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Abstract. Dealing with uncertainty in optimization parameters is an important and
longstanding challenge. Typically, uncertain parameters are predicted accurately, and
then a deterministic optimization problem is solved. However, the decisions produced
by this so-called predict-then-optimize procedure can be highly sensitive to uncertain
parameters. In this work, we contribute to recent efforts in producing decision-focused
predictions, i.e., to build predictive models that are constructed with the goal of min-
imizing a regret measure on the decisions taken with them. We begin by formulating
the exact expected regret minimization as a pessimistic bilevel optimization model.
Then, we establish NP-completeness of this problem in a heavily restricted case. Using
duality arguments, we reformulate it as a non-convex quadratic optimization prob-
lem. Finally, leveraging the quadratic reformulation, we show various computational
techniques to achieve empirical tractability. We report extensive computational re-
sults on shortest-path and bipartite matching instances with uncertain cost vectors.
Our results indicate that our approach can improve training performance over the
approach of Elmachtoub and Grigas (2022), a state-of-the-art method for decision-
focused learning.

Keywords: predict and optimize · pessimistic bilevel optimization · non-convex
quadratics

1 Introduction

Decision-making processes often involve uncertainty in input parameters, which is an im-
portant and longstanding challenge. Commonly, a two-stage approach is employed: firstly,
training a machine learning (ML) model to estimate the uncertain input accurately, and
secondly, using this estimate to tackle the decision task. This decision task is typically an
optimization problem. Classical machine learning methods focus mainly on minimizing pre-
diction errors on the parameters, disregarding the impact these errors might have on the
subsequent optimization task. This approach overlooks how inaccurate predictions can neg-
atively influence the optimization solution, potentially leading to decisions of poor quality.

In recent years, decision-focused learning (DFL) (also known as smart predict-then-
optimize (SPO)) approaches, in which prediction and optimization tasks are integrated into
the learning process, have received significant attention. In this approach, a machine learning
model is specifically trained to enhance the effectiveness of the whole decision-making pro-
cess. This involves combining, during the training phase, the prediction and the optimization
in one single model.
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In this work, we focus on linear optimization problems where the coefficients of the cost
vector c ∈ Rn are unknown, but we have at hand a vector of correlated features x. Our goal is
to train a parametric machine learning model m(ω, x), where ω is the vector of parameters of
the machine learning model, so that the impact of the prediction error on the whole decision
process is minimal. The typical measure of how a prediction performs in the decision process
is the regret: the excess of cost in the optimization task caused by prediction errors.

As we will see in the following sections, finding the model m(ω, x) that minimizes the
regret can be formulated as a pessimistic bilevel optimization problem. In fact, authors in
Elmachtoub and Grigas (2022) define the unambiguous-SPO loss function as a pessimistic
regret: among all the solutions that minimize predicted objective function, it penalizes the
one that hurts the most when it is evaluated with the true cost vector.

Unfortunately, the complexity of finding these models and scalability are two major road-
blocks to this DFL approach. Consequently, the literature has mainly focused on stochastic
gradient-based approaches via approximations of the loss function through a surrogate con-
vex loss function and/or solving a relaxed optimization problem (see Mandi et al. (2024)).
Here, we follow a different path, take a step back, and focus on carefully studying the
mathematical object behind the exact expected regret minimization. Our main hypothesis
is that by understanding the mathematical object and designing new methods for solving
the pessimistic bilevel optimization problem, better predictions and better algorithms can
be developed.

The contributions of this work are the following: i. we formulate the expected regret min-
imization problem as a pessimistic bilevel optimization problem; ii. we prove that the prob-
lem is NP-complete in a heavily restricted setting, which improves on the known hardness
results; iii. we reformulate the bilevel pessimistic formulation as a non-convex quadratically-
constrained quadratic program (QCQP), which can be tackled by current optimization tech-
nology for moderate sizes; iv. we propose heuristics to improve the solution procedure based
on the quadratic reformulation; 5) we conduct a comprehensive computational study on
shortest path and bipartite matching instances. An early version of this work was published
as a short paper in the conference proceedings of CPAIOR 2024 (Bucarey et al., 2024).

1.1 Problem setting

We consider a nominal optimization problem with a linear objective function:

P (c) : z∗(c) := min
v∈V

c⊤v (1)

In this work, we restrict V to be a non-empty polytope, i.e. a non-empty bounded polyhe-
dron. For a given c, we define V ∗(c) as the set of optimal solutions to (1).

In our setting, the value of c ∈ Rn is not known, but we have access to a dataset
D = {(xi, ci)}Ni=1 with historical observations of c and correlated feature vectors x ∈ RK .
Given these observations, and for a fixed set of parameters ω, we can empirically measure
the sensitivity of the decisions given by the predictions using an average regret :

Regret(D, ω) :=

max
v

1

N

∑
i∈[N ]

(
ci⊤vi − z∗(ci)

)
, (2)

s.t. vi ∈ V ∗(m(ω, xi)) ∀i ∈ [N ] (3)
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Here, we are comparing the true optimal value z∗(ci) with the value ci⊤vi, which is the
“true cost” of a solution that is optimal for the prediction m(ω, xi). To find the values of
ω that minimize the regret (2), we must solve the following pessimistic bilevel optimization
problem.

min
ω

max
vi∈V ∗(m(ω,xi))

1

N

∑
i∈[N ]

(
ci⊤vi − z∗(ci)

)
(4)

In this formulation, there are three optimization problems involved: i. the lower-level
problem optimizing m(ω, xi)⊤v over V ; ii. over all the possible optimal solutions of the
latter, take the one with the maximum (worst) regret. This corresponds to the pessimistic
version of the bilevel formulation, defining the pessimistic regret. iii. Minimize the pessimistic
regret using ω as a variable. In what follows, we use the notation ĉi(ω) := m(ω, xi).

1.2 Importance of the pessimistic approach

To illustrate why the pessimistic approach is relevant (as opposed to taking an optimistic
approach), we consider the following example of a linear optimization problem with two
variables:

P (c) : min
v

c1v1 + c2v2

s.t. v1 + v2 ≤ 1

v1, v2 ≥ 0.

Suppose that we have the two following observations of the true cost vectors with one single
feature:

(x1, c1) =

((
1
0

)
,

(
−4
−3.5

))
,

(x2, c2) =

((
0
−2

)
,

(
−2
−3

))
,

where each feature vector corresponds to the attribute regarding one coordinate. The goal
is to estimate a simple regression model m(ω, xj) = ĉj(ω) = ω0 + ω1xj , one per coordinate.
Note that we can assume, without loss of generality, |ωi| ≤ 1 for i = 0, 1.

The optimistic version is obtained dropping the “maxv∈V ∗(ĉi(ω))” in (4); this effect can
be equivalently achieved by setting ω0 = ω1 = 0, since V ∗((0, 0)) = V (i.e., every v ∈ V
is optimal). The optimistic version then “guesses” the right optimal solution, and thus, the
optimistic regret equals 0. However, the values for this solution evaluated in the pessimistic
version are 4 for cost vector c1 and 3 for c2, leading to a regret of 3.5. Thus, this “optimistic
regret” does not adequately measure the sensitivity of the decision with respect to the
predictive model.

