

2
∥xt − xt−1∥2 −

γt/βt
2

∥xt+1 − xt∥2

−βt
2
∥x̆t+1 − xt∥2M − (Θ − Λ)β2

t

2
∥st∥2.(5.15)

Since γt/βt = Θ(t+ 1)/t, we have

γt/βt − γt+1/βt+1 = Θ/(t2 + t) > 0.

So, we have from (5.15) that

Φ(xt+1) +
ηt+1

2
∥xt+1 − xt∥2

≤ Φ(xt) +
ηt
2
∥xt − xt−1∥2 −

γt+1/βt+1 − ηt+1

2
∥xt+1 − xt∥2

−βt
2
∥x̆t+1 − xt∥2M − (Θ − Λ)β2

t

2
∥st∥2,(5.16)

where ηt = (γt/βt + µ)θ2t .
Now, by the choice of βt in Alg. 5.1 and µ > 0, we have

βt = max{βt, τ}, where τ = 1 −
√

(Θ − µ) / (Θ + µ) > 0.(5.17)

So, for all t ≥ 1, we have βt/βt−1 ≤ 1 and

θt = βt/βt−1(1 − βt−1) ≤ 1 − βt−1 ≤
√

(Θ − µ) / (Θ + µ) < 1.(5.18)
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Then, by (5.18) and γt/βt = Θ(t+ 1)/t > Θ, for all t ≥ 1, we have

γt/βt − ηt = γt/βt − (γt/βt + µ)θ2t = γt/βt(1 − θ2t ) − µθ2t

≥ Θ(1 − θ2t ) − µθ2t = Θ − (Θ + µ)θ2t ≥ Θ − (Θ + µ)
Θ − µ

Θ + µ
= µ.(5.19)

Hence, it follows from (5.16), (5.17) and (5.19) that

Φ(xt+1) +
ηt+1

2
∥xt+1 − xt∥2

≤ Φ(xt) +
ηt
2
∥xt − xt−1∥2 −

µ

2
∥xt+1 − xt∥2

−βt
2
∥x̆t+1 − xt∥2M − (Θ − Λ)τ2

2
∥st∥2(5.20)

for all t ≥ 1. Since Φ(x) is bounded from below by Assumption 5.1, we can obtain
from (5.20), µ > 0, τ > 0 and Θ > Λ that

∞∑
t=t

∥xt − xt−1∥2 <∞ and
∞∑
t=t

∥x̆t+1 − x̆t∥2 =
∞∑

t=t0

∥st∥2 <∞,

which implies

lim
t→∞

∥xt+1 − xt∥ = 0 and lim
t→∞

∥x̆t+1 − x̆t∥ = 0.(5.21)

Since xt+1 − x̂t = βt(x̆t+1 − x̆t), we have from (5.21) that limt→∞ ∥xt − x̂t∥ = 0.
Then, we have from (5.12) that

lim
t→∞

∥x̆t − xt∥ ≤ 1/τ lim
t→∞

∥x̂t − xt∥ = 0.(5.22)

Therefore, (5.5) follows from (5.10), (5.21), (5.22) and the Lipschitz continuity of ∇f
and ∇ϕ.

By Theorem 5.1, any cluster point of {xt} will be a stationary point of the
x-subproblem (5.1). Now suppose lim inft→∞ ∥xt − xk∥ > 0. Otherwise, xk is a
stationary point of the x-subproblem. We now discuss that the sequence {xt} gen-
erated by Alg. 5.1 will essentially satisfy the conditions (3.5) and (3.6). First, since
∇Φ(x) = ∇xLβ(x,yk+1,λk) + βDk

x(x − xk) and limt→∞ ∇Φ(xt) = 0. the condition
(3.6) will be satisfied by setting x̂k = xt for any cx > η and all t sufficiently large.
Second, since x0 = x1 = xk, we have from (5.16) that

Φ(x̂k) = Φ(xt) ≤ Φ(x1) = Φ(xk)

for t ≥ 1. Note that Φ(x̂k) ≤ Φ(xk) is equivalent to

β

2
∥x̂k − xk∥Dk

x
+ Lβ(x̂k,yk+1,λk) ≤ Lβ(xk,yk+1,λk).

