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Abstract

Follow-The-Regularized-Leader (FTRL) algorithms often enjoy optimal regret for adversar-
ial as well as stochastic bandit problems and allow for a streamlined analysis. However, FTRL
algorithms require the solution of an optimization problem in every iteration and are thus com-
putationally challenging. In contrast, Follow-The-Perturbed-Leader (FTPL) algorithms achieve
computational efficiency by perturbing the estimates of the rewards of the arms, but their regret
analysis is cumbersome. We propose a new FTPL algorithm that generates optimal policies for
both adversarial and stochastic multi-armed bandits. Similar to FTRL, our algorithm admits a
unified regret analysis, and similar to FTPL, it offers low computational costs. Unlike existing
FTPL algorithms that rely on independent additive disturbances governed by a known distri-
bution, we allow for disturbances governed by an ambiguous distribution that is only known
to belong to a given set and propose a principle of optimism in the face of ambiguity. Con-
sequently, our framework generalizes existing FTPL algorithms. It also encapsulates a broad
range of FTRL methods as special cases, including several optimal ones, which appears to be
impossible with current FTPL methods. Finally, we use techniques from discrete choice theory
to devise an efficient bisection algorithm for computing the optimistic arm-sampling probabil-
ities. This algorithm is up to 104 times faster than standard FTRL algorithms that solve an
optimization problem in every iteration. Our results not only settle existing conjectures but
also provide new insights into the impact of perturbations by mapping FTRL to FTPL.

1 Introduction

We consider multi-armed bandit problems in which a learner interacts with an environment over T
rounds. In each round, the learner selects one of K arms and then observes and receives an uncer-
tain reward associated with the chosen arm. The learner’s objective is to minimize regret, which
we define as the absolute difference between the total expected reward obtained and the total ex-
pected reward that could have been achieved with perfect knowledge of the reward distribution.
In the stochastic setting, where the rewards in each round are drawn independently from an un-
known but fixed distribution, the Upper Confidence Bound algorithm [Auer et al., 2002a] as well as
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the Thompson Sampling algorithm [Thompson, 1933] achieve the optimal O(log T ) regret [Bubeck
and Cesa-Bianchi, 2012]. In the adversarial setting, where rewards are strategically chosen by a
malicious adversary, however, these methods suffer from linear regret [Zimmert and Seldin, 2021].
In contrast, the Follow-the-Regularized-Leader (FTRL) algorithm by Gordon [1999], which uses
the iterates of a gradient descent-type algorithm as arm-sampling distributions, often achieves the
optimal O(

√
KT ) regret in the adversarial setting [Bubeck and Cesa-Bianchi, 2012].

Prior knowledge about the nature of the environment is typically unavailable. Therefore, an
algorithm that achieves optimal regret in both stochastic and adversarial settings simultaneously
is highly desirable. Recently, Zimmert and Seldin [2021] proved that an FTRL algorithm with a
Tsallis entropy regularizer can simultaneously achieve the optimal O(log T ) regret in the stochastic
setting as well as the optimal O(

√
KT ) regret in the adversarial setting, without requiring param-

eter tuning. Algorithms of this type are often said to exhibit the “best-of-both-worlds” (BOBW)
property [Bubeck and Slivkins, 2012]. The results by Zimmert and Seldin [2021] have been extended
in various directions, aiming to identify the key properties of regularizers that induce the BOBW
property [Jin et al., 2024]. However, FTRL algorithms require solving a computationally expensive
optimization problem in each round to determine the arm-sampling distribution.

Follow-the-Perturbed-Leader (FTPL) algorithms [Hannan, 1957] select an arm with a maximal
perturbed reward estimate, where the perturbation is sampled from a prescribed noise distribution.
These algorithms are widely favored for their superior computational efficiency compared to FTRL
approaches [Abernethy et al., 2014; Lattimore and Szepesvári, 2020]. Recently, it was shown that
FTPL with Fréchet perturbations possesses the BOBW property [Honda et al., 2023]. However, this
analysis heavily relies on the specifics of a Fréchet distribution with a particular shape parameter.
While this paper was under review, a more systematic analysis of FTPL algorithms was provided
by Lee et al. [2024], further highlighting the effectiveness of FTPL methods.

It is well known that any FTPL policy can be expressed as an FTRL policy [Abernethy et al.,
2017; Hofbauer and Sandholm, 2002]. However, the reverse does not hold in general [Hofbauer and
Sandholm, 2002, Proposition2.2]. Establishing a one-to-one correspondence between meaningful
subclasses of FTPL and FTRL policies remains an open problem [Abernethy et al., 2017]. Although
all FTRL and FTPL methods can be viewed as instances of a Gradient-Based Prediction Algorithm
(GBPA)[Abernethy et al., 2015], their regret analyses require separate techniques. Furthermore, an
open question posed by Kim and Tewari [2019] asks whether there exists a noise distribution such
that the corresponding FTPL policy exactly matches the FTRL policy with the Tsallis entropy
regularizer. Kim and Tewari [2019] also proved that FTPL with independent and identically dis-
tributed (i.i.d.) noise across the arms cannot recover Tsallis-entropy-regularized FTRL. Designing
perturbations that precisely replicate the FTRL algorithm with BOBW capability is essential for
understanding the role of regularization through perturbation. Resolving this open question would
also facilitate the unification of FTRL and FTPL regret analysis.

Contributions. In this paper, we bridge the gap between FTRL and FTPL methods by studying
ambiguous noise distributions that allow for correlations across the arms. Additionally, we intro-
duce a new “optimism in the face of ambiguity” principle, whereby the perturbations in FTPL are
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sampled from the most advantageous noise distribution within a prescribed ambiguity set. This con-
trasts sharply with standard FTPL algorithms, which rely on a single fixed noise distribution. We
derive explicit formulas for this most advantageous noise distribution, thus resolving the open prob-
lem posed by Kim and Tewari [2019]. Leveraging techniques from discrete choice theory [Natarajan
et al., 2009; Feng et al., 2017]traditionally studied in economics and psychologywe show that the
arm-sampling probabilities under the optimal noise distribution can be computed highly efficiently
using bisection. Unlike standard FTRL algorithms, which require solving an expensive optimiza-
tion problem in every round, our approach is significantly more computationally efficient and its
runtime remains comparable to that of FTPL, up to logarithmic factors. As a result, our algorithm
combines the unified regret analysis of FTRL with the computational efficiency of FTPL. More-
over, it encompasses a broad class of FTRL methods as special cases, including several optimal
ones, such as those based on Tsallis entropy and hybrid regularizers. Notably, while unifying these
FTRL methods within the traditional FTPL framework was previously considered infeasible, our
approach successfully achieves this integration.