Note that the classical linear regression performs better than the optimistic approach in
terms of pessimistic regret. Actually, the minimum squared error estimator of this regression
is ω0 = −3.156, ω1 = 0.253, producing a regret of 0.5.

By solving the bilevel pessimistic formulation exactly, we obtain a regret of 0.25. An
optimal solution here is ω0 = −1, ω1 = 0.125: with these values, the predicted costs are
ĉ1 = (−0.875,−1)⊤, ĉ2 = (−1,−1.125)⊤. Note that this is not the only optimal solution for
this example. If we consider ω0 = −3.125, ω1 = 0.1 also returns a pessimistic regret equal
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to 0.25. We depict the different solutions and the observations in Figure 1, where the green
stars correspond to each coordinate of observation 1 (x1, c1) and black squares correspond
to observation 2 (x2, c2).
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Fig. 1. Linear regression and regret minimizers in the numerical example of Section 1.2. Black
squares and green stars correspond to the observations. Dotted lines correspond to the different
solutions for the linear model m(ω, xj).

1.3 Related work

Bilevel optimization. Bilevel optimization problems are hierarchical ones: they consist of an
optimization problem (called upper-level or leader problem) that contains in its constraints
optimality conditions of other problems, called lower-level or follower problems (Dempe and
Zemkoho (2020)). In the presence of several optimal solutions at the lower-level problems, the
way that the solution is chosen opens two approaches: the optimistic approach, also known
as the strong solution, in which the solution chosen is the one that favors the upper-level
optimization problem; and the pessimistic, also known as the weak solution, that chooses
the one that worsens the most the upper-level objective.

Optimistic bilevel optimization is NP-hard even when the upper and lower-level problems
are linear. Even having compact/efficient formulations can be a difficult task (Kleinert et al.
(2020)). See Kleinert et al. (2021) for a survey on mixed-integer programming techniques in
bilevel optimization. The necessity of establishing the pessimistic solution for bilevel opti-
mization problems was first raised by Leitmann (1978) and studied in several articles (e.g.,
Loridan and Morgan (1996); Aboussoror and Mansouri (2005)). It is a common belief that
the pessimistic approach is much more difficult than the optimistic one (Zeng (2020)). We
refer to readers to Wiesemann et al. (2013); Liu et al. (2018, 2020) for comprehensive sur-
veys of theoretical background and methods for bilevel pessimistic optimization problems.
We note that the hardness results in bilevel optimization rule out the existence of efficient
general-purpose techniques that could be applied in our setting.

Decision-focused learning. As mentioned earlier, and to the best of our knowledge, the
existing methods developed for training decision-focused predictions are primarily based
on estimating the gradient of how predictions impact a specific loss function. The main
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challenge in these approaches is to estimate the changes in the optimal solution with respect
to the model parameters, known as optimization mapping. According to the recent survey
by Mandi et al. (2024), these methods can be classified into four categories: i. those that
compute the gradient of the optimization mappings analytically, as in Amos and Kolter
(2017); or ii. solving a smooth version of the optimization mapping, as seen in Wilder et al.
(2019); Mandi and Guns (2020); Ferber et al. (2020); iii. ; or smoothing the optimization
mapping by random perturbations Pogancic et al. (2020); Niepert et al. (2021) ; or iv. those
solving a surrogate loss function that approximates regret, as discussed in Elmachtoub and
Grigas (2022); Mulamba et al. (2021); Mandi et al. (2022).

Our study diverges from these approaches. Instead, to find regret-minimizing models,
we leverage the pessimistic bilevel optimization formulation (4), and by employing duality
arguments, we formulate it as a single-level non-convex quadratic model. A related method
for minimizing the expected regret was proposed by Jeong et al. (2022): they cast the
problem, not explicitly, as an optimistic bilevel optimization problem and use a symbolic
reduction to solve this problem. However, as mentioned in Elmachtoub and Grigas (2022)
and discussed in Section 1.2, casting this problem as an optimistic bilevel optimization
problem may lead to undesirable predictions.

In terms of the complexity of (4), the results of Elmachtoub and Grigas (2022) imply
that this problem is NP-hard. They show that minimizing the regret function generalizes
the minimization of the 0-1 loss function, which is known to be NP-hard (Ben-David et al.,
2003). Here, we improve on this hardness result by showing that in a very restrictive case,
the problem remains NP-hard. We also complement this by showing membership in NP of
a decision version of (4).

2 Complexity results

In this section, we focus on studying the complexity of (4) in a basic setting: when the
predictive model m(ω, x) is linear. Technically, x are feature vectors, but slightly abusing
notation, we will treat them as matrices in this section. This allows to write m(ω, x) = xω
for a linear predictive model.

As mentioned in the previous section, the results of Elmachtoub and Grigas (2022) imply
that (4) is NP-hard since it generalizes the minimization of the 0-1 loss function, which is
known to be NP-hard (Ben-David et al., 2003).

In this section, we provide a sharper hardness result by showing that (4) is NP-hard
even if we restrict to a linear nominal problem with a bounded feasible region and only
one observation. We also show membership in NP, thus establishing NP-completeness of the
problem.

Remark 1. The reduction in Elmachtoub and Grigas (2022) of the 0-1 loss minimization to
(4) does not provide NP-hardness in the case we consider here since the former can be solved
in polynomial time when there is only one observation (Blumer et al., 1989). This provides
an interesting separation (complexity-wise) of problem (4) and the minimization of the 0-1
loss.

Remark 2. While many NP-hardness results are known in bilevel optimization (e.g. Audet
et al. (1997); Hansen et al. (1992); Vicente et al. (1994); Buchheim (2023)), they are not
directly applicable to (4) due to the following reasons:

– Problem (4) is a pessimistic bilevel optimization problem.
– The leader variables ω are unrestricted.



6 Bucarey et al.

– The leader and follower variables interact non-linearly in the follower’s problem, even
when m(ω, x) is a linear function.

Adapting the existing bilevel optimization reductions to our setting seems like a highly
non-trivial task, which is why we opted for a new custom proof.

Let us consider the following decision problem, associated with a simplified version of
the optimization problem (4).

Definition 1. The decision problem SIMPLE-REGRET(N) is defined as follows. Given
(ci, xi)Ni=1 a collection of rational vectors and matrices, a polytope V , and a rational number
M decide if there exists ω such that

max
vi∈V ∗(xiω)

1

N

∑
i∈[N ]

ci⊤vi ≤ M (6)

We note that (6) is obtained from (4) by restrictingm(ω, x) = xω, and removing the constant
part of the objective function z∗(ci); ; these terms can be computed efficiently, as they are
only linear programs..

Theorem 1. For every fixed N , SIMPLE-REGRET(N) is NP-hard.

Proof. It suffices to show SIMPLE-REGRET(1) is NP-hard. To do so, we show that 3SAT
can be reduced in polynomial time to SIMPLE-REGRET(1).