So, with the choice of Dk
x satisfying (5.3), the condition (3.5) holds with Dx = ηI by

setting x̂k = xt for all t ≥ 1.
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6. Numerical experiments. In this section, we would like to evaluate the
performance of Alg. 3.1 on a sparse optimization problem and a nonconvex quadratic
programming problem, where the Assumption 4.3 is known to be satisfied [50, 51, 57].
First, our convergence theory requires that the parameters in Alg. 3.1 are chosen
such that (4.14) and (4.15) hold and {Êk} defined in (4.13) is bounded from below.
However, the condition (4.14) depends on the Lipschitz constant L, which is usually
unknown for general nonlinear function f and a poor estimate of its value may severely
deteriorate the algorithm performance. On the other hand, a closer inspection on the
convergence proof (see inequality (4.12)) reveals that the convergence results still hold
as long as

∥∇f(x̂k) −∇f(x̂k−1)∥ ≤ L
(
∥d̂k∥ + ∥d̃k−1∥

)
(6.1)

holds for all k sufficiently large. Here, L may be some constant smaller than the
true Lipschitz constant. Hence, in numerical experiments, we gradually estimate the
Lipschitz constant by starting with some L0 > 0 and for k = 0, 1, . . ., update Lk as

Lk+1 =

{
ρLk, if ∥∇f(x̂k) −∇f(x̂k−1)∥ > Lk

(
∥d̂k∥ + ∥d̃k−1∥

)
,

Lk, otherwise,
(6.2)

where ρ > 1 is some parameter. By this way, since ∇f is Lipschitz continuous, we
see that Lk can only be increased finite number of times. Hence, Lk will remain as
a constant L such that (6.1) will hold for all k sufficiently large. Under the above
choice of Lk , we dynamically update β by βk = Lk/cβ at the k-th iteration for some
cβ ∈ (0, 1). We require that L0 and cβ are chosen such that for all β ≥ β0 = L0/cβ ,
the functions Lk

y(·) and Lk
y(·) are bounded from below and (4.33) holds with β = β0.

Hence, we can always solve the subproblems inexactly as required by Alg. 3.1, and
{Êk} (also {Ek}) will be bounded from below by Theorem 4.4. So, to ensure global
convergence, by Theorem 4.3 and the above setting, we only need to require cβ and
the parameters in Alg. 3.1 are chosen such that

φ(τ)

2
Dk

x −
ψ1(s)

[
2(cβ + cx)2 + 8c2x

]
sσA

I ≽ 0,

φ(τ)

16
Dk

y − ψ1(s)c2x
sσA

I ≽ 0 and
δ − τ

1 + τ
−

8ψ1(s)c2β
sσA

≥ 0(6.3)

for some τ ∈ (0, δ), where φ(τ) = (1 − τ)/(1 + τ). In our numerical experiments, the
parameters are chosen as

cβ = cx =
1

14
, Dk

x = Dk
y =

1

6
I, s = 1, ρ = 1.01, η = 1.2, and δ = 0.1.

The above choices of parameters satisfy the condition (6.3) with τ sufficiently s-
mall in (0, δ), since σA = 1 in our experiments. Furthermore, all of the forthcom-
ing experiments are implemented in MATLAB R2019b (64-bit) with starting point
(x0,y0,λ0) = (0,0,0) and performed on a PC with Windows 10 operating system,
an Intel i7-8565U CPU and 16GB RAM.

6.1. The SCAD penalty problem. Recall the following smoothly clipped ab-
solute deviation (SCAD) penalty problem from statistical learning [20, 66]:

min
x∈Rn

F (x) :=
1

2
∥Hx− u∥2 +

n∑
i=1

pκ (|xi|) ,
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where H ∈ Rm×n,u ∈ Rm and the nonconvex SCAD penalty pκ(·) is defined as

pκ(θ) :=


κθ, θ ≤ κ,
−θ2+2cκθ−κ2

2(c−1) , κ < θ ≤ cκ,
(c+1)κ2

2 , θ > cκ,

with c > 2 and κ > 0 being the knots of the quadratic spline function. Clearly, the
above problem can be reformulated as a special case of (1.1):

min
x∈Rn

1

2
∥Hx− u∥2 +

n∑
i=1

pκ (|yi|) subject to x− y = 0.(6.4)

