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Abstract
Follow-The-Regularized-Leader (FTRL) algorithms often enjoy optimal regret for adversarial

as well as stochastic bandit problems and allow for a streamlined analysis. Nonetheless, FTRL
algorithms require the solution of an optimization problem in every iteration and are thus com-
putationally challenging. In contrast, Follow-The-Perturbed-Leader (FTPL) algorithms achieve
computational efficiency by perturbing the estimates of the rewards of the arms, but their regret
analysis is cumbersome. We propose a new FTPL algorithm that generates optimal policies for
both adversarial and stochastic multi-armed bandits. Like FTRL, our algorithm admits a unified
regret analysis, and similar to FTPL, it offers low computational costs. Unlike existing FTPL
algorithms that rely on independent additive disturbances governed by a known distribution,
we allow for disturbances governed by an ambiguous distribution that is only known to belong
to a given set and propose a principle of optimism in the face of ambiguity. Consequently, our
framework generalizes existing FTPL algorithms. It also encapsulates a broad range of FTRL
methods as special cases, including several optimal ones, which appears to be impossible with
current FTPL methods. Finally, we use techniques from discrete choice theory to devise an
efficient bisection algorithm for computing the optimistic arm sampling probabilities. This al-
gorithm is up to 104 times faster than standard FTRL algorithms that solve an optimization
problem in every iteration. Our results not only settle existing conjectures but also provide new
insights into the impact of perturbations by mapping FTRL to FTPL.

1 Introduction

We consider multi-armed bandit problems where a learner sequentially interacts with an environ-
ment for T rounds. In each round, the learner selects one of the K arms, observes and receives
its reward. The goal of the learner is to minimize regret, which measures the absolute difference
between the total reward received and the total reward that could have been received with per-
fect knowledge of the reward distribution. When the rewards received in each round are drawn
independently from a fixed unknown reward distribution, the upper confidence bound (UCB) algo-
rithm [Auer et al., 2002a] or the Thompson sampling algorithm [Thompson, 1933] achieve optimal
regret O(log T ) [Bubeck and Cesa-Bianchi, 2012]. However, in an adversarial setting, where re-
wards are chosen strategically by an adversary, these methods suffer from linear regret [Zimmert
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and Seldin, 2021]. Conversely, in an adversarial environment, the Follow-the-Regularized-Leader
(FTRL) algorithm, introduced by Gordon [1999] as “generalized gradient descent”, often achieves
optimal regret O(

√
KT ) [Bubeck and Cesa-Bianchi, 2012].

Prior knowledge regarding the nature of the environment is typically unavailable. Therefore, an
algorithm that simultaneously achieves optimal regret in both stochastic and adversarial settings is
highly desirable. Recently, Zimmert and Seldin [2021] proved that an FTRL algorithm with Tsallis
entropy regularizer can simultaneously achieve the optimal regret bound O(

√
KT ) in adversarial

settings and the optimal regret bound O(log T ) in stochastic settings, without the need for param-
eter tuning. Algorithms of this kind are often said to display the “best-of-both-worlds” (BOBW)
capability [Bubeck and Slivkins, 2012]. The results in [Zimmert and Seldin, 2021] have been ex-
tended along various directions, aimed at identifying the abstract properties of the regularizers
that lead to the BOBW capability [Jin et al., 2024]. Nevertheless, FTRL algorithms require the
solution of an expensive optimization problem in each round to compute the arm-sampling distribu-
tion. On the other hand, the Follow-the-Perturbed-Leader algorithms [Hannan, 1957] perturb the
cumulative reward estimates with noise sampled from a given distribution and select the arm with
the maximum perturbed reward estimate. They are popular for their superior computational effi-
ciency [Abernethy et al., 2014; Lattimore and Szepesvári, 2020] compared to the FTRL algorithms.
Recently, it was shown that FTPL with Fréchet perturbations has BOBW capability [Honda et al.,
2023]. However, their analysis heavily relies on the specific form of the Fréchet distribution with a
particular shape. A generalized analysis of the FTPL algorithms was later provided by Lee et al.
[2024], further showcasing the strength of FTPL approaches. Nevertheless, their analysis still relies
significantly on extreme value theory and shares no significant commonality with the FTRL-based
analysis.

Note that any FTPL policy can be expressed as an FTRL policy [Abernethy et al., 2016; Hof-
bauer and Sandholm, 2002]. However, the reverse direction does not hold in general [Hofbauer and
Sandholm, 2002, Proposition 2.2]. Establishing a one-to-one correspondence between meaningful
subclasses of FTPL and FTRL policies remains open [Abernethy et al., 2016]. The Gradient-Based
Prediction Algorithm (GBPA) framework [Abernethy et al., 2015] encompasses FTRL and FTPL
as special cases, but whether the algorithm itself is FTRL or FTPL still demands specialized regret
analysis. Moreover, an open question is posed by Kim and Tewari [2019] on whether there exists
a noise distribution that matches the FTRL policy with the Tsallis entropy regularizer. Kim and
Tewari [2019] even showed the impossibility of recovering Tsallis-entropy-regularized FTRL using
FTPL with independent noise distributions across the arms. Constructing perturbations that ex-
actly match the FTRL algorithm with BOBW capability is crucial to understanding the effects of
regularization through perturbation. Answering this open question will also lead to the unification
of FTRL and FTPL regret analysis.

In this paper, we bridge this gap by studying ambiguous noise-sampling distributions that allow
for correlation across the arms. In addition, we introduce an “optimism in the face of ambiguity”
principle, whereby arms are selected under the most advantageous noise distribution. This is in stark
contrast to standard FTPL algorithms, which assume that the noise distribution is fixed. Using
techniques from discrete choice theory, which is traditionally studied in economics and psychology,
we show that the arm-sampling probabilities under the best noise distribution can be computed
highly efficiently using bisection. Unlike standard FTRL algorithms that require the solution of an
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expensive optimization problem in every round, our approach is far more computationally efficient.
As a result, our algorithm admits a unified regret analysis similar to FTRL and a computationally
efficient implementation similar to FTPL. It also encompasses a broad range of FTRL methods
as special cases, including several optimal ones, such as those with Tsallis entropy and hybrid
regularizers. Notably, while it previously appeared impossible to unify these FTRL methods within
the traditional FTPL framework, our approach successfully achieves this integration.

