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ABSTRACT

For almost two decades, mixed integer programming (MIP) solvers have used graph-
based conflict analysis to learn from local infeasibilities during branch-and-bound
search. In this paper, we improve MIP conflict analysis by instead using reasoning
based on cuts, inspired by the development of conflict-driven solvers for pseudo-
Boolean optimization. Phrased in MIP terminology, this type of conflict analysis
can be understood as a sequence of linear combinations, integer roundings, and
cut generation. We leverage this MIP perspective to design a new conflict analysis
algorithm based on mixed integer rounding cuts, which theoretically dominates
the state-of-the-art method in pseudo-Boolean optimization using Chvátal-Gomory
cuts. Furthermore, we extend this cut-based conflict analysis from pure binary
programs to mixed binary programs and—in limited form—to general MIP with
also integer-valued variables. We perform an empirical evaluation of cut-based
conflict analysis as implemented in the open-source MIP solver SCIP, testing it on
a large and diverse set of MIP instances from MIPLIB 2017. Our experimental
results indicate that the new algorithm improves the default performance of SCIP
in terms of running time, number of nodes in the search tree, and the number of
instances solved.

1 Introduction

The use of conflict analysis has a decades-old history in fields like computer-aided verification
(Stallman and Sussman 1977) and Boolean satisfiability (SAT) solving (Bayardo Jr. and Schrag
1997, Marques-Silva and Sakallah 1999, Moskewicz et al. 2001). Different sets of researchers have
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independently proposed different ways of incorporating such conflict analysis techniques into mixed
integer programming (MIP) (Achterberg 2007a, Davey et al. 2002, Sandholm and Shields 2006). We
refer the reader to (Witzig et al. 2021) for a recent overview of techniques.

When a SAT or MIP solver encounters an infeasible subproblem during search, the conflict analysis
algorithm can be viewed in terms of a conflict graph, a directed acyclic graph that captures the
sequence of (branching) decisions and (propagated) deductions that led to the infeasibility. Using this
graph, a valid constraint can be inferred by identifying a subset of bound changes that separate the
decisions from the node where contradiction was reached. Such learned constraints are disjunctive
constraints (referred to as clauses or clausal constraints in SAT) that are implied by the original
problem and are hence globally valid. SAT conflict analysis can also be described in terms of using
the resolution proof system (Blake 1937, Davis and Putnam 1960, Davis et al. 1962, Robinson 1965)
to produce syntactic derivations of learned constraints from the input formula (Beame et al. 2004).
Though this perspective looks quite different, it is equivalent to the graph-based view.

Although the use of conflict analysis in so-called conflict-driven clause learning (CDCL) SAT solvers
has been hugely successful, one drawback is that from a mathematical point of view the resolution
proof system on which it is based is quite weak, and is known to require proofs of exponential length
even for simple combinatorial principles (Haken 1985, Urquhart 1987). The requirement to encode
the input in conjunctive normal form (CNF) as a collection of disjunctive clauses incurs a further loss
in expressive power. It has therefore been studied how to lift SAT-based conflict-driven methods to
richer input formats such as (linear) pseudo-Boolean (PB) constraints, which translated from SAT to
MIP is just another name for 0–1 integer linear programs with integer coefficients. Crucially, here it
turns out that the two equivalent ways of describing SAT conflict analysis discussed above generalize
in different directions.

Many pseudo-Boolean solvers work by translating the input to CNF, possibly by introducing auxiliary
variables, and then perform search and conflict analysis on this representation (Eén and Sörens-
son 2006, Martins et al. 2014, Joshi et al. 2015, Sakai and Nabeshima 2015). Except for any
auxiliary variables, this works the same as the graph-based conflict analysis hitherto used in MIP
solvers (Achterberg 2007a). Another approach, however, is to adopt the derivation-based view,
but to perform the conflict analysis derivation in a proof system adapted to 0–1 linear inequalities.
The natural candidate for such a proof system is cutting planes (Cook et al. 1987), which has been
extensively studied in the area of computational complexity theory. It is a priori not obvious what it
would mean to perform conflict analysis in the cutting planes proof system, but methods to do so
have been designed in (Dixon and Ginsberg 2002, Chai and Kuehlmann 2005a, Sheini and Sakallah
2006) and are currently used in the pseudo-Boolean solvers SAT4J (Le Berre and Parrain 2010) and
ROUNDINGSAT (Elffers and Nordström 2018). As a theoretical method of reasoning, such cut-based
conflict analysis turns out to be exponentially more powerful than the graph-based conflict analysis
yielding resolution proofs.

To understand the difference between the two types of conflict analysis just discussed, it is important
to note that graph-based conflict analysis does not operate on the linear constraints of the input
problem, but instead of clauses extracted from these linear constraints by translating implications in
the conflict graph to clausal constraints. In marked contrast, cut-based conflict analysis acts directly
on the linear constraints and performs syntactic manipulations on them using derivation rules in the
cutting planes proof system. When a conflict is encountered during search in the form of a violated
conflict constraint, i.e., a constraint that detected infeasibility within the local bounds, the constraint
that propagated the last bound change leading to the violation is identified. The goal is then to take a
linear combination of this reason constraint and the conflict constraint in such a way that the variable
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whose bound was propagated is eliminated, but so that the new constraint is still violated (even
with the bound change for the propagated variable removed). In order for this to work, the reason
constraint might need to be modified before the linear combination between the reason and conflict
constraints is generated. The bound change propagated by the reason constraint might have exploited
integrality, and if so a linear combination that cancels the propagated variable can become feasible.
The way to deal with this in pseudo-Boolean conflict analysis is that a so-called division or saturation
rule is applied on the reason constraint to make the bound propagation tight even when considered
over the reals. This is referred to as reduction of the reason constraint in pseudo-Boolean terminology,
whereas in MIP language this is nothing other than a cut applied to the reason constraint. Since the
linear combination is violated by the current set of bound changes, we can repeat this process again,
until we derive a constraint for which a termination criterion analogous to the unique implication
point (UIP) notion used in graph-based conflict analysis applies. The modified reason constraints
used in the conflict analysis, together with the conflict constraint and the branching decisions, form
an infeasible linear program (LP) even when relaxed to real values, and the learned constraint can be
viewed as a Farkas certificate for this LP relaxation.

For a detailed discussion of conflict analysis in mixed integer programming and pseudo-Boolean
optimization with their commonalities and differences„ we refer the reader to Sections 1.1 and 1.2
of the conference paper (Mexi et al. 2023) preceding the present work. An in-depth discussion of
SAT and pseudo-Boolean conflict analysis can be found in (Buss and Nordström 2021), and for a
comprehensive description of MIP solving we refer the reader to, e.g., (Achterberg 2007b).

We remark for completeness that there is a third way of learning from local infeasibilities in MIP
called dual-proof analysis (Witzig et al. 2019). It is conceptually different from both graph- and
cut-based conflict analysis, in that (i) it can only be applied when the infeasibility has been detected
via an infeasible LP relaxation, not by propagation, and (ii) the learned dual-proof constraint does not
depend on the history of bound changes but is constructed in a single step. A notable commonality
with cut-based conflict analysis is that dual-proof constraints and cut-based learned constraints
are derived by aggregating a subset of the original input constraints, and so both methods operate
syntactically on linear constraints. One important difference is that in cut-based conflict analysis, the
set of constraints to aggregate and the multipliers to use are computed based on the propagations that
have been implied, and also that cuts can be applied to the individual constraints before aggregation.
In dual-proof analysis, no cuts are needed since the LP relaxation is already infeasible, and the
multipliers are obtained from the dual solution for the LP relaxation. Pseudo-Boolean solving has
also been combined with LP solving of relaxed versions of the input problem, and there dual-proof
analysis has been combined with pseudo-Boolean conflict analysis (Devriendt et al. 2021).

1.1 Questions Studied in This Work and Our Contributions

Our focus in this work is on how cut-based conflict analysis as described above can be integrated in
MIP solvers. A first step was taken in (Mexi et al. 2023) by showing how to apply this method for
pure binary programs. In this paper, we go much further by applying cut-based conflict analysis in
general MIP solving. We design and implement a new conflict analysis method that is guaranteed to
work not only for 0–1 integer linear programs but also in the presence of continuous variables. We
also extend this approach to general integer variables, but here the method is not always guaranteed
to work when there are integer variable bound changes in the proper interior of the variable’s domain.