Fix an instance of 3SAT and take {Cj}mj=1 the set of clauses and uk, k ∈ [n], the set of
variables. For each clause j we denote j1, j2, j3 the indices of the 3 variables appearing in
Cj . We also define fj(ujℓ) as

fj(ujℓ) =

{
ujℓ if Cj contains ujℓ as a literal
1− ujℓ if Cj contains ujℓ as a literal

Using this, we let V ⊆ Rn+m be the polytope defined by

yj ≥ fj(ujℓ) ∀j ∈ [m], ℓ = 1, 2, 3

y ∈ [0, 1]m

u ∈ [0, 1]n

We note that the projection of this polytope onto the u variables is simply [0, 1]n. To
define the instance of SIMPLE-REGRET(1) we set

c1 = (0, . . . , 0︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
m

) ∈ Rn+m.

Additionally, we define x1 as the following (n+m)× (n+m) matrix

x1 =

[
In 0
0 0

]
where In is the n × n identity matrix and the zeros are stand-ins for all-zero matrices of
appropriate dimensions. This way, x1ω = (ωu, 0) where ωu is the sub-vector of ω consisting
of its first n entries. Finally, we set M = −m.

Using these definitions, this instance of SIMPLE-REGRET(1) outputs “Yes” if and only
if there exists ω such that the value of the following bilevel problem is at most −m:
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max −
m∑
j=1

yj (7a)

s.t (u, y) ∈ argmin
{
ω⊤
u u : (7b)

yj ≥ fj(ujℓ) ∀j ∈ [m], ℓ = 1, 2, 3, (7c)

y ∈ [0, 1]m, (7d)

u ∈ [0, 1]n
}

(7e)

Clearly, (7) can be constructed in polynomial time. We now show that 3SAT outputs
“Yes” if and only there exists ω such that the value of (7) is at most −m.

If the 3SAT formula is satisfiable, we can take û an assignment of the u variables that
makes all clauses true. With this, we define

(ωu)k =

{
−1 if ûk = 1
1 if ûk = 0

and we observe that (u, y) satisfies (7b) if and only if u = û and y satisfies that yj = 1 when
clause Cj is satisfied by û, or yj ∈ [0, 1] otherwise. Since û was a satisfiable assignment, this
means that all m entries of y will be 1, and thus

−
m∑
j=1

yj ≤ −m.

for any (u, y) satisfying (7b). Thus, SIMPLE-REGRET(1) outputs “Yes”.

Let us now assume SIMPLE-REGRET(1) outputs “Yes” and take the corresponding ω.
Define the following binary vector:

ûk =

{
1 if (ωu)k ≤ 0
0 if (ωu)k > 0

and accordingly, set

ŷj =

{
1 if fj(ujℓ) = 1 for some ℓ = 1, 2, 3
0 otherwise

Note that ŷj is 1 if and only if the assignment û satisfies clause Cj . It is not hard to see that
(û, ŷ) satisfies (7b) (i.e., it is optimal for the lower-level problem), and thus it is feasible for
the maximization problem. But since we know the maximum is at most −m, we must have

−
m∑
j=1

ŷj ≤ −m.

This means there are at least m clauses satisfied, i.e., the 3SAT formula is satisfiable.
To finalize our proof, we note that in our reduction we construct instances satisfying

x1ω = (ωu, 0) and c1 = (0, . . . , 0,−1, . . . ,−1). Hence, the 0-1 loss is always 1, regardless of
ωu. In particular, any ωu is optimal for the 0-1 loss minimization problem.

Theorem 2. For every fixed N , SIMPLE-REGRET(N) ∈ NP
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Proof. It suffices to show that, for any “Yes” instance of SIMPLE-REGRET(N), there is
a polynomially-sized ω such that (6) holds. Indeed, if we have such an ω, we can simply
compute the optimal faces of each of the N lower-level problems (which can be done in
polynomial time), and then solve the resulting maximization problem.

Consider an arbitrary instance of SIMPLE-REGRET(N), with V = {v : Av ≤ b}, and
suppose there exists ω̂ such that the value of

max
1

N

N∑
i=1

(ci)⊤vi

s.t vi ∈ argmin
{
(xiω̂)⊤v : Av ≤ b

}
is less or equal than M . We will show we can modify ω̂ to have polynomial size and not
change any of the argmins. Since we assume V is always non-empty and bounded (which can
be verified in polynomial time), strong duality always holds. The dual of the i-th lower-level
problem reads

max (ρi)⊤b

s.t (ρi)⊤A = xiω̂

ρi ≤ 0.

For each i, let us consider ρ̂i in the relative interior of the optimal face of the dual. This
means that the optimal face of the primal can be described as

F i(ω̂) := {v ∈ V : a⊤j v = bj , j : ρ̂ij < 0}

We claim that any (ω̃, ρ̃) satisfying

(ρ̃i)⊤A = xiω̃ ∀i ∈ [N ] (8a)

ρ̃ij ≤ −1 ρ̂ij < 0, ∀i ∈ [N ] (8b)

ρ̃ij = 0 ρ̂ij = 0, ∀i ∈ [N ] (8c)

is such that argmin{(xiω̃)⊤v : Av ≤ b} = F i(ω̂) for every i ∈ [N ]. Indeed, if there are
such ω̃ and ρ̃, then

argmin{(xiω̃)⊤v : Av ≤ b}
=argmin{(ρ̃i)⊤Av : Av ≤ b}

=argmin

 ∑
j:ρ̂i

j<0

ρ̃ija
⊤
j v : Av ≤ b


The last objective function is lower bounded by

∑
j:ρ̂i

j<0 ρ̃
i
jbj (recall that the ρ̃ values

are non-positive). Moreover, this lower bound is met if and only if

a⊤j v = bj ∀j : ρ̂ij < 0.
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Therefore, we obtain that each ρ̃i is dual optimal for min{(xiω̃)⊤v : Av ≤ b} and argmin{(xiω̃)⊤v :
Av ≤ b} = F i(ω̂).

To conclude, note that (8) is always feasible, as a rescaled version of (ω̂, ρ̂) satisfies the
system. Since the coefficients of (8) are given by the entries of A, xi, zeros, and ones, we
conclude that there must be a (ω̃, ρ̃) of polynomial size that satisfies the system.

Corollary 1. For every fixed N , SIMPLE-REGRET(N) is NP-complete.

As a last comment of this section, we note that membership in NP makes it unlikely for
SIMPLE-REGRET(N) to be higher on the complexity hierarchy.

3 A non-convex quadratic reformulation

While the previous section establishes that finding a worst-case efficient method for solving
(4) is unlikely, we can still hope to find methods with good practical performance.

In this section, we will apply duality arguments, supported by the assumption that V in
problem (1) is non-empty and bounded, in order to obtain a more manageable formulation
of the problem.

Under our assumptions, we can assume (1) has the following form:

min
v

c⊤v (9a)

s.t. Av ≥ b (9b)

v ≤ 1 (9c)

v ≥ 0. (9d)

Our predicted costs have the form m(ω, x) for some feature vector x and parameters ω (to
be determined), and the terms z∗(ci) are constant. Thus, an equivalent formulation of our
(pessimistic) regret-minimization problem is:

min
ω

max
v

1

N

∑
i∈[N ]

(ci)⊤vi

s.t. vi ∈ argmin
ṽi

m(ω, xi)⊤ṽi

s.t. Aṽi ≥ b

ṽi ≤ 1

ṽi ≥ 0.