Related work. We relax the i.i.d. noise assumption in our paper, generalizing the traditional
FTPL methods. The i.i.d. noise assumption underlying most FTPL algorithms is also relaxed
in [Melo and Müller, 2023] by interpreting the arm-sampling probabilities as choice probabilities of
a nested logit model commonly studied in discrete choice theory. However, the noise distribution
considered in [Melo and Müller, 2023] must be a generalized extreme-value distribution, and the
resulting algorithm does not have BOBW capability. In contrast, we work with a family of distri-
butions and use ideas from discrete choice theory to devise a highly efficient bisection algorithm for
computing the arm-sampling probabilities under the most advantageous noise distribution. This
general framework encompasses several algorithms that enjoy BOBW regret bounds. The FTPL
algorithm with i.i.d. Fréchet-distributed noise is also known to have the BOBW capability [Honda
et al., 2023], but their regret analysis is tailored to the Fréchet distribution. The results in [Honda
et al., 2023] are generalized to other noise distributions by Lee et al. [2024], but the regret analysis
remains cumbersome. Meanwhile, our perturbation-based algorithm achieves BOBW regret bounds
by exploiting the exact equivalence with FTRL algorithms that have the BOBW capability.

Notation. We denote by [K] = {1, . . . ,K} the set of all integers up to K ∈ N. The probability
simplex over [K] is defined as ∆K = {p ∈ RK

+ :
∑K

k=1 pk = 1}. We use ei with i ∈ [d] to denote the
ith standard basis vector of the d-dimensional Euclidean space. The Bregman divergence function
induced by a differentiable function ϕ : Rd → R can be expressed as Dϕ(x,y) = ϕ(x)−ϕ(y)−⟨x−
y,∇ϕ(y)⟩.

2 Multi-Armed Bandits

We study the multi-armed bandit (MAB) problem, where a learner is given a fixed set of arms [K]

and interacts with an environment over T ∈ N rounds. In each round t ∈ [T ], the learner selects an
action at ∈ [K], and the environment generates a reward vector rt = (rt,1, rt,2, . . . , rt,K) ∈ [−1, 0]K .
The learner observes and receives the reward associated with the chosen arm, rt,at , and receives
no information as to the values rt,k for k ̸= at. The learner’s objective is to minimize its (pseudo)
regret, which measures the difference between the expected reward of the best arm in hindsight
and the learner’s expected cumulative reward

R(T ) = max
k∈[K]

E

[
T∑
t=1

rt,k

]
− E

[
T∑
t=1

rt,at

]
,

where the expectation is taken over the internal randomization of the algorithm and the stochastic
nature of the environment. The nature of the learning experience depends on the reward generation
paradigms employed by the environment. In the adversarial paradigm, the environment can choose
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the reward vectors arbitrarily, potentially using the history of the learner’s actions to influence
future rewards. In the stochastic paradigm, the rewards are sampled i.i.d. from a fixed distribution.
There are also other regimes characterized by the varying levels of adversarial power exerted by the
environment.

For clarity in presenting our results and to capture various learning paradigms, we adopt ad-
versarial regime with a self-bounding constraint from [Zimmert and Seldin, 2021]. In this regime,
for some ∆ ∈ [0, 1]K and C ≥ 0, the adversary selects rewards such that at time T , the learner’s
regret of any policy satisfies

R(T ) ≥
T∑
t=1

K∑
k=1

∆kP(at = k)− C. (1)

Note that the above condition must be satisfied at time T , but it is not required to hold for all times
t < T . The stochastic bandit setting, where the rewards rt,at are drawn i.i.d. from distributions
with fixed means E[rt,at |at = k] = µk, is an instance of the adversarial regime with a self-bounding
constraint. The pseudo-regret in the stochastic regime can be written as

R(T ) =
T∑
t=1

K∑
k=1

(
max
j∈[K]

E[rt,j ]− E[rt,at | at = k]

)
P(at = k),

which satisfies (1) with ∆k = maxj∈[K] E[rt,j ] − E[rt,k] for all k ∈ [K] and C = 0. The adver-
sarial regime with a self-bounding constraint also encompasses several other paradigms, including
the stochastically constrained adversarial [Wei and Luo, 2018] and adversarially corrupted stochas-
tic [Lykouris et al., 2018] settings. Finally, if the learner’s regret for any policy is not required to
satisfy the self-bounding constraint (1), then the learner operates within the adversarial setting.

Algorithm 1 Gradient-based prediction algorithm (GBPA) for MAB
Require: Differentiable and convex function ϕ with ∇uϕ(u) ∈ ∆K

1: û0,k ← 0 ∀k ∈ [K]

2: for round t = 1, . . . , T do
3: Environment chooses a reward vector rt ∈ [−1, 0]K

4: Learner chooses at ∼ pt = ∇uϕ(u)|u=ût−1

5: Learner receives rt,at
6: Learner estimates single-round reward vector r̂t = (rt,at/pt,at)eat
7: ût ← ût−1 + r̂t
8: end for

We study the Gradient Based Prediction Algorithm (GBPA) [Abernethy et al., 2014, 2012, 2015;
Kim and Tewari, 2019] for multi-armed bandits presented in Algorithm 1. At each round t ∈ [T ]

of GBPA, the learner maintains an unbiased estimate of the cumulative reward ût−1, updates ût−1

by adding a single round estimate r̂t, and uses the gradient of a convex potential function ϕ :

RK → R evaluated at ût−1 as an arm sampling distribution pt from which the learner samples
arm at. Although this framework might seem restrictive, it has proven foundational for several
MAB algorithms, including but not limited to [Auer et al., 2002b; Kujala and Elomaa, 2005; Neu
and Bartók, 2013]. Additionally, it encompasses various follow-the-leader type algorithms widely
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used in sequential decision-making processes with full information, differing primarily in the choice
of the convex function ϕ used as an input to GBPA. In the following sections, we explain the policies
of the learners in each setting given a cumulative reward estimate ût.

Follow-the-leader (FTL). In the full information setting, GBPA with ϕ(u) = maxp∈∆K p⊤u

is known as FTL algorithm. The learner chooses the arm with the highest cumulative reward
estimate, which can be equivalently written as at+1 ∼ pt ∈ argmaxp∈∆K p⊤ût.
Despite the simplicity of implementing Follow-the-Leader (FTL), it is well known that the regret
of FTL can grow linearly with T even for the simple case of K = 2 when the adversary chooses the
reward sequence to be r1 = {−1/2, 0}, rt = {−1, 0} when t > 1 is odd and rt = {0,−1} when t is
even [Hazan, 2016, Chapter 5].

Follow-the-regularized-leader (FTRL). One of the most prominent approaches to stabilize
the FTL algorithm is regularizing the linear objective p⊤u with some convex function ψ : RK → R.
In this case, the learner samples the next arm according to pt, where pt ∈ argmaxp∈∆K p⊤ût −
ψ(p). Then, GBPA with ΦR(u;ψ) = maxp∈∆K p⊤u − ψ(p) is known as the FTRL algorithm in
the full information setting. In the adversarial regime, the FTRL method with Tsallis entropy,
i.e., GBPA(ΦR(·; ηψT

α )), achieves the minimax optimal regret of O(
√
KT ) [Abernethy et al., 2015,

Corollary 3.2], where η =
√
T (1− α)/(2α) is the learning rate and ψT

α is the Tsallis entropy with
parameter α ∈ (0, 1)

ψT
α (p) =

1−
∑K

k=1 p
α
k

1− α
∀p ∈ RK . (2)

Moreover, when the potential function is allowed to be adaptive, GBPA(ΦR(·; ηtψT
α )) achieves

optimal regret of O(log T ) in the stochastic setting [Ito, 2021, Theorem 2]. An FTRL method
using a hybrid regularizer combining Shannon entropy and Tsallis entropy is known to achieve
optimal regret in both adversarial and stochastic settings [Zimmert et al., 2019].