Related work. In this paper, we relax the assumption of i.i.d. arm perturbations, thereby gener-
alizing traditional FTPL methods. The i.i.d. assumption, which underlies most FTPL algorithms,
is also relaxed in [Melo and Müller, 2023] by interpreting the arm-sampling probabilities as choice
probabilities in a nested logit model, a concept commonly studied in discrete choice theory. In this
work, however, the noise must follow a generalized extreme-value distribution, and the resulting
algorithm does not achieve BOBW regret bounds. In contrast, we work with a whole family of
distributions and leverage ideas from discrete choice theory and distributionally robust optimiza-
tion to develop an efficient bisection algorithm for computing arm-sampling probabilities under the
most advantageous noise distribution. This general framework encompasses several algorithms that
achieve BOBW regret bounds. The FTPL algorithm with i.i.d. Fréchet-distributed noise is also
known to exhibit BOBW capabilities [Honda et al., 2023], but its regret analysis is specifically tai-
lored to the Fréchet distribution. While this method extends to some other noise distributions [Lee
et al., 2024], the underlying regret analysis remains complex. In contrast, our perturbation-based
algorithm achieves BOBW regret bounds by leveraging its exact equivalence with FTRL algorithms
that possess the BOBW property, leading to a more unified and efficient approach.

Notation. We denote by [K] = {1, . . . ,K} the set of all integers up to K ∈ N. The probability
simplex over [K] is defined as ∆K = {p ∈ RK+ :

∑K
k=1 pk = 1}. We use ei with i ∈ [K] to denote

the i-th standard basis vector of RK . The Bregman divergence function induced by a differentiable
function ϕ : Rd → R is defined through Dϕ(x,y) = ϕ(x)− ϕ(y)− ⟨x− y,∇ϕ(y)⟩.

2 Multi-Armed Bandits

We study a multi-armed bandit (MAB) problem running over T ∈ N rounds. In each round the
learner must select one of K ∈ N arms and earns a random reward that depends on the chosen
arm. More precisely, in round t ∈ [T ], the learner selects an arm at ∈ [K], the environment
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generates a reward vector rt = (rt,1, rt,2, . . . , rt,K) ∈ [−1, 0]K , and the learner receives the reward
rt,at associated with arm at. The crux of MAB problems is that the learner observes only the
reward rt,at associated with the chosen arm but receives no information about the rewards rt,k of
the other arms k ̸= at. Accordingly, we assume throughout the paper that the arm at is sampled
from a distribution over [K] chosen by the learner that may depend on the history (a1, . . . , at−1)

of the chosen arms and the history (r1,a1 , . . . , rt−1,at−1) of the corresponding rewards. Similarly,
the reward vector rt is sampled from a distribution over [−1, 0]K unknown to the learner. We
distinguish two main reward generation regimes. In the (non-oblivious) adversarial regime, the
reward distribution may depend on the history (a1, . . . , at−1) of the chosen arms as well as the
history (r1, . . . , rt−1) of the rewards. In the stochastic regime, on the other hand, the reward
distribution is kept fixed, and the rewards are sampled independently from this distribution. There
are also intermediate reward generation regimes under which the environment has varying levels of
adversarial power.

The learner’s objective is to minimize the regret

R(T ) = max
k∈[K]

E

[
T∑
t=1

rt,k

]
− E

[
T∑
t=1

rt,at

]
,

which measures the difference between the expected cumulative reward of the best arm under full
distributional information and the learner’s expected cumulative reward. Here, the expectations
are taken with respect to the arm-sampling distributions chosen by the learner and the reward
distributions chosen by the environment. We highlight that R(T ) is sometimes termed pseudo-
regret [Zimmert and Seldin, 2021]. As we do not distinguish different notions of regret in this paper,
we simply refer toR(T ) as the regret to keep terminology simple. We also emphasize thatR(T ) may
be negative for certain arm-sampling and reward distributions. Indeed, if the reward distribution
changes over time, it may be strictly suboptimal to select the same arm in each round. However, the
worst-case regret, which is obtained by maximizing R(T ) over all admissible reward distributions,
is nonnegative even in the stochastic regime, where the environment has only minimal adversarial
power. Indeed, if the reward of each arm follows a fixed Bernoulli distribution independent of t,
then the regret is already lower bounded by O(

√
KT ) [Auer et al., 1995].

Algorithm 1 Gradient-based prediction algorithm (GBPA)

Require: Differentiable convex function ϕ with ∇uϕ(u) ∈ ∆K

Initialize û0 = 0

for round t = 1, . . . , T do
Environment chooses a reward vector rt ∈ [−1, 0]K

Learner chooses at ∼ pt = ∇uϕ(u)|u=ût−1
and receives reward rt,at

Learner estimates single-round reward vector r̂t = (rt,at/pt,at)eat
Update ût ← ût−1 + r̂t

end for

In this paper, we use different variants of a gradient-based prediction algorithm (GBPA) [Aber-
nethy et al., 2012, 2014, 2015; Kim and Tewari, 2019] to select the arms; see Algorithm 1. GBPA

4



recursively constructs a statistic ût−1 ∈ RK whose k-th component estimates the expected cumula-
tive reward achievable by pulling arm k in each of the rounds 1, . . . , t− 1. In round t ∈ [T ], GBPA
uses the gradient of a convex potential function ϕ : RK → R evaluated at ût−1 as an arm-sampling
distribution pt and samples an arm at from pt. Next, GBPA updates ût−1 by adding the single-
round reward estimate r̂t = (rt,at/pt,at)eat . One readily verifies that if pt > 0, then r̂t constitutes
an unbiased estimator for E[rt]. GBPA unifies several MAB algorithms, including those described
in [Auer et al., 2002b; Kujala and Elomaa, 2005; Neu and Bartók, 2013]. Additionally, it encom-
passes various follow-the-leader-type algorithms widely used in sequential decision-making with full
information (where the learner observes the full reward vector rt and not only the reward of the
chosen arm). These algorithms differ primarily in the choice of the convex potential function ϕ

used as an input to GBPA. Below we discuss the policies corresponding to different choices of ϕ.

Follow-the-leader (FTL). GBPA with ϕ(u) = maxp∈∆K p⊤u is known as the FTL algorithm.
In this case we have ∇uϕ(u) ∈ argmaxp∈∆K p⊤u by Danskin’s theorem [Bertsekas, 2016, Proposi-
tion B.25], that is, the learner simply chooses an arm with maximal cumulative reward estimate.1

While FTL is easy to implement, it is well known that the regret of FTL can grow linearly with T
even if there are only K = 2 arms. For example, if the adversary chooses the reward vectors r1 =

{−1/2, 0}, rt = {−1, 0} when t > 1 is odd and rt = {0,−1} when t is even, then one can show that
FTL selects arm 1 whenever t is odd and arm 2 whenever t is even. Thus, the cumulative reward
at time T is at most (−T + 1)/2, and the regret is at least T/2− 1 [Hazan, 2016, Chapter 5].

Follow-the-regularized-leader (FTRL). A popular approach to stabilize the FTL algorithm
is to add a convex regularization function ψ : RK → R to the linear objective function p⊤u. In
this case, the learner generically constructs a non-degenerate arm-sampling distribution by solving
maxp∈∆K p⊤u− ψ(p). GBPA with potential function ΦR(u;ψ) = maxp∈∆K p⊤u− ψ(p) is known
as the FTRL algorithm. In the adversarial regime, the FTRL algorithm achieves the minimax
optimal regret of O(

√
KT ) if ψ(p) = ηψT

α (p), where η =
√
T (1− α)/(2α) is the learning rate and

ψT
α (p) =

1−
∑K

k=1 p
α
k

1− α
∀p ∈ RK (1)

is the Tsallis entropy with parameter α ∈ (0, 1) [Abernethy et al., 2015, Corollary 3.2]. Similarly, in
the stochastic regime, the FTRL algorithm achieves the optimal regret of O(log T ) if the potential
function ψ(p) = ηtψ

T
α (p) scales with a time-dependent learning rate ηt = 2

√
t [Ito, 2021, Theorem 2].

