
A Generalization Result for Convergence in
Learning-to-Optimize

Michael Sucker michael.sucker@math.uni-tuebingen.de

Department of Mathematics
University of Tübingen
Tübingen, Germany

Peter Ochs ochs@cs.uni-saarland.de

Department of Mathematics and Computer Science

Saarland University

Saarbrücken, Germany

Abstract

Convergence in learning-to-optimize is hardly studied, because conventional convergence
guarantees in optimization are based on geometric arguments, which cannot be applied
easily to learned algorithms. Thus, we develop a probabilistic framework that resembles
deterministic optimization and allows for transferring geometric arguments into learning-
to-optimize. Our main theorem is a generalization result for parametric classes of poten-
tially non-smooth, non-convex loss functions and establishes the convergence of learned
optimization algorithms to stationary points with high probability. This can be seen as a
statistical counterpart to the use of geometric safeguards to ensure convergence. To the
best of our knowledge, we are the first to prove convergence of optimization algorithms in
such a probabilistic framework.

1 Introduction

Proving convergence in learning-to-optimize is a hard problem. This is due to the fact that
the problem instances are functions, which cannot be observed globally. Rather, the region
explored during training is strongly influenced by the chosen initialization and the maximal
number of iterations. This spatial restriction is important for the theoretical analysis:

It typically prevents the usage of both limits and the mathematical
argument of induction.

As convergence is inherently linked to the notion of limits, this subtlety prevents proving
convergence of the learned algorithm. A way to mitigate this problem rather easily is the
usage of safeguards: The update step of the algorithm is restricted to such an extent that
it can be analyzed similar to a hand-crafted algorithm, that is, the trajectory created by
the algorithm satisfies certain properties, for example, a sufficient descent in each iteration,
independently of the training. Yet, this comes at a price: Not only the analysis of the
learned algorithm, also its performance is restricted and eventually similar to hand-crafted
algorithms. At that point, however, justifying the additional effort required for learning
becomes difficult. Nevertheless, there is an important detail:

1

These constraints are just a safeguard to enforce the desired properties
of the trajectory.

Intuitively, whenever the safeguard is “activated”, the paradigm and performance of learning-
to-optimize is alleviated or even extinguished. Moreover, from a mathematical point of view,
these safeguards are sufficient, however, not necessary, that is, they are overly restrictive.
Therefore, if we can guarantee, in another way, that the trajectories created by the algo-
rithm have the desired properties, we do not need the constraints anymore. This can be
achieved statistically by means of generalization. Thus, in this paper, we combine a general
convergence result from variational analysis with a PAC-Bayesian generalization theorem
to show that the properties of the trajectory, which are needed to derive convergence of the
algorithm, actually generalize to unseen problems. This results in our main theorem, which
is applicable in a possible non-smooth non-convex optimization setup, and lower bounds
the probability to observe a trajectory, generated by the learned algorithm, that converges
to a stationary point of the loss function.

2 Related Work

This work draws on the fields of learning-to-optimize, the PAC-Bayesian learning approach,
and convergence results based on the Kurdyka- Lojasiewicz property. Since we use existing
bounds, we discuss the PAC-Bayesian approach only briefly, and for learning-to-optimize
we focus on approaches that provide some theoretical guarantees. For an introduction
to learning-to-optimize, Chen et al. (2021) provide a good overview about the variety of
approaches. Similarly, for the PAC-Bayesian approach, good introductory references are
given by Guedj (2019) and Alquier (2021).

Broader Context. Since optimization is an integral part of machine learning, learning-
to-optimize has significant overlap with meta-learning (“learning-to-learn”) and AutoML.
Meta-learning is a subset of learning-to-optimize, because it is restricted to machine learning
applications (Vilalta and Drissi, 2002; Hospedales et al., 2021), while learning-to-optimize
applies to optimization in general. On the other hand, AutoML refers to automating all
steps necessary to create a machine learning application (Yao et al., 2018; Hutter et al.,
2019; He et al., 2021), which also includes the choice of an optimization procedure.

Learning-to-Optimize with Guarantees. To date, learned optimization methods show
impressive performance, yet lack theoretical guarantees (Chen et al., 2021). However, in
some applications convergence guarantees are indispensable: It was shown that learning-
based methods might fail to reconstruct the crucial details in a medical image (Moeller
et al., 2019). In the same work, the authors prove convergence of their learned method by
restricting the update to descent directions. Similar safeguarding techniques were employed
by Prémont-Schwarz et al. (2022) and Heaton et al. (2023). The basic idea is to constrain
the learned object in such a way that known convergence results are applicable, and it has
been applied successfully for different schemes and under different assumptions (Sreehari
et al., 2016; Chan et al., 2016; Teodoro et al., 2017; Tirer and Giryes, 2018; Buzzard et al.,
2018; Ryu et al., 2019; Sun et al., 2019; Terris et al., 2021; Cohen et al., 2021). Similarly, by
restricting to a specific ODE, Xie et al. (2024) leverage the convergence of a continuous-time
trajectory and the stability of a discretization scheme to provide convergence results for their

2

algorithm. A major advantage of these “constrained” methods is the fact that the number
of iterations is not restricted a priori and that, often, some convergence guarantees can be
provided. A major drawback, however, is their severe restriction: Typically, the update-step
has to satisfy certain geometric properties, and the results only apply to specific algorithms
and/or problems. Another approach, pioneered by Gregor and LeCun (2010), is unrolling,
which limits the number of iterations, yet can be applied to any iterative algorithm. Here,
the IHT algorithm is studied by Xin et al. (2016) while Chen et al. (2018) consider the
unrolled ISTA. However, in the theoretical analysis of unrolled algorithms, the notion of
convergence itself is difficult, and one rather has to consider the generalization performance:
This has been done by means of Rademacher complexity (Chen et al., 2020), by using a
stability analysis Kobler et al. (2020), or in terms of PAC-Bayesian generalization guarantees
(Sucker and Ochs, 2023; Sucker et al., 2024). Recently, generalization guarantees based on
the whole trajectory of the algorithm, for example, the expected time to reach the stopping
criterion, have been proposed (Sucker and Ochs, 2024). The main drawback of generalization
guarantees is their reliance on a specific distribution. To solve this, another line of work
studies the design of learned optimization algorithms and their training, and how it affects
the possible guarantees (Wichrowska et al., 2017; Metz et al., 2019, 2022). Here, Liu et al.
(2023) identify common properties of basic optimization algorithms and propose a math-
inspired architecture. Similarly, Castera and Ochs (2024) analyze widely used optimization
algorithms, extract common geometric properties from them, and provide design-principles
for learning-to-optimize. We present a novel approach that allows to deduce the convergence
of a generic learned algorithm with high probability. It is based on a generalization result,
that is, it relies on an underlying distribution, and can be seen as a statistical counterpart
to the use of geometric safeguards. The methodology is widely applicable and it does not
restrict the design of the algorithm.

PAC-Bayesian Generalization Bounds. The PAC-Bayesian framework allows for giv-
ing high probability bounds on the risk. The key ingredient is a change-of-measure inequal-
ity, which determines the divergence or distance in the resulting bound. While most bounds
involve the Kullback–Leibler divergence as measure of proximity (McAllester, 2003a,b;
Seeger, 2002; Langford and Shawe-Taylor, 2002; Catoni, 2004, 2007; Germain et al., 2009),
more recently other divergences have been used (Honorio and Jaakkola, 2014; London, 2017;
Bégin et al., 2016; Alquier and Guedj, 2018; Ohnishi and Honorio, 2021; Amit et al., 2022;
Haddouche and Guedj, 2023). In doing so, the PAC-bound relates the true risk to other
terms such as the empirical risk. Yet, it does not directly say anything about the absolute
numbers. Therefore, one typically aims to minimize the provided upper bound (Langford
and Caruana, 2001; Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021; Thiemann et al.,
2017). Nevertheless, a known difficulty in PAC-Bayesian learning is the choice of the prior
distribution, which strongly influences the performance of the learned models and the the-
oretical guarantees (Catoni, 2004; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021). In part,
this is due to the fact that the divergence term can dominate the bound, such that the
posterior is close to the prior. Especially, this applies to the Kullback-Leibler divergence.
This lead to the idea of choosing a data- or distribution-dependent prior (Seeger, 2002;
Parrado-Hernández et al., 2012; Lever et al., 2013; Dziugaite and Roy, 2018; Pérez-Ortiz
et al., 2021). By using an independent subset of the data set, also the prior gets optimized

3

to yield a good performance. We use one of the PAC-Bayesian generalization theorems pro-
vided by Sucker and Ochs (2024) (which involves the Kullback-Leibler divergence) to show
that the needed properties of the trajectory of the learned algorithm generalize to unseen
problems from the same distribution, and, for the experiments, we use a data-dependent
prior.