Despite the widespread use of the FTRL framework with various choices of regularization,
including optimal ones, computing arm sampling distributions at each iteration involves solving a
convex optimization problem, making it computationally challenging.

Follow-the-perturbed-leader (FTPL). A promising candidate to circumvent the computa-
tional limitations of FTRL while maintaining the stability of FTRL is achieved by injecting stochas-
tic noise z ∼ Q into the cumulative reward estimate. In that case, the learner samples the next
arm according to pt = Ez∼Q[ek⋆(z)], where k⋆(z) ∈ argmaxj∈[K] ût,j + zj . Then, GBPA with
ΦP (u;Q) = Ez∼Q[maxp∈∆K p⊤(u + z)] is known as the FTPL algorithm in the full information
setting.

While FTPL algorithms achieve computational efficiency by avoiding the need to solve complex
optimization problems, their analysis is more cumbersome due to the perturbations introduced
compared to the straightforward analysis of FTRL algorithms. Even though FTPL algorithms
have shown BOBW capability [Honda et al., 2023; Lee et al., 2024], it is unclear whether it is
possible to obtain a computationally efficient algorithm that simultaneously inherits the streamlined
analysis of FTRL algorithms. One prominent approach to achieving this goal involves systematically
identifying the perturbations for FTPL that coincide with the arm sampling distributions of FTRL,
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a task generally perceived as challenging [Honda et al., 2023]. Therefore, the following has been an
important unresolved open problem seeking the existence of a bridge between regularization and
perturbation-based algorithms.
Open Question: For some convex ψ : RK → R, is there a perturbation model with distribution Q
that satisfies ∇uΦ

P (u;Q) = ∇uΦ
R(u;ψ) for all u ∈ RK?

Since FTRL with Tsallis entropy regularizer can achieve the minimax optimal rate in adversarial
bandits, a simpler version of the above open problem is posed by Kim and Tewari [2019] seeking the
existence of an FTPL algorithm with the same arm sampling probability distribution as the FTRL
algorithm with Tsallis entropy. Later, Kim and Tewari [2019, Theorem 8] shows that there is no
stochastic perturbation that yields the same arm sampling probability distribution as the Tsallis
entropy regularizer when the additive perturbations are mutually independent.

In the following section, we identify a general framework for constructing Q that positively an-
swers the aforementioned open question. This was previously considered difficult or even impossible
in the FTPL/GBPA literature [Honda et al., 2023; Kim and Tewari, 2019]. Our approach achieves
this by studying ambiguous noise-sampling distributions that allow for correlation across the arms.

3 Distributionally Optimistic Perturbations

We now define the smooth potential function Φ as a best-case expected utility of the type studied
in semi-parametric discrete choice theory, that is,

Φ(u;B) = sup
Q∈B

Ez∼Q

[
max
k∈[K]

(uk + zk)

]
, (3)

where z represents a random vector of perturbations that are independent of u. Specifically,
we assume that z is governed by a Borel probability measure Q from within some ambiguity
set B ⊆ P(RK). Note that if B is a singleton that contains only the Dirac measure at the origin
of RK , then Algorithm 1 with Φ coincides with FTL. If we denote by Q⋆ an optimizer of (3), then
Φ(u; {Q⋆}) coincides with ΦP (u;Q⋆) for all u ∈ RK . Hence, GBPA with the potential function
Φ(·;B) generalizes traditional FTPL that injects i.i.d. noise into cumulative reward estimates. In
particular, when B is a singleton joint probability measure with independent fixed marginals, GBPA
with the potential function Φ(·;B) is equivalent to conventional FTPL.

Remark 1 (Conventional FTPL as a special case). Fix any Q̄ ∈
∏K

k=1 P(R). If B = {Q ∈∏K
k=1 P(R) : Q[zk ≤ s] = Q̄[zk ≤ s] ∀k ∈ [K]}, then we have Φ(u;B) = ΦP (u; Q̄).

As a notable example within the FTPL family, our method also naturally encompasses the Exp3
algorithm [Auer et al., 1995]. This insight is detailed in the following remark.

Remark 2 (Exp3 algorithm as a special case). If B consists of a singleton distribution described by
a Gumbel distribution, i.e., B = {Q} where coordinates of z ∼ Q follow independent Gumbel distri-
butions with means log(K)/η and variances π2/(6η2), for some η ∈ R++. Then, the smooth poten-
tial Φ(u;B) reduces to Φ(u;B) = log(

∑K
k=1 exp(ηuk))/η, which follows from [Taşkesen et al., 2023,

Proposition 3.4] and [McFadden, 1981, Theorem 5.2]. In this case, the arm-sampling probability
vector p⋆(u) ∈ ∆K admits a closed-form expression through p⋆(u)k = exp(ηuk)/(

∑K
j=1 exp(ηuj)),

and GBPA(Φ(·;B)) recovers the celebrated Exp3 algorithm [Auer et al., 1995].
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In the rest of our paper, we relax the i.i.d. noise assumption commonly adopted in the FTPL
method and focus our attention on marginal ambiguity sets, also referred to as Fréchet ambiguity
sets [Fréchet, 1951]1. Marginal ambiguity sets completely specify the marginal distributions of
the components of the random vector z but do not impose any constraints on their dependence
structure. This relaxation allows us to recover many optimal FTRL methods in a systematic way.

Definition 1 (Marginal ambiguity set). For given cumulative distribution functions {Fk}Kk=1, the
marginal ambiguity set is defined as

B = {Q ∈ P(RK) : Q[zk ≤ s] = Fk(s) ∀s ∈ R, ∀k ∈ [K]}. (4)

In the following, we will argue that marginal ambiguity sets explain most known as well as several
new regularization methods in FTRL. As a first step, we state a known result initially established
for discrete choice models that reformulates (3) as a regularized optimization problem, originally
appeared in [Natarajan et al., 2009, Theorem 1] with an alternative proof provided in [Taşkesen
et al., 2023, Proposition 3.6].

Lemma 3.1 ([Natarajan et al., 2009, Theorem 1]). If B is a marginal ambiguity set of the form (4),
and if the underlying cumulative distribution functions Fk, k ∈ [K], are continuous, then the smooth
potential function (3) can be equivalently expressed as

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk +
K∑
k=1

∫ 1

1−pk

F−1
k (t)dt (5)

for all u ∈ RK . In addition, Φ(u;B) is convex and differentiable with respect to u ∈ RK , and
∇uΦ(u;B) represents the unique solution of the convex program (5).