An important first step is to understand pseudo-Boolean conflict analysis described in MIP termi-
nology. We have already hinted at such a description above, but the key is to reinterpret the reason
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reduction algorithm in pseudo-Boolean conflict analysis as finding a cutting plane that separates a
fractional point from the feasible region defined by the reason constraint. Armed with this perspective,
we consider different reduction algorithms for pure binary programs, and present a new reduction
method using mixed integer rounding (MIR) cuts after selectively complementing variables. We
study how different reduction algorithms compare, and prove, in particular, that our new MIR-based
reduction algorithm provides a stronger reduced reason constraint than the methods used in (Elffers
and Nordström 2018) as well in the conference version (Mexi et al. 2023) preceding this paper.

Our second main contribution is for mixed binary programs. We show that a naive extension of
cut-based conflict analysis fails for programs with a mix of binary and real-valued variables, even
if all branching decisions are made over the binary variables. We then consider a more elaborate
reduction algorithm, that utilizes not just the current reason constraint to be reduced but the full
history of previous propagations and their reason constraints—in particular, the reasons leading to
bound changes for continuous variables—and show how this algorithm produces reduced constraints
that guarantee that the conflict analysis will work also in the presence of real-valued variables (as
long as no branching decisions are made over these variables).

As our final algorithmic contribution, we consider general mixed integer linear programs with integer-
valued variables. Unfortunately, our approach for mixed binary programs does not extend to this
setting, and we explain why this is so. Instead, we present a heuristic way of performing conflict
analysis also in the presence of integer-valued variables.

We have implemented all of these reduction and conflict analysis methods in the open-source MIP
solver SCIP, and present the results of a thorough computational study on MIP instances from
MIPLIB 2017 with quantitative data for the performance of different conflict analysis algorithms
and also qualitative data about properties of the learned constraints. Our experiments indicate that our
proposed conflict analysis algorithm generates useful conflict constraints and improves the default
performance of the MIP solver SCIP not only in terms of running time and number of nodes in the
search tree, but also in terms of the number of instances solved.

1.2 Organization of This Paper

After a review of preliminaries in Section 2, we formalize our MIP interpretation of pseudo-Boolean
cut-based conflict analysis in Section 3. Section 4 presents a collection of different reduction
algorithms, and Section 5 studies dominance relationships between them. We extend cut-based
conflict analysis to mixed binary programs in Section 6, and discuss general MIP problems with
integer variables in Section 7. The results from our computational evaluation are presented in
Section 8, after which we provide some concluding remarks and discuss future research directions in
Section 9.

2 Preliminaries and Notation

In this section we provide the necessary notation and definitions used throughout the paper. We
consider mixed integer programs (MIPs) of the form

min
x∈Rn

c⊤x

s.t. Ax ≥ b,
ℓj ≤ xj ≤ uj for all j ∈ {1, . . . , n},

xj ∈ Z for all j ∈ I,

(1)
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where m,n ∈ Z≥0, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, ℓ, u ∈ (R ∪ {±∞})n, and I ⊆ N := {1, . . . , n}.
A single constraint hence takes the form

∑
j aijxj ≥ bi, where a⊤i ∈ Rn is the i-th row of the matrix

A, and bi ∈ R the corresponding entry of the vector b. For the sake of readability, we omit the index
i when it is not essential to the context and define a generic constraint as C :

∑
j ajxj ≥ b. By

slight abuse of notation, we use C also to denote the half-space {x ∈ Rn :
∑

j ajxj ≥ b} defined by
the constraint C.

Depending on the set I and the bound vectors ℓ and u, we distinguish the following special cases of
MIPs. We call (1) a mixed binary program (MBP) if ℓj = 0 and uj = 1 for all j ∈ I. If additionally
I = {1, . . . , n}, then we call (1) a pure binary program (BP).

2.1 States and Activities

When processing a node in the branch-and-bound tree, we may encounter infeasibilities. To apply
conflict analysis we need information on all bound changes of variables that were applied by
branching or propagation between the root node and the current node. At each node p, let q =
0, 1, 2, . . . index the sequence of bound changes on some variable at this node. By ρp,q we then
refer to the entire state of the problem after applying all bound changes on the unique path from the
root node to node p, including bound changes 0, 1, . . . , q at node p. At a node p, the first state ρp,0
always represents the problem state after the single branching decision taken at this node. Between
two subsequent states ρp,q and ρp,q+1, only one bound change on a single variable is recorded, and
therefore either the lower or the upper bound vector differs in exactly one entry.

In conflict analysis, we typically only consider the states on the unique path from the root node to the
current node. In this case, we can use the so-called decision level as node index p, which gives the
number of branching decisions up to and including the current state. Then the states on a single path
can be ordered lexicographically by their indices via

(p, q) ≼ (p′, q′) :⇔ p < p′ ∨ (p = p′ ∧ q ≤ q′).

In the following, we often omit the node index p and the bound change index q if the specific
positions are not crucial for the argument we are trying to convey. For each state ρ, we can query
several relevant pieces of information such as

• the vector ℓρ ∈ (R ∪ {−∞})n of local lower bounds of all variables,

• the vector uρ ∈ (R ∪ {∞})n of local upper bounds of all variables,

• the variable index varidx(ρ) ∈ N of the corresponding bound change, and

• the reason constraint reason(ρ) from which the bound change was derived.

For a generic constraint C :
∑

j ajxj ≥ b, we denote the maximal activity of C under state ρ as

actmax(C, ρ) :=
∑
j

max{aj · ℓρj , aj · u
ρ
j}.

Similarly, we define the minimal activity of C under ρ as

actmin(C, ρ) :=
∑
j

min{aj · ℓρj , aj · u
ρ
j}.

We call the constraint C infeasible under some state if its maximal activity is less than the right-hand
side, i.e., if the respective inequality cannot hold for any solution within the local bounds. Otherwise,
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we call C feasible. We are particularly interested in the fact whether the bound changes on a variable
affect the current maximal activity of a constraint. We call a variable xj relaxable for constraint C
under state ρ if actmax(C, ρ) remains unchanged when we replace its local bounds ℓρj and uρj by
its global bounds ℓj and uj , respectively. By definition, this is the case if and only if aj ̸= 0 or
aj > 0 ∧ uρj = uj or aj < 0 ∧ ℓρj = ℓj . Otherwise, the variable is called non-relaxable. Note that
these terms provide a generalization from the PB to the MIP setting. In the literature on pseudo-
Boolean optimization, where there are only binary variables, relaxable and non-relaxable variables
correspond to non-falsified and falsified literals, respectively.

2.2 Propagation of Linear Constraints

Beyond identifying trivial infeasibility, the maximal activity of a constraint under some state ρ can
also be used to identify whether variable bounds can be tightened. A commonly used propagator
for linear constraints is the bound strengthening technique going back to (Brearley et al. 1975). If
actmax(C, ρ) <∞, then we can rewrite the constraint C as constraint C as

arxr ≥ b−
∑
j ̸=r

ajxj ≥ b− max
x∈[ℓρ,uρ]

∑
j ̸=r

ajxj (2)

For ar > 0 we obtain

arxr ≥ b− actmax(C, ρ) + aru
ρ
r

and dividing by ar gives

xr ≥ uρr +
b− actmax(C, ρ)

ar
=: ℓ̃r, (3)

which can be used to tighten the lower bound of xr if ℓ̃r > ℓρr . In a similar fashion, if ar < 0, we
can deduce the upper bound xr ≤ ũr := ℓρr +

b−actmax(C,ρ)
ar

if ũr < uρr . For completeness, note that if
actmax(C, ρ) =∞ because ar > 0∧uρr =∞ or ar < 0∧ℓρr = −∞, but maxx∈[ℓρ,uρ]

∑
j ̸=r ajxj <

∞, then (2) can be used directly to derive valid bounds.

For integer variables, i.e., for r ∈ I , the derived bounds can be rounded to ⌈ℓ̃r⌉ and ⌊ũr⌋, respectively.
As will become clear in Section 3, we are particularly interested in propagations where this second
step is redundant because either the variable xr is continuous or the propagated bounds are already
integral, i.e., ℓ̃r ∈ Z and ũr ∈ Z, respectively. We refer to such propagations as tight.

2.3 Coefficient Tightening and Cutting Planes

The following techniques from the PB and MIP literature to strengthen linear inequalities are key
ingredients of our conflict analysis algorithms. Coefficient tightening (Brearley et al. 1975) seeks
to tighten the coefficients of integer variables in C to derive a more restrictive constraint while
preserving all feasible integer solutions.

Definition 1 (Coefficient Tightening). Let C :
∑

j∈J∪K ajxj ≥ b, x ∈ ZJ
≥0 × RK

≥0, where
J ⊆ I,K ⊆ N \ I, and aj > 0 for all j ∈ J . Further, let actmin(C) denote the minimal
activity of the constraint under the global bounds. Then coefficient tightening yields the constraint∑

j∈J
min{aj , b̃}xj +

∑
k∈K

akxk ≥ b−
∑
j∈J

max{0, aj − b̃}ℓj , (4)
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where b̃ = b− actmin(C). The general case for aj ∈ R \ {0}, j ∈ J is analogous.