(10)

3.1 Duality arguments

A common approach to solving optimistic bilevel problems involving convex lower-level
problems is to reformulate them by replacing the lower-level problems with their optimality
(Karush-Kuhn-Tucker or KKT) conditions (see Kleinert et al. (2021)). In this subsection,
we follow the same type of argument twice to achieve a single-level reformulation of the
pessimistic bilevel problem (10).
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Since the feasible region of the lower-level problem in (10) is a non-empty polytope,
which is unaffected by ω, we can apply LP duality and reformulate (10) as:

min
ω

max
v,ρ,α

1

N

∑
i∈[N ]

(ci)⊤vi (11a)

s.t. Avi ≥ b ∀i ∈ [N ] (11b)

vi ≤ 1 ∀i ∈ [N ] (11c)

vi ≥ 0 ∀i ∈ [N ] (11d)

A⊤ρi + αi ≤ m(ω, xi) ∀i ∈ [N ] (11e)

ρi ≥ 0 ∀i ∈ [N ] (11f)

αi ≤ 0 ∀i ∈ [N ] (11g)

m(ω, xi)⊤vi ≤ b⊤ρi + 1⊤αi ∀i ∈ [N ] (11h)

In this formulation (11b)-(11d) impose primal feasibility, (11e)-(11g) impose dual feasibility,
and (11h) imposes strong duality6.

The inner maximization problem of (11) is an LP, which is feasible for every value of
ω. This is true because it represents a primal-dual system of a linear problem over a non-
empty polytope, meaning it always has a solution. Moreover, since the objective function in
(11a) involves only the v variables, which are bounded, we know that strong duality holds,
allowing us to take the dual once again. This yields the following reformulation of (10):

min
ω,µ,θ,δ,γ

∑
i∈[N ]

(
b⊤µi + 1⊤θi +m(ω, xi)⊤δi

)
(12a)

s.t. A⊤µi +m(ω, xi)γi + θi ≥ 1

N
ci ∀i ∈ [N ] (12b)

Aδi − bγi ≥ 0 ∀i ∈ [N ] (12c)

− γi1+ δi ≤ 0 ∀i ∈ [N ] (12d)

µi ≤ 0 ∀i ∈ [N ] (12e)

δi, γi, θi ≥ 0 ∀i ∈ [N ] (12f)

This is a single-level, non-convex quadratic problem.

3.2 Shortest path as a bounded linear program

In this work, and motivated by Elmachtoub and Grigas (2022), we consider the shortest path
problem with unknown cost vectors. It is well known that this problem can be formulated as
a linear program using a totally unimodular constraint matrix. However, the feasible region
may not be bounded, as the underlying graph may have negative cycles, which correspond
to extreme rays of the corresponding polyhedron.

To apply our framework (which relies on duality arguments), we need to assume no
negative cycles exist for every possible prediction m(ω, x). For this reason, we make the
following assumption.

6 Strong duality is typically written as an equality constraint; however, the ≥ inequality always
holds due to weak duality.
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Assumption 1 The underlying graph G defining the shortest path is directed acyclic.

Under this assumption, we can safely formulate the shortest path problem as (9), and
every extreme point solution will be a binary vector indicating the shortest path. Addition-
ally, the inner maximization problem in (11) always has a binary optimal solution, as its
feasible region is an extended formulation of the optimal face of the lower-level problem.
From this discussion, we can guarantee that under Assumption 1, formulation (12) is valid
for the shortest path problem with uncertain costs.

In our experiments, we also consider weighted bipartite instances. These instances can
be directly formulated as a linear program with a bounded and integral feasible region, and
thus, we do not need any extra assumption on them.

4 Solution methods

As mentioned earlier, in this work, we focus on the case when m(ω, x) is a linear model.
Given its excellent performance, we will use the SPO+ loss function as a baseline.

4.1 SPO+

Authors in Elmachtoub and Grigas (2022) define the SPO+ loss function as a convex sur-
rogate loss, which serves as an upper bound on the true regret. The authors derive an
informative subgradient for this loss, which can be utilized in any subgradient descent-based
approach. Additionally, they present a linear programming formulation for cases where the
nominal problem is linear, and the model for estimation is also linear. This surrogate loss is
defined as

ℓSPO(c,m(ω, x)) =max
v∈V

{
(c− 2m(ω, x))⊤v

}
+ 2m(ω, x))⊤v∗(c)− z∗(c).

By using (9) as a nominal problem, the problem that minimizes the expected SPO+ loss
can be cast as the following LP:

min
ω,ρ

1

N

∑
i∈[N ]

−b⊤ρi + 1⊤θi + 2m(ω, xi)⊤v∗(ci) (13a)

s.t. − ρ⊤i A+ θi ≥ ci − 2m(ω, xi) i ∈ [N ] (13b)

ρi, θi ≥ 0 i ∈ [N ]. (13c)

Variables ρ and θ are dual variables associated to constraints (9b) and (9c), respectively.
We consider this formulation as a starting point and as a benchmark against which we will
compare our methods.

4.2 Local Search

The intermediate reformulation presented in (11) can be seen as an unrestricted optimization
problem of the form

min
ω

Λ(ω).

Here, Λ(ω) is a function that for each ω returns the optimal value of the inner maximization
problem in (11). As mentioned above, for each ω, Λ(ω) is a feasible linear problem. We
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Algorithm 1 Local-search based algorithm

1: Input Training data, Starting model parameters ω0.
2: Hyperparameters: size of neighbourhood ϵ, sample size T , maximum number of iterations L.
3: Solve Λ(ω0)
4: for i = 0, . . . , N do
5: Sample T parameters in the neighbourhood of ωi: ωt ← ωi + ϵ · N (0, 1)
6: Compute Λ(ωt) ∀t ∈ {1, . . . , T}
7: Update ωi+1 ← argmint=1,...,T F (ωt)
8: end for

propose the following simple local-search-based heuristic: given an initial incumbent solution
ω0, we randomly generate T new solutions in a neighborhood of ω0, evaluate the regret for
each, and update the incumbent solution with the one with the smallest regret. We repeat
these steps during L iterations. The procedure is detailed in Algorithm 1.

4.3 Penalization

Based on the ideas of Aboussoror and Mansouri (2005), we propose the following related
formulation: we fix the variables γi in (12) to have all the same fixed value κ. This parameter
κ is set before optimization and can be seen as a hyperparameter of the optimization problem.
This results in the following model.

min
ω,µ,θ,δ

∑
i∈[N ]

(
b⊤µi + 1⊤θi +m(ω, xi)⊤δi

)
(14a)

s.t. A⊤µi +m(ω, xi)κ+ θi ≥ 1

N
ci ∀i ∈ [N ] (14b)

Aδi − bκ ≥ 0 ∀i ∈ [N ] (14c)

− κ1+ δi ≤ 0 ∀i ∈ [N ] (14d)

µi ≤ 0 ∀i ∈ [N ] (14e)

δi, θi ≥ 0 ∀i ∈ [N ] (14f)

This formulation corresponds to a slice of the formulation (12) which removes all non-
linearities of the constraints. Consequently, by adopting this approach, we solve an opti-
mization problem with quadratic non-convex objective and linear constraints.