Note that the right-hand side of (5) is a sum of K strictly concave and differentiable functions
ukpk+

∫ 1
1−pk

F−1
k (t)dt. Indeed, the derivative of the kth function with respect to pk is uk+F−1

k (1−
pk), which is strictly decreasing in pk because Fk(s) is increasing in s and 1−pk is strictly decreasing
in pk.

We are now positioned to formally address the open question presented in Section 2 with Corol-
lary 3.2, which bridges the gap between regularization-based and perturbation-based algorithms
for MAB problems.

Corollary 3.2. Suppose that ψ : RK → R is of the form ψ(p) =
∑K

k=1 ψk(pk) where each ψk

is strictly convex, differentiable and satisfies ψk(0) = 0. If B is a marginal ambiguity set of the
form (4) with cumulative distribution functions Fk satisfying −

∫ 1
1−pk

F−1
k (t)dt = ψk(pk) for all

k ∈ [K], then Φ(u;B) = ΦR(u;ψ(p)) for all u ∈ RK .

To differentiate our approach from traditional algorithms, we refer to our algorithm GBPA(Φ(·;B))
prescribed by ambiguity set B, as the Distributionally Optimistic Perturbation Algorithm (DOPA).
The performance of DOPA, in terms of regret, varies with different ambiguity sets. This variation
will be discussed in Section 4.

1Note that to the best of our knowledge, Fréchet ambiguity sets have no obvious relationship with Fréchet distri-
butions.
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4 Regret of DOPA

A fundamental principle in algorithm design is stability, which dictates that small perturbations
in the input should not dramatically alter the algorithm’s output. For GBPA with a convex
differentiable potential function ϕ, the output corresponds to ∇uϕ(u), and stability is reflected
through the Lipschitz continuity of the gradient. Unfortunately, not every regularizer leads to a
convergent regret bound. Abernethy et al. [2014] demonstrated that a uniform bound on ∇2

uϕ(u)

ensures a regret guarantee for GBPA(ϕ) in the full information setting. However, this condition
does not directly transfer to the bandit setting, where the inverse scaling with respect to the arm
sampling probability affects the cumulative reward estimation. Hence, an additional regularity
condition on the potential function Φ, known as differential consistency [Abernethy et al., 2015], is
required to ensure sublinear regret for DOPA.

Definition 2 (Differential consistency). For γ,B > 0, a function g : RK → R is (γ,B)-differentially-
consistent if for all u ∈ RK

(∇2
ug(u))kk ≤ B(∇ug(u))

γ
k ∀k ∈ [K].

The following lemma translates the differential consistency condition on the potential func-
tion Φ(·;B) into requirements on the marginal cumulative distribution functions that prescribe the
ambiguity set B.

Lemma 4.1. Suppose B is a marginal ambiguity set of the form (4) where the marginal cumulative
distribution functions Fk, k ∈ [K] are twice differentiable on the interior of their respective supports.
The potential function Φ(·;B) is (γ,B)-differentially-consistent if

F ′
k(F

−1
k (1− p)) ≤ Bpγ ∀p ∈ (0, 1), ∀k ∈ [K]. (6)

Equipped with Lemma 4.1, we are now prepared to present an upper bound on the expected
regret for GBPA(Φ(·;B)).

Theorem 4.2. Suppose B is a marginal ambiguity set of the form (4) where the marginal cumulative
distribution functions Fk, k ∈ [K] are twice differentiable on the interior of their respective sup-
ports. If additionally B encompasses distributions with zero mean and Fk is (γ,B(T ))-differentially
consistent for all k ∈ [K] with γ ∈ (1, 2), then the regret of GBPA(Φ(·;B)) ensures

R(T ) ≤
K∑
k=1

∫ 1

1−p0,k

F−1
k (t)dt+

1

2
B(T )TK2−γ .

5 Optimal Ambiguity Sets

This section identifies the instances of the marginal ambiguity sets B that allow GBPA(Φ(·;B))
to recover FTRL algorithms that achieve optimal regret bounds in designated regimes. Within
these specific settings, the unresolved conjectures that DOPA addresses become particularly rele-
vant concerning the recoverability of FTRL algorithms through the application of FTPL methods.
First, we introduce a structured approach to defining the marginal cumulative distribution func-
tions that prescribe ambiguity sets B and systematically demonstrate the corresponding forms of
regularization.
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Theorem 5.1 (Fréchet regularization). Suppose that B is a marginal ambiguity set of the form (4)
and that the marginal cumulative distribution functions are defined through

Fk(s) = min{1,max{0, 1− F (−s/ηk)}} (7)

for some vector η ∈ RK
++ and strictly increasing function F : R → R with

∫ 1
0 F

−1(t)dt = 0. Then,
Φ(u;B) is equivalent to ΦR(u;ψ), where ψ(p) =

∑K
k=1 ηkf(pk) and f(s) =

∫ s
0 F

−1(t)dt.

The function f(s) introduced in Theorem 5.1 is smooth and convex because its derivative
df(s)/ds = F−1(s) is strictly increasing. From now on we will refer to F as the marginal generating
function. We now tailor the regret upper bound presented in Theorem 4.2 to cases where marginal
cumulative functions are generated by F .

Corollary 5.2 (Regret bound for marginal ambiguity sets of the Fréchet form). Suppose B is a
marginal ambiguity set of the form (7) for some vector η = η1 ∈ RK

++ encompassing distributions
with zero mean and Φ(·;B) is (γ,B)-differentially-consistent. Then, GBPA(Φ(·;B)) ensures

R(T ) ≤ −ηKf(1/K) +
BTK2−γ

2η
.

In the adversarial setting, the optimal regret is established as O(
√
KT ) [Audibert and Bubeck,

2009, 2010], and is achievable by FTRL methods using Tsallis entropy [Abernethy et al., 2012].
Recently, there has been significant interest in determining whether perturbation-based methods
can match the efficacy of FTRL techniques. Kim and Tewari [2019] has shown that no stochastic
perturbation can reproduce the choice probability function of the Tsallis entropy regularizer when
the additional random noise in each arm utility is independent. Despite this, it was conjectured
that O(

√
KT ) regret might be attainable through FTPL with Fréchet-type perturbations. More

recently, Honda et al. [2023] demonstrated that an FTPL with a Fréchet perturbation indeed
achieves O(

√
KT ) regret. Nevertheless, whether an FTRL algorithm with Tsallis entropy, achieving

this optimal rate, can be replicated by a perturbation-based algorithm has remained open until
now [Honda et al., 2023; Kim and Tewari, 2019] and is resolved by the following theorem.

