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Abstract: In several countries, emergency medical services receive assistance from community first responders. In such

a case, the dispatch center not only notifies an ambulance, but also one or more volunteers that are located near the

incident. Due to their proximity to the patient, volunteers can often provide first aid or even life-saving help before

the ambulance arrives. This paper is the first to mathematically model the stochastic response time of the first-arriving

volunteer by considering uncertainties in dispatch time, volunteer acceptance delay and distance-dependent mode choice.

By comparing the derived volunteer response-time distribution to the historical ambulance response-time distribution, it

also quantifies the effect of a community first responder network. Besides that, several alert and retract rules are studied,

in order to use the volunteers as effectively as possible. Alert rules set a different alert radius per district and retract rules

stop the alert for late responding volunteers. Through a case study, this paper analyzes these rules and quantifies the

impact of a potential community first responder network in the Netherlands and discusses managerial implications.
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1 Introduction

Emergency medical services in the United States need on average 7 minutes from the time of a 911 call

to arrival on scene, with an increase to more than 14 minutes in rural settings (Mell et al. 2017). Similar

response times can also be found in Europe, including the Netherlands and Belgium (Pauw 2021, Houweling

2021). Longer response times have been associated with worse outcomes in trauma patients, especially for

emergent conditions such as cardiopulmonary arrest, severe bleeding, and airway occlusion. For a quicker

response, Metelmann et al. (2021) suggests that Community First Responders can be of particular help. A

community first responder (CFR) is a person who is trained and willing to voluntarily attend certain types of

emergency calls in the area where they live or work. They can be members of the public who have received

training in life-saving interventions such as defibrillation, or they can be off-duty paramedics, firefighters or

other professionals (Jackson 2004). Their role is to provide life-saving treatment to the patient in the vital

first few minutes until an ambulance arrives.

Since the introduction of smartphones, efficient CFR networks have emerged that alert registered CFRs

based on their proximity to the incident. Such CFR networks are active in various countries including

Canada, the United States, and the majority of Europe (Oving et al. 2019). The network is typically activated

by the emergency call center, upon which a notification is sent to multiple nearby CFRs. Some networks

have the option for CFRs to react with an accept or reject button. The most advanced networks can send

cancellations, for example when sufficiently many CFRs have accepted or arrived.

Next to governments that deploy such CFR networks, also humanitarian network organizations consider

it. For instance, in the Netherlands, we are in contact with the Red Cross (Hillenaar 2021), who are consid-

ering the deployment of such a CFR network. From several meetings with the Dutch Red Cross, we learned

that at least two quantitative performance indicators are important in this consideration. The first one is the

response-time reduction that a CFR network could realize, compared to an ambulance-only system. Clearly,

this response-time reduction should be large enough to make the investment in a CFR network worthwhile.

Second, the Red Cross sees workload of a CFR as an important performance indicator. Typically, when

an alert is sent around, many CFRs respond and travel to the incident. This means that in the majority of

the cases several CFRs arrive in vain. Because overburdening CFRs with requests can lead to a reduced

willingness to accept future requests, the workload of a CFR should be limited.

In this paper we introduce a mathematical model that estimates the above-mentioned performance indi-

cators for a currently non-existent CFR network. For the first performance indicator, we compare the

response time of the already existing ambulance network with that of a potential CFR network. We obtain

the response-time distribution of the ambulance network from historical data and we model the stochastic

response time of the first-arriving CFR by considering uncertainties in dispatch time, CFR acceptance delay

and distance-dependent mode choice. For the second performance indicator, we calculate the expected num-

ber of responding CFRs per incident, taking into account the availability of CFRs. To balance these two
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performance indicators, we also introduce several alert and retract rules to indicate the size of the area to

alert, and whether outstanding alerts should be retracted once some people have responded. By means of a

case study, we analyze these rules and quantify the potential –in terms of the two performance indicators–

of a CFR network for a city in the Netherlands. For this case study, we make realistic estimates of accep-

tance probabilities, durations of delays, mode choice, and travel time. Finally, using Linear Programming,

we also optimize which CFRs to alert: for each postal code, we prescribe an alerting radius that balances

the city-wide number of alerts versus response-time improvement.

The rest of this paper is outlined as follows. In Section 2 we summarize literature on community first

response networks, alerting strategies as well as related operations research models dealing with commu-

nity first responder networks . Section 3 introduces a mathematical model to compute the response-time

distribution of a given CFR base and discusses several alert and retract rules. Section 4 contains a case study

of the city of Breda (the Netherlands) and we end with a conclusion and discussion in Section 5.
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2 Literature review

This section describes how the performance of community first responder networks is measured in literature.

It also captures alerting strategies: how many volunteers to dispatch for a single incident. Finally, it outlines

the literature on analytics for responder networks, to which our paper contributes.

2.1 Optimization of ambulance logistics

Ambulance systems are often optimized in terms of response times, where fast responses are implicitly

assumed to provide better patient outcomes. A common approach is to use Mixed Integer Programming to

decide on the locations of bases - and potentially also the number of vehicles per base, for an overview

see Li et al. (2011). The goal there is typically to maximize demand covered within a predefined time

threshold. Besides a response-time threshold, a common alternative objective is maximizing the expected

patient survival. This was first done by Erkut et al. (2008) and typically involves borrowing a so-called

survival curve from the medical literature. Such curves are commonly known for out-of-hospital cardiac

arrest, where the time to resuscitation clearly relates to survival.

The decisions on where to locate bases are made in a strategic phase, but optimization can also be helpful

in real time. This is called ambulance redeployment: proactively moving idle vehicles around the region, to

fill in gaps left by currently busy ambulances and hence improve the system preparedness. Mathematical

techniques involve approximate dynamic programming (Maxwell et al. 2010, Schmid 2012) and heuristics

(Jagtenberg et al. 2015). Some include workload of EMS personnel (Enayati et al. 2018). Maxwell et al.

(2014) shows an upper bound for the performance that any redeployment policy may give.

It is common to always dispatch the closest idle ambulance, although a few papers investigated other

options that deviate from that (Jagtenberg et al. 2017, Nasrollahzadeh et al. 2018).

Due to the randomness inherent to emergency incidents, a careful evaluation of logistics strategies often

involves simulation. The literature includes open-source packages in Python (Dieleman and Jagtenberg

2024) and Julia (Ridler et al. 2022).

2.2 Performance of community first responder networks

CFRs are active in emergency healthcare systems of various countries, including the United States, Canada,

United Kingdom, Ireland, Israel, and the Netherlands. A large number of retrospective data analyses have

been done, and are summarized in Valeriano et al. (2021, Table 2). We next give an overview of studies that

measured CFR performance in terms of response times.

Several studies took place in the United Kingdom. For example, Botan et al. (2022) did a retrospective

study on a large part of the country in 2019. Using historical incident data, they showed that CFRs were

most effective in rural areas, where they attended 6.2% of the calls. In 62.8% of those cases, the CFR



Dellaert et al.: Do community first responder networks have potential? 5

arrived before the ambulance. In a smaller study, Campbell and Ellington (2016) measured the response-

time benefit of a student CFR scheme, where twenty medical students were trained to be first responders

to support ambulance services in an inner-city setting. Over 12 months, they attended 89 emergency calls.