The Kurdyka- Lojasiewicz inequality. Single-point convergence of the trajectory of an
algorithm is a challenging problem. For example, Absil et al. (2005) show that this might fail
even for simple algorithms like gradient descent on infinitely-often differentiable functions.
Further, they show that a remedy is provided by the Lojasiewicz inequality, which holds
for real analytic functions (Bierstone and Milman, 1988). In fact, in the special case of
the Polyak- Lojasiewicz inequality, gradient descent converges linearly (Polyak, 1963). The
large class of tame functions or definable functions excludes many pathological failure cases,
and extensions of the Lojasiewicz inequality to smooth definable functions are provided by
Kurdyka (1998). Similarly, extensions to the nonsmooth subanalytic or definable setting
are shown by Bolte et al. (2007b), Bolte et al. (2007a), and Attouch and Bolte (2009),
which yields the Kurdyka– Lojasiewicz inequality. It is important to note that these are not
just theoretical constructs: Most functions in practice are definable and, thus, satisfy the
Kurdyka– Lojasiewicz inequality automatically. Using this, several algorithms have been
shown to converge even for nonconvex functions (Attouch and Bolte, 2009; Attouch et al.,
2010, 2013; Bolte et al., 2014; Ochs et al., 2014; Ochs, 2019). We employ the abstract
convergence theorem for descent methods provided by Attouch et al. (2013) together with
the PAC-Bayesian generalization result to derive our main theorem. To our knowledge, this
is a novel combination of two distinct approaches, which allows for deriving new and general
convergence results for generic learned optimization algorithms.

3 Preliminaries and Assumptions

Notation. We write generic sets in type-writer font, for example, A ⊂ Rd. Given a metric
space X, Bε(x) denotes the open ball around x ∈ X with radius ε > 0. We assume every
metric space to be endowed with the metric topology and corresponding Borel σ-field B(X).
Similarly, given a product space X ×Y , the product σ-algebra is denoted by B(X)⊗B(Y).
We consider the space Rd with Euclidean norm ∥·∥ and, for notational simplicity, abbreviate
S := Rd and P := Rp. The space of sequences in S is denoted by SN0 . Here, we reserve the
notation ξ = (ξ(n))n∈N0 for the sequence generated by the algorithm. We endow SN0 with
the product σ-algebra, which is the smallest σ-algebra, such that all canonical projections
Xi : SN0 → S, (xn)n∈N0 7→ xi, are measurable. For notions from non-smooth analysis,
we follow Rockafellar and Wets (2009). For convenience of the reader, we have collected
details of these definitions in Appendix A. In short, a function f : Rd → R ∪ {+∞} is
called proper, if f(x) < +∞ for at least one x ∈ Rd, and we denote its effective domain by
dom f . Further, it is called lower semi-continuous, if lim infx→x̄ f(x) ≥ f(x̄) for all x̄ ∈ Rd.
Furthermore, for x ∈ dom f , ∂f(x) denotes the (limiting) subdifferential of f at x. Similarly,
for f : Rd × Rp → R ∪ {+∞}, ∂xf(x, y) denotes the (partial) subdifferential of f(·, y) at
x. In general, ∂f : Rd ⇒ Rd is a set-valued mapping, and we denote its domain and graph
by dom ∂f and gph ∂f , respectively. Here, a set-valued mapping S : Rk ⇒ Rl is said to
be outer semi-continuous at x̄, if lim supx→x̄ S(x) ⊂ S(x̄), where the outer limit is defined

4

as lim supx→x̄ S(x) = {u | ∃x(k) → x̄, ∃u(k) → u with u(k) ∈ S(x(k))}. Finally, the space
of measures on X is denoted by M(X), and all probability measures that are absolutely
continuous w.r.t. a reference measure µ ∈ M(X) are denote by P(µ) := {ν ∈ M(X) :
ν ≪ µ and ν[X] = 1}. Here, the Kullback-Leiber divergence between two measures µ and
ν is defined as DKL(ν ∥ µ) = ν[log(f)] =

∫
X log(f(x)) ν(dx), if ν ≪ µ with density f , and

+∞ otherwise.
To analyze the trajectory ξ = (ξ(n))n∈N0 generated by a learned algorithm, Sucker and Ochs
(2024) introduce a Markovian model for learning-to-optimize, which we want to use in the
following. It is based on the following two assumptions. For this, please recall that a Polish
space is a separable topological space that admits a complete metrization.

Assumption 1. The state space (S,B(S),PI), the parameter space (P,B(P),PP), the
hyperparameter space (H,B(H),PH), and the randomization space (R,B(R),PR) are Polish
probability spaces.

We use the special cases S = Rd and P = Rp. Here, one could also consider a (finite-
dimensional) state space S that encompasses the space of the optimization variable, that
is, S = Rd1 × Rd2 .

Remark 3.1. The countable product of Polish spaces is Polish, and the product σ-algebra
and the Borel σ-algebra coincide (Kallenberg, 2021, Lemma 1.2). Hence, for all considered
spaces in the following, the Borel and the product σ-algebra coincide.

Assumption 2. The (possibly extended-valued) loss function ℓ : S × P → [0,∞] and the
algorithmic update A : H × P × S ×R → S are both measurable.

Remark 3.2. The extended-valued real numbers R∪ {±∞} are topologically isomorphic to
the compact interval [−1, 1] and we have the equality B(R ∪ {±∞})|R = B(R). Further,
every B(R)-measurable function can be considered as a extended-valued measurable function
(Klenke, 2013, p.37-38).

Starting from ξ(0) ∼ PI , the algorithm generates a sequence of iterates ξ = (ξ(n))n∈N0 as
follows:

ξ(n+1) = A(α, θ, ξ(n), η(n+1)), n ≥ 0 ,

where the hyperparameters α ∈ H allow for adjusting the algorithm, the parameters θ ∈ P
specify the loss function ℓ(·, θ) the algorithm is applied to, and η(n+1) ∈ R models the (in-
ternal) randomness of the algorithm. Based on this, Sucker and Ochs (2024) construct a
suitable probability space (Ω,F ,P) that describes the joint distribution over hyperparam-
eters α, parameters θ, and corresponding trajectories ξ generated by A(α, θ, ·, ·). Then, by
leveraging a well-known result by Catoni (2007), they show that properties of the trajec-
tories ξ, encoded as sets A ∈ B(P) ⊗ B(SN0), generalize in a PAC-Bayesian way: On an
intuitive level, the probability to observe a problem instance ℓ(·, θ) and a corresponding
trajectory ξ generated by the algorithm A(α, θ, ·, ·), which satisfies the properties encoded
in A, can be bounded based on empirical estimates on the i.i.d. data set P[N] of N param-
eters. Note that, by considering the complementary event Ac, this can also be turned into
a lower bound.

5

Theorem 3.3. Let A ⊂ P × SN0 be measurable. Then, for λ ∈ (0,∞), it holds that:

PP[N]

{
∀ρ ∈ P(PH) : ρ[P(P,ξ)|H {A}] ≤

Φ−1
λ
N

(1

N

N∑
n=1

ρ
[
P(Pn,ξn)|H ,Pn

{A}
]

+
DKL(ρ ∥ PH) + log

(
1
ε

)
λ

)}
≥ 1 − ε ,

where Φ−1
a (p) := 1−exp(−ap)

1−exp(−a) .

Here, PH is the so-called prior over hyperparameters, every ρ ∈ P(PH) is called a posterior,
and P(P,ξ)|H is the conditional distribution of the parameters with corresponding trajectory,
given the hyperparameters. In this paper, we apply Theorem 3.3 to the set of sequences
that converge to a stationary point of ℓ.

Definition 3.4. Let f : Rd → R ∪ {+∞} be proper. A point x ∈ S is called stationary for
f , if 0 ∈ ∂f(x).

For this, we make the following additional assumption:

Assumption 3. The function ℓ : S × P → [0,∞] is proper, lower semi-continuous, and
continuous on dom ℓ. Furthermore, the map (x, θ) 7→ ∂xℓ(x, θ) is outer semi-continuous.

Finally, our main result also relies on the following well-known convergence theorem by
Attouch et al. (2013, Theorem 2.9). It shows that convergence is a consequence of some
general properties of the trajectory, which can be observed during training, or, even more
so, for which the algorithm can be trained.

Theorem 3.5. Let f : Rd → R ∪ {+∞} be a proper lower semi-continuous function that
is bounded from below. Further, suppose that (x(n))n∈N0 ⊂ Rd is a sequence satisfying the
following property: There exists positive scalars a and b such that:

(i) Sufficient-decrease condition: For each k ∈ N0, f(x(k+1))+a∥x(k+1)−x(k)∥2 ≤ f(x(k)).

(ii) Relative-error condition: For each k ∈ N0, there exists v(k+1) ∈ ∂f(x(k+1)), such that
∥v(k+1)∥ ≤ b∥x(k+1) − x(k)∥.

(iii) Continuity condition: For any convergent subsequence x(kj)
j→∞→ x̂, we have

f(x(kj))
j→∞→ f(x̂).

If, additionally, the sequence (x(n))n∈N0 is bounded and f is a Kurdyka- Lojasiewicz function,
then (x(n))n∈N0 converges to a stationary point of f .