Theorem 5.3. Suppose that B is a marginal ambiguity set with (shifted) Pareto distributed marginals
of the form (7) induced by the marginal generating function F (s) = (s(α − 1)/α + 1/α)

1
α−1 with

α ∈ (0, 1). Then, GBPA(Φ(·;B)) with ηk =
√

(T (1− α))/(2α)Kα− 1
2 for all k ∈ [K] satisfies

R(T ) ≤
√
KT/(α(1− α)). In particular, when α = 1/2, GBPA(Φ(·;B)) ensures R(T ) ≤ 2

√
2KT.

Note that the Exp3 algorithm can be realized as a special case of DOPA when B is a marginal
ambiguity set with shifted exponential marginals. Therefore, the Exp3 algorithm is not only induced
by a singleton distribution as in Remark 2, but also induced by marginal ambiguity sets of the
form (4) with exponential marginals.

Remark 3 (Exp3 algorithm revisited). Suppose that B is a marginal ambiguity set of the form (7),
where η = η1 ∈ RK

++ and F (s) = exp(−s − 1). Then, DOPA with B is equivalent to FTRL with
ψ(p) =

∑K
k=1 pk log(pk) [Abernethy et al., 2014, Section 3].
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Due to the mathematical equivalence between employing FTRL with Tsallis regularization and
using DOPA with shifted Pareto marginals, the attractive BOBW capability of FTRL can be
directly extended to DOPA. Additionally, the algorithm exhibits anytime properties; it does not
require knowledge of the time horizon T nor the use of doubling schemes. This relationship is
detailed in Theorem 5.4.

Algorithm 2 Anytime GBPA for MAB
Require: (ϕt)t=1,2,... with ∇uϕt(u) ∈ ∆K

1: û0,k ← 0 ∀k ∈ [K]

2: for round t = 1, . . . do
3: A reward vector rt ∈ [−1, 0]K is chosen by the environment
4: Learner chooses at ∼ pt = ∇uϕt(u)|u=ût−1

5: Learner receives rt,at
6: Learner estimates single-round reward vector r̂t = (rt,at/pt,at)eat
7: ût ← ût−1 + r̂t
8: end for

Theorem 5.4 (Anytime BOBW algorithm with adaptive perturbations). Suppose that Bt, t ∈ Z+

is a marginal ambiguity set of the form

Bt = {Q ∈ P(RK) : Q[zk ≤ s] = Ft,k(s) ∀s ∈ R, ∀k ∈ [K]}

with (shifted) Pareto-distributed marginals,

Ft,k(s) = min{1,max{0, 1− (s/ηt + 2)−2}}.

Then, for any T0 ∈ N, GBPA(Φ(·;Bt)) with ηt = 2
√
t ensures R(T0) ≤ 4

√
KT0+1 always, and simul-

taneously the following regret bound if the adversary satisfies (1): R(T0) ≤ O(
∑

k∈[K]:∆k>0 log(T0)/∆k).

In addition to replicating FTRL using a regularization function derived from a single marginal
generator function, DOPA also effectively replicates hybrid regularizers. These are systematically
derived from two marginal generator functions, as detailed in Corollary 5.5.

Corollary 5.5 (Hybrid Fréchet regularization). Suppose that B is a marginal ambiguity set of the
form (4), and fix γ,η ∈ RK

+ . Suppose further that the marginal cumulative distribution functions
are defined through

Fk(s) = min{1,max{0, 1− (γkG
−1
1 + ηkG

−1
2 )−1(−s)}} (8)

where G1, G2 : R→ R are strictly increasing functions with
∫ 1
0 G

−1
1 (t)dt =

∫ 1
0 G

−1
2 (t)dt = 0. Then,

Φ(u;B) is equivalent to ΦR(u;ψ), where ψ(p) =
∑K

k=1(ηkf(pk) + γkg(pk)), f(s) =
∫ s
0 G

−1
1 (t)dt,

and g(s) =
∫ s
0 G

−1
2 (t)dt.

Remark 4 (Generalization to N regularization functions). All existing theoretically optimal algo-
rithms incorporate a hybrid regularizer that combines only two regularization terms [Jin et al., 2024;
Zimmert et al., 2019]. However, it is worth noting that instead of having two generating functions
G1, G2, one can define marginal cumulative distribution functions Fk through N generating func-
tions G1, . . . , GN and obtain a regularizer as a sum of N integrals of quantile functions G−1

i for
i ∈ [N ].
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The following corollary demonstrates that our generalized mixed perturbation formulation can
indeed achieve theoretically optimal BOBW results through its equivalent formulation as hybrid reg-
ularized FTRL. To the best of our knowledge, it has not been known whether any FTPL algorithm
could recover an FTRL algorithm with hybrid regularizers.

Corollary 5.6 (Hybrid adaptive regularizers for bandits). Suppose that Bt, t ∈ Z+ is a marginal
ambiguity set of the form

Bt = {Q ∈ P(RK) : Q[zk ≤ s] = Ft,k(s) ∀s ∈ R, ∀k ∈ [K]},

with
Ft,k(s) = min{1,max{0, 1− (γt,kG

−1
1 + ηt,kG

−1
2 )−1(−s)}}.

If G1(s) = 1 − exp(−(s + 1)), G2(s) = (−2s)−2, with γt,k = ηt,k =
√
t for all t ∈ [T ] and k ∈ [K],

then, GBPA(Φ(·;Bt)) ensures R(T ) ≤ O(
√
KT ) always, and simultaneously the following regret

bound if the optimal arm is unique and the adversary satisfies (1): R(T ) ≤ O(
∑

k ̸=k⋆ log T/∆k) +

O(
∑

k ̸=k⋆(logK)2/∆k).

Our algorithmic framework extends beyond the K-armed bandit setting while maintaining
BOBW capability. Notable examples include the decoupled-exploitation-exploration setting [Jin
et al., 2024], where the learner can choose to receive a reward from one arm while obtaining infor-
mation about the reward from another arm. Another example where our algorithm can be applied
and achieve BOBW regret bound is the dueling bandit setting [Zimmert and Seldin, 2021], where,
in each round, two arms are chosen to “duel” and feedback is received for the arm with the higher
reward. Additionally, our framework recovers the hybrid Tsallis entropy regularizers used in an
FTRL-type algorithm with BOBW capability [Ito et al., 2024] for both K-armed bandit and linear
bandit problems.

6 Numerical Experiments

FTPL-type algorithms have been popular because the arm sampling probability distributions ap-
pearing in Line 4 of Algorithm 1 can be computed efficiently when the perturbations zk are i.i.d.
[Neu and Bartók, 2016]. On the other hand, FTRL-type algorithms fall short of this computa-
tional benefit because an optimization problem at each round has to be solved to compute the
arm-sampling probabilities. This section discusses how the arm-sampling probabilities of DOPA
admit an efficient computation even when we relax the usual assumption in FTPL that the additive
noise components are independent.