When CFRs arrived it was on average 3 minutes before the ambulance, with a difference varying throughout

the day, peaking between 16:00 and 18:00.

A rural island in Denmark has had a CFR network for all medical emergencies in place since 2012.

Sarkisian et al. (2020) found that in 85% of the cases, a CFR arrived before the ambulance. The median

response time for CFRs was 5.5 minutes faster than the median response time for ambulances.

Just like on the Danish island, it turns out that in the Netherlands –a country with a long history of

volunteer response– CFRs make a significant improvement in response times (Zijlstra et al. 2014). This

network, however, is only activated for a very specific patient group (1-2%) of all emergency calls. The

Dutch network is very dense and dates back to the pre-smartphone era, where CFRs were alerted by text

message, based on their home or work address. Nowadays, both the text message service as well as an

app are in place, and Slaa (2020) reports many empirical distributions for the system, including acceptance

rates, delays and how these depend on CFR characteristics such as age, historical activity on the app, and

distance to the patient.

In recent years, several studies have been done that do not look at volunteers in isolation, but combine

their response with picking up up equipment (Zijlstra et al. 2014) or having AEDs delivered by drone

(Matinrad and Reuter-Oppermann 2022). One example of a study that is not retrospective, is Barry et al.

(2018). For Ireland, they identified the potential of their volunteer community by estimating the proportion

of the Irish population that has the potential to receive a timely response. They used a predefined set of

536 volunteers, which they assumed are always available at their registered addresses, in addition to 105

ambulance base locations. Using a 10-minute response-time threshold they concluded that ambulances can

reach around 62% of the population, while volunteers can increase this to over 91%. During off-peak hours

the difference was estimated to be smaller (70% versus 92%), mainly due to an improved EMS speed.

To determine the added value of a CFR network, it is also important to consider the alerting strategy. We

therefore next summarize the literature on this topic.

2.2.1 Alerting strategies

In recent years, several Dutch studies have reported on the operational alerting strategy. For example, Zijlstra

et al. (2014) report that volunteers within a 1-km radius are dispatched. Moreover, according to van der

Worp (2014), at most 10 volunteers were sent directly to the patient while up to 20 others were sent via an

AED. More recently, HartslagNu (2021) investigated the radius within which they alert volunteers. They

report that it was not possible to find one good single alerting radius for the entire country. Instead, they
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define an alerting radius based on (1) a maximum of 2 km, (2) the number of volunteers in the area (at most

100) and (3) the number of AEDs in the area (at most 3).

Limiting the number of alerts is necessary in light of volunteer fatigue: the notion that overburdening

volunteers with requests leads to a reduced willingness to accept future requests. It is a known problem

for volunteer firefighters (Dawson et al. 2015) and their retention is studied in Shrader (2012). For EMS

volunteers, their motivation is studied in Israel (Khalemsky et al. 2020) and rural USA (Freeman et al.

2009). This subject is mainly researched qualitatively, by interviewing volunteers. Alerting many volunteers

for one patient also increases the likelihood of volunteers arriving in vain. While a second responder on

scene may still be helpful to assist the first, at some point a multitude of volunteers on scene is thought to

discourage future responses.

Reducing the number of alerts while maintaining reasonable performance for the patient can for example

be done through so-called phased alerting, where the idea is to send alerts in batches, with time lags in

between, to see if previous ones have been accepted. Henderson et al. (2022) proposes to optimize phased

alerting for cardiac arrest patients specifically, defining the objective in terms of a survival curve (the prob-

ability of survival depending on time to resuscitation).

In order to make a good choice as to which and how many CFRs should be alerted, it is important to have

insight into how people travel to the incident. Studies such as Zijlstra et al. (2015) and Slaa (2020) could be

useful for this purpose. For example, the first shows how for the Netherlands 54% of the CFRs went by car,

27% by bike and 15% on foot. In contrast, Slaa (2020) reports for the same system that 71.2% travel by bike

whereas the rest mostly walk. A potential explanation for this difference is that the latter study was done five

years later. During that time, the CFR density increased, which means volunteers are on average closer to

the patient and thus, presumably, less likely to use a car. Neither of these studies reports on the relationship

between distance and mode choice. Lastly, there is Jonsson et al. (2020), who studied Swedish community

first responders and report a travel speed of 2.3 m/s on average and 1.8 m/s in densely populated areas. The

latter group had the narrowest distribution, indicating homogeneity, which led the authors to conjecture that

this group traveled on foot.

2.3 Operations Research models for community first responder networks and

Ambulance Systems

In our paper, we make use of techniques from Operations Research to quantify the impact of a potential

CFR network. Literature focusing on CFRs using OR techniques is, however, scarce. A first exception is the

work of Paz et al. (2022). They study how to dispatch ambulances in the presence of CFRs. In their model,

emergency incidents arise with different priorities, and the dispatch system can observe real-time location

information on CFRs. The goal is to balance response for the current incident and response preparedness

for future requests. They evaluate their solution with discrete event simulation and compare it against a
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procedure that does not incorporate CFR information. Another exception is the work of Van den Berg et al.

(2024). They model volunteer presence as a Poisson Point process and bound the performance that can be

expected from n volunteers by determining the optimal distribution of volunteer mass over a city. They

assume all volunteers walk, leaving a mode choice –let alone a distance-dependent one– out of scope. A

final exception is the work of Lancaster and Herrmann (2021). They use Monte Carlo simulation to compare

the performance of a few hypothetical variants of CFR systems, with and without AEDs. They studied a

region in the United States and used response times and cardiac arrest survival as their performance metrics.

Although OR literature focusing on CFRs is limited, there is a vast OR stream of literature on improving

ambulance systems. These systems are often optimized in terms of response times, where fast responses

are implicitly assumed to provide better patient outcomes. A common approach is to use Mixed Integer

Programming to decide on the locations of bases –and potentially also the number of vehicles per base

(for an overview, see Li et al. (2011)). The goal there is typically to maximize demand covered within a

predefined time threshold. Besides a response-time threshold, a common alternative objective is maximizing

the expected patient survival. This was first done by Erkut et al. (2008) and typically involves borrowing a

so-called survival curve from the medical literature. Such curves are commonly known for out-of-hospital

cardiac arrest, where the time to resuscitation clearly relates to survival.

The decisions on where to locate bases are made in a strategic phase, but optimization can also be helpful

in real time. This is called ambulance redeployment: proactively moving idle vehicles around the region, to

fill in gaps left by currently busy ambulances and hence improve the system preparedness. Mathematical

techniques involve approximate dynamic programming (Maxwell et al. 2010, Schmid 2012) and heuristics

(Jagtenberg et al. 2015). Recent works focussed on the inclusion of workload of EMS personnel (Enayati

et al. 2018). Maxwell et al. (2014) performance guarantee bounds for large class of redeployment policies.