If FTRL is equipped with a hybrid regularizer that combines the Shannon entropy with the Tsallis
entropy, then it enjoys a BOBW capability, that is, it can be shown to achieve optimal regret both
in the adversarial as well as in the stochastic bandit regime [Zimmert et al., 2019]. Thus, the FTRL
algorithm comes with strong statistical guarantees. On the flipside, however, it is computationally
expensive because it requires the solution of a different convex optimization problem in each round.

1In this informal discussion we disregard technical complications arising when the maximizer p is not unique for
a given reward estimate u, in which case the potential function ϕ(u) fails to be differentiable at u.
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Follow-the-perturbed-leader (FTPL). As an alternative to the computationally expensive
FTRL method, it has been proposed to inject stochastic noise z ∼ Q ∈ P(RK) into the cumulative
reward estimate u and to sample arms from p = Ez∼Q[ek⋆(z)], where k⋆(z) ∈ argmaxk∈[K] uk + zk.
Using the dominated convergence theorem in conjunction with Danskin’s theorem [Bertsekas, 2016,
Proposition B.25], one can show that the arm-sampling distribution p coincides with the gradient
of the potential function ΦP (u;Q) = Ez∼Q[maxp∈∆K p⊤(u+ z)]. GBPA with ϕ(u) = ΦP (u;Q) is
known as the FTPL algorithm. Existing FTPL algorithms assume that the disturbances associated
with different arms (that is, the components of z) are mutually independent under Q.

FTPL algorithms are computationally efficient because they simply select the arm with the max-
imum perturbed reward and because this arm can be identified by searching. This is significantly
cheaper than solving a convex optimization problem. However, due to their stochastic nature, the
analysis of FTPL algorithms is more cumbersome compared to the straightforward and mature
analysis of FTRL algorithms. Even though FTPL algorithms have been shown to enjoy a BOBW
capability [Honda et al., 2023; Lee et al., 2024], it is unclear whether there exists an algorithm that
is as efficient as an FTPL method yet admits a streamlined analysis like an FTRL algorithm.

A promising approach to achieving this goal is to establish a correspondence between FTRL
and FTPL algorithms. It is well known that essentially any FTPL algorithm can be represented
as an FTRL algorithm [Hofbauer and Sandholm, 2002, Theorem 2.1]. The reverse problem of
framing a given FTRL algorithm as an FTPL algorithm, however, is perceived as challenging
[Abernethy et al., 2017; Honda et al., 2023]. Accordingly, finding a bridge between regularization-
and perturbation-based algorithms constitutes indeed an unresolved open problem.

Open Problem: Given a convex regularization function ψ : RK → R and a reward estimate u,
construct a perturbation distribution Q on RK such that ∇uΦ

P (u;Q) = ∇uΦ
R(u;ψ).

Since FTRL with Tsallis entropy regularizer achieves the minimax optimal regret rate in adver-
sarial bandits, a simpler but still interesting version of the above open problem is to seek an FTPL
algorithm with the same arm-sampling distribution as the special instance of the FTRL algorithm
with Tsallis entropy regularizer. But to date, even for this simpler problem, only a negative result
is available. Kim and Tewari [2019, Theorem 8] show that FTRL with Tsallis entropy regularizer
cannot be recovered by any FTPL algorithm with mutually independent disturbances zk, k ∈ [K].
Another negative result is due to Hofbauer and Sandholm [2002, Proposition 2.2], who identify
generalized FTRL algorithms that correspond to extended real-valued regularization functions and
that cannot be matched by any FTPL algorithm. However, we assume here that ψ is real-valued.

In the next section, we describe a general framework for mapping regularization functions in
FTRL to disturbance distributions in FTPL, thus providing a systematic solution to the open
problem mentioned above. To circumvent the impossibility result by Kim and Tewari [2019], we
will study ambiguous noise-sampling distributions that allow for correlations across the arms.
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3 Distributionally Optimistic Perturbations

We now introduce a new class of smooth potential functions that can be viewed as best-case expected
utilities of the type studied in semi-parametric discrete choice theory. That is, we define

Φ(u;B) = sup
Q∈B

Ez∼Q

[
max
k∈[K]

(uk + zk)

]
, (2)

where z represents a random vector of perturbations governed by a distribution Q from within some
ambiguity set B ⊆ P(RK). Note that if B is a singleton that contains only the Dirac distribution
at the origin of RK , then Algorithm 1 with potential function ϕ(u) = Φ(u;B) reduces to FTL. In
addition, Φ(u; {Q}) trivially coincides with ΦP (u;Q). Hence, GBPA with potential function ϕ(u) =
Φ(u;B) generalizes traditional FTPL, which injects i.i.d. noise into the cumulative reward estimates.

The family of GBPA algorithms with potential function ϕ(u) = Φ(u;B) also includes the Exp3
algorithm by Auer et al. [1995], which is arguably one of the most popular FTPL algorithms.

Remark 1 (Exp3 algorithm). If B = {Q} is a singleton with Q = ⊗Kk=1Qk and if Qk ∈ P(R) is
a Gumbel distribution with zero mean and variance π2η2/6 for some η > 0, then one can show
that Φ(u;B) = η log(

∑K
k=1 exp(uk/η)). In this case, the arm-sampling probabilities are available

in closed form and are equivalent to the choice probabilities in the celebrated multinomial logit
model in discrete choice theory, that is, pk(u) = (∇uΦ(u,B))k = exp(uk/η)/(

∑K
j=1 exp(uj/η)), see

[McFadden, 1981, Theorem 5.2]. This reveals that GBPA with potential function ϕ(u) = Φ(u;B)
reduces indeed to the celebrated Exp3 algorithm by Auer et al. [1995].

From now on we focus on marginal ambiguity sets, which specify the marginal distributions of
the components of z but do not impose any constraints on their dependence structure.

Definition 1 (Marginal ambiguity set). The marginal ambiguity set induced by K cumulative
distribution functions Fk : R→ [0, 1], k ∈ [K], is given by

B =
{
Q ∈ P(RK) : Q[zk ≤ s] = Fk(s) ∀s ∈ R, ∀k ∈ [K]

}
. (3)

We henceforth refer to GBPA with potential function ϕ(u) = Φ(u;B) induced by a marginal
ambiguity set B as the distributionally optimistic perturbation algorithm (DOPA). DOPA establishes
a bridge between many commonly used FTRL and FTPL methods. To see this, we first recall an
important property of marginal ambiguity sets, which was initially discovered in the context of
semi-parametric discrete choice theory. Below we denote by F−1

k : [0, 1] → R the (left) quantile
function corresponding to the cumulative distribution function Fk. It is defined via

F−1
k (s) = inf {t : Fk(t) ≥ s} ∀s ∈ R.