Surprisingly, one can still apply a computationally efficient bisection algorithm to find the opti-
mal choice probabilities [Taşkesen et al., 2023, Algorithm 2]. This bisection method uses techniques
from discrete choice theory to exploit the structure of the marginal ambiguity set. As a result, it is
inherently faster than solving an expensive optimization problem. Algorithm 3 enjoys the following
convergence guarantee.

Theorem 6.1 (Convergence guarantee of Algorithm 3 [Taşkesen et al., 2023, Theorem 4.9]). If B is
a marginal ambiguity set of the form (4) and the cumulative distribution function Fk is continuous
for every k ∈ [K], then, for any u ∈ RK and ε > 0, Algorithm 3 outputs p ∈ RK

+ with
∑K

k=1 pk ≤ 1

and ∥∇uΦ(u,B)− p∥ ≤ ε.
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Algorithm 3 Bisection method to approxi-
mate ∇uΦ(u;B)
Require: error tolerance ε, utility vector u,

marginal ambiguity set B
1: Set τ̄ ← maxk∈[K]{−uk − F−1

k (1− 1/K)}
2: Set τ ← mink∈[K]{−uk − F−1

k (1− 1/K)}
3: Evaluate δ(ε) = mink∈[K]{maxδ{δ : |Fk(t1)−
Fk(t2)|≤ε/

√
K ∀t1, t2∈R with |t1−t2| ≤ δ}}

4: for k = 1, 2, . . . , ⌈log2((τ̄ − τ)/δ(ε))⌉ do
5: Set τ ← (τ + τ)/2

6: Set pk ← 1− Fk (−uk − τ) for k ∈ [K]

7: if
∑

k∈[K] pk > 1 then τ̄ ← τ

8: else τ ← τ end if
9: end for

10: returnp with pk = 1−Fk (−uk − τ) , k ∈ [K]

100 101 102 103 104
10-6

10-4

10-2

100

102

Figure 1: Runtime of computing arm-sampling
probabilities using FTRL (gray) and DOPA
(purple) over 10 simulation runs (solid lines
show the mean and the shaded areas correspond
to 1 standard deviation) as a function of num-
ber of arms K.

In the following, we empirically demonstrate the computational efficiency of DOPA relative to
FTRL by evaluating the runtimes required to compute arm-sampling probabilities. All experiments
are run on an Intel i7-8700 CPU (3.2 GHz) computer with 16GB RAM. The optimization problems
are modelled in MATLAB via YALMIP [McCormick, 1976]. The code is publicly available at
https://github.com/RAO-EPFL/DOPA.

For DOPA, we choose B of the form (7) with F (s) = (−s + 2)−2 and η = 1. In the case of
FTRL, we utilize Tsallis regularization and establish that the arm sampling distributions of both
algorithms are equivalent, such that ∇uΦ(u;B) = ∇uΦ

R(u; ηψT
1/2) for all u ∈ RK . We calculate

∇uΦ
R(u;ψT

1/2) = argmaxp∈∆K p⊤u− ψT
1/2(p) by solving the corresponding second-order-cone pro-

gram using MOSEK [Mosek ApS, 2019]. We employ Algorithm 3 to approximate ∇uΦ(u;B) with
an error tolerance of ε = 10−8, matching the optimality tolerance used by MOSEK for conic prob-
lems. Figure 1 highlights that DOPA achieves running times that are uniformly lower than FTRL
with Tsallis entropy across all numbers of arms and is, in fact, up to 104 times faster.

7 Concluding Remarks and Limitations

We introduce a distributional “optimism in the face of ambiguity” principle to determine the noise
distribution for FTPL-type algorithms in multi-armed bandit problems. This principle allows us
to establish a one-to-one correspondence between FTRL algorithms with separable strictly convex
regularizers and FTPL algorithms. Hence, our algorithm bypasses the difficulties in analyzing
FTPL-type algorithms and lifts the computational burden of FTRL by devising an efficient bisec-
tion algorithm using ideas from modern discrete choice theory. DOPA aims to provide a unified
regret analysis for perturbation-based methods through FTRL and opens doors to the discovery
of new algorithms. We find it promising to study other types of ambiguity sets or other types of
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regularizers induced by marginal ambiguity sets, such as hyperbolic perturbations [Taşkesen et al.,
2023, Example 3.11].

At the same time, we acknowledge the limitations of this work. First, certain types of regular-
izers cannot be recovered by marginal ambiguity sets B of the form (4), with a notable example
of the log-barrier regularizer as considered in [Jin et al., 2024]. While whether the log-barrier
regularizer is essential in showing the BOBW guarantee of FTRL algorithms remains unclear [Jin
et al., 2024], [Hofbauer and Sandholm, 2002, Proposition 2.2] demonstrates that it is impossible
to recover the FTRL algorithm with the log-barrier regularizer using any FTPL algorithm with a
stochastic perturbation whose distribution is independent of the underlying utilities. Second, the
bisection algorithm presented in Algorithm 3 is efficient as long as the computation of the marginal
cumulative distributions Fk and the quantile function F−1

k are efficient. However, for hybrid regu-
larizers, the computation of Fk could be cumbersome. As a result, bisection method might not be
computationally efficient for some choices of hybrid marginal generating functions G1 and G2.
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A Auxiliary Results

The following corollary sheds light on the condition of the properties of the cumulative distribution
functions Fk that induce a strongly convex regularizer. Its proof follows from the smoothness/strong
convexity duality and specifically the proof of [Taşkesen et al., 2023, Proposition 4.8]. For com-
pleteness, we include the full proof here.

Corollary A.1. If B is a marginal ambiguity set of the form (4), and if the cumulative distribution
functions Fk, k ∈ [K], are Lipschitz continuous with Lipschitz constant L, then

∑K
k=1

∫ 1
1−pk

F−1
k (t)dt

is L-strongly concave.

Proof of Corollary A.1. We aim to show that −
∑K

k=1

∫ 1
1−pk

F−1
k (t)dt− p2k/(2L) is convex. By the

assumed L-Lipschitz continuity of Fk, we have

L ≥ sup
s1,s2∈R
s1 ̸=s2

|Fk (s1)− Fk (s2)|
|s1 − s2|

= sup
s1,s2∈R
s1>s2

Fk (s1)− Fk (s2)

s1 − s2
≥ sup

pk,qk∈(0,1)
pk>qk

pk − qk
F−1
k (pk)− F−1

k (qk)

where the second inequality follows from restricting s1 and s2 to the preimage of (0, 1) with respect
to Fk. Rearranging terms in the above inequality then yields

−F−1
k (1− qk)−

qk
L
≤ −F−1

k (1− pk)−
pk
L

for all pk, qk ∈ (0, 1) such that qk < pk. Consequently, the function −F−1
k (1− pk) − pk/L is non-

decreasing and its primitive −
∫ 1
1−pk

F−1
k (t)dt − p2k/(2L) is convex in pk on (0, 1). The claim then

follows because convexity is preserved under summation.