Remark 3.6. (i) The function ℓ(·, θ) is proper, continuous on its domain, and bounded
from below. Hence, for (x(n))n∈N0 ⊂ dom ℓ(·, θ), the continuity condition holds. Thus,
we have to make sure that the sufficient-decrease condition, the relative-error condi-
tion, and the boundedness do hold.

(ii) Actually, Theorem 2.9 of Attouch et al. (2013) is stated slightly different: They assume
existence of a convergent subsequence instead of boundedness. Yet, the boundedness
assumption implies existence and is standard (Bolte et al., 2014).

6

4 Theoretical Results

In this section, we combine Theorem 3.3 with Theorem 3.5 to get a generalization result for
the convergence of learned algorithms to stationary points. In doing so, we bring together
advanced tools from learning theory and optimization. We show that the probability to
observe a parameter θ and a corresponding trajectory ξ, which converges to a stationary
point of ℓ(·, θ), generalizes. For this, we formulate the sufficient-descent condition, the
relative-error condition, and the boundedness assumption as measurable sets in P × SN0 ,
such that their intersection is exactly the sequences satisfying the properties of Theorem 3.5.

4.1 Measurability

For this, we first encode the needed properties of the trajectory as sets in P × SN0 . Then,
to apply Theorem 3.3, we show that they are actually measurable w.r.t. B(P) ⊗ B(SN0).
Hence, denote the (parametric) set of stationary points of ℓ by

Astat := {(θ, x) ∈ P × S : 0 ∈ ∂xℓ(x, θ)} .

Then, the section Astat,θ := {x ∈ S : (θ, x) ∈ Astat} is the set of stationary points of ℓ(·, θ).

Lemma 4.1. Suppose that Assumptions 1, 2 and 3 hold. Define the (parametric) set of
sequences that converge to a stationary point of ℓ as

Aconv := {(θ, (x(n))n∈N0) ∈ P × SN0 : ∃x∗ ∈ Astat,θ s.t. lim
n→∞

∥x(n) − x∗∥ = 0} .

Then Aconv is measurable.

Proof. The idea of the proof is to show that Aconv can be written as countable intersec-
tion/union of measurable sets. This is possible, because the considered spaces are Polish,
that is, they have a countable, dense subset, and they are complete, that is, limits of Cauchy
sequences are inside the space. The details of the proof are provided in Appendix B.

Lemma 4.2. Assume that Assumptions 1 and 2 hold. Define the (parametric) set of se-
quences that satisfy the sufficient-descent condition as

Adesc :=
{

(θ, (x(n))n∈N0) ∈ P × SN0 : (x(n))n∈N0 ⊂ dom ℓ(·, θ) and ∃a > 0 s.t. ∀k ∈ N0

ℓ(x(k+1), θ) + a∥x(k+1) − x(k)∥2 ≤ ℓ(x(k), θ)
}
.

Then Adesc is measurable.

Proof. Since Q is dense in R, we can restrict to a ∈ (0,∞) ∩ Q =: Q+. Then Adesc can be
written as ⋃

a∈Q+

⋂
k∈N0

Aa,k

 ∩

 ⋂
k∈N0

{
ℓ(x(k), θ) < ∞

} ,

where Aa,k is given by:{
ℓ(x(k+1), θ) + a∥x(k+1) − x(k)∥2 ≤ ℓ(x(k), θ)

}
.

7

Since σ-algebras are stable under countable unions/intersection, it suffices to show that
the sets {ℓ(x(k), θ) < ∞} and Aa,k are measurable. Here, the set {ℓ(x(k), θ) < ∞} can be
written as: {

ℓ(x(k), θ) < ∞
}

= (ℓ ◦ Φ ◦ (id,Xk))−1 [0,∞) ,

where Φ : P ×S → S×P just interchanges the coordinates (which is measurable), and id is
the identity on P . Since [0,∞) is a measurable set and ℓ is assumed to be measurable, we
have that {ℓ(x(k), θ) < ∞} is meaurable for each k ∈ N0. To show that Aa,k is measurable,
we define the function ga : (dom ℓ)2 → R through ((x1, θ1), (x2, θ2)) 7→ ℓ(x2, θ2)−ℓ(x1, θ1)+
a∥x2 − x1∥2. Then, ga is measurable and Aa,k can be written as:

Aa,k = {ga(xk, θ, xk+1, θ) ≤ 0}
= {(ga ◦ (Xk, id,Xk+1, id) ◦ ι) (θ, (xn)n∈N0) ≤ 0}
= (ga ◦ (Xk, id,Xk+1, id) ◦ ι))−1 (−∞, 0] ,

where ι : P × SN0 → (SN0 × P)2 is the diagonal inclusion (θ, x) 7→ ((x, θ), (x, θ), which is
measurable w.r.t. to the product-σ-algebra on (SN0 × P)2, since ι−1 (B1 × B2) = B1 ∩ B2.
Thus, the set Aa,k is measurable, which concludes the proof.

We proceed with the relative error condition. It involves a union over all subgradients,
and therefore might not be measurable. Hence, we have to restrict to subgradients given
through a measurable selection, that is, a measurable function v : dom ∂xℓ → S, such that
v(x, θ) ∈ ∂xℓ(x, θ) for every (x, θ) ∈ dom ∂xℓ. Under the given assumptions, its existence is
guaranteed by Corollary C.3 in Appendix C.

Lemma 4.3. Suppose that Assumptions 1, 2 and 3 hold. Define the (parametric) set of
sequences that satisfy the relative-error condition as

Aerr :=
{

(θ, (x(n))n∈N0) ∈ P × SN0 : (θ, x(k)) ∈ dom ∂xℓ ∀k ∈ N0 and ∃b > 0 s.t. ∀k ∈ N0

∥v(x(k+1), θ)∥ ≤ b∥x(k+1) − x(k)∥
}
.

Then Aerr is measurable.

Proof. This follows similar to the proof of Lemma 4.2 with

gb((x1, θ1), (x2, θ2)) = ∥v(x2, θ2)∥ − b∥x2 − x1∥ .

The details are given in Appendix C.

Lemma 4.4. Assume that Assumption 1 holds. Define the set of bounded sequences as:

Ãbound =
{

(x(n))n∈N0 ∈ SN0 : ∃c ≥ 0 s.t. ∥x(k)∥ ≤ c ∀k ∈ N0

}
.

Then Abound := P × Ãbound is measurable.

Proof. This follows as before with gc(x) := ∥x∥. The details are given in Appendix D.

8

4.2 Convergence to stationary points

We are now in a position to derive our main result.

Corollary 4.5. Suppose that Assumptions 1, 2, and 3 hold. Furthermore, assume that
ℓ(·, θ) is a Kurdyka- Lojasiewicz function for every θ ∈ P . Then the sets Adesc ∩ Aerr ∩
Abound ⊂ P × SN0 and Aconv ⊂ P × SN0 are measurable, and it holds that:

Adesc ∩ Aerr ∩ Abound ⊂ Aconv .

Proof. Take (θ, (x(n))n∈N0) ∈ Adesc ∩ Aerr ∩ Abound. Then, (x(n))n∈N0 satisfies the sufficient-
descent condition and the relative-error condition for ℓ(·, θ), and the sequence (x(n))n∈N0

stays bounded. Further, (x(n))n∈N0 also satisfies the continuity condition, since we have
(x(n))n∈N0 ⊂ dom ℓ(·, θ) and ℓ is continuous on its domain. Thus, Theorem 3.5 implies that
(x(n))n∈N0 converges to a stationary point of ℓ(·, θ). Hence, there exists x∗ ∈ Astat,θ, such
that limn→∞ ∥x(n) − x∗∥ = 0. Therefore, (θ, (x(n))n∈N0) ∈ Aconv.

In particular, if µ is a (probability) measure on P × SN0 , for example, µ = P(P,ξ)|H =α for
a given α ∈ H, by the monotonicity of measures it holds that:

µ{Adesc ∩ Aerr ∩ Abound} ≤ µ{Aconv} .

This idea yields our main theorem:

Theorem 4.6. Suppose that Assumptions 1, 2, and 3 hold. Further, assume that ℓ(·, θ)
is a Kurdyka– Lojasiewicz function for every θ ∈ P . Abbreviate A := Adesc ∩ Aerr ∩ Abound.
Then, for λ ∈ (0,∞), it holds that:

PP[N]

{
∀ρ ∈ P(PH) : ρ[P(P,ξ)|H {Aconv}] ≥ 1−

Φ−1
λ
N

(1

N

N∑
n=1

ρ
[
P(Pn,ξn)|H ,Pn

{Ac}
]

+
DKL(ρ ∥ PH) + log

(
1
ε

)
λ

)}
≥ 1 − ε .

Proof. By taking the complementary events in Corollary 4.5, we have PH -a.s.:

P(P,ξ)|H {Ac} ≥ 1 − P(P,ξ)|H {Aconv} .

By Theorem 3.3, for any measurable set B ⊂ P × SN0 and λ ∈ (0,∞), we have:

PP[N]

{
∀ρ ∈ P(PH) : ρ[P(P,ξ)|H {B}] ≤

Φ−1
λ
N

(1

N

N∑
n=1

ρ
[
P(Pn,ξn)|H ,Pn

{B}
]

+
DKL(ρ ∥ PH) + log

(
1
ε

)
λ

)}
≥ 1 − ε .