Lemma 3.1. [Natarajan et al., 2009, Theorem 1] If B is a marginal ambiguity set of the form (3)
and if the cumulative distribution functions Fk, k ∈ [K], are continuous and strictly increasing
in s whenever Fk(s) ∈ (0, 1), then the potential function (2) is convex and differentiable in u and
satisfies

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk +

K∑
k=1

∫ 1

1−pk
F−1
k (t)dt ∀u ∈ RK . (4)

In addition, the unique maximizer of the convex program (4) is given by p(u) = ∇uΦ(u;B).
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Lemma 3.1 reveals that if B is any marginal ambiguity set, then Φ(u;B) can be expressed as the
optimal value of a convex maximization problem over the probability simplex. Besides its relevance
for semi-parametric discrete choice theory, Lemma 3.1 also has interesting ramifications for semi-
discrete optimal transport [Taşkesen et al., 2023, Proposition 3.6]. Note that the objective function
of the convex program in (4) represents a sum of K strictly concave and differentiable functions
φk(pk) = ukpk +

∫ 1
1−pk F

−1
k (t)dt on (0, 1), k ∈ [K], provided that Fk(s) is strictly increasing in s

whenever Fk(s) ∈ (0, 1). Indeed, the derivative of φk satisfies φ′
k(pk) = uk + F−1

k (1− pk), which is
strictly decreasing in pk because Fk(s) is strictly increasing in s and 1 − pk is strictly decreasing
in pk. Moreover, if Fk(s) is strictly increasing at every s ∈ R, then limpk→0 φ

′
k(pk) = ∞. In this

case, the optimal arm-sampling distribution p(u) = ∇uΦ(u;B) that solves (4) satisfies p(u) > 0.
Lemma 3.1 implies that DOPA can be viewed as an FTRL algorithm with convex regularization

function ψ(p) = −
∑K

k=1

∫ 1
1−pk F

−1
k (t)dt. Conversely, the following proposition shows that FTRL

algorithms with separable regularization functions can also be interpreted as instances of DOPA.

Proposition 3.2 (FTRL vs. DOPA). Define ψ : [0, 1]K → R through ψ(p) =
∑K

k=1 ψk(pk),
where ψk : [0, 1] → R is strictly convex and differentiable for every k ∈ [K]. If B is a marginal
ambiguity set of the form (3) induced by cumulative distribution functions Fk : R→ [0, 1] satisfying
Fk(s) = min{1,max{0,−(ψ′

k)
−1(1−s)}} for all s ∈ R and k ∈ [K], then ∇uΦ(u;B) = ∇uΦ

R(u;ψ).

Proof. We may assume without loss of generality that ψk(0) = 0. Otherwise, we can simply shift
ψk by −ψk(0) without affecting ∇uΦ

R(u;ψ). Note also that ψ′
k is strictly increasing because ψk

is strictly convex. Hence, the function Gk : [0, 1] → R with Gk(s) = −ψ′
k(1 − s) is also strictly

increasing. The fundamental theorem of calculus thus implies that −
∫ 1
1−pk Gk(t)dt = ψk(pk). By

the defining properties of Fk and Gk, it is now clear that Fk(s) = min{1,max{0, G−1
k (s)}}, which

implies that F−1
k (s) = Gk(s) for all s ∈ (0, 1). Integrating both sides of this identity then yields

−
∫ 1
1−pk F

−1
k (t)dt = −

∫ 1
1−pk Gk(t)dt = ψk(pk). By Lemma 3.1, we may thus conclude that

Φ(u;B) = max
p∈∆K

K∑
k=1

pkuk +
K∑
k=1

∫ 1

1−pk
F−1
k (t)dt = max

p∈∆K

K∑
k=1

pkuk −
K∑
k=1

ψk(pk) = ΦR(u;ψ).

The claim then follows by taking gradient with respect to u on both sides.

Next, we show that there is also a close connection between FTPL and DOPA.

Proposition 3.3 (FTPL vs. DOPA). Suppose that B is a marginal ambiguity set of the form (3)
and that the underlying cumulative distribution functions Fk, k ∈ [K], are continuous and strictly
increasing in s whenever Fk(s) ∈ (0, 1). Then, for every fixed u ∈ RK there exists Q ∈ P(RK) that
satisfies ∇uΦ(u;B) = ∇uΦ

P (u;Q).

Proof. Throughout the proof we use p = p(u) = ∇uΦ(u;B) as shorthand for the unique solution
of the convex program (4) at the fixed reward estimate u. In addition, we use Qk ∈ P(R) to denote
the unique probability distribution satisfying Qk(zk ≤ s) = Fk(s) for all s ∈ R, and we define

Q =
K∑
k=1

pk ·
(
⊗k−1
ℓ=1Q

−
ℓ

)
⊗Q+

k ⊗
(
⊗Kℓ=k+1Q

−
ℓ

)
,
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where the truncated distributions Q+
k ,Q

−
k ∈ P(R) are defined through

Q+
k (zk ∈ B) = Qk

(
zk ∈ B

∣∣ zk > F−1
k (1− pk)

)
and Q−

k (zk ∈ B) = Qk

(
zk ∈ B

∣∣ zk ≤ F−1
k (1− pk)

)
for all Borel sets B ⊆ R, respectively. From the proof of [Natarajan et al., 2009, Theorem 1] we
know that Q solves the optimization problem in (2); see also [Taşkesen et al., 2023, Proposition 3.6]
for an alternative proof using our notation. The optimality conditions of problem (4) further imply
that

uk + F−1
k (1− pk) = uℓ + F−1

ℓ (1− pℓ) ∀k, ℓ ∈ [K]. (5)

Next, fix an arbitrary k ∈ [K], and note that for every fixed zk > F−1
k (1− pk) and ℓ ̸= k we have

Q−
ℓ (zℓ < zk + uk − uℓ) ≥ Q−

ℓ

(
zℓ ≤ F−1

k (1− pk) + uk − uℓ
)
= Q−

ℓ

(
zℓ ≤ F−1

ℓ (1− pℓ)
)
= 1, (6)

where the first equality follows from (5), and the second equality holds because Q−
ℓ is supported

on the interval (−∞, F−1
ℓ (1− pℓ)]. Similarly, for any fixed zk ≤ F−1

k (1− pk) and ℓ ̸= k we have

Q+
ℓ (zℓ < zk + uk − uℓ) ≤ Q+

ℓ

(
zℓ < F−1

k (1− pk) + uk − uℓ
)
= Q+

ℓ

(
zℓ < F−1

ℓ (1− pℓ)
)
= 0 (7)

where the first equality follows from (5), and the second equality holds because Q+
ℓ is supported

on the interval (F−1
ℓ (1− pℓ),∞). For any fixed k ∈ [K], we may thus conclude that

Q
(
k ∈ argmax

ℓ∈[K]
uℓ + zℓ

)
= Q(zℓ < uk + zk − uℓ ∀ℓ ̸= k)

= pkEzk∼Q+
k

[∏
ℓ̸=k

Q−
ℓ (zℓ < uk + zk − uℓ)

]

+
∑
ℓ̸=k

pℓEzk∼Q−
k

[
Q+
ℓ (zℓ < uk + zk − uℓ)

∏
j ̸=k,ℓ

Q−
j (zj < uk + zk − uj)

]
= pk.

Here, the first equality follows from the assumption that the marginal distribution functions Fk,
k ∈ [K], are continuous. This implies that Q+

ℓ and Q−
ℓ , ℓ ∈ [K], are absolutely continuous to the

Lebesgue measure on R, which in turn implies that Q is absolutely continuous with respect to the
Lebesgue measure on RK . Hence, the event zℓ = uk + zk − uℓ has zero probability under Q. The
second equality exploits the construction of Q, and the third equality follows from (6) and (7).