We use Et[·] as a shorthand for the conditional expectation E[· | Ft−1], where Ft is the σ-algebra
σ(a1, r1, . . . , at, rt) generated by the history of actions and rewards.

Lemma A.2 (Regret bound for GBPA [Abernethy et al., 2015, Lemma 2.1]). For some convex
potential function ϕ : RK → R, the expected regret of GBPA(ϕ) enjoys the following upper bound
expressed through

R(T ) ≤ ϕ(0) + E

[
max
k∈[K]

ûT,k− ϕ(ûT ) +
T∑
t=1

Et[Dϕ(ût, ût−1)]

]
.

Theorem A.3 (Regret bound for marginal ambiguity sets). Suppose B is a marginal ambiguity
set of the form (4) where the marginal cumulative distribution functions Fk, k ∈ [K] are twice
differentiable on the interior of their respective supports. Define p⋆(u) = ∇uΦ(u;B) for any u ∈
RK . The regret of GBPA(Φ(·;B)) satisfies

R(T ) ≤
K∑
k=1

∫ 1

1−p⋆0,k

F−1
k (t)dt+ E

[
max
k∈[K]

ûT,k − Φ(ûT ;B)
]

+ E

 T∑
t=1

K∑
k=1, pt,k>0

pt,k

∫ ∥r̂t∥

0

∫ x

0
F ′
k(F

−1
k (1− p⋆(ût−1 − seat)k)) ds dx

. (9)
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Proof of Theorem A.3. By Lemma 3.1 and Lemma A.2, we have

R(T ) ≤
K∑
k=1

∫ 1

1−p0,k

F−1
k (t)dt+ E

[
max
k∈[K]

ûT,k− Φ(ûT ;B) +
T∑
t=1

Et[DΦ(ût, ût−1)]

]
.

In what follows, we will establish an upper bound on the term Et[DΦ(ût, ût−1)]. For any t ∈ [T ],
conditioning on the event that arm at ∈ [K] is chosen, we define h : R+ → R as

h(s) = DΦ(ût−1 + sr̂t/∥r̂t∥, ût−1).

A direct calculation reveals that the second derivative of h satisfies

h′′(s) = (r̂t/∥r̂t∥)⊤(∇2
uΦ(u;B)|u=ût−1+sr̂t/∥r̂t∥)(r̂t/∥r̂t∥)

= e⊤at(∇
2
uΦ(u;B)|u=ût−1−seat

)eat ,

where the second equality follows because rt ∈ [−1, 0]K and thus eat = −r̂t/∥r̂t∥. Then, we have

Et[DΦ(ût, ût−1)] =
K∑

k=1, pt,k>0

pt,k

∫ ∥r̂t∥

0

∫ x

0
h′′(s) ds dx

=

K∑
k=1, pt,k>0

pt,k

∫ ∥r̂t∥

0

∫ x

0
e⊤at(∇

2
uΦ(u;B)|u=ût−1−seat

)eat ds dx

=

K∑
k=1, pt,k>0

pt,k

∫ ∥r̂t∥

0

∫ x

0
F ′
k(F

−1
k (1− p⋆(ût−1 − seat)k)) ds dx,

where the first equality holds thanks to the fundamental theorem of calculus, and the third equality
follows from [Sun and Tran-Dinh, 2019, Proposition 6].

Similar to Lemma 4.1, we can translate the differential consistency condition into requirements
on the noise distribution.

Lemma A.4 (Differential consistency condition for marginal ambiguity sets of the Fréchet form).
Suppose B is a marginal ambiguity set of the form (7) for some vector η = η1 ∈ RK

++ where the
marginal generating function F is twice differentiable on the interior of its support. The corre-
sponding potential function Φ(·;B) is (γ,B)-differentially-consistent if f(s) =

∫ s
0 F

−1(t)dt < ∞
satisfies

(ηf ′′(p))−1 ≤ Bpγ ∀p ∈ (0, 1). (10)

Proof of Lemma A.4. Denote by p⋆(u) = ∇uΦ(u;B) which represents the unique solution of the
optimization problem (5) by Lemma 3.1. By [Sun and Tran-Dinh, 2019, Proposition 6], the Hessian
of Φ(·;B) can be expressed through the Hessian of its convex conjugate. We then have

(∇2
uΦ(u;B))kk = ((∇2

pΦ
∗(p;B)|p=p⋆(u))

−1)kk

=
1

ηf ′′(p⋆(u)k)
≤ B(p⋆(u)k)

γ = (∇u(Φ(u;B))k)γ ,

where the second equality follows from Theorem 5.1, and the inequality holds because f satisfies (10).
Hence, the claim follows.
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B Omitted Proofs

Proof of Corollary 3.2. By the strict convexity of ψk, we deduce that ψ′
k(s) is strictly increasing in s.

Hence, there exist strictly increasing functions Gk such that Gk(s) = −ψ′
k(1− s) for any s ∈ [0, 1].

In addition, we have −
∫ 1
1−pk

Gk(t)dt = ψk(pk) thanks to the fundamental theorem of calculus and
the assumption that ψk(0) = 0. Choosing Fk(s) = min{1,max{0, G−1

k (s)}} gives F−1
k (s) = Gk(s)

for all s ∈ (0, 1) and the desired relation −
∫ 1
1−pk

F−1
k (t)dt = −

∫ 1
1−pk

Gk(t)dt = ψk(pk). Applying
Lemma 3.1 concludes the proof.

Proof of Lemma 4.1. Denote by p⋆(u) = ∇uΦ(u;B) which represents the unique solution of the
optimization problem (5) by Lemma 3.1. By [Sun and Tran-Dinh, 2019, Proposition 6], the Hessian
of Φ(·;B) can be expressed through the Hessian of its convex conjugate, and thus we have

(∇2
uΦ(u;B))kk = ((∇2

pΦ
∗(p;B)|p=p⋆(u))

−1)kk

= F ′
k(F

−1
k (1− p⋆(u)k))

≤ B(p⋆(u)k)
γ = B(∇u(Φ(u;B))k)γ ,

where the second equality follows by the inverse function theorem together with the fact that
Φ∗(p;B) = −

∫ 1
1−pk

F−1
k (t)dt, and the third equality holds because p⋆(u)k = (∇uΦ(u;B))k by

Lemma 3.1. Finally, the inequality holds because Fk’s satisfy (6). This observation concludes our
proof.

Proof of Theorem 4.2. Note that B encompasses distributions of zero mean, and thus any Q ∈ B
satisfies Ez∼Q[z] = 0. Then, for any u ∈ RK , we have

max
k∈[K]

uk = max
k∈[K]

Ez∼Q [uk + zk] ≤ Ez∼Q

[
max
k∈[K]

uk + zk

]
≤ Φ(uT ;B),

where the first inequality follows by Jensen’s inequality. The above inequality implies

E
[
max
k∈[K]

ûT,k − Φ(ûT ;B)
]
≤ 0.