Note that the above procedure can be applied only for non-redundant constraints, i.e., for constraints
where actmin(C) < b. If all variables in C are binary with non-negative coefficients then coefficient
tightening is known as saturation (Chai and Kuehlmann 2005a).
Definition 2 (Saturation Cut). LetC :

∑
j∈J ajxj ≥ b with x ∈ {0, 1}J , J ⊆ I , and aj ≥ 0, j ∈ J .

The saturation cut of C is given by the constraint∑
j∈J

min{aj , b}xj ≥ b.

Another well known cut from the IP literature which is already used in the context of pseudo-Boolean
conflict analysis is the Chvátal-Gomory cut (Chvátal 1973).
Definition 3 (Chvátal-Gomory Cut). Let C :

∑
j∈J ajxj ≥ b with x ∈ ZJ

≥0, J ⊆ I. The Chvátal-
Gomory (CG) Cut of C is given by the constraint∑

j∈J
⌈aj⌉xj ≥ ⌈b⌉ . (5)

To see why (5) is valid for {x ∈ ZJ
≥0 :

∑
j∈J ajxj ≥ b}, we can think of it as two steps: rounding

up coefficients on the left-hand side relaxes the constraint and is hence valid; the validity of rounding
up the right-hand side follows from the integrality of the left-hand side.

Finally, we recall the Mixed Integer Rounding (MIR) cut (Marchand and Wolsey 2001), which is a
generalization of Gomory’s mixed integer cuts (Gomory 1960).
Definition 4 (Mixed Integer Rounding Cut). Let C :

∑
j∈J∪K ajxj ≥ b with x ∈ ZJ

≥0×RK
≥0, where

J ⊆ I,K ⊆ N \ I. The Mixed Integer Rounding (MIR) Cut of C is given by∑
j∈K:
aj>0

aj
f(b)

xj +
∑
j∈J

(
⌊aj⌋+min

{
1,
f(aj)

f(b)

})
xj ≥ ⌈b⌉ . (6)

The proof that (6) is valid for {x ∈ ZJ
≥0×RK

≥0 :
∑

j ajxj ≥ b} can found in (Marchand and Wolsey
2001).

2.4 Weakening and Complementation

Two important operations on constraints that are used in later sections are weakening and com-
plementation of variables. Weakening a variable xs in a constraint C :

∑
j ajxj ≥ b is defined

as
weaken(C, xs) :=

∑
j ̸=s

ajxj ≥ b−max{asus, asℓs}.

Weakening is a valid operation since it simply adds a multiple of the globally valid bound constraints
xj ≤ uj ⇔ −xj ≥ −uj , or xj ≥ ℓj to C. Weakening entails a loss of information. However, as we
will see, it is a necessary operation in some reduction algorithms. Note that whenever weakening is
applied on relaxable variables at the current state, it does not change the bound propagations of the
remaining variables in the constraint.

The second operation that we use in the reduction is complementation of variables. Complementation
is a valid operation that does not entail a loss of information since it simply replaces a variable xs by
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its complement xs = us − xs. Complementing a variable xs in the general constraint C from above
is defined as

complement(C, xs) :=
∑
j ̸=s

ajxj − asxs ≥ b− asus.

3 The Simple Case: Conflict Analysis under Tight Propagations

Conflict analysis is applicable whenever a locally infeasible constraint is detected at a node of
the branch-and-bound search. In MIP solvers, this constraint may be detected directly during
propagation or as trivially infeasible aggregation of constraints resulting from an infeasible LP
relaxation (Achterberg 2007a). This can occur after many propagations on the current node, and the
main goal of conflict analysis is to obtain a constraint that would have identified the infeasibility
earlier. Such a constraint would have propagated in an earlier node, preventing us from visiting this
infeasible node in the first place.1 The technique for constructing such a constraint is as follows.

Given the constraint that found the infeasibility, called conflict constraint, and the state history, we
can find the last constraint that propagated a variable at a state ρ which contributed to the infeasibility
of the conflict constraint, called reason constraint. The conflict and reason constraints form a system
of two constraints that cannot be satisfied simultaneously at a state ρ̃ before ρ. Now, the goal is to
obtain a single globally valid constraint that is infeasible under ρ̃. If we have a general recipe to
achieve this, this process can be repeated, using the learned constraint as the new conflict constraint.
A common criterion is to iterate this step until a so-called first unique implication point (FUIP) is
reached, i.e., until the learned constraint would propagate some variable at a state in a previous
decision level. Note that the learned constraint may also be infeasible under the global bounds, in
which case we have proven that the problem is globally infeasible. To summarize, the fundamental
problem of conflict analysis is: Given two rows Cconfl and Creason, a local domain L, and a global
domain G, such that the system {Cconfl, Creason, L} is infeasible, find a constraint Clearn that is valid
for {Cconfl, Creason, G} such that {Clearn, L} is infeasible.

In SAT, this fundamental problem is easy to solve. Indeed, constraints in SAT are of the form∑
i∈J0 xi +

∑
j∈J1 x̄j ≥ 1, where x̄j is the negation of xj , i.e., x̄j = 1 − xj . The only way such

a constraint can propagate is that all variables but one are fixed to 0. Without loss of generality,
let us assume that xr is the variable propagated by Creason : xr +

∑
i∈J0 xi +

∑
j∈J1 x̄j ≥ 1 in

the local domain L. Then, in L it must be that xi = 0 for all i ∈ J0 and xj = 1 for all j ∈ J1.
Furthermore, since Cconfl is infeasible after the bound tightening xr = 1, it must be of the form
x̄r +

∑
i∈J ′

0
xi +

∑
j∈J ′

1
x̄j ≥ 1 with xi = 0 for all i ∈ J ′

0 and xj = 1 for all j ∈ J ′
1 in L. The

learned constraint Clearn is then obtained by the so-called resolution rule, which is nothing else than
taking the sum of both constraints,∑

i∈J0

xi +
∑
i∈J ′

0

xi +
∑
j∈J1

x̄j +
∑
j∈J ′

1

x̄j ≥ 1. (7)

and applying coefficient tightening to (7) which yields∑
i∈J0∪J ′

0

xi +
∑

j∈J1∪J ′
1

x̄j ≥ 1. (8)

1This is also called non-chronological backtracking in the SAT literature (Marques-Silva and Sakallah
1996).
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This constraint is clearly valid in any global domain G and infeasible in L and also corresponds to
the constraint obtained by resolution in graph-based conflict analysis (Achterberg 2007a). Note that
the above argument didn’t use integrality information.

Remark 1. We can interpret the above technique as trying to eliminate xr from the system
{Cconfl, Creason, L} by Fourier-Motzkin elimination. Indeed, the system is still infeasible even when
we relax the domain of xr to (−∞,∞). Then, by Fourier-Motzkin elimination (Williams 1976),
projecting out xr yields exactly (7) Note that this immediately proves the infeasibility of (7) in L,
since the projection of the empty set is the empty set.

The idea above can be generalized to linear constraints. The linear combination of the constraints
that eliminates a given variable followed by coefficient tightening is what is known as generalized
resolution (Hooker 1988, 1992). In the context of conflict analysis, the learned constraint is also
called the resolvent. As the following example shows, the naive application of generalized resolution
does not necessarily guarantee that the resolvent is infeasible in the local domain.

Example 1. Consider the two pure binary constraints Cr : x1+x2+2x3 ≥ 2, Cc : x1−2x3+x4+

x5 ≥ 1, L = {0} × {0, 1}4, and G = {0, 1}5. Under L, constraint Cr propagates x3 ≥ 0.5. Since
x3 is binary, we conclude that x3 ≥ 1. Then, Cc is clearly infeasible. Eliminating x3, by adding the
two constraints and applying coefficient tightening, we obtain the constraint 2x1+x2+x4+x5 ≥ 3

which is globally valid, but not infeasible under L.

A notable difference between the SAT case and Example 1 is that in Example 1 we had to use
integrality information because Creason did not propagate x3 tightly, i.e., to an integer value. Indeed,
this is the only reason why generalized resolution can fail. The following proposition shows that
whenever no integrality information is used during the propagation of Creason, the resolvent of Creason
and Cconfl that eliminates xr remains infeasible.

Proposition 1. Let Creason : arxr +
∑

j ̸=r ajxj ≥ b be a constraint propagating a variable xr in
the state ρ tightly. Further, assume that Cconfl : a′rxr +

∑
j ̸=r a

′
jxj ≥ b′ becomes infeasible in the

state ρ. Then the resolvent of Creason and Cconfl that eliminates xr remains infeasible in the state ρ.