Finally, the definition of FTPL potential function ΦP (u;Q) implies that

∂

∂uk
ΦP (u;Q) =

∂

∂uk
Ez∼Q

[
max
ℓ∈[K]

(uℓ + zℓ)

]
= Ez∼Q

[
∂

∂uk
max
ℓ∈[K]

(uℓ + zℓ)

]
= Ez∼Q

[
1{k∈argmaxℓ∈[K](uℓ+zℓ)}

]
= Q

(
k ∈ argmax

ℓ∈[K]
(uℓ + zℓ)

)
= pk ∀k ∈ [K],

where the first equality holds because maxp∈∆K p⊤(u+ z) = maxℓ∈[K](uℓ + zℓ), the second equal-
ity follows from the dominated convergence theorem, which applies because maxℓ∈[K](uℓ + zℓ) is
Lipschitz continuous in u, and the third equality exploits Danskin’s theorem [Bertsekas, 2016,
Proposition B.25] together with the observation that the optimal solution of maxℓ∈[K](uℓ + zℓ) is
Q-almost surely unique. In summary, we have thus shown that ∇uΦ(u;B) = p = ∇uΦ

P (u;Q).
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We are now ready to address the open problem posed in Section 2. The following main theorem
bridges the gap between regularization-based and perturbation-based algorithms for MAB problems.
It shows that any FTRL algorithm with a convex, smooth and additively separable regularization
function ψ is equivalent to an FTPL algorithm with some noise-sampling distribution Q. This
insight is consistent with the impossibility result by Kim and Tewari [2019] because the noise terms
corresponding to different arms may be correlated under Q. The conditions on ψ (especially the
additively separability) are restrictive. However, to our best knowledge, the regularization functions
of all commonly used FTRL algorithms (such as Tsallis-INF [Zimmert and Seldin, 2021], Exp3 [Auer
et al., 1995] or FTRL with hybrid regularizers [Zimmert et al., 2019]) satisfy these properties.

Theorem 3.4 (FTRL vs. FTPL). Consider a regularization function ψ : [0, 1]K → R defined via
ψ(p) =

∑K
k=1 ψk(pk), where ψk : [0, 1] → R is strictly convex and differentiable for every k ∈ [K].

Then, for every u ∈ RK there exists a distribution Q ∈ P(RK) with ∇uΦ
R(u;ψ) = ∇uΦ

P (u;Q).

Proof. Fix an arbitrary u ∈ RK . By Proposition 3.2, there exists a marginal ambiguity set B of
the form (3) such that ∇uΦ

R(u;ψ) = ∇uΦ(u;B). Proposition 3.3 further implies that there exists
a noise distribution Q ∈ P(RK) with ∇uΦ(u;B) = ∇uΦ

P (u;Q). Thus, the claim follows.

We emphasize that the distribution Q corresponding to a given regularization function ψ gener-
ically depends on the current reward estimate u. In contrast, classical FTPL algorithms use a
single noise distribution independent of u. We also emphasize that the proofs of Propositions 3.2
and 3.3 and Theorem 3.4 are constructive and not merely existential, that is, we provide explicit
formulas for the ambiguity set B as well as the noise distribution Q corresponding to ψ.

4 Regret Analysis of DOPA

A fundamental desideratum in algorithm design is stability. That is, small perturbations in the
input of an algorithm should not dramatically alter its output. For example, GBPA with a convex
differentiable potential function ϕ is stable if the arm-sampling distribution p(u) = ∇uϕ(u) is
Lipschitz-continuous in the cumulative reward estimate u. It is well known that adding a convex
regularizer to the objective function of a parametric minimization problem improves the stability of
its optimal solution [Bousquet and Elisseeff, 2002]. Improving the stability of FTRL, for instance, is
tantamount to reducing the Lipschitz modulus of ∇up(u), which can be achieved by increasing the
strong convexity constant of the underlying regularization function ψ. This is a direct consequence
of the relation ∇up(u) = diag(∇2

uϕ(u)) ≤ diag((∇2
pψ(p))

−1) [Penot, 1994; Abernethy et al., 2015].
Stability is a prerequisite for establishing sublinear regret bounds for FTRL algorithms in the

adversarial regime [Abernethy et al., 2014, Section 3.1]. We will now leverage these results to
identify conditions under which DOPA enjoys sublinear regret. Our analysis will reveal that the
regret of DOPA critically depends on the choice of the marginal distribution functions Fk, k ∈ [K].

Theorem 4.1 (Regret analysis of DOPA). Suppose that B is a marginal ambiguity set of the
form (3). Assume also that the k-th marginal distribution function Fk is differentiable and strictly
increasing whenever Fk(s) ∈ (0, 1) and that

∫
R sF

′
k(s)ds = 0 for all k ∈ [K]. If p(0) = ∇uΦ(0;B)
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is the initial arm-sampling distribution and if there exist constants γ ∈ (1, 2) and B > 0 with

F ′
k

(
F−1
k (1− p)

)
≤ Bpγ ∀p ∈ (0, 1), ∀k ∈ [K], (8)

then the regret of DOPA satisfies

R(T ) ≤
K∑
k=1

∫ 1

1−pk(0)
F−1
k (t)dt+

1

2
BTK2−γ

under every possible reward distribution of a non-oblivious adversarial environment.

Proof. Let k⋆ ∈ argmaxk∈[K] E[
∑T

t=1 rt,k] be the index of an arm with zero regret. Note that r̂t,k as
defined in Algorithm 1 is an unbiased estimator for E[rt,k] for every arm k ∈ [K] that has a positive
probability pk(ût−1) of being selected. Also, recall from Lemma 3.1 that DOPA can be viewed as
an FTRL algorithm with a convex regularization function ψ(p) = −

∑K
k=1

∫ 1
1−pk F

−1
k (t)dt. Thus,

the FTRL regret decomposition in [Lattimore and Szepesvári, 2020, Theorem 28.10] implies that

R(T ) ≤ ψ(ek⋆)− ψ(p(0)) + E

[
T∑
t=1

(
(pt+1 − pt)

⊤r̂t −Dψ(pt+1,pt)
)]

,

where r̂t and pt are defined as in Algorithm 1. From the discussion after Lemma 3.1 we know that ψ
is strictly convex. We may thus use [Lattimore and Szepesvári, 2020, Theorems 26.12 & 26.13] to
bound the round-t term in the above sum by

(pt+1 − pt)
⊤r̂t −Dψ(pt+1,pt) ≤ sup

λ∈[0,1]

1

2
r̂⊤t
(
∇2

pψ(λpt+1 + (1− λ)pt)
)−1

r̂t.

The definition of r̂t further implies that

r̂⊤t
(
∇2

pψ(λpt+1 + (1− λ)pt)
)−1

r̂t =
r2t,at
p2t,at

((
∇2

pψ(λpt+1 + (1− λ)pt)
)−1
)
atat

for all λ ∈ [0, 1]. Finally, observe that ψ(ek⋆) = −
∫ 1
0 F

−1
k⋆ (t) dt = 0 = −

∫
R sF

′
k⋆(s)ds by assumption.