Therefore, the second term in the regret bound in (9) is upper bounded by 0.
As for the third term in (9), we have

K∑
k=1,pt,k>0

pt,k

∫ ∥r̂t∥

0

∫ x

0
F ′
k(F

−1
k (1− p⋆(ût−1 − seat)k)) ds dx

≤ B
K∑

k=1,pt,k>0

pt,k

∫ ∥r̂t∥

0

∫ x

0
(p⋆(ût−1 − seat)k)γds dx

≤ B
K∑

k=1,pt,k>0

pt,k

∫ ∥r̂t∥

0

∫ x

0
p⋆(ût−1)

γ
kds dx

= B
K∑

k=1,pt,k>0

pt,k
1+γ

∫ ∥r̂t∥

0

∫ x

0
ds dx =

B

2

K∑
k=1

pt,k
γ−1r2t,at ,
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where the first inequality follows as Φ(·;B) is (γ,B)-differentially consistent and the second inequal-
ity follows because p⋆

k(u) is non-decreasing and s ≥ 0.
Note that 1/(2−γ)-norm and 1/(γ−1)-norm are duals for γ ∈ (1, 2). Then, Hölder’s inequality

yields

K∑
k=1

pt,k
γ−1 =

K∑
k=1

pt,k
γ−1 · 1 ≤

(
K∑
k=1

pt,k
γ−1
γ−1

)γ−1( K∑
k=1

1
1

2−γ

)2−γ

= (1)γ−1K2−γ = K2−γ .

This observation together with the assumption that r2t,at ∈ [0, 1] completes our proof.

Proof of Theorem 5.1. By Lemma 3.1, Φ(u;B) is equivalent to

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk +
K∑
k=1

∫ 1

1−pk

F−1
k (t)dt

As F is strictly increasing, we have F−1
k (s) = −F−1(1− s)ηk for all s ∈ (0, 1). Thus, we find

f(s) =

∫ s

0
F−1(t)dt = −

∫ 1−s

1
F−1 (1− x) dx = − 1

ηk

∫ 1

1−s
F−1
k (x)dx,

where the second equality follows from the variable substitution x← 1− t. This integral represen-
tation of f(s) then allows us to reformulate Φ(u;B) as

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk −
K∑
k=1

ηk f(pk).

This concludes our proof.

Proof of Corollary 5.2. By Lemma A.3 and Lemma A.4, we have

R(T ) ≤ −η
K∑
k=1

f(p0,k) +
BTK2−γ

2η
, (11)

where p0 = ∇uΦ(u;B)|u=0 by Line 4 of Algorithm 1. We now show that p0 = [1/K, . . . , 1/K],
which coincides with the unique optimizer of

max
p∈∆K

−η
K∑
k=1

f(pk)

Denote by H(p) = −
∑K

k=1 f(pk) and Π(p0) the set of all permuted copies of p0. Take K ele-
ments {x(i)}Ki=1 ⊆ Π(p0) by cyclic permutation, i.e., let x(1) = p0, x(K) = [p0,K , p0,1, . . . , p0,K−1],
and x(i) = [p0,i, . . . , p0,K , p0,1, . . . , p0,i−1] ∈ RK for i = 2, . . . ,K − 1. Observe as well that p′ =

[1/K, . . . , 1/K] ∈ ∆K can be represented as p′ =
∑K

i=1 x
(i)/K. We then have

−Kf
(

1

K

)
= H(p′) = H

(
1

K

K∑
i=1

x(i)

)
≥ 1

K

K∑
i=1

H(x(i)) = −
K∑
k=1

f(p0,k) = max
p∈∆K

−
K∑
k=1

f(pk),
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where the inequality is due to Jensen, and the third equality holds because H is a permutation
invariant function, i.e., H(x(i)) = −

∑K
k=1 f(x

(i)
k ) = −

∑K
k=1 f(p0,k) for any x(i) ∈ Π(p0). By

Corollary 3.1, (11) admits a unique maximizer p0. As p′ ∈ ∆K is feasible in (11), the upper bound
above is in fact tight and p0 = p′. This observation concludes our proof.

Proof of Theorem 5.3. We denote η = ηk within this proof. Thanks to Theorem 5.1 we have
Φ(u;B) = ΦR(u; ηψT

α ) for all u ∈ RK . The claim follows as GBPA(ΦR(·; ηψT
α )) has R(T ) ≤√

KT/(α(1− α)) by [Abernethy et al., 2015, Theorem 3.1].

Proof of Theorem 5.4. Thanks to Theorem 5.1 for any α ∈ (0, 1), we have Φ(u;Bt) = ΦR(u; ηtψ
T
1/2)

for all u ∈ RK . The first part of the claim then follows because when ηt = 2
√
t, the regret of

GBPA(ΦR(·; ηtψT
1/2)) in the adversarial setting is upper bounded by 4

√
KT0+1 thanks to [Zimmert

and Seldin, 2021, Theorem 1]. By the refined analysis of Tsallis-INF algorithm in [Ito, 2021,
Theorem 2], we further have thatR(T0) ≤ O(

∑
k∈[K]:∆k>0 log(T0)/∆k) if adversary satisfies (1).

Proof of Corollary 5.5. By Lemma 3.1, Φ(u;B) is equivalent to

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk +

K∑
k=1

∫ 1

1−pk

F−1
k (t)dt.

By construction for all k ∈ [K], we have

ηkf(s) + γkg(s) = ηk

∫ s

0
G−1

1 (t)dt+ γk

∫ s

0
G−1

2 (t)dt

= −
∫ 1−s

1
(ηkG

−1
1 + γkG

−1
2 )(1− x)dx = −

∫ 1

1−s
F−1
k (x)dx,

where the second equality follows from the variable substitution x← 1− t and last equality follows
by construction of Fk. The final representation of fk(s) above then allows us to reformulate Φ(u;B)
as

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk −
K∑
k=1

(ηkf(pk) + γkg(pk)).

This observation concludes our proof.

Proof of Corollary 5.6. Note first that by Corollary 5.5, for every t ∈ [T ] we have Φ(u;Bt) =

ΦR(u;ψt), where ψ(p) =
∑K

k=1(ηt,kf(pk) + γt,kg(pk)), f(s) =
∫ s
0 G

−1
1 (t)dt, and g(s) =

∫ s
0 G

−1
2 (t)dt.

Moreover, thanks to our choice of G1 and G2, we have that ηt,kf(s) + γt,kg(s) = −ηt,k(
√
s + (s −

1) log(1− s)). The claim then follows from [Zimmert et al., 2019, Theorem 3].
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