Proof. Since ar and a′r are both non-zero and have opposite signs, without loss of generality, we
assume that ar = 1 and a′r = −1. Then, the constraint Creason propagates a lower bound β on the
variable xr, namely

xr ≥ min
x∈[ℓρ,uρ]

{b−
∑
j ̸=r

ajxj} = b− max
x∈[ℓρ,uρ]

∑
j ̸=r

ajxj =: β.

Now, since Cconfl is infeasible in the state ρ, we have that

−β + max
x∈[ℓρ,uρ]

∑
j ̸=r

a′jxj < b′

The right-hand side of the resolvent Cres := Creason +Cconfl is b+ b′. However, its maximum activity
is

max
x∈[ℓρ,uρ]

∑
j ̸=r

(aj + a′j)xj ≤ max
x∈[ℓρ,uρ]

∑
j ̸=r

ajxj + max
x∈[ℓρ,uρ]

∑
j ̸=r

a′jxj

= b− β + max
x∈[ℓρ,uρ]

∑
j ̸=r

a′jxj

< b+ b′,
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which shows that Cres is infeasible in the state ρ.

To obtain a less syntactic, more geometric perspective, let us view the lower bound change on a
variable xr from propagation of Creason : arxr +

∑
j ̸=r ajxj ≥ b, ar > 0 as the solution of the

one-row linear program

min{xr : arxr +
∑
j ̸=r

ajxj ≥ b, xj ∈ [ℓρj , u
ρ
j ]}. (9)

Non-tight propagation can occur if and only if the optimum of (9) over the current state is attained at
a non-integer vertex, as illustrated in Figure 1 for the reason constraint of Example 1. By contrast,
for SAT constraints the feasible region defined by the reason constraint and the global domain does
not contain non-integer vertices.

0 0.5 1
0

0.5

1

x2

x
3

Figure 1: Inequality x1 + x2 + 2x3 ≥ 2 on the face of the polytope with x1 = 0. Here the fractional
vertex is (0, 1, 0.5).

This geometric perspective also shows a clear path forward to make conflict analysis work: by
strengthening the propagating reason constraint Creason in order to cut off the non-integer vertex
from the feasible region Creason ∩G. Note that for pure binary programs the reason is a knapsack
constraint, and hence it is sufficient to study cuts for the knapsack polytope (Hojny et al. 2020). In
the PB literature, the techniques to achieve such cuts are called reduction techniques. In the next
section, we first present the cut-based conflict analysis algorithm and then proceed to discuss various
reduction techniques.

4 Reduction Techniques for Pure Binary Programs

Algorithm 1 shows the base algorithm for all variants of cut-based conflict analysis considered in
this paper. The algorithm is initialized with an infeasible state ρp,q and a conflicting constraint Cconfl
in ρp,q. First, the learned conflict constraint Clearn is set to the conflict constraint Cconfl. In each
iteration, we extract the variable xr whose bound was changed in ρp,q. If the bound change was due
to propagation of a constraint, then we extract the reason constraint Creason that propagated xr. In line
6 we “reduce” the reason constraint such that the resolvent, i.e., linear combination, of Clearn and the
reduced reason Creason (Line 7) that cancels xr remains infeasible. The learned conflict constraint is
set to the resolvent, which can then be strengthened in Line 8 by, e.g., applying coefficient tightening
as in SAT resolution conflict analysis. Finally, the state ρp,q is set to the smallest state, with respect

10
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to the lexicographic order, such that the resolvent is infeasible. We continue this process until we
reach an FUIP (Clearn is asserting) or Clearn proves global infeasibility.

Algorithm 1: Cut-Based Conflict Analysis for 0-1 IP
Input : initial conflict constraint Cconfl, infeasible state ρp,q
Output : learned conflict constraint Clearn

1 Clearn ← Cconfl
2 while Clearn not asserting and Clearn ̸=⊥ do
3 r ← varidx(ρp,q)
4 if xr propagated then
5 Creason ← reason(ρp,q)
6 Creason ← reduce(Creason, Clearn, ρp,q)
7 Clearn ← resolve(Clearn, Creason, xr)
8 Clearn ← strengthen(Clearn)

9 (p, q)← min{(p̃, q̃) |Clearn is infeasible in ρp̃,q̃}
10 return Clearn

The conflict analysis algorithm can fail if the resolvent becomes feasible. As explained in the
previous section, this occurs if and only of the reason constraint Creason does not propagate tightly.
In the next sections, we present various reduction algorithms for the reason constraint Creason that
ensure tight propagation: the SAT-like clausal-based reduction Achterberg (2007a), which reduces
the reason constraint to a clause responsible for the propagation; the coefficient tightening-based
reduction, which is a direct generalization of (Chai and Kuehlmann 2005b); and a stronger version of
the MIR-based reduction presented in (Mexi et al. 2023).

As we mentioned at the end of last section, the goal of reduction algorithms is to obtain a constraint
that propagates a variable tightly from a reason constraint that did not propagate tightly. Therefore,
reduction algorithms only look at a single given constraint and the current domain in a state ρ. Hence,
in this section we work under the following assumption.

Assumption 1. The reason constraint is of the form

Creason : xr +
∑
j∈J

ajxj ≥ b,

where r ̸∈ J ⊆ I and aj ≥ 0 for all j ∈ J . Furthermore, Creason propagates xr in ρ non-tightly, i.e.,

b−max
∑
j∈J

ajxj ̸∈ Z

This assumption can be made without loss of generality. Indeed, from a general reason constraint
we can first complement any variable with a negative coefficient. Afterwards, we can divide by the
coefficient of the variable xr to obtain the aforementioned form. Obviously, the information in both
constraints is exactly the same.

4.1 Clause-based Reduction

Let Creason be as in Assumption 1. In the graph-based conflict analysis as developed for MIP by
Achterberg (2007a), the reason constraint is reduced to a clause that propagates xr tightly. This
clause contains xr and all variables from the reason that are responsible for the propagation of xr,
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namely xr
∨

j∈J :uρ
j =0 xj , which corresponds to the linear constraint

Cclausal : xr +
∑

j∈J :uρ
j =0

xj ≥ 1.

Note that this corresponds to the well-known cover cuts for knapsack constraints.

4.2 Coefficient Tightening-based Reduction

Algorithm 2 summarizes the coefficient tightening-based reduction. Similar to the implementation in
a PB solver (Chai and Kuehlmann 2005a), in each iteration, the algorithm picks a relaxable variable
in the reason constraint different from the variable we are resolving on and weakens it. Then it
applies coefficient tightening to the resulting constraint. After each iteration, the algorithm checks if
the resolvent of the reason constraint and conflict constraint is infeasible. In this case, the algorithm
terminates and returns the reduced reason constraint.

Algorithm 2: Coefficient Tightening-based Reduction Algorithm
Input :conflict constraint Cconfl, reason constraint Creason,

variable to resolve xr, state ρ
Output :reduced reason Creason

1 while resolve(Creason, Cconfl, xr) is feasible in ρ do
2 xs ← relaxable variable in Creason\{xr}
3 Creason ← weaken(Creason, xs)
4 Creason ← coefTight(Creason)

5 return Creason

Next, we prove that the reduction algorithm ensures that the key requirement of tight propagation
holds at the latest after weakening all relaxable variables.

Proposition 2. Let Creason be as in Assumption 1. After weakening all variables in P = {j ∈ J :
uρj = 1} and applying coefficient tightening, the resulting constraint propagates xr tightly.

Proof. First, we can rewrite the constraint Creason as

xr +
∑
j /∈P

ajxj +
∑
j∈P

ajxj ≥ b.

After weakening all variables from P , the constraint Creason becomes

xr +
∑
j /∈P

ajxj ≥ b−
∑
j∈P

aj =: b̃. (10)

By assumption all variables not in P are fixed to 0 and Creason propagates xr non-tightly. Therefore,
it must hold that 0 < b̃ < 1. Applying Coefficient Tightening on (10) sets the coefficient of xr to b̃.
Subsequently, (10) propagates xr tightly.

4.3 cMIR-based Reduction

For pure binary constraints, a very competitive alternative to coefficient tightening in the reduction
algorithm is based on Chvátal-Gomory cuts (Elffers and Nordström 2018). In this reduction, relaxable
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variables with fractional coefficients in the reason constraint are weakened before applying Chvátal-
Gomory rounding as in Definition 3. In (Mexi et al. 2023) we show that applying the more general
MIR cut instead yields a reduced reason constraint that is at least as strong.