In practice, is it common to dispatch the closest idle ambulance, but this is not necessarily optimal.

A few papers investigate other dispatching strategies that deviate from this closest idle one principle and

demonstrate their benefits (see, e.g., (Jagtenberg et al. 2017, Nasrollahzadeh et al. 2018)). Methods that are

used include Markov decision processes and approximate dynamic programming frameworks.

Due to the randomness inherent to emergency incidents, a careful evaluation of logistics strategies often

involves simulation. Recently, several open-source packages are provided in literature to perform such sim-

ulations (see, e.g., (Dieleman and Jagtenberg 2024) for Python and (Ridler et al. 2022) for Julia).
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3 Network first responder model

In this section, we develop our mathematical model, including the two performance indicators, and intro-

duce relevant alert and retract rules, to analyze the performance of a potential CFR network. Moreover, we

introduce an optimization problem that determines the maximal effectiveness of a potential CFR network.

3.1 Introduction

Our aim is to estimate the performance of an as-yet-unrealized CFR network, while taking into account

the existence of an already-established professional responder network. As a first performance indicator,

we compare the CFR response times with ambulance response times to determine the expected response-

time reduction. Ambulance response times, defined as the duration between an emergency phone call and

a responder arriving on scene, are often recorded with great accuracy. As such, we model the ambulance

response time as a random variable with known distribution. When it comes to CFR response times, such

records are either unavailable for networks in the development phase or are very limited for those that are

already in existence. For that reason, we model the response time of a CFR as a sum of random variables,

with each random variable characterizing a distinct task within the interval from receiving an emergency

call to the CFR’s arrival at the scene. Tasks that we explicitly model are (i) the dispatch time, which is

the time between a 911 call and the moment the CFR system is activated, (ii) the view delay, which is the

time for a CFR to check the message and respond, (iii) the travel mode delay, which is the time for a CFR

between the acceptance of the call and the start of the trip, and (iv) the travel time, which is the time for a

CFR to travel to the scene. These distinct tasks are also represented chronologically in Figure 3.1.

911 call
arrival

Dispatch
time

CFR system
activation

View delay

View delay

View delay TMD

TMD

TMD Travel time

Travel time

Travel time

CFR
arrival

I————————————–Total response time————————————–I

I————————–CFR response time—————————I

Figure 1 The duration of the four distinct tasks for three different CFRs responding to the same incident. Here, TMD stands for

Travel Mode Delay.

Next to the expected response-time reduction, we also consider a second performance indicator: the

expected CFR workload. We define this as the expected number of CFRs that travel to the scene per patient.

In order to calculate this indicator, we introduce the concept of an alert area. Such an alert area is defined by
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a radius, representing a circle around the incident. For this area, we calculate the expected number of CFRs

responding to an incident based on the number of potential CFRs present in the area and the probability

that a CFR actually responds to the call. Later on in this paper, we also analyze how this metric depends

on the chosen retract rule: such a rule may include informing CFRs that further assistance is not required

anymore, once a sufficient number of CFRs have already accepted their alert.

In the following sections, we formally introduce the concept of an alert area, provide a detailed descrip-

tion of our CFR response-time modeling and describe the performance metrics and alert and retract rules.

3.2 Alert area

As already mentioned, we start by modeling the alert area around an incident. We specify such an area with

an associated radius r ∈ R>0 and divide this area into concentric rings with N = {1,2, . . . ,n} the set of

rings, n ∈N>0 the number of rings, and di ∈R≥0 the distance from the end of ring i to the incident location.1

An example of such a setting, with n = 5 rings, is demonstrated in Figure 2.

Figure 2 Visual representation of the situation with n = 5 rings.

Since our aim is to model the performance of a CFR network in a preparatory phase, we can not expect

to know the real-time number and position of the CFRs. Instead, we follow Van den Berg et al. (2024) in

modeling the presence of CFRs as a spatial Poisson process. The intensity of the Poisson process is defined

by a rate ρ ∈R>0 that can be interpreted as the average or expected number of potential CFRs per squared

distance measure. This rate is subsequently multiplied by the probability that a CFR is available to respond

(so-called Poisson thinning).2 We assume that the probability of being available decreases per ring, which

is more or less in line with the empirical findings in Slaa (2020, Fig 2.7). Combining these two assumptions

1 Please, observe that dn = r. For notational convenience, we also introduce d0 = 0.
2 For the difference between potential and available CFRs, see Table 1.
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state meaning
potential potentially located in the alert area at the moment of CFR system activation
available present in alert area and willing to respond 3

responding traveling to the patient
Table 1 States of CFRs.

leads to the following: for each ring i ∈ N, the number of available CFRs follows a Poisson distribution

with mean λi = (d2
i −d2

i−1) ·ρ ·qi ·π, where qi = αβi−1 with α,β ∈ [0,1]. Factor qi represents the probability

of a CFR being available to respond and it models that CFRs far away from the incident are less inclined

to respond than CFRs nearby. So, the probability that available CFR allocation a = (ai)i∈N occurs, where

ai ∈N≥0 describes the number of available CFRs of ring i, is

fAV (a) =∏
i∈N

(
λ

ai
i

ai!
· e−λi

)
. (1)

For any allocation of a, the spatial Poisson process implies that CFRs are subsequently independently

and uniformly distributed over the surface area of the circle, and thus each ring i ∈ N.

When CFRs travel to the incident, they use one type of transport mode. We let the set of transport modes

be M = { f oot,bike, car} and the probability that a CFR in ring i ∈ N uses mode m ∈ M be pim ∈ [0,1].

3.3 CFR response time

In this subsection, we model CFR dynamics to estimate the CFR response time. As discussed in Subsec-

tion 3.1, the total response time is the sum of the duration of four distinct tasks. For each of them, we now

introduce a discrete probability distribution.4 First, we introduce F0 : N≥0 → [0,1] for the dispatch time.

The dispatch time is the time between receiving a call and sending out messages to CFRs at the call center.

Second, we introduce F1 : N≥0 → [0,1] for the view delay. The view delay refers to the time to check and

answer the message. Third, we introduce F2 : M ×N≥0 → [0,1] for the travel mode delay. This delay may,

for instance, consist of taking a coat and bag, getting the bike or getting into the car. Finally, we introduce

F3 : N × M ×N≥0 → [0,1] for the travel time. The travel time is the time spent traveling from the ”home”

location of the CFR to the incident location. To determine F3, we use that CFRs are distributed uniformly

over the area around the incident (see Section 3.2) and assume that velocity of transport mode m is uni-

formly distributed over the interval [vm0, vm1] with vm0, vm1 ∈ R>0 and vm0 < vm1. Consequently, integrating

over the alert area as well as over the velocity results in:5

3 potential CFRs that react negatively on an alert are considered to be not available.
4 Please, observe that we consider discrete time units. A typical discrete time unit could, for instance, be a second.
5 A detailed derivation of F3 is presented in Appendix 1.
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F3(i,m, t) =