Hence, using B := Ac, inserting the inequality above, and rearranging the terms yields the
result.

Remark 4.7. Actually, the lower bound holds for P(P,ξ)|H {A}. Further, since we do not
know P(P,ξ)|H {Aconv \ A}, we do not know how tight this bound is for P(P,ξ)|H {Aconv}.

9

5 Experiments

In this section, we conduct two experiments: The strongly convex and smooth problem
of minimizing quadratic functions with varying strong convexity, varying smoothness, and
varying right-hand side, and the non-smooth non-convex problem of training a neural net-
work on different data sets.

5.1 Quadratic Problems

First, we train the algorithm A to solve quadratic problems. Thus, each optimization
problem ℓ(·, θ) is of the form

min
x∈Rd

1

2
∥Ax− b∥2, A ∈ Rd×d, b ∈ Rd ,

such that the parameters are given by θ = (A, b) ∈ Rd2+d =: P , and the optimization
variable is x ∈ Rd (d = 200). The strong-convexity and smoothness constants of ℓ are
sampled randomly in the intervals [m−,m+], [L−, L+] ⊂ (0,+∞), and we define the matrix
Aj , j = 1, ..., N , as a diagonal matrix with entries ajii =

√
mj +i(

√
Lj−

√
mj)/d, i = 1, ..., d.

In principle, this is a severe restriction. However, we do not use this knowledge explicitly in
the design of our algorithm A, that is, if the algorithm “finds” this structure during learning
by itself, it can leverage on it. Like this, the given class of functions is L+-smooth and m−-
strongly convex, such that we use heavy-ball with friction (HBF) (Polyak, 1964) as worst-
case optimal baseline. Its update is given by x(n+1) = x(n)−β1∇f(x(n))+β2

(
x(n) − x(n−1)

)
,

where the optimal worst-case convergence rate is attained for β1 =
(

2√
L++

√
µ−

)2
, β2 =(√

L+−√
µ−√

L++
√
µ−

)2
(Nesterov, 2018). Similarly, the learned algorithm A performs an update of

the form ξ(n+1) = ξ(n) + β(n)d(n), where β(n) and d(n) are predicted by separate blocks of a
neural network. Here, we stress that the update is not constrained in any way. For more
details on the architecture we refer to Appendix E. Since the functions are smooth and
strongly convex, they satisfy all the needed properties of Theorem 3.5, and the continuity
condition does hold. Hence, we only have to check the sufficient-descent condition and
the relative-error condition. Here, obviously, it is impossible in practice to check them
for all k ∈ N0. Thus, we restrict to ntrain = 500 iterations. Assuming to be given a
measurable selection v(x̄, θ̄) ∈ ∂xℓ(x̄, θ̄), the relative-error condition is trivially satisfied
with b := maxk≤ntrain

{∥v(ξ(k), θ)∥}/mink≤ntrain
∥ξ(k) − ξ(k−1)∥, such that we only have to

check the sufficient-descent condition during training. Finally, we consider a trajectory ξ to
be converged, if the loss is smaller than 10−16. For more details about the actual training of
the algorithm we refer to Appendix F. The results of this experiment are shown in Figure 1:
The left plot shows the distance to the minimizer x∗θ over the iterations, where HBF is
shown in blue and the learned algorithm in pink. We can see that the learned algorithm
outperforms HBF by several orders of magnitude. The right plot shows the estimated
probabilities P(P,ξ)|H {A} (orange), P(P,ξ)|H {Aconv} (purple), and the PAC-bound (dark
orange) on 250 test sets of size N = 250. We can see that the PAC-bound is quite tight
for P(P,ξ)|H {A}, while there is a substantial gap P(P,ξ)|H {Aconv \ A}, such that it is not

10

0 200 400 600 800 1000

nit

10−13

10−9

10−5

10−1

103

107

‖x
(n

)
−
x
∗ θ‖

2
Dist. to Minimizer

Learned

ntrain

HBF

0.7 0.8 0.9 1.0

p

0

20

40

60

Conv. Prob.

P(P,ξ)|H {A}
P(P,ξ)|H {Aconv}
PAC-bound

Figure 1: Solving quadratic problems: The left figure shows the distance to the minimizer
over the iterations, where HBF is shown in blue and the learned algorithm in pink.
The mean and median are shown as dashed and dotted lines, respectively, while
the shaded region represents the test data up to the quantile q = 0.95. One can
see that the learned algorithm converges way faster than HBF. The right plot
shows the estimates (dashed lines) for P(P,ξ)|H {A} (orange), P(P,ξ)|H {Aconv}
(purple), and the PAC-bound (dark orange). One can see that the predicted
chain of inequalities 1 − Φ−1(...) ≤ P(P,ξ)|H {A} ≤ P(P,ξ)|H {Aconv} does hold
true.

really tight for P(P,ξ)|H {Aconv}. Nevertheless, it guarantees that the learned algorithm will
converge in about 75% of the test problems.

5.2 Training a Neural Network

As second experiment, we train the algorithm A to train a neural network N on a simple
regression problem. Thus, the algorithm A predicts parameters β ∈ Rp, such that N(β, ·)
estimates a function g : R → R from noisy observations yi,j = gi(xj) + εi,j , i = 1, ..., N ,

j = 1, ...,K (K = 50), with εi,j
iid∼ N (0, 1). Here, we use the mean square error as loss

for the neural network, and for N we use a fully-connected two layer neural network with
ReLU-activation functions. Then, by using the data sets as parameters, that is, P = RK×2

and θi = {(xi,j , yi,j)}Kj=1, the loss functions for the algorithm are given by ℓ(β, θi) :=
1
K

∑K
j=1(N(β, xi,j) − yi,j)

2, which are non-smooth non-convex in β. Here, the input x is

transformed into the vector (x, x2, ..., x5), such that the parameters β ∈ Rp are given by
the weights A1 ∈ R50×5, A2 ∈ R1×50 and biases b1 ∈ R50, b2 ∈ R of the two fully-connected
layers. Thus, the optimization space is of dimension p = 351. For the functions gi we use
polynomials of degree d = 5, where we sample the coefficients (ci,0, ..., ci,5) uniformly in
[−5, 5]. Similarly, we sample the points {xi,j}Kj=1 uniformly in [−2, 2]. As baseline we use
Adam (Kingma and Ba, 2015) as it is implemented in PyTorch (Paszke et al., 2019), and
we tune its step-size with a simple grid search over 100 values in [10−4, 10−2], such that its
performance is best for the given ntrain = 250 iterations. This yields the value κ = 0.008.
Note that we use Adam in the “full-batch setting” here, while, originally, it was introduced
for the stochastic case. On the other hand, the learned algorithm performs the update

11

0 100 200 300 400 500

nit

10−4

10−2

100

‖x
(n

)
−
x
∗ θ‖

2
Dist. to Stat. Point

Learned

ntrain

Adam

0 100 200 300 400 500

nit

100

101

102

103

104

`(
x

(n
)
,θ

)

Loss

Learned

ntrain

MSE(g(x), yobs)

Adam

0.7 0.8 0.9 1.0

p

0

20

40

60

80

Conv. Prob.

PAC-bound

P(P,ξ)|H {A}

Figure 2: Training a neural network: The left figure shows the distance to the estimated
stationary point and the figure in the middle shows the loss. Here, Adam is shown
in blue and the learned algorithm in pink. The mean and median are shown as
dashed and dotted lines, respectively, while the shaded region represents the
test data up to the quantile q = 0.95. One can see that the learned algorithm
minimizes the loss faster than Adam, and it seems to converge to a stationary
point. The right plot shows the estimate (dashed line) for P(P,ξ)|H {A} (orange)
and the PAC-bound (dark orange).

x(n+1) = x(n) + d(n)/
√
n, where d(n) is predicted by a neural network. Again, we stress

that d(n) is not constrained in any way. For more details on the architecture, we refer to
Appendix G. As we cannot access the stationary points directly, we approximate them by
running gradient descent for 5 · 104 iterations with a step-size of 1 · 10−6, starting for each
problem and algorithm from the last iterate (n = 500). Similarly, we cannot estimate the
convergence probability in this case, only the probability for the event A. The results of this
experiment are shown in Figure 2: The left plot shows the distance to the (approximated)
stationary point and the plot in the middle shows the loss. Here, Adam is shown in blue,
while the learned algorithm is shown in pink. Finally, the right plot shows the estimate for
P(P,ξ)|H {A} and the predicted PAC-bound. We can see that the learned algorithm does
indeed seem to converge to a stationary point and it minimizes the loss faster than Adam.
Further, the PAC-bound is quite tight, and it guarantees that the learned algorithm will
converge in about 92% of the problems.