Next, we present a further improved reduction technique also based on the MIR formula (4). The
improvement comes from the fact that weakening becomes obsolete after complementing relaxable
variables. We call this reduction cMIR-based reduction. In Section 5 we show one of the main results
of this paper, which is the dominance of cMIR-based reduction over both Chvátal-Gomory and
MIR-based reduction from (Mexi et al. 2023). But first, we show that the reduced reason constraint
from the cMIR-based reduction propagates xr tightly.

Proposition 3. Let Creason be as in Assumption 1. Complementing all variables in P = {j ∈ J :

uρj = 1} and applying MIR gives the reduced reason constraint

CcMIR : xr +
∑
j /∈P

ψ(aj)xj −
∑
j∈P

ψ(−aj)xj ≥ 1−
∑
j∈P

ψ(−aj) (11)

with

ψ(a) = ⌊a⌋+min

{
1,

f(a)

f(b−
∑

j∈P aj)

}
.

CcMIR propagates xr tightly.

Proof. Complementing the variables in P yields

xr +
∑
j /∈P

ajxj −
∑
j∈P

ajxj ≥ b−
∑
j∈P

aj =: b̃. (12)

Note that 0 < b̃ < 1 by Assumption 1. Indeed, since Creason propagates non-tightly, we have that
min{b−

∑
j∈J ajxj} is between 0 and 1. After applying MIR to the complemented constraint we

obtain
CcMIR : xr +

∑
j /∈P

ψ(aj)xj +
∑
j∈P

ψ(−aj)x̄j ≥ 1 (13)

where

ψ(a) = ⌊a⌋+min

{
1,
f(a)

f(b̃)

}
.

Complementing back gives us (11). Finally, we can use the fact that for j /∈ P , xj is fixed to 0 and
that ψ(−aj) ≤ 0 to show that CcMIR propagates xr tightly.. The propagated bound is

1−
∑
j∈P

ψ(−aj)−max
{∑

j /∈P

ψ(aj)xj −
∑
j∈P

ψ(−aj)xj
}

= 1−
∑
j∈P

ψ(−aj)−
(∑

j /∈P

ψ(aj) · 0−
∑
j∈P

ψ(−aj) · 1
)
= 1.

Remark 2. The reduced constraint CcMIR is precisely the Gomory mixed integer cut (Gomory 1960)
generated from the optimal tableau obtained by solving the one-row LP (9).
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5 Dominance Relationships

The ultimate goal is to find a reduction technique that yields the strongest possible reduced constraint
to use in the resolution step of conflict analysis. In this section, we discuss dominance relationships
between the different reduction techniques in the following sense.

Definition 5. A constraint C ′′ dominates a constraint C ′ if any x̃ ∈ [ℓ, u] that satisfies C ′′ also
satisfies C ′. In other words, the set of feasible points defined by the variables bounds and C ′′ is a
subset of the set of feasible points defined by the variables bounds and C ′.

The main goal of this section is to compare the cMIR-based reduction from Section 4.3 with the
wMIR-based reduction from (Mexi et al. 2023), which we recall next. Let Creason : xr+

∑
j ajxj ≥ b

be as in Assumption 1, propagating xr non-tightly. Then the reduced constraint

CwMIR : xr +
∑
j∈PZ

ajxj +
∑
j /∈P

ψw(aj)xj ≥

b−
∑
j∈PW

aj

 (14)

propagates xr tightly, where P = {j : uj = 1}, PW = {j ∈ P : aj /∈ Z}, PZ = {j ∈ P : aj ∈ Z},
and

ψw(a) = ⌊a⌋+min

{
1,

f(a)

f(b−
∑

j∈PW
aj)

}
.

The above formula comes from weakening the variables in PW and then applying the MIR cut to the
resulting constraint. In what follows we show that this is not the strongest possible reduction.

Proposition 4. Let ρ be the current state and Creason : xr +
∑

j∈J ajxj ≥ b be as in Assumption 1,
then CcMIR (11) dominates CwMIR (14).

Proof. Let P = {j ∈ J : uρj = 1}, PW = {j ∈ P : aj /∈ Z}, and PZ = {j ∈ P : aj ∈ Z}. The
constraint CcMIR is given by

xr +
∑
j /∈P

ψc(aj)xj −
∑
j∈P

ψc(−aj)xj ≥ 1−
∑
j∈P

ψc(−aj),

where

ψc(a) = ⌊a⌋+min

{
1,

f(a)

f(b−
∑

j∈P aj)

}
.

This can be rewritten as

xr +
∑
j /∈P

ψc(aj)xj −
∑
j∈PZ

ψc(−aj)xj −
∑
j∈PW

ψc(−aj)xj ≥ 1−
∑
j∈P

ψc(−aj)

For j ∈ PZ , we have ψc(−aj) = −aj . Therefore, we can rewrite CcMIR as

xr +
∑
j /∈P

ψc(aj)xj +
∑
j∈PZ

ajxj −
∑
j∈PW

ψc(−aj)xj ≥ 1−
∑
j∈PW

ψc(−aj) +
∑
j∈PZ

aj .

This is equivalent to

xr +
∑
j /∈P

ψc(aj)xj +
∑
j∈PZ

ajxj +
∑
j∈PW

ψc(−aj)x̄j ≥ 1 +
∑
j∈PZ

aj .
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Given that for j ∈ PW , ψc(−aj) ≤ 0, the constraint

xr +
∑
j /∈P

ψc(aj)xj +
∑
j∈PZ

ajxj ≥ 1 +
∑
j∈PZ

aj , (15)

is dominated by CcMIR. Hence, it suffices to show that CwMIR is equivalent to (15). To this end,
notice that CwMIR is given by

xr +
∑
j∈PZ

ajxj +
∑
j /∈P

ψw(aj)xj ≥

b−
∑
j∈PW

aj


with

ψw(a) = ⌊a⌋+min

{
1,

f(a)

f(b−
∑

j∈PW
aj)

}
.

However, the fractional parts of b−
∑

j∈PW
aj and b−

∑
j∈P aj are equal because their difference∑

j∈PZ
aj ∈ Z. That is, f(b−

∑
j∈PW

aj) = f(b−
∑

j∈P aj). This implies that ψw = ψc. Finally,b−
∑
j∈PW

aj

 =

b−
∑
j∈P

aj +
∑
j∈PZ

aj

 =

b−
∑
j∈P

aj

+
∑
j∈PZ

aj = 1 +
∑
j∈PZ

aj .

Thus, CwMIR is equivalent to (15) and, therefore, dominated by CcMIR.

Example 2. Consider the following constraint

Creason : 3x1 + 3x2 + 3x3 + 2x4 ≥ 7

which propagates x4 to 1 non-tightly if x1 is fixed to 0 at the local domain. By dividing Creason
by 2, weakening the relaxable variables x2, x3 and applying MIR, we obtain the modified reduced
constraint

CwMIR : 2x1 + x4 ≥ 1, (16)

which propagates x4 tightly.

Our proposed cMIR-based reduction (11) can be used to obtain a stronger reason constraint. First,
it complements x2, x3 in Creason,

3x1 − 3x2 − 3x3 + 2x4 ≥ 1,

then it divides Creason by d = 2 and applies MIR which yields the constraint

2x1 − x2 − x3 + x4 ≥ 1,

Complementing the variables x2, x3 back to the original variable space yields

CcMIR : 2x1 + x2 + x3 + x4 ≥ 3, (17)

which propagates x4 tightly. Obviously, (17) dominates (16) since weakening x2, x3 in (17) gives
exactly (16).

For completeness, we also recall that the coeffficient tightening-based reduction dominates the clausal-
based reduction, and that the wMIR-based reduction dominates the Chvátal-Gomory-based reduction
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(Mexi et al. 2023). Hence, Proposition 4 shows that the cMIR-based reduction also dominates the
Chvátal-Gomory-based reduction. In (Gocht et al. 2019) the authors show that the Chvátal-Gomory
and coefficient tightening reduction algorithms are incomparable. Similar arguments can be used
to show the same result for the MIR reduction from Proposition 3 and the coefficient tightening
reduction from Algorithm 2. Details can be found in (Mexi et al. 2023, Gocht et al. 2019).

6 Conflict Analysis for Mixed Binary Programs

Our next goal is to extend cut-based conflict analysis to the class of mixed binary programs. In
Section 4 we have seen that for pure binary programs it is always possible to reduce the reason
constraint to guarantee that in each iteration of conflict analysis the linear combination of the current
conflict constraint and the reduced reason constraint remains infeasible under the local bounds, and
hence the conflict analysis invariant is preserved. The key property of the reduced reason constraint
is that it propagates the resolved variable tightly even when considered over the reals. In the case of
MBPs, continuous variables are always propagated tightly. Hence, from Proposition 1 it follows that
whenever resolving a continuous variable, the linear combination of the current conflict constraint
and the reason constraint that propagated the variable we are resolving on remains infeasible under
the local bounds.