0 if t ≤ di−1
vm1

1
3 v3

m1t2−d2
i−1vm1+

2
3

d3
i−1
t

(vm1−vm0)(d2
i −d2

i−1)
if t ≤ di−1

vm0
and di−1

vm1
≤ t ≤ di

vm1

2
3t (d3

i−1−d3
i )+vm1(d2

i −d2
i−1)

(vm1−vm0)(d2
i −d2

i−1)
if t ≤ di−1

vm0
and t ≥ di

vm1

1
3 t2(v3

m1−v3
m0)−d2

i−1(vm1−vm0)

(vm1−vm0)(d2
i −d2

i−1)
if di−1

vm0
≤ t ≤ di

vm0
and di−1

vm1
≤ t ≤ di

vm1(
− 2

3
d3
i
t − 1

3 v3
m0t2+d2

i−1vm0+vm1(d2
i −d2

i−1)

)
(vm1−vm0)(d2

i −d2
i−1)

if di−1
vm0

≤ t ≤ di
vm0

and t ≥ di
vm1

1 if t ≥ di
vm0

(2)

for all i ∈ N,m ∈ M and t ∈N≥0.

By taking the convolution over the three distributions (F1,F2 and F3), we arrive at the CFR response-time

distribution, which, for a given ring i ∈ N, is given by:

FR(i, t) =
t

∑
t′=0

t′

∑
t1=0

3

∑
m=1

pim

t′−t1

∑
t2=0

f1(t1) · f2(m, t2) · f3(i,m, t ′ − t1 − t2) for all t ∈N≥0. (3)

Subsequently, by convoluting over FR and F0, one can also derive the total response-time distribution.

3.4 Performance indicators

In this section, we derive our two key performance indicators, namely the expected response-time reduction

and the expected CFR workload per incident. To derive the expected response-time reduction, we first

introduce FAM : N≥0 → [0,1], which is the distribution of the arrival time of an already existing ambulance

network. Second, we derive FRFA : N×NN → [0,1], which is the distribution of the total response time of

the first arriving CFR. This distribution FRFA is derived from F0 and FR and reads as follows:

FRFA(t) = ∑
a∈NN

≥0

fAV (a)
t

∑
t0=0

F0(t0)

(
1−∏

i∈N

(1−FR(i, t − t0))
ai

)
for all t ∈N≥0. (4)

Note that the term between brackets describes the probability that at least one CFR is earlier than t − t0

time units. By convoluting this term with the distribution of the dispatch time, and subsequently with the

probability of CFR allocation fAV , we end up with our desired distribution FRFA.

It is now possible to derive the first performance indicator, namely the expected reduction in response

time:

E[response time reduction] = ∑
t∈N≥0

fAM(t) ∑
t′∈N≥0:t′<t

(t − t ′)FRFA(t ′). (5)
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To determine the second performance measure, the expected CFR workload, we calculate the expected

number of responding CFRs per incident, which reads as follows:

E[CFR workload] = ∑
a∈NN

≥0

fAV (a)
N

∑
i=1

ai =∑
i∈N

λi. (6)

We conclude this section with Table 2, listing all parameters, variables, probabilities and cumulative

density functions (cdf’s).

Notation Description
i ring
N set of rings
t time, expressed in discrete time units
m travel mode
F0 cdf for the dispatch
F1 cdf for the view delay
F2 cdf for the travel mode delay
F3 cdf for the travel time
FR cdf for the CFR’s response time
a vector of available CFRs, with ai CFRs reacting in ring i
fAV probability to have allocation a of CFRs

FRFA cdf for the response time of the first arriving CFR
pim probability of using travel mode m in ring i
vm1 maximum speed using travel mode m
vm0 minimum speed using travel mode m
di outer distance of ring i, with d0 = 0
qi probability that a CFR in ring i is available

FAM cdf of the response time of ambulance
Table 2 Definitions of parameters, variables, and distributions.

3.5 Alert and retract rules

In the previous paragraphs, we implicitly assumed that all available CFRs see their alert and thus also

respond to the call. Such a multitude of trips requires significant efforts on the CFRs’ side (i.e., on the CFR

workload). For that reason, this section introduces two rules to limit these efforts. The upcoming section

subsequently investigates the impact of these rules on the CFR workload. The two rules read:

1. Alert rule: until now, we have assumed that all n rings are being alarmed upon a call. Instead of

alerting all these rings, one could also decide to only alert the k out of n rings closest to the incident.

Whenever we refer to such a rule, we call it the k-out-n alert rule.

2. Retract rule: Several existing CFR systems, such as the Dutch Hartslag Nu (HartslagNu 2021)

system, receive a reply from their users via an app button or SMS response, indicating that they ”accept”

or ”reject” the call. If a CFR system is able to receive and process such messages on the fly, they could

potentially also retract some of the outstanding alerts when some other CFRs have already accepted. This

may reduce the CFR workload as well. We consider the following retract rules:

(a) Never retract the alert;
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(b) Retract the alert in the rings outside i when a CFR accepts in ring i;

(c) Retract the alert in all rings when s CFRs have accepted.

For the setting with alert rule n-out-n and retract rule (a) we already derived the performance indicator

formulas (see (5) and (6)), which we also call the base setting. In Appendix 2, we explain how to calculate

the performance indicators for the setting with alert rule k-out-n and retract rules (b) and (c).

3.6 Maximizing effectiveness of potential CFR network

Instead of presenting a frontier of two performance indicators (e.g., the expected response time reduction

versus the expected workload or the expected response time reduction of all incidents together versus the

total number of trips of all CFRs) to support health organizations in defining what is the ”best” configuration

for a CFR network, one could also consider one of the performance indicators as given and see how to

optimize the other one. In this section, we will exactly to that. More precisely, we formulate an optimization

problem that identifies –per postal code– the number of rings to alert in order to maximize that expected

response time reduction of all incidents in Breda together, given that a maximum number of expected yearly

trips is available. In doing so, we will also investigate the impact of the various retract rules.

Let B ∈N be the maximum number of expected yearly trips available. For this number B, we identify the

number of alerted rings per postal code for the three retract rules, and for retract rule (c) we also identify

the stopping number s ∈N, that maximizes the expected response-time reduction over all postal codes.

For retract rules (a) and (b), we introduce decision variable xdi for all i ∈ N and all d ∈ D, with D the

set of postal codes. Variable xdi takes a value of 1 if the first i rings are alerted in postal code d ∈ D and

0 otherwise. We use Eid[response time reduction] and Eid[CFR workload] to denote the expected response-

time reduction for postal code d and the expected CFR workload for postal code d respectively when i rings

are alerted. Moreover, we denote by Id the yearly number of incidents in postal code d.

For retract rule (a), we reuse the formulas (1), (4), (5) and (6), by limiting the set of rings to

{1, .., i} and using the density parameter and ambulance distribution per postal code to determine

Eid[response time reduction] and Eid[CFR workload]. For retract rule (b), we adapted these formulas con-

siderably. The results hereof are presented in Appendix 2.