Then, (6.4) is in the format of (1.1) with f(x) = 1
2∥Hx− u∥2, g(y) =

∑n
i=1 pκ (|yi|),

A = I, B = −I and b = 0. Applying I-ADMM Alg. 3.1 and UPG Alg. 5.1 with
Dk

y = ηyI and Dk
x = ηxI, we have the following updates: yk+1 = arg miny∈Rn

∑n
i=1 pκ (|yi|) +

(1+ηy)β
2

∥∥∥∥y − xk+ηyy
k−λk

/β
1+ηy

∥∥∥∥2 ,
x̆t+1 = 1

γt+β

{
λk + β(ηxx

k + yk+1) − (HTH + βηxI)x̂t + γtx̆t +HTu
}
,

where the y-subproblem has a closed form solution [20, 66].
We chose β0 = L0/cβ = 1 in this experiment, which ensures that the x-subproblem

is bounded from below since the function f here is nonnegative. We compare I-ADMM
with several well-known algorithms for solving the SCAD penalty problem including
NL-ADMM [60], P-ADMM [47], BP-ADMM (Algorithm 2, [11]), S-ADMM [45] and
IBG-ADMM [66], where

• NL-ADMM uses the tuned value β = 300 and s = 1.6 as the dual stepsize;
• P-ADMM uses β = 5.1L as the penalty value according to [47, Example 1];
• BP-ADMM uses tk = β which is 1.2 times the maximal value satisfying the

involved conditions (14) and (15) in [11] (also see [11, Assumption 1]);
• S-ADMM uses the tuned stepsizes (α, θ) = (0.05, 1.2) and the penalty pa-

rameter is chosen to be larger than the maximal eigenvalue of the involved
quadratic function (see [45, Assumption 3.1] );

• IBG-ADMM [66] solves (6.4) by introducing variable y = Hx − u (see [66,
Section 4.2] for more details on the implementation and parameter settings).

Same as those used in [66], the parameters in function pκ is set as (c, κ) = (3.7, 0.1).
We first generated a matrix H with each component Hij ∼ N (0, 1). We then nor-
malize each column of H and take it as H. We take x∗ ∈ Rm to be a random sparse
vector with the density 100/n and then set u = Hx∗ + ε, where ε ∼ N (0, 100/n).
The following optimality error Opt(k) := max

{
∥xk − yk∥, ∥HT(Hxk − u) − λk∥

}
is

used for the iterates generated by different comparison algorithms, while a different
Opt(k) = max

{
∥Hxk − yk − u∥, ∥yk + λk∥

}
is used for the iterates generated by

IBG-ADMM, since it solves the problem (6.4) in a different setup format.
Table 6.1 reports numerical results of the aforementioned comparison algorithms

when a certain CPU time budget is reached, where F (xk)(end) and Opt(end) denote
the function value and optimality error at the last iteration. Figure 6.2 depicts the
convergence curves of |F (xk)−Fmin|/|Fmin| and Opt(k) versus CPU time, where Fmin

is the minimum of the objective values obtained by all the comparison algorithms.
We can see from Table 6.1 that I-ADMM performs significantly better than other
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Size CPU IBG-ADMM
(m,n) time(s) Iter F (xk)(end) Opt(end)

(500,3000) 20 1857 2.404969 7.1530e-1
(1000,6000) 50 1033 2.779820 9.0591e-1
(2000,9000) 140 1076 3.334330 1.0787e+0
(3000,12000) 180 749 3.901173 1.2769e+0

Size CPU NL-ADMM
(m,n) time(s) Iter F (xk)(end) Opt(end)

(500,3000) 20 2321 4.110444 5.3002e-1
(1000,6000) 50 2277 2.966996 6.2893e-1
(2000,9000) 140 1322 3.797333 9.6753e-1
(3000,12000) 180 883 5.445761 1.5238e+0

Size CPU P-ADMM
(m,n) time(s) Iter F (xk)(end) Opt(end)

(500,3000) 20 2260 2.193902 4.5738e-4
(1000,6000) 50 1202 2.495977 1.6469e-3
(2000,9000) 140 1311 3.039743 8.2070e-6
(3000,12000) 180 868 3.500552 5.6349e-5