However, as shown in detail in the following example, the mere presence of non-relaxable continuous
variables can lead to a situation where resolving a binary variable xr is impossible without using
additional problem information.

Example 3. Consider the following system of constraints:

C1 : −2x1 − 4y1 − 2y2 ≥ −3
C2 : 20x1 + 5y1 − y2 ≥ 4

C3 : −20x1 + 5y1 − 10y2 ≥ −16
C4 : −y2 − x2 ≥ 0

C5 : y2 − x3 ≥ 0

where x1, x2 and x3 are binary variables, y1 is a continuous variable with global bounds [0, 1], and
y2 is a continuous variable with global bounds [−1, 1]. After branching on x2, in the subproblem
x2 = 0 we can deduce y2 ≤ 0 from C4. Next, from C5 we can deduce x3 = 0 and y2 ≥ 0. The
constraint C1 propagates y1 ≤ 3/4 which leads to C2 propagating x1 ≥ 1. Under the local bounds,
the constraint C3 is infeasible. Eliminating x1 with C2 being the reason constraint and C3 the
conflict, we obtain C2 + C3 : 10y1 − 11y2 ≥ −12 which is not infeasible under the local bounds.

The question that arises is whether we can construct a globally valid inequality that is violated in the
local bounds by using only the constraint C2 (reason) and C3 (conflict) and the global bounds of
the variables. We will show that not only it is impossible to do so by the reduction algorithm or the
cutting planes we defined in Section 4, but also that no such inequality can be constructed if we do
not consider more information about the problem.

To do so, we compute the mixed integer hull of the system consisting of the facets of the polyhedron
defined by the constraints C2 and C3 and the global bounds of the variables. We compute the mixed
integer hull by using the double description method (Fukuda and Prodon 1995) implemented in
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POLYMAKE (Gawrilow and Joswig 2000). The facets are given by:

F1 : 18x1 + 25y1 − 5y2 ≥ 20

F2 : 3x1 + 5y1 ≥ 3

F3 : −9x1 + 5y1 − 10y2 ≥ −5
F4 : y1 ≤ 1

F5 : x1 ≤ 1

F6 : x1 ≥ 0

F7 : y2 ≥ −1

It is easy to verify that the facets F1, . . . , F7 of the mixed integer hull are not violated under the
local bounds. Moreover, the LP consisting of the facets and the local bounds is feasible. Therefore,
we cannot find any globally valid inequality that is violated in the local bounds by only using the
constraints C2, C3 and the global bounds of the variables.

In the following section we propose a new reason reduction algorithm for MBP that does not
only consider the reason and conflict constraint, but also constraints that propagated non-relaxable
continuous variables.

6.1 Reduction Algorithm for Mixed Binary Programs

The goal of the reduction algorithm is to remove non-relaxable continuous variables from the reason
constraint while preserving the propagation of the binary variable xr. The next proposition shows
that after resolving a non-relaxable continuous variable from the reason constraint, the new reason
constraint still propagates the binary variable xr.

Proposition 5. Let Ccont : acxc + arxr +
∑

j ̸∈{r,c} ajxj ≥ b be a MBP constraint propagating a
continuous variable xc ∈ [ℓc, uc] in the state ρ1. Further, assume that the bound change on the
continuous variable is non-relaxable for a constraint Creason : a′cxc + a′rxr +

∑
j ̸∈{r,c} a

′
jxj ≥ b′

that propagates a variable xr in a later state ρ2. Then, the linear combination of Creason and Ccont
that eliminates xc propagates xr at least as strong in the sense that it gives the same or a better
bound as Creason in ρ2.

Proof. Since the bound change implied by Ccont on xc is non-relaxable for Creason, the coefficients
ac and a′c must have opposite sign, and we can assume without loss of generality that ac = 1 and
a′c = −1. The bound change of xr implied by Creason follows from

a′rxr ≥ min
ρ2
{b′ + xc −

∑
j ̸∈{r,c}

a′jxj} = ℓρ2c +min
ρ2
{b′ −

∑
j ̸∈{r,c}

a′jxj}.

By assumption, ℓρ2c = ℓρ1c is the result of propagating Ccont in state ρ1 and is given by

xc ≥ min
ρ1
{b− arxr −

∑
j ̸={r,c}

ajxj} = ℓρ2c .

Therefore, the bound change on xr from propagating Creason in state ρ2 is the one implied by

a′rxr ≥ min
ρ1
{b− arxr −

∑
j ̸={r,c}

ajxj}+min
ρ2
{b′ −

∑
j ̸={r,c}

a′jxj}. (18)
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On the other hand, the linear combination of Creason and Ccont eliminating xc is given by

(ar + a′r)xr +
∑

j ̸={r,c}

(aj + a′j)xj ≥ b+ b′. (19)

Hence, the bound change on xr from propagating this last constraint in state ρ2 is the one implied by

a′rxr ≥ b+ b′ − arxr −
∑

j ̸={r,c}

(aj + a′j)xj

= b− arxr −
∑

j ̸={r,c}

ajxj + b′ −
∑

j ̸={r,c}

a′jxj

≥ min
ρ2
{b− arxr −

∑
j ̸={r,c}

ajxj}+min
ρ2
{b′ −

∑
j ̸={r,c}

a′jxj}. (20)

Comparing the right-hand sides of (18) and (20), we see that the linear combination (19) implies a
bound at least as strong as Creason.

Remark 3. Notice that in the proof above, the bound implied by the linear combination of Creason
and Ccont can be substantially stronger than the one implied by the reason constraint. Indeed, the
aggregated constraint can even show infeasibility at state ρ2. A particularly interesting example of
this situation is when the sign of the coefficient of xr in the aggregated contraint (ar + a′r) is different
from the one in the reason constraint (a′r). To see this, assume that a′r > 0 (and that xr is binary
for simplicity). Since the sign changes in the aggregated constraint, it holds that ar < −a′r < 0.
This means that ℓρ2c reduces to minρ1{b−

∑
j ̸={r,c} ajxj}. Furthermore, since the reason constraint

propagates xr, we have that the right-hand side of (18) is positive, i.e.,

κ := min
ρ1
{b−

∑
j ̸={r,c}

ajxj}+min
ρ2
{b′ −

∑
j ̸={r,c}

a′jxj} > 0.

This gives rise to the contradiction

0 ≥ (ar + a′r)xr ≥ b+ b′ −
∑

j ̸={r,c}

(aj + a′j)xj ≥ κ > 0.

This contradiction proves infeasibility independently of the bound change on xr in state ρ2. Hence,
the aggregated constraint (19) is already infeasible at the state preceding ρ2.

Algorithm 3 shows the reduction algorithm for MBP. It takes as input the reason constraint Creason
propagating in state ρp̂,q̂, the conflict constraint Cconfl infeasible in state ρp̄,q̄, and the binary variable
to resolve xr. Then it iteratively resolves all non-relaxable continuous variables from the reason
constraint until no such variable exists. The set of non-relaxable continuous variables at a state
ρp,q is denoted by nr(Creason, ρp,q) ∩K. The algorithm may terminate early if the reason constraint
becomes infeasible under the local bounds (see Remark 3). Finally, after the main loop, we apply
the reduction algorithm as in the binary case. The algorithm always terminates since the number
of states is finite and it explores the states in a monotonically decreasing order with respect to the
lexicographical order of the indices (p, q) and the non-relaxable continuous variables appearing in
the reason constraint.

Example 4. In Example 3 we show that no globally valid inequality can be constructed that is
violated in the local bounds by using only the reason constraint C2, the conflict constraint C3 and
the global bounds of the variables. Next we show that, after resolving all non-relaxable continuous
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Algorithm 3: Reduction Algorithm for Mixed Binary Programs
Input :reason constraint Creason propagating in state ρp̂,q̂,

conflict constraint Cconfl, binary variable to resolve xr
Output :reduced reason Creason or an earlier conflict Cconfl

1 (p̃, q̃)← (p̂, q̂)
2 while nr(Creason, ρp̃,q̃) ∩K ̸= ∅ do
3 (p̃, q̃)← max{(p, q) | varidx(ρp,q) ∈ nr(Creason, ρp,q) ∩K, (p, q) ≺ (p̃, q̃)}
4 c← varidx(ρp̃,q̃)
5 Ccont ← reason(ρp̃,q̃)
6 Creason ← resolve(Creason, Ccont, xc)
7 if Creason is infeasible in the predecessor state of ρp̂,q̂ then
8 Cconfl ← Creason
9 return Cconfl

10 Creason ← reduce(Creason, Cconfl, xr, ρp̂,q̂)
11 return Creason

variables from the reason constraint C2, the new reason constraint contains only binary variables
and propagates x1:

1. Resolving y1 by adding 1.25 · C1 to C2 gives the new Creason : 17.5x1 − 3.5y2 ≥ 0.25.

2. Resolving y2 by adding 3.5 · C5 to Creason gives the new Creason : 17.5x1 − 3.5x3 ≥ 0.25.

This constraint contains only binary variables, propagates x1 to 1 non-tightly, and hence can be
reduced as shown in Section 4.