For retract rules (a) and (b), we want to solve the following optimization problem:

Max ∑
d∈D

∑
i∈N

xid ·Eid[response time reduction] · Id

s.t. ∑
d∈D

∑
i∈N

xid ·Eid[CFR workload] · Id ≤ B

∑
i∈N

xid = 1 for all d ∈ D

xid ∈ {0,1} for all d ∈ D and all i ∈ N.

(7)

The model for retract rule (c) looks quite similar, but has an additional decision parameter s ∈ S, indicating

the maximum number of CFRs that will be sent to an accident. Consequently, this time, we introduce
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decision variable xids, with a value of 1 if i rings are alerted in postal code d ∈ D with a maximum of s ∈ S

CFRs, and 0 otherwise. Similar to the previous optimization problem, we use Eids[response time reduction]

and Eids[CFR workload] to denote the expected response-time reduction for postal code d and the expected

CFR workload for postal code d respectively when i rings are alerted and s ∈ S CFRs are alerted at most. A

detailed derivation of these expressions can be found in Appendix 2.

For retract rule (c), we want to solve the following optimization problem:

Max ∑
d∈D

∑
i∈N

∑
s∈S

xids ·Eids[response time reduction] · Id

s.t. ∑
d∈D

∑
i∈N

∑
s∈S

xids ·Eids[CFR workload] · Id ≤ B

∑
i∈N

∑
s∈S

xids = 1 for all d ∈ D

xids ∈ {0,1} for all d ∈ D and all i ∈ N.

(8)

4 Case study

In this section, we investigate the potential of a CFR network in the city of Breda, the Netherlands. Breda

is a city and municipality in the southern part of the Netherlands, located in the province of North Brabant.

The municipality has approximately 185,000 inhabitants and it is divided into 25 postal codes (Figure 3).

For the case study, we will only consider the 17 postal codes that constitute the city (i.e., the dark yellow

colored areas in Figure 3), leaving out 4 disconnected villages and the mostly industrial or agricultural

districts. The characteristics of the 17 relevant postal codes, with their population, area in squared km,

current number of CFRs, yearly number of incidents and the average ambulance response time (in minutes)

are displayed in Table 3. The second and third column are retrieved from CBS (2022). The number of CFRs

is provided by the Dutch Red Cross. The ambulance provider RAV Brabant Midden-West Noord (n.d.),

responsible for the area including Breda, gave us access to the remaining columns. In particular, to derive

the last column, they shared with us all ambulance response times for Breda in the year 2019. Based on

these data points, we were also able to derive the empirical distribution FAM per postal code.

To calculate the two performance indicators for each of the 17 postal codes, we also have to estimate

some parameters. While in an existing network, most of the required parameters could be measured, we

model a non-existent network and therefore use a mixture of intuition, experience and some references to

estimate parameters. In line with already existing CFR networks (see, e.g., Hartslagnu (2024) who consider

radii between 1-2 km) we decided to set a radius of r = 1 km for the alert area. In order to distinguish

the travel modes and to have a reasonable number of alert options, we have chosen n = 5 rings with a

bandwidth of 200 meters each. Moreover, based on a recent study by Slaa (2020), stating that on average

25% of the CFRs are available to respond, we decided to set α = 0.25 and, in order to keep sufficient

mass of CFRs responding in the last ring, we selected β = 0.9. With respect to the speed estimates for the
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Figure 3 Map of all 25 postal codes of the municipality of Breda (2022), with the 17 selected codes in orange.

postal code population area CFRs incidents av.amb.
4811 17,100 2.88 6 786 09:00
4812 10,210 1.97 1 329 09:35
4813 8385 2.01 4 260 09:07
4814 11,400 2.04 3 423 08:55
4815 4,355 1.10 1 193 08:13
4816 4,460 0.85 2 167 08:44
4817 15,425 3.92 2 469 09:54
4818 9,045 1.40 0 203 10:18
4819 3,630 0.58 1 101 09:02
4822 8,050 2.58 9 190 09:20
4823 8,875 3.06 5 238 10:05
4824 9,040 3.15 3 216 09:03
4826 9,335 1.94 6 420 09:17
4827 7,810 1.57 2 292 09:26
4834 11,905 2.59 2 407 09:33
4835 6,865 1.20 1 122 09:37
4837 2,255 0.60 0 98 09:42

total/average 148,145 33.44 48 4,914 09:20
Table 3 Characteristics of the 17 postal codes in focus of the city of Breda (2019)

different travel modes, we take into account that travel distances can be longer than ‘as the crow flies’ and

assumed an interval of 3.6 km/h to 6 km/h for foot, 12 km/h to 20 km/h for bike and 20 km/h to 40 km/h for

car. Next, to derive the probabilities to select a travel mode for a given ring, we started with the distance-
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related probabilities from Niemeijer and Buijs (2023), but as they considered non-urgent transportation, we

increased the values for the faster options. The results are shown in Table 4.

Transport mode foot bike car
ring 1 0.8 0.2 0
ring 2 0.4 0.5 0.1
ring 3 0.2 0.6 0.2
ring 4 0.05 0.6 0.35
ring 5 0 0.5 0.5

Table 4 Probabilities to choose transport mode per ring. These probabilities may differ for other cities or regions, depending on

their population density. For instance, in rural areas, CFRs might respond with cars more often.

We also calculated the density parameter ρ per postal code. A natural way to derive this parameter is to

divide the number of CFRs by the size of the area. However, because there exist some postal codes with no

CFRs (leading to ρ = 0) we decided to calculate ρ as the average of the postal code density and the average

neighboring postal code’s density. These densities are listed in Section 4.1, Table 7. In addition, we have

also selected distributions for the view delay, the travel mode delays and dispatch times (see Table 5). The

range of the dispatch times is similar to the ones described in the study of (Hillenaar 2021).

view delay foot bike car dispatch
distribution NB(2,1/16) NB(2,1/16) NB(3,1/31) NB(3,1/46) U[60,120]

expectation (s) 30 30 90 135 90
Table 5 Probability distributions of view delay, the travel model delay (foot, bike and car) and dispatch times.

Using the selected velocities and probability distributions, we can calculate the expected total response

times per ring and per transport mode for an arbitrary volunteer. The response times are reported in Table 6.

ring 1 2 3 4 5
foot 278 449 636 826 1016
bike 249 300 356 413 470
car 291 319 350 380 411

Table 6 Expected total response time (seconds) per ring and per transport mode for an arbitrary volunteer.

4.1 Evaluating the potential of a CFR network without retraction

We start with evaluating the performance of the CFR network in Breda without any alert retraction, that is,

retract rule (a). The first performance indicator, i.e., the expected response-time reduction, when alerting

k = 1,2,3,4,5 number of rings is represented in Table 7.