Taken together, all of these insights allow us to conclude that

R(T ) ≤
K∑
k=1

∫ 1

1−pk(0)
F−1
k (t)dt+

1

2
E

[
T∑
t=1

sup
λ∈[0,1]

r2t,at
p2t,at

(
∇2

pψ(λpt+1 + (1− λ)pt)
)−1

atat

]
. (9)

In the remainder of the proof, we will establish an upper bound on the second term in (9). Recalling
from Algorithm 1 that pt = p(ût−1), ut = ut−1 + r̂t and r̂t = seat with s = −rt,at/pt,at ≥ 0, we
find

pt+1,at = pat(ût) = pat(ût−1 + r̂t) = pat(ût−1 − seat) ≤ pat(ût−1) = pt,at , (10)

where the inequality holds because Φ(u;B) is convex in u such that pat(u) = ∂uatΦ(u;B) is non-
decreasing in uat and because s ≥ 0. If p = λpt+1 + (1 − λ)pt for some λ ∈ [0, 1], then we
have

(∇2
pψ(p))

−1
atat = F ′

at(F
−1
at (1− pat)) ≤ Bpγat = B(λpt+1,at + (1− λ)pt,at)γ ≤ Bp

γ
t,at , (11)
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where the first equality follows from the definition of ψ(p), which implies via the inverse function
theorem that ∂2

p2k
ψ(p) = (F ′

k(F
−1
k (1−pk)))−1. The second equality exploits the definition of p, and

the two inequalities follow from (8) and (10), respectively. The inequality (11) then implies that

E

[
sup
λ∈[0,1]

r2t,at
p2t,at

(
∇2

pψ(λpt+1 + (1− λ)pt)
)−1

atat

]

≤ E

[
r2t,at
p2t,at

Bpγt,at

]
= E

[
E

[
r2t,at
p2t,at

Bpγt,at

∣∣∣∣∣ ût−1, rt

]]
= E

[
B

K∑
k=1

r2t,kp
γ−1
t,k

]
≤ E

[
B

K∑
k=1

pγ−1
t,k

]
,

where the first equality exploits the law of iterated conditional expectations, and the second equality
holds because at = k with probability pt,k conditional on ût−1 and rt. The second inequality holds
because r2t,k ∈ [0, 1] for all k ∈ [K]. Next, note that the 1/(2− γ)-norm and the 1/(γ− 1)-norm are
mutually dual for every γ ∈ (1, 2). Hölder’s inequality thus implies that

K∑
k=1

pγ−1
t,k ≤

(
K∑
k=1

p
γ−1
γ−1

t,k

)γ−1( K∑
k=1

1
1

2−γ

)2−γ

= K2−γ .

This observation completes the proof.

5 Optimality of DOPA

We now aim to identify marginal ambiguity sets B for which DOPA achieves optimal regret guar-
antees across different regimes. We will see that such optimal regret guarantees are available for
certain Fréchet ambiguity sets B that are defined in terms of a marginal generator F .

Definition 2 (Marginal generator). A marginal generator F : R → R is a strictly increasing
differentiable function with lims→−∞ F (s) ≤ 0, lims→+∞ F (s) ≥ 1 and

∫ 1
0 F

−1(t)dt = 0.

Definition 3 (Fréchet ambiguity set). A Fréchet ambiguity set B is a marginal ambiguity set of
the form (3), where the marginal cumulative distribution functions are defined through

Fk(s) = min
{
1,max{0, 1− F (−s/ηk)}

}
∀k ∈ [K] (12)

for some vector η ∈ RK++ and some marginal generator F .

Before analyzing the regret of DOPA under Fréchet ambiguity sets, we present an auxiliary
result that relates any potential function of the form Φ(u;B) induced by some Fréchet ambiguity
set B to a potential functions of the form ΦR(u;ψ) induced by some regularization function ψ. We
will see that both B and ψ are uniquely determined by a vector η and a marginal generator F .

Theorem 5.1 (Fréchet regularization). Suppose that B is a Fréchet ambiguity set in the sense of
Definition 3 induced by some η ∈ RK++ and some marginal generator F . If f(s) =

∫ s
0 F

−1(t)dt for
all s ∈ [0, 1] and ψ(p) =

∑K
k=1 ηkf(pk), then we have Φ(u;B) = ΦR(u;ψ).

12



As the marginal generator F is strictly increasing and as its range covers the open interval (0, 1),
the inverse function F−1(t) is well-defined for for all t ∈ (0, 1), which in turn implies that f(s) is
well-defined for all s ∈ [0, 1]. We trivially have f(0) = 0. In addition, f(s) is smooth and convex
(because F−1 inherits the monotonicity of F ), and we have f(1) = 0 (because

∫ 1
0 F

−1(t)dt = 0).

Proof of Theorem 5.1. As the marginal generator F is strictly increasing, the definition of Fk in (12)
implies that F−1

k (x) = −F−1(1− x)ηk for all x ∈ (0, 1). By the definition of f , we thus find

f(s) =

∫ s

0
F−1(t)dt = −

∫ 1−s

1
F−1 (1− x) dx = − 1

ηk

∫ 1

1−s
F−1
k (x)dx ∀s ∈ [0, 1], (13)

where the second equality follows from the substitution x← 1− t. By Lemma 3.1, we thus obtain

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk −
K∑
k=1

ηk f(pk) = max
p∈∆K

K∑
k=1

ukpk − ψ(p) = ΦR(u, ψ).

This observation completes the proof.

We are now ready to analyze the regret of DOPA under Fréchet ambiguity sets.

Theorem 5.2 (Regret analysis of DOPA with Fréchet ambiguity sets). Suppose that all conditions
of Theorem 5.1 hold and that η = η1 for some η > 0. If there exist γ ∈ (1, 2) and C > 0 with

F ′(F−1(p)) ≤ Cpγ ∀p ∈ (0, 1), (14)

then the regret of DOPA satisfies

R(T ) ≤ −ηKf(1/K) +
CTK2−γ

2η
∀T ∈ N

under every possible reward distribution of a non-oblivious adversarial environment.

Proof. We first show that all conditions of Theorem 4.1 are satisfied. To this end, select any
arm k ∈ [K]. Thanks to the assumed properties of F , the distribution function Fk as defined
in (12) is differentiable and strictly increasing whenever Fk(s) ∈ (0, 1). In addition, observe that∫

R
sF ′

k(s)ds =

∫ 1

0
F−1
k (x)dx = −η

∫ 1

0
F−1(1− x)dx = −η

∫ 1

0
F−1(t)dt = 0,

where the first equality follows from the substitution F−1
k (x) ← s, the second equality holds be-

cause (12) implies that F−1
k (x) = −ηF−1(1 − x) for all x ∈ (0, 1), the third equality exploits the

substitution t← 1− x, and the last equality holds by assumption. Furthermore, we have

F ′
k(F

−1
k (1− pk)) =

(
∇2

p

(
−

K∑
k=1

∫ 1

1−pk
F−1
k (t)dt

))−1

kk

=

(
∇2

p

(
K∑
k=1

η

∫ pk

0
F−1(t)dt

))−1

kk

=
1

η
F ′(F−1(p)) ≤ C

η
pγk ∀pk ∈ [0, 1],

13



where the first and third equalities follow from the inverse function theorem, and the second equality
exploits again the definition of Fk in (12) and a simple variable substitution. The inequality, finally,
follows from the assumption (14). Thus, Fk satisfies (8) with B = C/η. As k ∈ [K] was chosen
arbitrarily, we have now verified all conditions of Theorem 4.1. We may thus conclude that