Size CPU BP-ADMM
(m,n) time(s) Iter F (xk)(end) Opt(end)

(500,3000) 20 2271 2.193884 7.8562e-6
(1000,6000) 50 1185 2.495809 8.5903e-5
(2000,9000) 140 1301 3.039743 1.6709e-7
(3000,12000) 180 857 3.500550 2.3991e-6

Size CPU S-ADMM
(m,n) time(s) Iter F (xk)(end) Opt(end)

(500,3000) 20 2360 2.193883 8.2222e-8
(1000,6000) 50 1213 2.495792 3.7610e-6
(2000,9000) 140 1340 3.039743 1.1609e-9
(3000,12000) 180 847 3.500550 6.3096e-8

Size CPU I-ADMM
(m,n) time(s) Iter F (xk)(end) Opt(end)

(500,3000) 20 843 2.193883 1.9621e-10
(1000,6000) 50 360 2.495790 7.1638e-10
(2000,9000) 140 440 3.039743 6.4663e-14
(3000,12000) 180 341 3.500550 1.8932e-12

Table 6.1. Numerical results of different algorithms for the SCAD penalty problem.

comparison algorithms with respect to the iteration number and the objective function
value, and could always obtain a higher accurate solution in terms of optimality error.
This efficiency is due to the adaptive inexact subproblem solution, the expansion
linesearch step and the adaptive way for updating the Lipschitz constant in (6.2).

6.2. The nonconvex quadratic programming problem. In this subsection,
we consider the following Nonconvex Quadratic Programming (NQP) problem

min
(x,y)∈Rn×Rm

1

2
xTGx− gTx subject to Ax = y, v ≤ y ≤ u, eTy = c,(6.5)
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Figure 6.2. Numerical comparison of different algorithms for the SCAD penalty problem

where a symmetric matrix G ∈ Rn×n, A ∈ Rm×n, g ∈ Rn and v ≤ u ∈ Rm are
given matrices and vectors, respectively, e is the vector of ones and the scalar c
satisfies eTv ≤ c ≤ eTu. When A = I, the problem (6.5) will reduce to a quadratic
programming problem with simplex constraints, which includes the example problems
in [62, Section 4.1] and has many applications. Note that since efficient projection on
the feasible set of (6.5), which is a polyhedron, is in general nontrivial, NQP is not
easily solved by the algorithms which require repeated projections on a polyhedron,
such as the proximal gradient method with extrapolation [62] or the projected gradient
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Size CPU P-ADMM
n time(s) Iter F (xk)(end) Opt(end)

2000 200 24327 3.024108 3.0892e-2
3000 300 14641 1.119980 7.0825e-2
4000 400 11168 1.072323 1.4532e-1
5000 500 9045 0.985398 2.3115e-1
Size CPU BP-ADMM

n time(s) Iter F (xk)(end) Opt(end)
2000 200 18357 3.024114 3.7827e-2
3000 300 11786 1.119972 7.6823e-2
4000 400 8430 1.072409 1.7569e-1
5000 500 7328 0.985195 2.4323e-1
Size CPU S-ADMM

n time(s) Iter F (xk)(end) Opt(end)
2000 200 19603 3.024074 2.0892e-3
3000 300 14843 1.119909 3.6842e-2
4000 400 10069 1.072095 4.7554e-2
5000 500 9115 0.983785 1.3257e-1
Size CPU I-ADMM

n time(s) Iter F (xk)(end) Opt(end)
2000 200 8180 3.020470 3.7338e-4
3000 300 6296 1.119848 6.2395e-4
4000 400 3929 1.072086 5.1192e-5
5000 500 3987 0.983581 5.9107e-4

Table 6.3. Numerical results of different algorithms for solving the NQP problem.