From Table 7 we learn that alerting one ring leads to a reduction of 11 seconds on average per occurring

incident. This reduction increases with 20-30 seconds for every extra ring, leading to 112.9 seconds (almost

two minutes) reduction for 5 rings. Hence, alerting all rings reduces the average response time from the
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postal code incidents ρ alert-1 alert-2 alert-3 alert-4 alert-5
4811 786 1.57 14.1 41.5 72.9 104.1 130.4
4812 329 0.98 9.9 29.9 54.0 79.8 103.5
4813 260 1.24 11.4 33.7 59.8 86.8 110.6
4814 423 1.25 11.0 32.8 58.7 85.2 108.6
4815 193 1.34 10.2 29.6 52.2 75.0 94.8
4816 167 1.74 14.7 42.4 73.4 103.5 128.1
4817 469 0.73 7.9 24.3 44.7 67.4 89.3
4818 203 0.49 5.7 17.9 33.8 51.9 70.1
4819 101 1.20 11.0 32.5 57.7 84.1 107.5
4822 190 2.27 20.8 59.6 101.8 140.2 169.6
4823 238 1.46 16.0 47.9 85.1 122.8 155.3
4824 216 1.23 11.2 33.1 59.2 86.0 109.8
4826 420 2.00 18.8 54.0 92.7 129.5 158.6
4827 292 1.32 12.9 38.2 67.8 98.2 124.8
4834 407 0.59 6.0 18.4 33.9 51.4 68.5
4835 122 0.63 6.4 19.8 36.4 55.0 73.0
4837 98 0.36 3.7 11.5 21.4 32.8 44.3

total/average 4914 1.44 11.8 34.8 61.6 89.0 112.9
Table 7 Expected response time reduction in seconds depending on number of alerted rings.

current average of 9:20 minutes (see Table 3) to 7:27 minutes. At the same time, averaged over all postal

codes, alerting one ring leads to an expected CFR workload of 0.04, which increases to 0.74 when five rings

are alerted. For retract rule (a) these quantities are linear to the density ρ.

For humanitarian network organizations such as the Red Cross, it may be hard to make a decision about

the number of rings to alert, because the two performance indicators are in conflict with each other: alerting

more rings reduces the expected response time, but at the same time also increases the total workload of

CFRs. This becomes even more apparent when we also present the expected number of trips of all CFRs

together and the expected response time reduction of all incidents together, which are visualized in Table 8.

From this table, we learn that the expected response time reduction of all incidents together equals 9250

minutes, yearly. This sounds like an interesting potential. However, if we realize that 3620 CFR trips have

to be performed by only 48 CFRs in Breda (see Table 3), then we may conclude that it is not always best

to alert all rings. For instance, when we alert only 1 ring, a CFR responds more or less 4 times a year on

average, with an average reduction of 5 minutes per incident per CFR.6 In comparison, when 5 rings are

alerted, the CFR responds 75 times with about a reduction of 2:30 minutes per response per CFR.

Number of alerted rings 1 2 3 4 5
Expected number of trips of all CFRs 193 714 1496 2481 3620
Expected response time reduction (min) of all incidents 963 2848 5048 7290 9250

Table 8 Results depending on number of alerted rings in Breda.

6 The reduction of 5 minutes per incident per CFR is determined by dividing 963 by 193.
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4.2 Results of maximizing effectiveness

In Table 9 we show the outcome of the three different optimization problems (i.e., for the three retract rules),

in case of a yearly budget of 10, 20 and 30 trips per CFR. In Table 10, we also show these results in case

all postal codes in Breda would have the national average density of 2.33 CFRs per km2, as well as with

an average of 5, restricted to a budget of 10 and 20 only. In these tables, we refer to the different density

scenarios as ’(L)ow (ρ = 1.44)’, ’(M)edium (ρ = 2.33)’ and ’(H)igh (ρ = 5)’.

postal code alert strategy
aL10 bL10 cL10 aL20 bL20 cL20 aL30 bL30 cL30

4811 1 1 1 2 2 2 2 2 3
4812 2 2 2 3 3 3 4 4 4
4813 2 2 1 2 2 2 3 3 3
4814 1 1 1 2 2 2 3 3 2
4815 1 1 1 1 1 2 2 1 2
4816 1 1 1 2 1 1 2 2 2
4817 3 3 3 4 4 4 5 5 5
4818 4 5 5 5 5 5 5 5 5
4819 1 2 2 1 2 2 3 3 3
4822 1 1 1 2 2 2 2 2 3
4823 3 2 4 3 3 5 4 4 5
4824 1 1 1 2 2 2 3 3 3
4826 1 1 1 2 2 2 2 2 3
4827 2 2 2 2 2 2 3 3 4
4834 3 2 2 3 4 4 4 5 4
4835 2 2 2 2 4 4 5 5 4
4837 2 4 1 5 2 4 4 5 3

reduction (min) 2092 2117 2207 3702 3790 4025 5048 5231 5656
Table 9 Number of alerted rings per rule and postal code and response time reduction over all postal codes for current number

of CFRs, which we refer to as the (L)ow density scenario.

In Table 9 we notice that there are quite some differences in the optimal number of alerted rings over the

postal codes, with usually more rings for low CFR density areas. Moreover, we see that the number of rings

alerted does not decrease in the total amount of budget available and that retract rule (c) dominates retract

rule (b), which dominates retract rule (a). This result is even stronger for the medium (ρ = 2.33) and high

(ρ = 5) scenario, with 78 and 167 CFRs, respectively. For these scenarios, the effect of limiting the number

of CFRs sent is stronger, as it happens more often that more than one CFR is available. Especially for the

first two retract rules, the differentiation over the number of alerted rings per districts is now smaller, as all

districts are assumed to have an identical CFR density. In the highest budget scenario with 3340 trips we

have an average reduction of 2:48 minutes over all incidents and of 4:07 minutes for all incidents with a

responding CFR. Compared to the results from Table 8 this is a considerable improvement: with almost 8

percent fewer trips, we reduce the response time with an additional 49 percent.

Although not explicitly reported in Table 8, we found that for the (L)ow (ρ = 1.44) scenario, the choice

for retract rule (c) was always to retract the alert after the first available CFR has accepted. Based on another

numerical experiment (not reported here as well), it turns out that we need a budget of 50 trips per CFR or



Dellaert et al.: Do community first responder networks have potential? 19

0 10 20 30 40 50 60 70 80

4

8

12

16

20

Budget

Pe
rc

en
ta

ge
ga

in

retract rule c
retract rule b
retract rule a

Figure 4 Response time that can be gained without increasing the budget, by differentiating the number of dispatched rings per

district and potentially retract too. Gain is expressed against a benchmark policy that alerts the same number of rings everywhere

postal code rule
aM10 bM10 cM10 aM20 bM20 cM20 aH10 bH10 cH10 aH20 bH20 cH20

4811 1 1 1 2 2 2 1 1 1 2 2 2
4812 2 2 2 2 2 2 2 2 2 2 2 4
4813 2 1 1 2 2 2 2 1 1 2 2 3
4814 1 1 1 2 2 2 1 1 1 2 2 3
4815 1 1 1 1 2 1 1 1 1 2 2 1
4816 1 0 1 1 2 1 1 1 1 2 2 2
4817 2 2 2 3 3 4 2 2 3 2 3 4
4818 2 2 3 3 3 5 2 2 5 3 3 5
4819 1 2 1 2 2 1 2 1 1 2 2 2
4822 1 1 2 2 2 2 1 1 2 3 2 3
4823 2 2 3 3 3 4 2 2 3 3 3 4
4824 1 1 1 2 2 2 1 1 1 2 2 2
4826 1 1 1 2 2 2 1 2 1 2 2 3
4827 1 2 2 2 2 2 1 1 2 2 2 3
4834 2 2 2 2 2 3 2 2 2 2 3 4
4835 2 2 2 2 2 3 1 2 2 3 2 4
4837 2 2 2 3 3 2 2 2 2 2 2 4

reduction (min) 3407 3451 3719 5870 6060 6744 6585 6827 7804 10790 11441 13768
Table 10 Number of alerted rings per rule (a/b/c) for a medium (M) and high (H) density scenario with 2 different budgets.