6 Conclusion

We presented a generalization result for the convergence of learned optimization algorithms
to stationary points of the loss function. This approach can be seen as being complementary
to the use of safeguarding: Instead of imposing the needed properties, we show that the
probability to observe a trajectory, which has these properties, generalizes to unseen prob-
lems. While it is theoretically sound, practically this approach has at least four drawbacks:
First, and foremost, one simply cannot observe the whole trajectory in practice. Thus, one
will only get an approximation to this result, that is, one can only check whether the used
conditions do hold up to a certain number of iterations. Nevertheless, by using sufficiently

12

many iterations, one could guarantee that the algorithm gets sufficiently close to a station-
ary point. Secondly, instead of checking the conditions that were used here, one could also
just try to observe the final result by, for example, observing the norm of the gradient.
However, when checking the proposed conditions, one is guaranteed to get arbitrary close
to a stationary point, while, when just observing the gradient norm, one could end up with
a small gradient norm that is arbitrary far away from a stationary point. Especially, this
applies in the non-smooth setting, where the subdifferential does not necessarily tell any-
thing about the distance to a stationary point, or to applications where one simply cannot
access stationary points during training. Thirdly, for now, training the algorithm in such
a way that it actually does satisfy the proposed properties on a majority of problems is
quite difficult and time-consuming. Lastly, Theorem 3.5 is not well-suited for stochastic
optimization. Nevertheless, Theorem 3.3 and the overall methodology can also be used for
deriving convergence results for stochastic algorithms.

13

Appendix A. Missing Definitions

The following definitions can be found in the book of Rockafellar and Wets (2009). A
function f : Rd → R ∪ {±∞} is called proper, if f(x) < +∞ for at least one point x ∈ Rd

and f(x) > −∞ for all x ∈ Rd. In this case, the effective domain of f is the set

dom f := {x ∈ Rd : f(x) < +∞} .

Similarly, for a set-valued mapping S : X ⇒ U the graph is defined as

gph S := {(x, u) ∈ X × U : u ∈ S(x)} ,

while its domain is defined as

dom S := {x ∈ X : S(x) ̸= ∅} .

The outer limit of a set-valued map S : Rd ⇒ Rd is defined as:

lim sup
x→x̄

S(x) :=
{
u | ∃x(k) → x̄, ∃u(k) → u with u(k) ∈ S(x(k))

}
.

Based on this, S is said to be outer semi-continuous at x̄, if

lim sup
x→x̄

S(x) ⊂ S(x̄) .

Definition A.1. Consider a function f : Rd → R ∪ {±∞} and a point x̄ with f(x̄) finite.
For a vector v ∈ Rd, one says that

(i) v is a regular subgradient of f at x̄, if

f(x) ≥ f(x̄) + ⟨v, x− x̄⟩ + o (∥x− x̄∥) .

The set of regular subgradients of f at x̄, denoted by ∂̂f(x̄), is called the regular
subdifferential of f at x̄.

(ii) v is a (general) subgradient of f at x̄, if there are sequences x(n) → x̄ and v(n) → v
with f(x(n)) → f(x̄) and v(n) ∈ ∂̂f(x(n)). The set of subgradients of f at x̄, denoted
by ∂f(x̄), is called the (limiting) subdifferential of f at x̄.

Finally, the following definition can be found in Attouch et al. (2013, Definition 2.4, p.7).

Definition A.2. a) The function f : Rd → R ∪ {+∞} is said to have the Kurdyka-
 Lojasiewicz property at x̄ ∈ dom ∂f , if there exist η ∈ (0,+∞], a neighborhood U of
x̄, and a continuous concave function φ : [0, η) → [0,∞), such that

(i) φ(0) = 0,

(ii) φ is C1 on (0, η),

(iii) for all s ∈ (0, η), φ′(s) > 0,

(iv) for all x in U ∩{f(x̄) < f < f(x̄) + η}, the Kurdyka- Lojasiewicz inequality holds

φ′ (f(x) − f(x̄)) · dist(0, ∂f(x)) ≥ 1 .

b) Proper lower semi-continuous functions which satisfy the Kurdyka- Lojasiewicz prop-
erty at each point of dom ∂f are called Kurdyka- Lojasiewicz functions.

14

Appendix B. Proof of Lemma 4.1

Lemma B.1. Suppose Assumption 3 holds. Then, Astat is closed.

Proof. Take (θ(n), x(n))n∈N ⊂ Astat with (θ(n), x(n)) → (θ̄, x̄) ∈ P ×S. We need to show that
(θ̄, x̄) ∈ Astat. Since (x, θ) 7→ ∂xℓ(x, θ) is outer semi-continuous, we have:

lim sup
(x,θ)→(x̄,θ̄)

∂xℓ(x, θ) ⊂ ∂xℓ(x̄, θ̄) .

By definition of the outer limit, this is the same as:{
u ∈ S | ∃(x(k), θ(k)) → (x̄, θ̄), ∃u(k) → u with u(k) ∈ ∂xℓ(x

(k), θ(k))
}
⊂ ∂xℓ(x̄, θ̄) .

In particular, we have that (θ(n), x(n))n∈N → (x̄, θ̄), and it holds 0 ∈ ∂xℓ(θ
(n), x(n)) for all

n ∈ N. Thus, setting u(n) := 0 for all n ∈ N and u := 0, we conclude that 0 ∈ ∂xℓ(x̄, θ̄).
Hence, (θ̄, x̄) ∈ Astat, and Astat is closed.

Now, we can prove Lemma 4.1:

Proof. To show measurability of Aconv, we adopt the notation of the limes inferior for sets
from probability theory: If d is a metric on P × S and ε > 0, define the set

{Bε(θ, x) ult.} :=
{

(θ′, x(k)) ∈ Bε(θ, x) ult.
}

:=
⋃

n∈N0

⋂
k≥n

{
(θ′, x(k)) ∈ Bε(θ, x)

}
.

Here,
{

(θ′, x(k)) ∈ Bε(θ, x)
}

is a short-hand notation for {(θ′, (x(n))n∈N0) ∈ P × SN0 :

(θ′, x(k)) ∈ Bε(θ, x)}. Thus, {Bε(θ, x) ult.} is the (parametric) set of all sequences in S that
ultimately lie in the ball with radius ε around (θ, x). Note that {Bε(θ, x) ult.} is measur-
able w.r.t. to the product σ-algebra on P ×SN0 , since it is the countable union/intersection
of measurable sets, where {(θ′, x(k)) ∈ Bε(θ, x)} is measurable, since it can be written
as {d((θ′, x(k)), (θ, x)) < ε} = (g ◦ (id,Xk))−1 [0, ε). Here, id is the identity on P , and
g(θ′, x′) := d((θ′, x′), (θ, x)) is continuous.
Since the proof does not get more complicated by considering a general Polish space P
instead of Rp, we prove the result in this more general setting: If Astat is empty, we get that
Aconv = ∅, which is measurable. Hence, w.l.o.g. assume that Astat ̸= ∅. Since P is Polish,
there is a complete metric dP and a countable dense subset P̂ ⊂ P . Then, we have that
d := dP + ∥ · − · ∥ is a complete metric on P ×S, which metrizes the product topology, and
therefore yields the same product σ-algebra. Furthermore, the set D := P̂ ×Qd is dense in
P × S. We claim that:

Aconv =
⋂
k∈N

⋃
(θ,x)∈D

Astat∩B1/k(θ,x)̸=∅

{
B1/k(θ, x) ult.

}
=: C .

If this equality holds, Aconv is measurable as a countable intersection/union of measurable
sets. Thus, it remains to show the equality Aconv = C, which we do by showing both
inclusions. Therefore, first, take (θ, (x(n))n∈N0) ∈ Aconv. Then there exists x∗ ∈ S, such
that (θ, x∗) ∈ Astat and limn→∞ ∥x(n)−x∗∥ = 0. Hence, for any k ∈ N, there exists Nk ∈ N,

15

such that x(n) ∈ B1/3k(x∗) for all n ≥ Nk. Now, take (θk, xk) ∈ D, such that θk ∈ B1/3k(θ)
and xk ∈ B1/3k(x∗), which exists, since D is dense. Then, for all n ≥ Nk we have:

d((θ, x(n)), (θk, xk)) = dP (θ, θk) + ∥x(n) − xk∥ ≤ dP (θ, θk) + ∥x(n) − x∗∥ + ∥x∗ − xk∥ <
1

k
,

that is, (θ, (x(n))n∈N0) ∈ {B1/k(θk, xk) ult.}. Further, we have:

d((θ, x∗), (θk, xk)) <
2

3k
<

1

k
.

Hence, (θk, xk) ∈ D with Astat ∩ B1/k(θk, xk) ̸= ∅. Since such a tuple (θk, xk) ∈ D can be
found for any k ∈ N, we get:

(θ, (x(n))n∈N0) ∈
⋃

(θ′,x)∈D
Astat∩B1/k(θ

′,x)̸=∅

{B1/k(θ′, x) ult.}, ∀k ∈ N .

Then, however, this implies (θ, (x(n))n∈N0) ∈ C, which shows the inclusion Aconv ⊂ C. Now,
conversely, let (θ, (x(n))n∈N0) ∈ C. Then, for every k ∈ N there exists (θk, xk) ∈ D with
Astat ∩ B1/k(θk, xk) ̸= ∅, and a Nk ∈ N, such that

(θ, x(n)) ∈ B1/k(θk, xk), ∀n ≥ Nk .