We remark that this approach results in a problem that is not a traditional penalization
(which typically yields relaxations) but rather a restriction of the problem. The name “pe-
nalization”, which is used in Aboussoror and Mansouri (2005), comes from a derivation of
(14), which follows a similar approach to the one described in Section 3. The difference lies
in penalizing (11h) using κ before taking the dual a second time.

4.4 Alternating direction method

We note that the non-convexities of formulation (12) come from products between the model
parameter ω and dual variables γ or δ. Hence, if we fix either the ω variables, or variables
γ and δ, we obtain linear programming problems. Specifically, if we fix ω to ω̄ the resulting
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LP reads

min
µ,θ,δ,γ

∑
i∈[N ]

(
b⊤µi + 1⊤θi +m(ω̄, xi)⊤δi

)
(15a)

s.t. A⊤µi +m(ω̄, xi)γi + θi ≥ 1

N
ci ∀i ∈ [N ] (15b)

Aδi − bγi ≥ 0 ∀i ∈ [N ] (15c)

− γi1+ δi ≤ 0 ∀i ∈ [N ] (15d)

µi ≤ 0 ∀i ∈ [N ] (15e)

δi, γi, θi ≥ 0 ∀i ∈ [N ]. (15f)

Analogously, fixing γ̄ and δ̄ yields the LP

min
µ,θ,ω

∑
i∈[N ]

(
b⊤µi + 1⊤θi +m(ω, xi)⊤δ̄i

)
(16a)

s.t. A⊤µi +m(ω, xi)γ̄i + θi ≥ 1

N
ci ∀i ∈ [N ] (16b)

µi ≤ 0, θi ≥ 0 ∀i ∈ [N ] (16c)

Based on these observations, we propose Algorithm 2 as a heuristic to find high-quality
values for ω.

Algorithm 2 Alternating descent algorithm

1: Input Training data, Starting model parameters ω0.
2: Hyperparameters: Maximum number of iterations L.
3: for i = 0, . . . , L do
4: Solve problem (15) using ω̄i. Retrieve optimal variables δ̄i and γ̄i
5: Solve problem (16) using δ̄i and γ̄i and retrieve a new vector of parameters ω̄i+1

6: end for
7: Return ω̄L

The following proposition follows directly from the definition of Algorithm 2.

Proposition 1. The sequence Λ(ω̄0), Λ(ω̄1), . . . , Λ(ω̄L) produced by Algorithm 2 is non-
increasing.

4.5 Regression bounds and valid inequalities

To prevent the solver from generating solutions with large coefficients in the non-convex
QCQPs, and since the lower-level optimization problem is invariant to scalings of the objec-
tive, we can impose arbitrary bounds to the values of ω. Any bound is valid, but we avoided
small numbers to prevent numerical instabilities.

Additionally, to improve the performance of the optimization solver, we included the
following valid inequality to (12):∑

i∈[N ]

(
b⊤µi + 1⊤θi +m(ω, xi)⊤δi

)
≥ 1

N

∑
i∈[N ]

z∗(ci)
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Variables N (#Nodes + 2 ·#Edges + 1) +K#Edges

Constraints Linear (excluding var. bounds) N(#Nodes + #Edges)
Non-convex N#Edges

Table 1. Description of the size of the exact reformulation.

This is a dual cut-off constraint. Its left hand side takes the same value as 1
N

∑
i∈N (ci)⊤vi

in (10), and thus, by optimality of z∗, the inequality holds. This simple inequality provided
considerable improvements in solver’s performance.

5 Computational experiments

5.1 Computational set-up

Data generation. We consider an adaptation of the data generation process described in
Elmachtoub and Grigas (2022) and Tang and Khalil (2024). The training data consists of
{(xi, ci)}Ni=1 generated synthetically the following way.

We consider two families of instances: small instances including values ofN = {50, 100, 200}
where all methods can be run in moderate running times, and instances with N = 1000 to
test the scalability of our approach. Each dataset is separated in 70% for training and 30%
for testing. Feature vectors are generated by sampling them from a standard normal distri-
bution (mean zero and standard deviation equals to 1). We generate cost vectors by first
generating the parameters ω of the model –representing the true underlying model– and
then using the following formula (see Elmachtoub and Grigas (2022) and Tang and Khalil
(2024)):

cia =

[
1

3.5Deg

(
1√
K

( K∑
k=1

ωkx
i
ak

)
+ 3

)Deg

+ 1

]
· ε (17)

where cia is the component of the cost vector ci corresponding to the arc a in the graph.
The Deg parameter specifies the extent of model misspecification; as a linear model is used
as a predictive model in the experiments, the higher the value of Deg, the more the relation
between the features and cost coefficients deviates from a linear one (and thus, the larger
the errors will be). Finally, a multiplicative noise term ε is sampled randomly from a uni-
form distribution in [0.5, 1.5]. We perform our experiments by considering the values of the
parameter Deg in {2, 8, 16}.

We consider two nominal problems: shortest path over a directed acyclic grid graph of
5 × 5 nodes; a maximum weight matching on a bipartite graph of 13 and 12 nodes. To
obtain graphs of similar sizes in both families of instances, we fix the number of edges of the
bipartite matching graph to 40.

We remark that the exact reformulation requires solving a challenging non-convex prob-
lem, and that the underlying problem is NP-hard even for one observation (as established in
Section 2); these are the main reasons why we focus on moderate instance sizes in this work.
To provide some perspective, in Table 1 we provide the number of variables and constraints
(linear and non-convex) that the non-convex quadratic problem has.

Algorithms. In our experiments, we consider the following sequence of steps to generate
decision-focused predictions:
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Fig. 2. Execution of local search on a 10× 13 grid with different combinations of hyperparameters.

1. Generate an initial solution using the SPO+ method computed by the linear program
(13) (SPO)

2. Improve the previous solution using Algorithm 1 (LS)

3. Either:

(a) Solve (14) (Penalized) using Gurobi with the solution produced by LS as a warm
start

(b) Solve (12) (Exact) using Gurobi with the solution produced by LS as a warm start

(c) Use the Alternating Method (Algorithm 2) with the solution produced by LS as
starting point

(d) Use the Alternating Method (Algorithm 2) with SPO as starting point

In terms of computational efficiency, Step 1 involves solving one LP; Step 2 solves a fixed
number of LPs; Steps 3(a) and 3(b) are non-convex quadratic problems; and Steps 3(c) and
3(d) are sequences of LPs.

This generates six different combinations that we test below, with their names indicating
the sequence: SPO, SPO-LS, SPO-LS-EXA, SPO-LS-PEN, SPO-LS-ALT, and SPO-ALT.

In all variants, we limit the entire suite of algorithms to one hour in the following way.
We set a maximum time limit of 20 minutes for the SPO-LS part, leaving the remaining
time for executing either EXA, PEN, or ALT. In our results, we provide the intermediary
performance of SPO-LS. We remark that SPO can be solved in seconds. For instance, in our
experiments, a typical instance with N = 1000 is solved in less than a minute.