higher before to change this solution, i.e., to retract once two or more CFRs have accepted. In Figure 4 we

show the relative improvement of the alert rules over a rule that uses equal xdi-values for all postal codes,

without retracting, interpolating between the discrete values. We see that this gain is positive for all retract

rules, but highest (in almost all cases) for retract rule (c). The highest gain is realized for a budget around

45-50, implying that differentiation in the number of rings to alert is maximized here.
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5 Conclusion and Discussion

In this paper, we introduced a mathematical model that can estimate the expected response-time reduction

and the expected CFR workload of an as-yet unrealized CFR network. To balance the two performance

indicators, we introduced several alert and retract rules to indicate the size of the area to alert, and whether

outstanding alerts should be retracted once some people have responded. By means of a case study, we ana-

lyzed these rules and quantify the potential –in terms of the two performance indicators– of a CFR network

for the city Breda. For this case study, our model predicted that if CFRs respond around 20 times a year,

which means around 20% of all ambulance trips, response times can be improved by 2 minutes on average

compared to ambulance arrival. This reduction can even approach 4 minutes, when the number of CFRs will

double more than twice (cf. the (M)edium and (H)igh scenarios). These are significant reductions, and could

considerably change the health of hundreds of patients. On top of this, the case study also demonstrated the

potential of retracting outstanding alerts after some CFRs have responded, especially at postal codes with

a relative high number of CFRs. More specifically, retracting significantly reduces workload in the (H)igh

scenario with 20 percent while only increasing the response time by a few seconds.

The numerical results in this paper are established under some assumptions. For instance, one is that CFRs

are always deployed, once an ambulance is sent out. In practice, however, there might be considerations

regarding CFRs. For instance, it is very well possible that for some urgent ambulance calls, CFRs are

insufficiently trained. One way to deal with such a setting would be to compare the CFR response times with

only those ambulance response times for which CFRs are of actual help. Figuring this out might, however,

be quite complicated as it requires an analysis on many types of incidents, the capabilities/skills of CFRs

as well as the subsequent question whether a CFR –with a certain set of capabilities– is able to handle a

specific type of incident. As a proxy for this, one could perform a sensitivity analysis on the number of

CFRs available –in the same spirit as we did in the numerical experiment with (L)ow, M(edium), and (H)igh

CFR density, for the setting with all ambulances response times. The setting with a low density could then

represent the case where only a subset of CFRs is trained to respond to specific types of incidents.

Closely related to this, one of our performance indicators is the response-time reduction. Although this

performance indicator might be a good proxy of the potential benefit for society, ideally one would like to

measure patient outcomes instead. However, this would require very detailed data, like ’What is the expected

health gain of a patient with problem ”X”, when the first CFR arrives t1 seconds after the emergency call

and the ambulance arrives t2 > t1 seconds after the call?’. So far, this data is only available for very specific

health issues, mostly expressed as survival data for cardiac arrests (which only represents 2% of the calls).

Given the inability to translate response times to patient outcomes for the majority of the calls, we decided

that the response-time reduction is the most appropriate performance indicator for now.

On a more technical note, we assumed in our numerical experiments that the yearly ‘budget’ of CFR trips

is spent over all CFRs. This implies that on average, no CFR is too ”busy”. However, it might very well be
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that some CFRs are still very busy (e.g., a call every day) –and this seems to be undesirable from a central

workload perspective. For that reason, we invested for our numerical experiment how busy the busiest CFR

would be. For our 3H20-scenario, with a budget of 20 per volunteer, which is the most extreme scenario

considered, we learned that the maximum average CFR use per district is 32. Based on a recent report by

Slaa (2020), this seems to be an acceptable number per year for CFRs, supporting our assumption.

Future research directions include an investigation of the relative importance of response times and vol-

unteer workload. Knowing this would inform the desired retract rule and consequently also the IT specifi-

cations or a CFR system. Moreover, one could make better-informed decisions if there was more detailed

knowledge of how people move around their neighborhood. We are aware of at least one CFR system that

tracks this; however, it is questionable whether that will ever be made public.

Finally, the developed model could also have emergency applications outside healthcare. As an example,

consider off-duty police professionals that could be alarmed to assist in case of a terrorist attack (see, e.g.,

van Aken et al. (2024)). Alternatively, fire departments can use a CFR system to rapidly mobilize farm-

ers equipped with large water-carrying trucks, typically used for crop irrigation, to preemptively saturate

designated areas and slow the spread of wildfires.
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Appendix. 1

In this Appendix, we derive F3, the distribution of travel time. In doing so, we first present the distribution

of the travel time, given that velocity is fixed at v ∈R>0. Because volunteers are uniformly distributed, this

distribution, for a given t ∈N≥0 coincides with the area under the ring with inner radius di−1 and outer radius

min{di−1, v · t}, divided by the area under the ring with inner radius di−1 and outer radius di. Formally, for a

given t ∈N≥0 i ∈ N and m ∈ M, we obtain the following distribution:

F3(i,m, t, v) =


0 if t ≤ di−1

v
(v·t)2−d2

i−1
d2

i −d2
i−1

if di−1
v ≤ t ≤ di

v

1 if t ≥ di
v

.

In order to arrive at F3, w need to differentiate between six different cases. In doing so, we first fix m ∈ M

and i ∈ N. Now, we distinguish between the six cases.

Case 1. vm1 · t ≤ di−1

In this case, even with the fastest velocity, volunteers cannot be on time at the incident. Hence,

F3(i,m, t) = 0 for all t ∈N≥0.

Case 2. vm0 · t ≤ di−1 and di−1 ≤ vm1 · t ≤ di

Volunteers traveling at the lowest speed cannot be on time, but a fraction of the volunteers in the ring is

on time when traveling at the highest velocity. Hence for any t ∈N≥0, we have

F3(i,m, t) =
∫ vm1

di−1
t

1
vm1 − vm0

F3(i,m, t, v)dv

=
1

vm1 − vm0

∫ vm1

di−1
t

(v · t)2 − d2
i−1

d2
i − d2

i−1
dv

=
1
3 v3

m1t
2 − d2

i−1vm1 +
2
3

d3
i−1
t

(vm1 − vm0)(d2
i − d2

i−1)
.