R(T ) ≤
K∑
k=1

∫ 1

1−pk(0)
F−1
k (t)dt+

CTK2−γ

2η
= −η

K∑
k=1

f(pk(0)) +
CTK2−γ

2η
. (15)

It remains to be shown that p(0) = ∇uΦ(0;B) = 1/K is the unique maximizer of problem (4)
at u = 0. By the formula (13) for f in the proof of Theorem 5.1, problem (4) at u = 0 has the
same maximizers as maxp∈∆K H(p), where H(p) = −

∑K
k=1 f(pk) is shorthand for the rescaled

objective function. This problem is solvable thanks to Weierstrass’ maximum theorem, which
applies because H(p) is continuous (in fact smooth) and ∆K is compact. In the following, we use
ΠK to denote the group of all permutations of [K]. Note that both H(p) as well as the feasible
set ∆K are permutation symmetric. Hence, if p⋆ is a maximizer, then so is p⋆π = (p⋆π(1), . . . , p

⋆
π(K)),

for any π ∈ ΠK . As ∆K is convex and as |ΠK | = K!, it is clear that the uniform convex combination
p̄⋆ = 1

K!

∑
π∈ΠK

p⋆π belongs to the feasible set ∆K , too. In addition, the objective function value
of p̄⋆ satisfies

H(p̄⋆) ≥ 1

K!

∑
π∈ΠK

H(p⋆π) = max
p∈∆K

H(p).

Here, the inequality follows from Jensen’s inequality, which applies because f is convex and H

is concave. This implies that p̄⋆ is also an optimal solution. By construction, p̄⋆ is invariant
under permutations of its elements, which allows us to conclude that p̄⋆ = 1/K. We know from
Lemma 3.1 that the maximizer of problem (4) is unique. In summary, we have thus verified
that p(0) = ∇uΦ(0;B) = 1/K is indeed the unique maximizer of (4). The claim then follows
from (15).

It is well known that the optimal regret in the adversarial regime is of the order O(
√
KT )

[Audibert and Bubeck, 2009, Theorem 1] and is achieved by an FTRL algorithm with a Tsallis
entropy regularizer [Abernethy et al., 2015, Theorem 3.1]. The next corollary of Theorem 5.2
identifies a Fréchet ambiguity set for which DOPA offers the same optimal regret guarantee.

Corollary 5.3 (Optimality of DOPA). Suppose that B is a Fréchet ambiguity set and that the
marginal generator is a shifted Pareto distribution of the form F (s) = (1/α− s(1−α)/α)−

1
1−α with

α ∈ (0, 1). Then, the regret of DOPA with η = η1 and η =
√
(T (1− α))/(2α)Kα− 1

2 satisfies

R(T ) ≤
√
KT/(α(1− α))

under every possible reward distribution of a non-oblivious adversarial environment.

Corollary 5.3 asserts that if B is a Fréchet ambiguity set generated by a shifted Pareto distri-
bution, then DOPA with a learning rate η that is adapted to T attains the optimal adversarial
regret O(

√
KT ).
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Proof of Corollary 5.3. Observe first that F is indeed a marginal generator in the sense of Defini-
tion 2. From Theorem 5.1 we thus know that Φ(u;B) = ΦR(u;ψ), where ψ(p) =

∑K
k=1 ηf(pk) =

η
∑K

k=1

∫ pk
0 F−1(t)dt. Thanks to our specific choice of F , we have∫ pk

0
F−1(t)dt =

∫ pk

0

1− αtα−1

1− α
dt =

pk − pαk
1− α

∀k ∈ [K].

This implies that ψ = ηψT
α , where ψT

α is the Tsallis entropy with parameter α defined in (1). In
addition, one readily verifies that F ′(F−1(p)) = p2−α/α. Thus, all conditions of Theorem 5.2 are
satisfied with C = 1/α and γ = 2− α, and we may conclude that

R(T ) ≤ −ηKf(1/K) +
CTK2−γ

2η
= η

K1−α − 1

1− α
+
TKα

2αη
=

√
KT

α(1− α)
∀T ∈ N,

where the second equality exploits our specific choice of η. Hence, the claim follows.

The regret analysis of DOPA developed in Corollary 5.3 is arguably simpler than that of optimal
FTPL methods, which require subtle probabilistic arguments [Honda et al., 2023]. As it only uses
basic tools from convex analysis instead of non-standard concepts from variational analysis such as
sub-Hessians, it is even somewhat simpler than the regret analysis of the optimal FTRL method
with Tsallis entropy regularizer in [Abernethy et al., 2015, Theorem 3.1]—despite many similarities.

Recall from Remark 1 that DOPA reduces to the Exp3 algorithm if B is a singleton containing
a product Gumbel distribution. The following remark highlights that the Exp3 algorithm is also
recovered from DOPA if B is a Fréchet ambiguity set with an exponential marginal generator.

Remark 2 (Exp3 algorithm revisited). Suppose that B is a Fréchet ambiguity set with η = η1 for
some η > 0 and with marginal generator F (s) = exp(s− 1). In this case, Theorem 5.1 implies that
DOPA is equivalent to FTRL with regularization function

ψ(p) = η

K∑
k=1

∫ pk

0
F−1(t)dt = η

K∑
k=1

∫ pk

0
(log(t) + 1)dt = η

K∑
k=1

pk log(pk),

which is in turn known to be equivalent to the Exp3 Algorithm; see [Abernethy et al., 2015, Section 3].
This can also be checked directly. Indeed, by inspecting the optimality conditions of the convex
program maxp∈∆K p⊤u−ψ(p), one readily verifies that the corresponding arm-sampling probabilities
are given by pk(u) = exp(uk/η)/(

∑K
j=1 exp(uj/η)) for all k ∈ [K]. However, these are precisely the

arm-sampling probabilities of the Exp3 algorithm by Auer et al. [1995].

Corollary 5.3 relies on the implicit assumption that the learner knows the duration T of the
game ex ante and is thus able to choose a learning rate η that adapts to T . In the remainder of
this section we will show that DOPA can offer optimal regret guarantees even if T is unknown
and even if there is uncertainty about the adversarial power of the environment. To this end, we
study a generalized anytime GBPA algorithm that runs over an indefinite number of rounds; see
Algorithm 2.
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Algorithm 2 Anytime GBPA
Require: Differentiable convex functions (ϕt)t∈N with ∇uϕt(u) ∈ ∆K

Initialize û0 = 0

for round t ∈ N do
Environment chooses a reward vector rt ∈ [−1, 0]K

Learner chooses at ∼ pt = ∇uϕt(u)|u=ût−1
and receives reward rt,at

Learner estimates single-round reward vector r̂t = (rt,at/pt,at)eat
ût ← ût−1 + r̂t

end for

Algorithm 2 extends Algorithm 1 in that it runs forever and allows the potential function ϕt

to change with t. Below, we will thus study a variant of DOPA with a time-dependent ambiguity
set Bt.