Hyperparameters. In the implementation of Algorithm 1, we fixed the number of iterations to
20. To fix the rest of the hyperparameters in this algorithm, we tested various combinations
to choose the best. In Figure 2, we show the regrets on a training and test set instance of
the bipartite matching problem, when running the local search algorithm starting from the
SPO+ solution. We also ran similar tests for the shortest path instances.

Figure 2 shows that ϵ = 1 (size of the neighborhood) and T = 20 (samples per iteration)
provide the best trade-off between test and training performance; we thus set these values
for experiments involving bipartite matching. In the case of shortest path, we determined
that ϵ = 0.1 and T = 20 yields the best results.
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In the case of the penalization method, to fix the value of κ, we also tested different vari-
ations (κ ∈ {0.1, 1, 10}) and observed that κ = 0.1 provided the best performance overall.

Hardware and Software We implemented all the aforementioned routines using Python 3.10.
All non-convex quadratic models were solved using Gurobi 10.0.3 (Gurobi Optimization,
LLC, 2023). All experiments were run single-threaded on a Linux machine with an Intel
Xeon Silver 4210 2.2G CPU and 128 GB RAM.

5.2 Computational results

In this section, we compare the decision-focused predictions obtained using the aforemen-
tioned methods by evaluating the regrets they achieve. To ensure the regrets are displayed
on the same scale, and following the approach in Elmachtoub and Grigas (2022), we use the
normalized regret instead of reporting the direct regret (as defined in (2)). The normalized
regret is defined as

Regret(D, ω)∑
i∈[N ] z

∗(ci)
.

Henceforth, when we reference the regret, we mean this normalized version.

Training set performance Tables 2 and 3 show the performance of the methods on the
training set for small instances of shortest paths and maximum weight bipartite matching,
respectively. In these tables, we use the regret returned by SPO (model (13)) as the baseline.
The subsequent columns display the percentage decrease in regret achieved by our methods.
The method with the best performance in terms of normalized regret is highlighted in color.

In the shortest path instances shown in Table 2, our alternating method, either by itself
or in tandem with local search, achieves the best performance in terms of regret. We also
observe that the penalized method may often improve (decrease) the regret, but in some
instances, it can dramatically increase the regret (black bold numbers). This occurs whenever
the starting point is not valid for the slice given by the chosen penalty factor in (14), causing
the solver to reject the solution. Table 3 shows that for bipartite matching there are cases
where the the penalized method was the best. However, the alternating direction method
obtained the overall best results.

These results indicate that the performance of the alternating method considerably de-
pends on its starting point. In most cases, starting from the solution provided by the local
search algorithm yields a better outcome than starting with SPO. However, since the time
for SPO, LS, and ALT is divided within the one-hour time limit, there are cases where
starting with SPO and allowing the alternating method to run for the majority of the time
results in better performance. Overall, we believe these are highly encouraging results: all
methods we develop here are tailored for improving the training performance in moderate
running times, to which we succeded for these challenging instances.

In what follows, we discuss two remaining aspects: test set performance and scalability.

Test set performance Regarding the performance on the test set, the results are less
conclusive: the performance of SPO can be improved, but there is no clear dominance of one
method.

In Table 4 we presents results for shortest path instances. We observe that in 14 out
of 16 cases, one of the methods we propose here improves the SPO performance. The two
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Table 2. Training set performance on small shortest path instances. The first three columns specify
the instance parameters. The column labeled SPO provides the normalized regret achieved by
the SPO+ method. Subsequent columns provide the improvements over SPO. Best regrets are
highlighted in color.

N Deg Noise SPO SPO-LS SPO-LS-EXA SPO-LS-PEN SPO-LS-ALT SPO-ALT

50 2 0.0 0.035 0.0% -14.3% -17.1% -42.9% -54.3%
50 2 0.5 0.171 0.0% -22.2% -25.1% -43.3% -43.3%
50 8 0.0 0.133 0.0% -13.5% +53.4% -19.5% -19.5%
50 8 0.5 0.381 -23.6% -45.1% +9.2% -67.5% -64.8%
50 16 0.0 1.254 -66.4% -70.6% -6.7% -82.0% -75.4%
50 16 0.5 0.99 -59.5% -64.5% +253.5% -71.2% -77.8%

100 2 0.0 0.078 0.0% 0.0% 0.0% -32.1% -32.1%
100 2 0.5 0.195 0.0% 0.0% 0.0% -37.9% -40.5%
100 8 0.0 0.399 0.0% 0.0% 0.0% -20.8% -20.8%
100 8 0.5 0.572 -29.0% -29.0% -29.0% -47.6% -44.9%
100 16 0.0 3.243 -61.2% -61.2% -23.0% -69.1% -13.8%
100 16 0.5 1.945 -15.3% -15.3% +76.1% -28.0% -5.3%

200 2 0.0 0.089 0.0% 0.0% 0.0% -20.2% -20.2%
200 2 0.5 0.232 -0.9% -0.9% -0.9% -11.2% -13.4%
200 8 0.0 0.693 -16.7% -16.7% -16.7% -25.4% -4.0%
200 8 0.5 0.621 -1.4% -1.4% -1.4% -22.1% -16.1%
200 16 0.0 2.14 -60.5% -60.5% -60.5% -61.5% -2.9%
200 16 0.5 6.194 -79.4% -79.4% -79.4% -80.4% -0.2%

variants of the alternating method, which was the best in training performance, has the
best performance in 8 out of 18 test instances, however, it can increase the test regret in
comparison to SPO in some cases. The results for bipartite matching, which we show in
Table 5, are slightly different. Here, the alternating method, in its various implementations,
achieves the best performance in 9 out of 18 instances –one more than in the shortest
path instances. On the other hand, in 6 instances, no method was able to improve the test
performance of SPO.

Overall, from the test performance we see the following takeaways: (1) SPO can provide
a strong solution very quickly, (2) in many instances, the SPO performance can be improved
considerably and (3) which method yields the best improvement can vary significantly.

Other performance metrics and scalability To better understand the performance of
the different algorithms, in this section we provide more details on their execution.

Both the exact method (EXA) and the penalized method (PEN) often reach the time
limit; in Table 6 we report the final gap values reported by Gurobi. The penalized method,
in particular, shows a tendency to return exceedingly large optimality gaps. This occurs
because PEN sometimes rejects the initial feasible solution and struggles to find either good
bounds or high-quality feasible solutions. In one extreme case, the penalized method failed to
identify a feasible solution for the shortest path instance entirely. Also note that the bipartite
matching instances always finish with larger gaps than their shortest path counterpart.
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Table 3. Training set performance on small bipartite matching instances. The first three columns
specify the instance parameters. The column labeled SPO provides the normalized regret achieved
by the SPO+ method. Subsequent columns provide the improvements over SPO. Best regrets are
highlighted in color.