Case 3. vm0 · t ≤ di−1 and vm1 · t ≥ di

Volunteers traveling at the lowest speed cannot be on time, while all volunteers in the ring are on time

when traveling at the highest velocity. Hence for any i ∈ N,m ∈ M and t ∈N≥0, we have

F3(i,m, t) =
∫ di

t

di−1
t

1
vm1 − vm0

F3(i,m, t, v)dv+
∫ vm1

di
t

1
vm1 − vm0

F3(i,m, t, v)dv

=
1

vm1 − vm0

∫ di
t

di−1
t

(v · t)2 − d2
i−1

d2
i − d2

i−1
dv+

1
vm1 − vm0

∫ vm1

di
t

1dv

=
2
3t (d

3
i−1 − d3

i )+ vm1(d2
i − d2

i−1)

(vm1 − vm0)(d2
i − d2

i−1)
.
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Case 4. di−1 ≤ vm0 · t ≤ di and di−1 ≤ vm1 · t ≤ di

A fraction of the volunteers traveling at the lowest speed is on time, and this holds as well for the volun-

teers traveling at the highest speed. Hence for any i ∈ N,m ∈ M and t ∈N≥0, we have

F3(i,m, t) =
∫ vm1

vm0

1
vm1 − vm0

F3(i,m, t, v)dv

=
1

vm1 − vm0

∫ di
t

di−1
t

(v · t)2 − d2
i−1

d2
i − d2

i−1
dv

=
1
3 t2(v3

m1 − v3
m0)− d2

i−1(vm1 − vm0)

(vm1 − vm0)(d2
i − d2

i−1)
.

Case 5. di−1 ≤ vm0 · t ≤ di and vm1 · t ≥ di

A fraction of the volunteers traveling at the lowest speed is on time, while all volunteers traveling at the

highest speed are on time. Hence for any i ∈ N,m ∈ M and t ∈N≥0, we have

F3(i,m, t) =
∫ di

t

vm0

1
vm1 − vm0

F3(i,m, t, v)dv+
∫ v1

di
t

1
vm1 − vm0

F3(i,m, t, v)dv

=
1

vm1 − vm0

∫ di
t

vm0

(v · t)2 − d2
i−1

d2
i − d2

i−1
dv+

1
vm1 − vm0

∫ v1

di
t

1dv

=

(
− 2

3
d3

i
t − 1

3 v3
m0t

2 + d2
i−1vm0 + vm1(d2

i − d2
i−1)
)

(vm1 − vm0)(d2
i − d2

i−1)
.

Case 6. vm0 · t ≥ di

In this case, even with the slowest velocity, all volunteers are on time at the incident. Hence,

F3(i,m, t) = 1 for all t ∈N≥0.
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Appendix. 2

In this appendix, we consider the retract rules (b) and (c) from Section 3.5. In these rules the sequence of

responding plays a large role, which makes the distribution of the home response delay no longer indepen-

dent of the CFR, but dependent on this sequence. Therefore the order rank statistics for the home response

delay will be used. Let F jk
H (t) be the view delay distribution for the CFR whose view delay rank is number

j out of k available CFRs

F jk
H (t) =

m

∑
m= j

(
k
m

)
Fm

1 (t)(1−F1(t))k−m for j ≤ k (9)

From this we can determine F jk
R (i, t), the CFR response-time distribution for the CFR in ring i whose view

delay rank is number j out of k available CFRs, similar to equation (3):

F jk
R (i, t) =

t

∑
t′=0

t′

∑
t1=0

3

∑
m=1

pim

t′−t1

∑
t2=0

f jk
H (t1) · f2(m, t2) · f3(i,m, t ′ − t1 − t2) for all t ∈N≥0. (10)

As all CFRs have the same pdf for the view delay, all sequences of responding available CFRs have

the same probability. We will now derive the expected number of CFR trips per incident and the expected

response-time reduction. Denote the available CFR vector (CFR-allocation) by ā and the responding CFR

vector r̄. The responding CFRs are the ones, whose alert has not been retracted. Obviously, ri ≤ ai for every

ring i.

In retract rule (b), a CFR from an outer ring i will only respond if the view delay rank is lower than that

of all ci := ∑
i−1
j=1 a j CFRs in its inner rings. The probability for the lower delay rank is 1/(1 + ci) and the

corresponding reponse-time distribution for this CFR is F1ci
R (i, t). For a district d with λd j expected available

CFRs for ring j, we then first calculate the probability to find CFR-allocation a:

f i
AV (a) =∏

j≤i

(
λ

a j
d j

a j!
· e−λd j

)
(11)

Eid[CFR workload] = ∑
a∈Ni

f i
AV (a)

(
a1 +

i

∑
j=2

a j

1+ c j

)
(12)

The probability that the vector of responding CFRs equals r, with r1 = a1 ( and r j ≤ a j for 2 ≤ j ≤ i), for a

given CFR-allocation a, is given by

P
(
r̄|ā
)
=

i

∏
j=2

(
a j

r j

)
(

a j

1+ c j
)r j(

c j

1+ c j
)a j−r j (13)

F (b)
RFA(i, t) =

t

∑
t0=0

F0(t0) ∑
a∈Ni

f i
AV (a)

(
1−∑

r

P
(
r̄|ā
)
∏
j≤i

(
1−F1c j

R ( j, t − t0)
)r j

)
for all t ∈N≥0. (14)

The expected response-time reduction for retract rule (b) is then determined by:
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Eid[response time reduction] = ∑
t∈N≥0

f d
AM(t)

t

∑
t′=0

(t − t ′)F (b)
RFA(t

′). (15)

For retract rule (c), with a maximum of s CFRs per incident, the workload can be easily determined:

Eids[CFR workload] = ∑
a∈Ni

min

(
s,

i

∑
j=1

a j

)
f i
AV (a) (16)

In the calculation of the response-time distribution, we have to distinguish two cases, depending on the

total number of available CFRs within the i alerted rings, compared the the maximum number s. For low

numbers of availabe CFRs, formula (4) can still be applied, but when more than s CFRs are available, the

rank of the view delay becomes important. Let g(k) denote the ring of the k−th ranked CFR, in terms of

view delay, with g(k)∈ (1, .., i) . Then we can write the response-time distribution as:

F (c)
RFA(i, t) = ∑

|a|<=s

f i
AV (a)FRFA(t)+ ∑

|a|>s

f i
AV (a)

t

∑
t0=0

F0(t0)

(
1−∑

r

P
(
ḡ
) s

∏
j=1

(
1−F j,|a|+1

R (g( j), t − t0)
))

for all t ≥ 0.

(17)

Here,

P
( ¯g(1) = j

)
=

a j

|a|
(18)

P
( ¯g(k) = j

)
=

a j −∑
k−1
m=1 1(g(m) = j)
|a|+ 1− j

(19)

Finally, the response-time reduction for retract rule (c) is thus determined by:

Eids[response time reduction] = ∑
t∈N≥0

f d
AM(t)

t

∑
t′=0

(t − t ′)F (c)
RFA(t

′). (20)