7 Conflict Analysis for Mixed Integer Programs

Next, we briefly discuss the limitations of the conflict analysis algorithm under the presence of
general integer variables. Again, the goal is to resolve a bound change on a variable by some suitable
reduction and aggregation of constraints. As expressed in Proposition 1, whenever the propagation of
the resolved variable is tight, we can simply aggregate the reason for the bound change to the current
conflict and the resolvent remains infeasible. However, in the presence of general integer variables,
our reduction algorithms are not guaranteed to find a reduced reason that propagates tightly.

Non-tight propagation occurs because of the existence of non-integer vertices for the linear relaxation
of Creason over the local domain L. The goal then is to find a cut that separates the non-integer vertex
from the feasible region Creason ∩G, where G is the box defined by the global bounds. This is not
possible if the general integer variable contributes with a non-global bound to the propagation of the
reason constraint. Figure 2 gives an example that illustrates such a situation.

One approach to addressing the resolution of general integer variables is proposed in (Jovanovic and
de Moura 2013). Here the authors allow only fixings of variables to their current lower or upper
bound. While this strategy restricts the branching heuristic, it also avoids scenarios like the one
illustrated in Figure 2, allowing reduction algorithms to effectively eliminate non-integer vertices.

Another work that deals with general MIP is (Achterberg 2007a), which extends the graph-based
conflict analysis typically used for SAT problems to the general MIP domain. In the MIP context,
conflict graph nodes represent bound changes rather than variable fixings. Unlike in SAT, where
conflicts derived from the graph are disjunctions of literals and can be represented as linear constraints,
conflicts involving non-binary variables are disjunctions of general bound changes, which cannot be
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Figure 2: Example where it is impossible to find a linear cut that separates the non-integer vertex
(2,0.5) from the feasible region (green points).

captured by a single linear constraint. Consequently, MIP solvers utilize these conflicts solely for
propagation and not as cuts.

In our implementation, we consistently attempt to resolve variable bound changes by aggregating the
reason and conflict constraints. Preliminary experiments show that in cases where integer variables
do not contribute with a global bound to the propagation of the reason constraint, resolution still
succeeds in 72% of cases, meaning the resulting resolvent remains infeasible even without reducing
the reason constraint. In the remaining 28% of cases, we attempt to separate the non-integer vertex
from the feasible region heuristically, by applying the general cMIR procedure (Marchand and
Wolsey 2001). However, this approach is only successful about 3% of the time.

8 Experimental Evaluation

The focus of this section is to evaluate the performance of the different conflict analysis algorithms
in a MIP solver. Our experiments are designed to answer the following questions:

- How do different conflict analysis algorithms perform when being applied to the same set of
infeasibilities, not only in terms of performance but also regarding the characteristics of the
generated constraints, e.g., constraint type, size and potential for propagation?

- What is the performance impact of cut-based conflict analysis in the MIP solver SCIP, and
how does it integrate with other conflict analysis algorithms?

All techniques discussed in this paper have been implemented in the open-source MIP solver SCIP
9.0 (Bolusani et al. 2024). The experiments were conducted on a cluster equipped with Intel Xeon
Gold 5122 CPUs @ 3.60GHz and 96GB of RAM. Each run was performed on a single thread with
a time limit of two hours. To mitigate the effects of performance variability (Lodi and Tramontani
2013) and to ensure a fair comparison of the different conflict analysis algorithms, we used a large
and diverse set of test instances, namely the MIPLIB 2017 benchmark set (Gleixner et al. 2021), with
five permutations of each individual model. After excluding all models that are not solvable by any
setting for any of the five seeds, we obtained a total of 795 measurements per run. For the remainder
of this paper, we will refer to the combination of a model and a permutation as an instance.

8.1 Implementation details

In our experiments, we do not use the Chvátal-Gomory-based reduction since it is dominated by the
CMIR-CA reduction (and does not generalize to problems with continuous variables). Moreover, as
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demonstrated in Proposition 4, opting for complementation over weakening results in more robust
reasoning constraints. Therefore, we consider the CMIR-CA reduction solely with complementation.

For the coefficient tightening-based reduction, we employ a single-sweep approach for variable
weakening, improving the reduction algorithm’s speed by avoiding repeated activity computations
and applying only one cut per iteration. As observed in (Mexi et al. 2023), this does usually not
lead to a loss of information since all, or almost all, variables have to be weakened before applying
coefficient tightening to obtain a tightly propagating reason constraint.

Finally, we decided to mitigate the weak points of cut-based conflict analysis: dealing with general
integer variables or propagations that are not explained by a single linear inequality. If cut-based
conflict analysis fails to generate a conflict in such cases, we fall back to graph-based conflict analysis.
In a preliminary experiment on MIPLIB 2017 we measured this fallback mechanism to occur in
approximately 19% of the conflict analysis calls.

8.2 Comparison of Conflict Analysis Algorithms in Isolation

In our first experiment, we compare the following three conflict analysis algorithms:

- GRAPH-CA : Graph-based conflict analysis algorithm (Achterberg 2007a).

- COEFT-CA : Cut-based conflict analysis using the coefficient tightening-based reduction.

- CMIR-CA : Cut-based conflict analysis using the cMIR-based reduction.

When aiming to compare the effect of different conflict analysis algorithms throughout a MIP solve,
there is a major caveat: Usually, the first few conflict analysis calls already cause the solution path
of the solve to diverge significantly (demonstrating that the analysis had an impact). Thus, the vast
majority of conflict analysis calls will be on a completely different set of infeasibilities, and it is hard
to impossible to say whether observations made about conflicts differing in their characteristics are
structural or mostly a side effect of the path divergence.

Therefore, to answer the first question from the beginning of this section, we carefully designed an
experiment that allows us to compare different conflict analysis algorithms by different conflicts
from the exact same infeasibilities throughout a complete tree search. To achieve this, we split the
generation and the exploitation of the conflicts into two separate runs.

In the first run, whenever an infeasibility is found, we generate a single conflict from the 1-FUIP;
however, we do not use the conflicts for propagation, do not apply bound changes, consider them for
the branching decision, or allow any other interaction with the solving process. They are collected
and “ignored”. We call this the conflict generation run. Thus, we will traverse an identical search
tree, independent of the conflict analysis algorithm used, and each algorithm will be applied to the
same set of infeasibilities.

In the second run, we add the conflicts from the conflict generation run to the problem (right from
the beginning of the search) and allow propagation and other interactions with the solution process.
We refer to this run as the conflict exploitation run. This approach enables us to draw conclusions
about the impact of conflicts generated from the same information. It even allows for a one-to-one
comparison of conflicts from different algorithms.

In the conflict generation run, we set the same time limit as in the conflict exploitation run. However,
we try to avoid hitting this time limit, since the point at which a wall-clock time limit is hit, is
non-deterministic and we may observe a different number of conflict calls between two runs, if one
of them hit the time limit slightly earlier/later. Therefore, as additional deterministic working limits,
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we impose a limit of 50,000 nodes and a limit of 5,000 conflict analysis calls. This also avoids the
conflict exploitation run using unnaturally many conflicts since SCIP typically limits the number
of conflicts that are handled at the same time to a few thousand. With these settings, only 74 of the
instances hit the time limit and were consequently discarded from the results below. The rest of the
instances are either solved, or hit the deterministic node or conflict analysis calls limit. Moreover,
we discard a few instances for which the settings reported numerically inconsistent results. This
gives us a total of 704 instances for the comparison. While SCIP usually discards conflicts from
GRAPH-CA that are larger than a certain threshold, we deactivated this restriction for this experiment
so as not to skew the results.

Table 1: Comparison of the different conflict analysis algorithms.

Setting opt time(s) lin.confs confs avg.length used(%) bdchgs
GRAPH-CA 553 433.0 - 96.7 27.5 31.2 4.9
COEFT-CA 562 437.8 58.7 99.5 59.6 44.9 24.4
CMIR-CA 562 436.8 59.0 99.4 59.7 45.4 24.2

Table 1 summarizes the results of the experiment for the three different conflict analysis algorithms.
The table shows the number of instances (inst), the number of instances solved to optimality (opt),
the average solving time in seconds (time(s)), the average number of conflicts generated (confs), the
average number of non-zeros in conflicts (avg.length), the percentage of conflicts that were used in
propagation (used(%)), and the average number of bound changes applied (per node) by the conflicts
(bdchgs).