N Deg Noise SPO SPO-LS SPO-LS-EXA SPO-LS-PEN SPO-LS-ALT SPO-ALT

50 2 0.0 0.065 0.0% -12.3% -46.2% -56.9% -56.9%
50 2 0.5 0.125 0.0% -15.2% -35.2% -46.4% -46.4%
50 8 0.0 0.344 0.0% -12.8% -24.4% -31.7% -31.7%
50 8 0.5 0.249 0.0% -15.3% -11.2% -39.4% -39.4%
50 16 0.0 0.316 -3.5% -11.4% +5.1% -52.2% -50.0%
50 16 0.5 0.344 -18.3% -32.0% -18.3% -74.1% -38.4%

100 2 0.0 0.091 0.0% -4.4% -47.3% -29.7% -29.7%
100 2 0.5 0.182 0.0% 0.0% -42.3% -27.5% -27.5%
100 8 0.0 0.391 -10.7% -10.7% -10.7% -40.2% -20.2%
100 8 0.5 0.29 0.0% -5.9% 0.0% -27.6% -27.6%
100 16 0.0 0.415 0.0% -6.7% 0.0% -19.8% -19.8%
100 16 0.5 0.536 -12.9% -12.9% -12.9% -38.6% -19.8%

200 2 0.0 0.103 0.0% 0.0% 0.0% -15.5% -15.5%
200 2 0.5 0.207 0.0% 0.0% 0.0% -11.6% -11.6%
200 8 0.0 0.361 0.0% 0.0% 0.0% -8.9% -8.9%
200 8 0.5 0.387 0.0% 0.0% 0.0% -7.5% -7.5%
200 16 0.0 0.478 -17.6% -17.6% -17.6% -28.9% -17.6%
200 16 0.5 0.589 -25.3% -25.3% -25.3% -33.8% -28.5%

These results indicate that, even though EXA provides an exact reformulation of (10),
the current solver technology is still unable to provide a provably optimal solution in these
instances.

We also performed experiments on larger instances: with N = 1000. Based on the anal-
ysis above, we exclude from further consideration the methods involving the exact method
(EXA) and the penalized method (PEN), since their performance is dramatically affected.
We report our results in Tables 7 and 8. From these results, we see that our methods remain
competitive, improving the performance of SPO in many cases. In one extreme case, we
obtained an improvement of 25.9% in the case of the shortest path and 39.1% in the case of
bipartite matching. However, overall, we note that these improvements start to become more
modest than in the smaller instances. As before, the case of bipartite matching is harder to
improve than shortest path.

Finally, to provide a more fleshed-out analysis on the alternating method and shed light
on the reduced improvements for large instances, we show per-iteration statistics in Table 9.
This table shows the number of iterations and average time-per-iteration of the two versions
of the alternating method: starting from SPO directly or from local search.

From Table 9 we note that the number of iterations reduces dramatically as N increases:
this can partially explain why we observed more moderate improvements with respect to
SPO in N = 1000. We also note that, even if running local search reduces the number of
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Table 4. Test set performance on small shortest path instances. The first three columns specify the
instance parameters. The column labeled SPO provides the normalized regret achieved by the SPO+
method. Subsequent columns provide the improvements over SPO. Best regrets are highlighted in
color.

N Deg Noise SPO SPO-LS SPO-LS-EXA SPO-LS-PEN SPO-LS-ALT SPO-ALT

50 2 0.0 0.105 0.0% -2.9% -24.8% -11.4% -4.8%
50 2 0.5 0.304 0.0% -15.1% +6.9% -6.9% -7.2%
50 8 0.0 0.45 0.0% +8.2% -34.2% -52.7% -34.4%
50 8 0.5 1.056 -3.3% +8.4% +7.4% +16.5% +5.2%
50 16 0.0 3.762 -74.9% -73.1% -76.2% -72.8% -74.9%
50 16 0.5 3.504 -9.6% -7.4% +42.9% +6.2% -13.8%

100 2 0.0 0.099 0.0% 0.0% 0.0% -1.0% -1.0%
100 2 0.5 0.227 0.0% 0.0% 0.0% +7.0% +11.0%
100 8 0.0 0.776 0.0% 0.0% 0.0% +8.9% -13.9%
100 8 0.5 0.707 -3.0% -3.0% -3.0% -24.9% +35.5%
100 16 0.0 3.882 +39.6% +39.6% -12.6% -6.1% -7.5%
100 16 0.5 13.645 +13.9% +13.9% -8.2% +14.9% +5.0%

200 2 0.0 0.099 0.0% 0.0% 0.0% 0.0% -1.0%
200 2 0.5 0.238 +11.3% +11.3% +11.3% +10.9% -5.0%
200 8 0.0 0.591 -2.7% -2.7% -2.7% +1.9% +14.7%
200 8 0.5 1.023 -23.3% -23.3% -23.3% -19.8% -2.5%
200 16 0.0 1.836 +39.9% +39.9% +39.9% +27.6% +15.0%
200 16 0.5 3.384 +2.0% +2.0% +2.0% -5.8% -12.1%

iterations that ALT can perform (since the budget time is shared), the results in Tables 7
and 8 suggest that it may be worth running them in tandem.

We believe that these results suggest that a batch version of the alternating method
can be a worthwhile for large instances. We strongly believe that this, along with other
computational enhancements, can scale the strong result we observer in small instances.

6 Conclusions

In this work, we present an in-depth analysis of the optimization problem behind the train-
ing task of decision-focused learning. We improve on known complexity results by showing
that producing regret-minimizing models is NP-complete even when only one observation
is present. On the flip side, our proof of membership in NP indicates that this problem is
not higher in the computational complexity hierarchy, unless the latter collapses. Addition-
ally, we derive a non-convex quadratic optimization reformulation of the problem, whose
structure we exploit empirically. Furthermore, by leveraging intermediate steps of the refor-
mulation, we develop algorithms to address the problem at scale, including a local search
procedure and an alternating direction method. These two algorithms only require solving
linear programs at each iteration. When performed in tandem, they provide predictions with
strong performance on both training and test sets for challenging shortest path instances
and maximum weight matching problems with unknown cost/weight vectors.

Our results show that improvements (both in training and test instances) over SPO+ –a
state-of-the-art method– can be achieved, thus effectively producing better decision-focused
predictive models. The main drawback we observe is scalability: when the number of obser-
vations is large, the methods we show here, while still competitive, provide more moderate
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Table 5. Test set performance on small bipartite matching instances. The first three columns
specify the instance parameters. The column labeled SPO provides the normalized regret achieved
by the SPO+ method. Subsequent columns provide the improvements over SPO. Best regrets are
highlighted in color.