methods [9, 32].
Note that the problem (6.5) can be also rewritten in the format of (1.1) as

min
(x,y)∈Rn×Rm

1

2
xTGx− gTx + δC(y) subject to Ax = y,(6.6)

where δC is the indicator function of the set C = {y ∈ Rm : v ≤ y ≤ u, eTy = c},
i.e., δC(y) = 0 if y ∈ C; δC(y) = ∞, otherwise. Applying I-ADMM Alg. 3.1 and
UPG Alg. 5.1 to the problem (6.6) with Dk

y = ηyI and Dk
x = ηxI involves solving the

following subproblems:

yk+1 = arg min
y∈Rn

δC(y) +
(1 + ηy)β

2
∥y − q∥2 and (

γt
β
I +ATA)x̆t+1 = b,

where q :=
Axk+ηyy

k−λk
/β

1+ηy
and b := 1

βA
Tλk + ηxx

k + ATyk+1 − (ηxI + 1
βG)x̂t +

1
β (γtx̆t + g). Observe that the above y-subproblem, which needs projection on a
simplex, has no closed-form solution. Hence, we solve it inexactly by the method
developed in [16, 56] using the stopping criteria (3.3) and (3.4) with cy = 0.1. In
addition, when m≪ n, the Sherman-Morrison-Woodbury Formula should be used to
solve x̆t+1 as

x̆t+1 =
β

γt
b− β2

γ2t
AT

(
I +

β

γt
AAT

)−1

Ab.
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Figure 6.4. Numerical comparison of different algorithms for solving the NQP problem.

In our numerical experiments, A is always generated to be an orthogonal matrix, i.e.
ATA = I. Note that even for A being an orthogonal matrix, projection on the feasible
set of problem (6.5) is in general still nontrivial. Specifically, similar to the way of
generating the problem data in [62], we randomly generate G,g, A, and set v, u and
c by the following MATLAB codes:

D=randn(n); Z=zeros(n,n);

for i=1:n Z(i,i)=10*(rand(1)-0.1); end

G=D’*Z*D; g=randn(n,1); U=randn(n,n);
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A=orth(U)’; u=10*ones(n,1); v=zeros(n,1); c=5;

We set β0 = L0/cβ = 2|min{λmin(G), 0}| + 1 to ensure that the x-subproblem
is bounded from below, where λmin(G) is the minimum eigenvalue of G. We com-
pare I-ADMM with the aforementioned algorithms P-ADMM, BP-ADMM and S-
ADMM. The rest two algorithms IBG-ADMM and NL-ADMM are not compared
since their performance is much worse for solving this test problem. The numerical
experiment results including the number of iterations, the final objective function
value F (xk) and the final optimality error Opt(k) := max

(
∥Axk − yk∥, ∥Gxk − g −

ATλk∥, ∥yk − PC(yk − λk)∥
)

along with problem dimension n are reported in Table
6.3. Here, PC(·) denotes projection onto the convex set C. In Figure 6.4, we also plot

|F (xk) − Fmin|/|Fmin|, Opt(k) and x gap(k) := ∥xk−x∗∥
1+∥x∗∥ against the CPU time with

n = 2000, 3000, 4000, 5000 respectively, where Fmin is the minimum objective value
obtained by all the algorithms, and x∗ denotes the approximate optimal solution ob-
tained by I-ADMM under twice of the CPU time budget. From Table 6.3 and Figure
6.4, we can again see that I-ADMM converges much faster and obtains a higher ac-
curacy solution than other comparison algorithms under the same CPU time budget.
Besides, Figure 6.4 clearly shows the linear convergence behavior of the optimality
error Opt(k) and the iteration error x gap(k) generated by I-ADMM for solving the
NQP problem (6.5).

7. Conclusion. We have developed an inexact alternating direction method of
multipliers with an expansion line search step for solving a class of separable noncon-
vex and nonsmooth structured optimization with linear constraints. This I-ADMM
solves each subproblem inexactly to an adaptive accuracy and allows a larger range of
dual stepsize. Under proper assumptions, the global convergence and linear conver-
gence rate of I-ADMM have been established. In addition, a unified proximal gradient
method with momentum acceleration is proposed to solve the smooth but possibly
nonconvex subproblem inexactly. By allowing adaptive inexact subproblem solution,
the expansion linesearch step and the adaptive way for updating the Lipschitz con-
stant, our proposed I-ADMM performs significantly better than other state-of-the-art
algorithms for solving some nonconvex quadratic programming problems and noncon-
vex sparse optimization problems from statistical learning.
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