The resulting sequence of midpoints (θk, xk)k∈N is Cauchy in P × S, because: For k, l ∈ N,
we have that (θ, x(n)) ∈ B1/k(θk, xk) for all n ≥ Nk, and (θ, x(n)) ∈ B1/l(θl, xl) for all n ≥ Nl.

Thus, for n ≥ N := max{Nk, Nl}, we get (θ, x(n)) ∈ B1/k(θk, xk)∩B1/l(θl, xl), which allows
for the following bound:

d((θk, xk), (θl, xl)) ≤ d((θk, xk), (θ, x(Nk))) + d((θ, x(Nk)), (θ, x(N)))

+ d((θ, x(N)), (θ, x(Nl))) + d((θ, x(Nl)), (θl, xl))

≤ 1

k
+

2

k
+

2

l
+

1

l
≤ 3

k
+

3

l

k,l→∞→ 0 .

Hence, by completeness of P × S, the sequence (θk, xk)k∈N0 has a limit (θ∗, x∗) in P × S.
First, we show that θ∗ = θ: Since (θ, x(Nk)) ∈ B1/k(θk, xk) for all k ∈ N, we have by
continuity of the metric:

dP (θ, θ∗) = lim
k→∞

dP (θ, θk) ≤ lim
k→∞

d((θ, x(Nk)), (θk, xk)) ≤ lim
k→∞

1

k
= 0 .

Thus, actually, (θk, xk) → (θ, x∗). Second, we show that (θ, x∗) ∈ Astat, that is, x∗ ∈
Astat,θ: Assume the contrary, that is, (θ, x∗) ∈ Ac

stat. By Lemma B.1, the set Astat is
closed. Thus, its complement Ac

stat is open, and there exists ε > 0 with Bε(θ, x
∗) ⊂ Ac

stat,
that is, Bε(θ, x

∗) ∩ Astat = ∅. Since (θk, xk) → (θ, x∗), there exists N ∈ N, such that
d((θk, xk), (θ, x∗)) < ε

3 for all k ≥ N . Then, however, taking k ≥ N with 1
k < ε

3 , we
conclude that

B1/k(θk, xk) ∩ Astat = ∅ .

16

By definition of the sequence (θk, xk)k∈N, this is a contradiction. Hence, we have (θ, x∗) ∈
Astat, and it remains to show that also the sequence (x(n))n∈N0 converges to x∗. For this,
assume the contrary again. Then there exists an ε > 0 with the property that for all N ∈ N,
one can find a ñ ≥ N , such that ∥x(ñ) − x∗∥ ≥ ε. Now, choose k ∈ N large enough, such
that ∥xk − x∗∥ ≤ ε

3 and 1
k < ε

3 . Then, since (θ, x(n)) ∈ B1/k(θk, xk) for all n ≥ Nk, we have
for all n ≥ Nk:

∥x(n) − x∗∥ ≤ ∥x(n) − xk∥ + ∥xk − x∗∥ ≤ 2ε

3
< ε .

Again, this is a contradiction and such an ε > 0 cannot exists. Thus, (x(n)) converges to
x∗ ∈ Astat,θ, and we have (θ, (x(n))n∈N0) ∈ Aconv, which concludes the proof.

Appendix C. Existence of Measurable Selection and Proof of Lemma 4.3

Definition C.1. A set-valued mapping S : T ⇒ Rd is measurable, if for every open set
O ⊂ Rd the set S−1(O) ⊂ T is measurable. In particular, dom S must be measurable.

Lemma C.2. Suppose Assumption 3 holds. Then (x, θ) 7→ ∂xℓ(x, θ) is closed-valued and
measurable.

Proof. Since ∂xℓ(x, θ) is the subdifferential of ℓ(·, θ) at x, by Rockafellar and Wets (2009,
Theorem 8.6, p.302), we have that, for every θ̄ ∈ P , and every x̄ ∈ dom ℓ(·, θ̄), the set
∂xℓ(x̄, θ̄) is closed. Hence, we have that ∂xℓ(x̄, θ̄) is closed for every (x̄, θ̄) ∈ dom ℓ. Further,
for (x̄, θ̄) ̸∈ dom ℓ, we have ∂xℓ(x̄, θ̄) = ∅, which is closed, too. Therefore, (x̄, θ̄) 7→ ∂xℓ(x̄, θ̄)
is closed-valued. Finally, since (x̄, θ̄) 7→ ∂xℓ(x̄, θ̄) is also outer semi-continuous, Rockafellar
and Wets (2009, Exercise 14.9, p.649) implies that ∂xℓ is measurable w.r.t. B(S × P).

Corollary C.3. Suppose Assumption 3 holds. Then there exists a measurable selection
for ∂xℓ, that is, a measurable map v : dom ∂xℓ → S, such that v(x, θ) ∈ ∂xℓ(x, θ) for all
(x, θ) ∈ S × P .

Proof. By Lemma C.2, the map (x, θ) 7→ ∂xℓ(x, θ) is closed-valued and measurable. Hence,
the result follows directly from Rockafellar and Wets (2009, Corollary 14.6, p.647).

Now, we can prove Lemma 4.3:

Proof. Since we can again restrict to b ∈ Q ∩ (0,∞) =: Q+, Aerr can be written as:

Aerr =

 ⋃
b∈Q+

⋂
k∈N0

Bb,k

 ∩

 ⋂
k∈N0

{(x(k), θ) ∈ dom ∂xℓ}

 ,

where Bb,k is given by:

Bb,k :=
{

(θ, (x(n))n∈N0) ∈ P × SN0 : ∥v(x(k+1), θ)∥ ≤ b∥x(k+1) − x(k)∥
}
.

Hence, since σ-algebras are stable under countable unions/intersections, we only have to
show measurability of the sets Bb,k and {(θ, x(k)) ∈ dom ∂xℓ}. Here, it holds that:

{(x(k), θ) ∈ dom ∂xℓ} = (Xk, id)−1 (dom ∂xℓ) ,

17

where id is the identity on P . By Lemma C.2, dom ∂xℓ is measurable, such that {(θ, x(k)) ∈
dom ∂xℓ} is measurable for each k ∈ N0. Thus, it remains to show the measurability of
the set Bb,k. For this, introduce the function gb : (dom ∂xℓ)

2 → R, ((x1, θ1), (x2, θ2)) 7→
∥v(x2, θ2)∥ − b∥x2 − x1∥. Since v is measurable, and the norm is continuous, we have that
gb is measurable. With this, we can write the set Bb,k as:

Bb,k = {gb(x(k), θ, x(k+1), θ) ≤ 0}
= {(gb ◦ (Xk, id,Xk+1, id) ◦ ι) (θ, (x(n))n∈N0) ≤ 0}
= (gb ◦ (Xk, id,Xk+1, id) ◦ ι)−1 (−∞, 0] ,

where ι : P × SN0 → (SN0 × P)2 is the diagonal inclusion (x1, x2) 7→ ((x2, x1), (x2, x1),
which again is measurable. Thus, Bb,k is measurable for each k ∈ N0 and b ∈ Q+ , which
concludes the proof.

Appendix D. Proof of Lemma 4.4

By definition of the product σ-algebra on P × SN0 , it suffices to show that Ãbound is mea-
surable. Then, as it suffices to consider c ∈ [0,∞) ∩Q =: Q+, one can write Ãbound as:

Ãbound =
⋃

c∈Q+

⋂
k∈N0

{(x(n))n∈N0 ∈ SN0 : ∥x(k)∥ ≤ c}︸ ︷︷ ︸
=:Cc,k

.

Thus, by the properties of a σ-algebra, it suffices to show that the sets Cc,k with c ∈ Q+

and k ∈ N0 are measurable. By defining g(x) = ∥x∥, this follows directly from the identity
Cc,k = (g ◦ Xk)−1 [0, c].

Appendix E. Architecture of the Algorithm for Quadratic Problems

The algorithmic update is adopted from Sucker and Ochs (2024) and consists of two blocks:

1) The first block consists of 1 × 1-convolutional layers with ReLU-activation functions
and computes the update direction d(n). As features, we use the normalized gradient

d
(n)
1 := ∇ℓ(x(n),θ)

∥∇ℓ(x(n),θ)∥ , the normalized momentum term d
(n)
2 := x(n)−x(n−1)

∥x(n)−x(n−1)∥ , and their

coordinate-wise product d
(n)
1 ⊙d

(n)
2 . The normalization is done to stabilize the training.

2) The second block consists of linear layers with ReLU-activation functions and com-
putes the step-size β(n). As features, we use the (logarithmically transformed) gradient

norm s
(n)
1 := log

(
1 + ∥∇ℓ(x(n), θ)∥

)
, the (logarithmically transformed) norm of the

momentum term s
(n)
2 := log

(
1 + ∥x(n) − x(n−1)∥

)
, and the current and previous (loga-

rithmically transformed) losses s
(n)
3 := log

(
1 + ℓ(x(n), θ)

)
, s

(n)
4 := log

(
1 + ℓ(x(n−1), θ)

)
.