N Deg Noise SPO SPO-LS SPO-LS-EXA SPO-LS-PEN SPO-LS-ALT SPO-ALT

50 2 0.0 0.118 0.0% +39.0% -2.5% -3.4% +14.4%
50 2 0.5 0.26 0.0% 0.0% -5.8% -4.2% -10.8%
50 8 0.0 0.349 0.0% +30.4% -6.9% -6.3% -10.3%
50 8 0.5 0.474 0.0% +6.1% +4.0% +6.5% +5.3%
50 16 0.0 0.781 -17.2% -20.5% -13.3% +15.1% -17.4%
50 16 0.5 0.596 -21.8% -9.4% -21.8% -9.9% +11.4%

100 2 0.0 0.118 0.0% +51.7% -16.1% +5.9% +5.9%
100 2 0.5 0.252 0.0% 0.0% -1.2% 0.0% -0.8%
100 8 0.0 0.403 +6.2% +6.2% +6.2% +5.2% 0.0%
100 8 0.5 0.431 0.0% -1.6% 0.0% -2.6% -2.1%
100 16 0.0 0.734 0.0% 0.1% 0.0% -18.5% -18.4%
100 16 0.5 0.455 +16.9% +16.9% +16.9% +52.1% -1.3%

200 2 0.0 0.126 0.0% 0.0% 0.0% -4.0% -3.2%
200 2 0.5 0.229 0.0% 0.0% 0.0% +3.1% +2.6%
200 8 0.0 0.368 0.0% 0.0% 0.0% +6.5% +6.5%
200 8 0.5 0.401 0.0% 0.0% 0.0% +1.5% +1.5%
200 16 0.0 0.739 -6.4% -6.4% -6.4% -19.4% +0.1%
200 16 0.5 0.455 +51.2% +51.2% +51.2% +52.5% +13.2%

improvements. However, our results show great potential of our non-convex optimization
framework, and we strongly believe that after computational enhancements, such as a batch
version of the alternating algorithm, these methods can achieve large-scale tractability.
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Table 6. Gap (percentage) returned by Gurobi at time limit for Exact and Penalized approaches.

Shortest Path Bipartite Matching

N Deg Noise SPO-LS-EXA SPO-LS-PEN SPO-LS-EXA SPO-LS-PEN

50 2 0.0 3.4 2.8 6.0 3.7
50 2 0.5 11.7 11.4 11.9 8.8
50 8 0.0 10.4 17.3 42.9 52.4
50 8 0.5 17.3 46.1 26.7 33.7
50 16 0.0 27.0 10.9 43.8 155.6
50 16 0.5 26.0 18.9 30.6 436.7

100 2 0.0 7.2 8.5 10.0 5.0
100 2 0.5 16.3 18.6 22.3 11.7
100 8 0.0 28.5 42.9 53.6 138.1
100 8 0.5 28.9 42.4 37.5 101.6
100 16 0.0 55.7 43.4 70.8 930.8
100 16 0.5 62.2 91.2 87.8 840.0

200 2 0.0 8.2 9.3 11.5 14.0
200 2 0.5 18.7 18.8 26.2 34.7
200 8 0.0 36.6 45.9 56.4 121.8
200 8 0.5 38.0 49.5 63.1 122.6
200 16 0.0 45.8 - 65.0 1276.6
200 16 0.5 56.0 58.6 78.6 1348.2

Table 7. Training and test performance on large (N = 1000) shortest path instances

Train Set Test Set

Deg Noise SPO SPO-LS SPO-LS-ALT SPO-ALT SPO SPO-LS SPO-LS-ALT SPO-ALT

2 0.0 0.097 0.0% -2.1% -2.1% 0.1 0.0% -2.0% -2.0%
2 0.5 0.245 0.0% -1.2% -1.2% 0.268 0.0% -0.7% -1.1%
8 0.0 0.532 -6.4% -9.0% -0.8% 0.601 -5.3% +0.7% -0.7%
8 0.5 0.678 0.0% -4.4% -4.4% 0.699 0.0% -0.3% -0.1%
16 0.0 3.983 -24.4% -25.9% -0.5% 13.977 -43.2% -43.7% -0.0%
16 0.5 3.712 -11.3% -14.4% -0.2% 4.155 -2.0% -1.8% -0.4%

Table 8. Training and test performance on large (N = 1000) bipartite matching instances

Train Set Test Set

Deg Noise SPO SPO-LS SPO-LS-ALT SPO-ALT SPO SPO-LS SPO-LS-ALT SPO-ALT

2 0.0 0.117 0.0% -1.7% -1.7% 0.118 0.0% 0.0% 0.0%
2 0.5 0.225 0.0% -0.9% -0.9% 0.242 0.0% +0.4% +0.4%
8 0.0 0.406 0.0% -0.7% -0.7% 0.416 0.0% -0.5% -0.5%
8 0.5 0.411 0.0% -1.5% -1.5% 0.449 0.0% 0.0% 0.0%
16 0.0 0.673 -11.0% -11.6% -0.9% 0.652 +6.3% +6.4% +0.5%
16 0.5 0.604 -38.9% -39.1% -0.3% 0.697 -4.9% -5.0% +1.0%
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Table 9. Detailed performance metrics of alternating method. The reported times are the average
iteration time in the alternating method.

Shortest Path Bipartite Matching

N Deg Noise SPO-LS-ALT SPO-ALT SPO-LS-ALT SPO-ALT
Iterations (Time) Iterations (Time) Iterations (Time) Iterations (Time)

50 2 0.0 332 (1.60s) 456 (1.62s) 1922 (0.83s) 2308 (0.87s)
50 2 0.5 327 (1.63s) 471 (1.65s) 2197 (0.72s) 2262 (0.72s)
50 8 0.0 353 (1.63s) 448 (1.65s) 1717 (1.22s) 1759 (1.23s)
50 8 0.5 610 (1.09s) 583 (1.11s) 1770 (1.14s) 1812 (1.14s)
50 16 0.0 318 (1.62s) 435 (1.95s) 1792 (1.28s) 1688 (1.20s)
50 16 0.5 333 (1.67s) 449 (1.61s) 1379 (1.24s) 1754 (1.59s)

100 2 0.0 141 (6.15s) 182 (5.86s) 862 (2.39s) 872 (2.33s)
100 2 0.5 114 (6.99s) 198 (7.13s) 880 (2.41s) 852 (2.33s)
100 8 0.0 115 (6.59s) 202 (7.01s) 918 (2.25s) 896 (2.16s)
100 8 0.5 121 (7.09s) 177 (5.94s) 754 (2.85s) 763 (2.79s)
100 16 0.0 182 (4.46s) 208 (4.70s) 741 (2.88s) 802 (2.90s)
100 16 0.5 160 (4.28s) 223 (4.55s) 830 (2.69s) 796 (2.57s)

200 2 0.0 50 (24.01s) 73 (22.85s) 298 (6.34s) 397 (6.53s)
200 2 0.5 50 (16.73s) 84 (21.36s) 266 (7.44s) 348 (7.59s)
200 8 0.0 52 (20.27s) 77 (19.27s) 310 (6.89s) 342 (6.82s)
200 8 0.5 49 (18.96s) 78 (21.53s) 259 (8.07s) 320 (8.09s)
200 16 0.0 59 (13.48s) 116 (14.69s) 326 (6.66s) 349 (6.36s)
200 16 0.5 53 (15.19s) 83 (19.31s) 318 (6.69s) 341 (6.56s)

1000 2 0.0 32 (10.36s) 49 (10.41s) 173 (5.42s) 256 (5.45s)
1000 2 0.5 33 (7.61s) 50 (7.03s) 184 (4.39s) 276 (4.42s)
1000 8 0.0 33 (7.74s) 50 (7.59s) 167 (5.76s) 250 (5.78s)
1000 8 0.5 33 (7.88s) 50 (7.82s) 166 (6.08s) 245 (5.86s)
1000 16 0.0 33 (8.29s) 50 (8.47s) 151 (6.70s) 233 (7.32s)
1000 16 0.5 33 (8.90s) 49 (7.76s) 146 (6.61s) 230 (7.69s)
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