For the two cut-based variants, we additionally show the number of linear conflicts generated(lin.
confs); recall that for general integer variables or certain propagators, we might fall back to graph-
based conflict analysis. The confs column, in these cases, considers both cut-based and graph-based
conflicts.

Our first observation is that both COEFT-CA and CMIR-CA perform very similarly, which aligns
nicely with the results for pure binary programming by (Mexi et al. 2023). When compared to
GRAPH-CA , both solve eight more instances to optimality and the average time is comparable. In
the following, we will concentrate on comparing CMIR-CA to GRAPH-CA ; all observations and
conclusions would be the same or very similar for a COEFT-CA to GRAPH-CA comparison.

Two of the most noticeable differences in Table 1 are the large discrepancy in the number of
propagations and the percentage of conflicts actually used in propagation. Both are significantly
larger for the cut-based variants, which is a favorable result. When analyzing our results, we found
three different reasons for this behavior.

Firstly, CMIR-CA conflicts are quite different from GRAPH-CA conflicts. On the one hand, GRAPH-
CA conflicts are always logic clauses or bound disjunctions that only propagate one single bound
change when all other variables in the clause are fixed to a value not satisfying the clause. On the
other hand, CMIR-CA conflicts might propagate multiple bound changes even when most variables
are not fixed. For example, for the instance neos-957323 with seed 0, CMIR-CA generated the
following set packing conflict constraint:

x1130 + x1131 + x1132 + x1133 + x1134 + x1135 + x1150 + x1153 + x1156 ≤ 1,

which propagates all remaining variables to zero whenever one of the variables in the constraint is
fixed to one.
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Secondly, both CMIR-CA and COEFT-CA conflicts are, on average, twice as long as those from
GRAPH-CA . As an extreme example, consider the instance nw04 with seed 0. This instance has
87 482 variables, 36 constraints, and 636 666 non-zeros, leading to an average of 17 685 non-zeros
per constraint. Conflict constraints generated from CMIR-CA have an average length of 18 160
non-zeros, thus very similar to the model constraints. At the same time, the GRAPH-CA conflicts
have an average length of “only” 243. While clausal conflicts tend to be weaker the longer they
are, conflicts from the cut-based approach can get stronger the longer they are, see the example
above or the rich literature on lifting cutting planes. Consequently, we observed a total of 864
bound changes from cut-based conflict constraints for instance nw04 and only 26 propagations from
GRAPH-CA conflicts.

Thirdly, there is another peculiar situation relating to general integer and continuous variables. Take
as an example the instance gen-ip002 with seed 1. For this instance all variables involved in conflict
constraints are general integers with lower bound 0 and an upper bound of 140 or less. Conflicts from
GRAPH-CA are clauses and are therefore restricted to one particular bound change per variable that
they can propagate, in our example, those was typically tightening the upper bound to a particular
single-digit value. Conflicts from cut-based conflict analysis, however, can propagate arbitrary bound
changes, in particular, the same conflict can tighten the upper (or lower) bound of the same variable
several times during the same dive in the tree search or even at the same node (if other propagators
tightened bounds of other variables in the conflict in the meantime). The difference in structure, while
having a similarly positive impact on performance, indicates that there might be potential for the
two strategies to complement each other when applied in combination. Hence, our next experiment
addresses a proper integration of cut-based conflict analysis into default SCIP.

8.3 MIP Performance

In this experiment, we activate cut-based conflict analysis as an additional conflict analysis method
within SCIP. This means that conflicts from both, cut- and graph-based conflict analysis, are generated
at each infeasibility. Note that in SCIP, graph-based conflict analysis generates All-FUIP conflicts by
default, so-called reconvergence cuts (Achterberg 2007a) and also locally valid conflicts, while our
cut-based conflict analysis implementation only generates globally valid conflicts and is restricted
to 1-UIP conflicts, as a result of preliminary experiments. These differences, together with the
significantly different structure of the generated constraints, serve as a motivation that the two
approaches will complement each other.

SCIP discards dense conflicts and regularly removes conflicts that haven’t propagated in a while
based on an aging strategy. We use the same length and age limits also for conflicts from cut-based
conflict analysis. Preliminary experiments showed a slowdown of 4-5% if we do not limit the length
of conflict constraints. On the other hand, the number of explored nodes decreases by 2% on average.

Table 2 shows the performance of SCIP with and without the CMIR-CA on MIPLIB2017. The
table is divided into different subsets of instances. The first row shows the performance on all
795 instances, and the second row on all 492 instances that are “affected” by conflict analysis, i.e.,
where the execution path of the two settings differs.

The next four rows show the performance on instances where at least one of the two settings needs
at least 1, 10, 100, or 1000 seconds to solve the instance, respectively. The last two rows show
the performance on instances that are solved to optimality by both settings and the subset of those
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Table 2: Performance comparison of SCIP vs SCIP with CMIR-CA .

SCIP SCIP + CMIR-CA relative

Subset instances solved time nodes solved time nodes time nodes

all 795 637 446.5 - 644 424.5 - 0.95 -
affected 492 463 454.1 - 471 419.2 - 0.92 -

[1,tilim] 660 631 270.1 - 639 254.3 - 0.94 -
[10,tilim] 598 569 406.0 - 577 380.2 - 0.94 -
[100,tilim] 443 414 987.7 - 422 890.7 - 0.90 -
[1000,tilim] 243 214 2594.4 - 222 2217.8 - 0.85 -

both-solved 615 615 201.2 2412 615 194.1 2283 0.96 0.95
aff.-both-solved 442 442 339.4 5413 442 323.0 5022 0.95 0.93

instances that are affected by conflict analysis “aff.-both-solved”. We included these rows because
they allow for a comparison of tree sizes.

The results show that using CMIR-CA leads to a notable improvement in the performance of SCIP.
Namely, it increases the number of solved instances from 637 to 644 and decreases the overall
running time by 5%. On affected instances, we observed a runtime decrease of 8%. As shown in
the rows [1,tilim], [10,tilim], [100,tilim], and [1000,tilim], the performance improvement is more
pronounced on harder instances, with a speedup of up to 15% on instances that need at least 1000
seconds to solve.

The performance improvement is also reflected in the number of nodes. The number of nodes can
only be reliably compared on instances that are solved to optimality by both settings. In this case, the
number of nodes is reduced by 5% overall and by 7% on affected instances.

9 Conclusion

In this work, we extended the cut-based conflict analysis algorithm, which originates from pseudo-
Boolean solving, to MIP. Framed in MIP terminology, conflict analysis can be understood as a
sequence of linear combinations, integer roundings, and cut generation. This MIP perspective
allowed us to interpret the reason reduction subroutine as the separation of a non-integer vertex from
the feasible region defined by the reason constraint and global bounds. Hence, our presentation
helped to bridge the gap between pseudo-Boolean and MIP views on conflict analysis, connecting
the study of cuts for the knapsack polytope with the reason reduction for pure binary problems. We
then proposed a new reduction algorithm for pure binary programs using mixed integer rounding cuts
and proved that it is stronger than the division-based reduction algorithm (Elffers and Nordström
2018) and our previous work (Mexi et al. 2023).

Our path to generalize cut-based conflict analysis to mixed integer problems in full generality was
paved by both positive and negative results. First, we showed that the cut-based approach cannot be
directly applied to mixed binary programs without considering additional problem information. To
address this limitation, we designed a new reduction algorithm that not only utilizes two constraints
(reason and conflict) in each iteration of conflict analysis but also incorporates constraints whose
propagation is responsible for tightened bounds of continuous variables. We demonstrate that in the
presence of general integer variables conflict analysis cannot be guaranteed to work as long as we
refrain from lifting the problem into higher dimension. However, our empirical results show that
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these cases occur only rarely in practice, rendering our cut-based conflict analysis a fruitful approach
also for general integer variables.

Our computational study, first helped us to understand that the learned constraints generated by the
cut-based conflict analysis differ structurally from those learned by clausal reasoning and propagate
variable bounds more frequently on average. Finally, we observed that the cut-based conflict analysis
is able to significantly enhance the out-of-the-box performance of the MIP solver SCIP, solving more
instances, reducing the running time and the size of the search tree over a large and diverse set of
MIP instances from MIPLIB 2017 by at least 5%. This result constitutes a substantial performance
improvement for a single technique in the mature field of MIP solving.
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