Again, the logarithmic scaling is done to stabilize training. Here, the term “+1” is
added to map zero onto zero.

Importantly, we want to stress that the algorithmic update is not constrained in any way:
the algorithm just predicts a direction and a step-size, and we do not enforce them to have
any specific properties.

18

d
(n)
1

d
(n)
2

d
(n)
1 ⊙ d

(n)
2 C

o
n
v
2
d
(
3
,
3
0
,
1
,
b
i
a
s
=
F
)

C
o
n
v
2
d
(
3
0
,
3
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
3
0
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
1
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
0
,
1
0
,
1
,
b
i
a
s
=
F
)

C
o
n
v
2
d
(
1
0
,
1
,
1
,
b
i
a
s
=
F
)

d(n)

s
(n)
1

s
(n)
2

s
(n)
3

s
(n)
4

L
i
n
e
a
r
(
4
,
3
0
,
b
i
a
s
=
F
)

L
i
n
e
a
r
(
3
0
,
3
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
3
0
,
2
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
2
0
,
1
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
1
0
,
1
0
,
b
i
a
s
=
F
)

L
i
n
e
a
r
(
1
0
,
1
,
b
i
a
s
=
F
)

β(n)

x(n)

x(n+1) := x(n) + β(n) · d(n)

Figure 3: Update step of A: The directions d
(n)
1 , d

(n)
2 and d

(n)
1 ⊙d

(n)
2 are inserted as different

channels into the Conv2d-block, which performs 1 × 1 “convolutions”, that is,

the algorithm acts coordinate-wise on the input. The scales s
(n)
1 , ..., s

(t)
4 get

transformed separately by the fully-connected block.

Appendix F. Training of the Algorithm

For training, we mainly use the procedure proposed (and described in detail) by Sucker
et al. (2024); Sucker and Ochs (2024). For completeness, we briefly summarize it here: In
the outer loop, we sample a loss-function ℓ(·, θ) randomly from the training set. Then, in
the inner loop, we train the algorithm on this loss-function with ℓtrain given by

ℓtrain(α, θ, ξ(n)) = 1{ℓ(ξ(n), θ) > 0}ℓ(ξ
(n+1), θ)

ℓ(ξ(n), θ)
· 1Cc(ξ(n), θ) ,

where C := {(θ, x) ∈ P × S : ℓ(x, θ) < 10−16} is the convergence set. That is, in
each iteration the algorithm computes a new point and observes the loss ℓtrain, which is
used to update its hyperparameters. We run this procedure for 150 · 103 iterations. This
yields hyperparameters α(0) ∈ H, such that A(α(0), ·, ·) has a good performance. However,
typically, it is not a descent method yet, that is, P(P,ξ)|H =α(0){A} is small, such that the
PAC-bound would be useless. Therefore, we employ the probabilistic constraining procedure
proposed (and described in detail) by Sucker et al. (2024) in a progressive way: Starting
from α(0), we try to find a sequence of hyperparameters α(1), α(2), ..., such that

P(P,ξ)|H =α(0){A} < P(P,ξ)|H =α(1){A} < P(P,ξ)|H =α(2){A} <

Remark F.1. The notation P(P,ξ)|H {A} is not entirely correct and is rather to be under-
stood suggestively, as the final prior distribution PH is yet to be constructed. However, we
think that it is easier to understand this way and therefore allow for this inaccuracy.

For this, we test the probabilistic constraint every 1000 iterations, that is: Given α(i),
we train the algorithm (as before) for another 1000 iterations, which yields a candidate
α̃(i+1). If P(P,ξ)|H =α(i){A} < P(P,ξ)|H =α̃(i+1){A}, we accept α(i+1) := α̃(i+1), otherwise

19

we reject it and start again from α(i). This finally yields some hyperparameters α0 that
have a good performance and such that P(P,ξ)|H =α0

{A} is large enough (here: about 90%).
Then, starting from α0, we construct the actual discrete prior distribution PH over points
α1, ..., αnsample

∈ H, by a sampling procedure. Finally, we perform the (closed-form) PAC-
Bayesian optimization step, which yields the posterior ρ∗ ∈ P(PH). In the end, for sim-
plicity, we set the hyperparameters to

α∗ = arg max
i=1,...,nsample

ρ∗{αi} .

For the construction of the prior, we use Nprior = 500 functions, for the probabilistic con-
straint we use Nval = 500 functions, and for the PAC-Bayesian optimization step we use
Ntrain = 250 functions, all of which are sampled i.i.d., that is, the data sets are independent
of each other.

Remark F.2. Training the algorithm to yield a good performance is comparably easy. On
the other hand, turning it into an algorithm, such that P(P,ξ)|H {A} is large enough (in our
case: a descent method without enforcing it geometrically) is challenging and, unfortunately,
not guaranteed to work. Nevertheless, it is key to get a meaningful guarantee.

Appendix G. Architecture of the Algorithm for Training the Neural
Network

s
(n)
1

s
(n)
2

s
(n)
3

s
(n)
4

s
(n)
5

n

L
i
n
e
a
r
(
6
,
3
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
3
0
,
2
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
2
0
,
1
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
1
0
,
4
,
b
i
a
s
=
F
)

w1

w2

w3

w4

g

m

w1 · g ⊙ d
(n)
1

w2 · d(n)
1

w3 · d(n)
2

w4 · m ⊙ d
(n)
2

C
o
n
v
2
d
(
4
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
1
,
1
,
b
i
a
s
=
F
)

d
(n)
out

x(n)

x(n+1)

Figure 4: Algorithmic update for training the neural network: Based on the given six fea-
tures, the first block computes four weights w1, ..., w4, which are used to perform a

weighting of the different directions g⊙d
(n)
1 , d

(n)
1 , d

(n)
2 , m⊙d

(n)
2 , which are used in

the second block. This second block consists of a 1x1-convolutional blocks, which

compute an update direction d
(n)
out. Then, we update x(n+1) := x(n) + d

(n)
out/

√
n.

The algorithmic update is adopted from Sucker and Ochs (2024) and consists of two blocks:

1) The first block consists of linear layers with ReLU-activation functions and computes
four weights w1, ..., w4. As features, we use the (logarithmically transformed) gradient

norm s
(n)
1 := log

(
1 + ∥∇ℓ(x(n), θ)∥

)
, the (logarithmically transformed) norm of the

20

momentum term s
(n)
2 := log

(
1 + ∥x(n) − x(n−1)∥

)
, the difference between the current

and previous loss s
(n)
3 := ℓ(x(n), θ) − ℓ(x(n−1), θ), the scalarproduct between the (nor-

malized) gradient and the (normalized) momentum term s
(n)
4 , the maximal absolute

value of the coordinates of the gradient s
(n)
5 , and the iteration counter n.

2) The second block consists of 1×1-convolutional layers with ReLU-activation functions

and computes the update direction d
(n)
out. As features, we use the normalized gradient

d
(n)
1 := ∇ℓ(x(n),θ)

∥∇ℓ(x(n),θ)∥ , the normalized momentum term d
(n)
2 := x(n)−x(n−1)

∥x(n)−x(n−1)∥ , and their

“preconditioned” versions g ⊙ d
(n)
1 and m ⊙ d

(n)
2 , where the weights m, d ∈ Rd are

learned, too.

Again, we want to stress that the algorithmic update is not constrained in any way: the
algorithm just predicts a direction, and we do not enforce them to have any specific prop-
erties.

21

References

Pierre-Antoine Absil, Robert Mahony, and Ben Andrews. Convergence of the iterates of
descent methods for analytic cost functions. SIAM Journal on Optimization, 16(2):531–
547, 2005.

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. arXiv preprint
arXiv:2110.11216, 2021.

Pierre Alquier and Benjamin Guedj. Simpler PAC-Bayesian bounds for hostile data. Ma-
chine Learning, 107(5):887–902, 2018.

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral probability metrics PAC-
Bayes bounds. Advances in Neural Information Processing Systems, 35:3123–3136, 2022.

Hedy Attouch and Jérôme Bolte. On the convergence of the proximal algorithm for nons-
mooth functions involving analytic features. Mathematical Programming, 116:5–16, 2009.

Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating
minimization and projection methods for nonconvex problems: An approach based on the
Kurdyka- Lojasiewicz inequality. Mathematics of operations research, 35(2):438–457, 2010.

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized Gauss–Seidel methods. Mathematical Programming, 137(1):91–129, 2013.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. PAC-Bayesian
bounds based on the Rényi divergence. In Artificial Intelligence and Statistics, pages
435–444. PMLR, 2016.

Edward Bierstone and Pierre D Milman. Semianalytic and subanalytic sets. Publications
Mathématiques de l’IHÉS, 67:5–42, 1988.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The Lojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems. SIAM Journal
on Optimization, 17(4):1205–1223, 2007a.

Jérôme Bolte, Aris Daniilidis, Adrian Lewis, and Masahiro Shiota. Clarke subgradients of
stratifiable functions. SIAM Journal on Optimization, 18(2):556–572, 2007b.

Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized mini-
mization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1):
459–494, 2014.

Gregery T Buzzard, Stanley H Chan, Suhas Sreehari, and Charles A Bouman. Plug-and-
play unplugged: Optimization-free reconstruction using consensus equilibrium. SIAM
Journal on Imaging Sciences, 11(3):2001–2020, 2018.

Camille Castera and Peter Ochs. From learning to optimize to learning optimization algo-
rithms. arXiv preprint arXiv:2405.18222, 2024.

22

Olivier Catoni. Statistical learning theory and stochastic optimization: Ecole d’Eté de Prob-
abilités de Saint-Flour, XXXI-2001, volume 1851. Springer Science & Business Media,
2004.

Olivier Catoni. PAC-Bayesian supervised classification: The thermodynamics of statistical
learning. Lecture Notes-Monograph Series, 56:i–163, 2007.

Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play ADMM for image
restoration: Fixed-point convergence and applications. IEEE Transactions on Computa-
tional Imaging, 3(1):84–98, 2016.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, and Wotao Yin. Learning to optimize: A primer and a benchmark. arXiv preprint
arXiv:2103.12828, 2021.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear conver-
gence of unfolded ISTA and its practical weights and thresholds. Advances in Neural
Information Processing Systems, 31, 2018.

Xinshi Chen, Yufei Zhang, Christoph Reisinger, and Le Song. Understanding deep archi-
tecture with reasoning layer. Advances in Neural Information Processing Systems, 33:
1240–1252, 2020.

Regev Cohen, Michael Elad, and Peyman Milanfar. Regularization by denoising via fixed-
point projection. SIAM Journal on Imaging Sciences, 14(3):1374–1406, 2021.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelli-
gence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent PAC-Bayes priors via
differential privacy. Advances in neural information processing systems, 31, 2018.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy.
On the role of data in PAC-Bayes bounds. In International Conference on Artificial
Intelligence and Statistics, pages 604–612. PMLR, 2021.

Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-
Bayesian learning of linear classifiers. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 353–360, 2009.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceed-
ings of the 27th international conference on international conference on machine learning,
pages 399–406, 2010.

Benjamin Guedj. A primer on PAC-Bayesian learning. In Proceedings of the second congress
of the French Mathematical Society, volume 33, 2019.

23

Maxime Haddouche and Benjamin Guedj. Wasserstein PAC-Bayes learning: Exploiting
optimisation guarantees to explain generalisation, 2023.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems, 212:106622, 2021.

Howard Heaton, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Safeguarded learned
convex optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 7848–7855, 2023.

Jean Honorio and Tommi Jaakkola. Tight bounds for the expected risk of linear classifiers
and PAC-Bayes finite-sample guarantees. In Artificial Intelligence and Statistics, pages
384–392. PMLR, 2014.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning
in neural networks: A survey. IEEE transactions on pattern analysis and machine intel-
ligence, 44(9):5149–5169, 2021.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: meth-
ods, systems, challenges. Springer Nature, 2019.

O. Kallenberg. Foundations of Modern Probability. Probability theory and stochastic mod-
elling. Springer, 2021. ISBN 9783030618728.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, 2015.

Achim Klenke. Wahrscheinlichkeitstheorie. Springer Spektrum, 2013.

Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total deep variation:
A stable regularizer for inverse problems. arXiv preprint arXiv:2006.08789, 2020.

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. In Annales
de l’institut Fourier, volume 48, pages 769–783, 1998.

John Langford and Rich Caruana. (Not) bounding the true error. In Advances in Neural
Information Processing Systems, volume 14. MIT Press, 2001.

John Langford and John Shawe-Taylor. PAC-Bayes and margins. Advances in neural
information processing systems, 15, 2002.

Guy Lever, François Laviolette, and John Shawe-Taylor. Tighter PAC-Bayes bounds
through distribution-dependent priors. Theoretical Computer Science, 473:4–28, 2013.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards con-
stituting mathematical structures for learning to optimize. In International Conference
on Machine Learning, pages 21426–21449. PMLR, 2023.

Ben London. A PAC-Bayesian analysis of randomized learning with application to stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

24

David McAllester. Simplified PAC-Bayesian margin bounds. In Learning theory and Kernel
machines, pages 203–215. Springer, 2003a.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):5–21,
2003b.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-
Dickstein. Understanding and correcting pathologies in the training of learned optimizers.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 4556–4565. PMLR, 2019.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-
Dickstein. Practical tradeoffs between memory, compute, and performance in learned
optimizers. In Conference on Lifelong Learning Agents, pages 142–164. PMLR, 2022.

Michael Moeller, Thomas Mollenhoff, and Daniel Cremers. Controlling neural networks
via energy dissipation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3256–3265, 2019.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Peter Ochs. Unifying abstract inexact convergence theorems and block coordinate variable
metric ipiano. SIAM Journal on Optimization, 29(1):541–570, 2019.

Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock. ipiano: Inertial proximal
algorithm for nonconvex optimization. SIAM Journal on Imaging Sciences, 7(2):1388–
1419, 2014.

Yuki Ohnishi and Jean Honorio. Novel change of measure inequalities with applications
to PAC-Bayesian bounds and Monte Carlo estimation. In International Conference on
Artificial Intelligence and Statistics, pages 1711–1719. PMLR, 2021.

Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, and Shiliang Sun.
PAC-Bayes bounds with data dependent priors. Journal of Machine Learning Research,
13(1):3507–3531, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

Maŕıa Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter
risk certificates for neural networks. Journal of Machine Learning Research, 22(227):
1–40, 2021.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

25

B.T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, 3(4):864–878, 1963.

Isabeau Prémont-Schwarz, Jaroslav Vı́tk̊u, and Jan Feyereisl. A simple guard for learned
optimizers. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 17910–17925. PMLR,
2022.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer
Science & Business Media, 2009.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-play methods provably converge with properly trained denoisers. In Interna-
tional Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

Matthias Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classifi-
cation. Journal of Machine Learning Research, 3:233–269, 2002.

Suhas Sreehari, S Venkat Venkatakrishnan, Brendt Wohlberg, Gregery T Buzzard,
Lawrence F Drummy, Jeffrey P Simmons, and Charles A Bouman. Plug-and-play pri-
ors for bright field electron tomography and sparse interpolation. IEEE Transactions on
Computational Imaging, 2(4):408–423, 2016.

Michael Sucker and Peter Ochs. Pac-bayesian learning of optimization algorithms. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 8145–8164. PMLR,
2023.

Michael Sucker and Peter Ochs. A Markovian model for learning-to-optimize. arXiv preprint
arXiv:2408.11629, 2024.

Michael Sucker, Jalal Fadili, and Peter Ochs. Learning-to-optimize with PAC-Bayesian
guarantees: Theoretical considerations and practical implementation. arXiv preprint
arXiv:2404.03290, 2024.

Yu Sun, Brendt Wohlberg, and Ulugbek S Kamilov. An online plug-and-play algorithm for
regularized image reconstruction. IEEE Transactions on Computational Imaging, 5(3):
395–408, 2019.

Afonso M Teodoro, José M Bioucas-Dias, and Mário AT Figueiredo. Scene-adapted plug-
and-play algorithm with convergence guarantees. In 2017 IEEE 27th International Work-
shop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2017.

Matthieu Terris, Audrey Repetti, Jean-Christophe Pesquet, and Yves Wiaux. Enhanced
convergent pnp algorithms for image restoration. In 2021 IEEE International Conference
on Image Processing (ICIP), pages 1684–1688. IEEE, 2021.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly
quasiconvex PAC-Bayesian bound. In International Conference on Algorithmic Learning
Theory, pages 466–492. PMLR, 2017.

26

Tom Tirer and Raja Giryes. Image restoration by iterative denoising and backward projec-
tions. IEEE Transactions on Image Processing, 28(3):1220–1234, 2018.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Arti-
ficial intelligence review, 18:77–95, 2002.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Col-
menarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers
that scale and generalize. In International conference on machine learning, pages 3751–
3760. PMLR, 2017.

Zhonglin Xie, Wotao Yin, and Zaiwen Wen. Ode-based learning to optimize. arXiv preprint
arXiv:2406.02006, 2024.

Bo Xin, Yizhou Wang, Wen Gao, David Wipf, and Baoyuan Wang. Maximal sparsity with
deep networks? Advances in Neural Information Processing Systems, 29, 2016.

Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu,
Qiang Yang, and Yang Yu. Taking human out of learning applications: A survey on
automated machine learning. arXiv preprint arXiv:1810.13306, 2018.

27

	Introduction
	Related Work
	Preliminaries and Assumptions
	Theoretical Results
	Measurability
	Convergence to stationary points

	Experiments
	Quadratic Problems
	Training a Neural Network

	Conclusion
	Missing Definitions
	Proof of Lemma 4.1
	Existence of Measurable Selection and Proof of Lemma 4.3
	Proof of Lemma 4.4
	Architecture of the Algorithm for Quadratic Problems
	Training of the Algorithm
	Architecture of the Algorithm for Training the Neural Network