The optimal regret guarantees of any bandit algorithm depend on the adversarial power of the
environment. Hence, an algorithm that attains the optimal regret in the non-oblivious adversarial
regime is not guaranteed to attain the optimal regret in the stochastic regime, say. In order to
present versions of DOPA that are simultaneously optimal across different learning regimes, we
henceforth describe the adversarial power of the environment in a unifying manner via a self-
bounding constraint [Zimmert and Seldin, 2021]. Formally, we thus assume that for any reward
distribution available to the environment there exist ∆ ∈ [0, 1]K and C ≥ 0 such that the inequality

R(T ) ≥
T∑
t=1

K∑
k=1

∆kP(at = k)− C (16)

holds for all planning horizons T ∈ N and for all admissible arm-sampling distributions. For
example, in the stochastic bandit setting, the reward vectors rt are drawn independently from
some fixed distribution on [K]. In this case, the regret can be written as

R(T ) =
T∑
t=1

K∑
k=1

(
max
ℓ∈[K]

E[rt,ℓ]− E[rt,at |at = k]

)
P(at = k)

and thus satisfies (16) with ∆k = maxℓ∈[K] E[rt,ℓ] − E[rt,k] for all k ∈ [K] and C = 0. Similarly,
one can show that (16) holds in the stochastically constrained adversarial [Wei and Luo, 2018]
and the adversarially corrupted stochastic [Lykouris et al., 2018] learning regimes. Exploiting the
equivalence of FTRL with Tsallis entropy regularization and DOPA with shifted Pareto marginals,
we can now show that the anytime version of DOPA inherits the BOBW capability of FTRL.

Theorem 5.4 (BOBW capability of DOPA). Suppose that Bt is a time-dependent Fréchet ambiguity
set in the sense of Definition 3 with η = ηt1, ηt = 2

√
t and marginal generator F (s) = (2 − s)−2

for all t ∈ N. Then, the regret of DOPA satisfies R(T ) ≤ 4
√
KT + 1 for all T ∈ N and under all

reward distributions of a non-oblivious adversarial environment. In addition, the regret of DOPA
satisfies

R(T ) ≤ O

 ∑
k∈[K]:∆k>0

log(T )/∆k

 ∀T ∈ N (17)
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under all reward distributions of an environment constrained by (16).

Note that the marginal generator F (s) = (2−s)−2 coincides with the shifted Pareto distribution
corresponding to α = 1/2 from Corollary 5.3. Theorem 5.4 implies that DOPA achieves the optimal
O(log T ) regret in the stochastic regime and the optimal O(

√
KT ) regret in the adversarial regime.

Thanks to the time-dependent learning rate ηt = 2
√
t, DOPA also displays the anytime property,

that is, it attains optimal regret bounds for every time horizon T without requiring knowledge of T .

Proof. Theorem 5.1 implies that Φ(u;Bt) = ΦR(u;ψt), where ψt(p) = ηt
∑K

k=1

∫ pk
0 F−1(t)dt. The

proof of Corollary 5.3 further implies that ψt = ηtψ
T
1/2, where ψT

1/2 stands for the Tsallis entropy with
parameter 1/2. By [Zimmert and Seldin, 2021, Theorem 1], which applies to Tsallis-regularized
FTPL algorithms with adaptive learning rate ηt = 2

√
t, we may then conclude that R(T ) ≤

4
√
KT + 1 for every T ∈ N. If the adversary selects rewards that satisfy (16) and if ∆k > 0

for some k ∈ [K], then [Ito, 2021, Theorem 2] further ensures that (17) holds. Hence, the claim
follows.

The following corollary shows that DOPA can even recover FTRL schemes with hybrid regular-
izers. This is achieved by studying harmonic averages of two different marginal generators.

Corollary 5.5 (Hybrid Fréchet regularizers). Select any weights γ1, γ2 > 0 and any marginal
generators G1 and G2. Suppose that B is a Fréchet ambiguity set with η = 1 and with marginal
generator F (s) = (γ1G

−1
1 + γ2G

−1
2 )−1(s). If g1(s) =

∫ s
0 G

−1
1 (t)dt and g2(s) =

∫ s
0 G

−1
2 (t)dt for all

s ∈ R, then Φ(u;B) = ΦR(u;ψ), where ψ(p) =
∑K

k=1(γ1g1(pk) + γ2g2(pk)).

Corollary 5.5 shows that any FTRL method with a hybrid regularizer representable as a sum
of two convex functions can be interpreted as an instance of DOPA with a Fréchet ambiguity set
induced by a harmonic average of two marginal generators. In conjunction with Theorem 3.4,
this result implies that we can systematically construct FTPL algorithms that are equivalent to
FTRL algorithms with hybrid regularizers, some of which are known to display attractive BOBW
capabilities. Corollary 5.5 thus addresses an open problem posed by Honda et al. [2023], who state
that “it would be a very challenging task to realize the effect of hybrid regularization by FTPL.”

Proof of Corollary 5.5. By Lemma 3.1, we have

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk +

K∑
k=1

∫ 1

1−pk
F−1
k (t)dt.

The definitions of g1 and g2 further imply that

γ1g1(s) + γ2g2(s) = γ1

∫ s

0
G−1

1 (t) dt+ γ2

∫ s

0
G−1

2 (t) dt

=

∫ 1

1−s
(γ1G

−1
1 + γ2G

−1
2 )(1− x) dx

=

∫ 1

1−s
F−1(1− x) dx = −

∫ 1

1−s
F−1
k (x) dx ∀k ∈ [K],
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where the second and the third equalities follow from the variable substitution x ← 1 − t and
the definition of F , respectively. The last equality exploits the definition of Fk in (12) and the
assumption that η = 1. Combining the above derivations and recalling the definition of ψ then
yields

Φ(u;B) = max
p∈∆K

K∑
k=1

ukpk −
K∑
k=1

(γ1g1(pk) + γ2g2(pk)) = ΦR(u;ψ).

Hence, the claim follows.

All optimal FTRL methods with hybrid regularizers studied to date assume that the regularizer
consists of a sum of merely two elementary convex functions [Jin et al., 2024; Zimmert et al., 2019].
More versatile FTRL methods can be obtained by generalizing Corollary 5.5 in the obvious way, that
is, by setting the regularization function ψ to the sum of the integrals of N > 2 inverse marginal
generators G−1

1 , . . . , G−1
N . The resulting FTRL method can then be interpreted as a version of

DOPA whose Fréchet ambiguity set is generated by the harmonic mean of G1, . . . , GN .
To close this section, we use Corollary 5.5 to show that DOPA with a Fréchet ambiguity set

generated by two marginal generators can achieve theoretically optimal BOBW guarantees.

Corollary 5.6 (Adaptive hybrid Fréchet regularizers). Suppose that Bt is a time-dependent Fréchet
ambiguity set in the sense of Definition 3 with η = 1 and marginal generator F (s) = (γtG

−1
1 +

γtG
−1
2 )−1(s), where γt =

√
t, G1(s) = 1− exp(−(s+ 1)) and G2(s) = (−2s)−2 for all t ∈ N. Then,

the regret of DOPA satisfies R(T ) ≤ O(
√
KT ) for all T ∈ N and under all reward distributions of

a non-oblivious adversarial environment. In addition, the regret of DOPA then also satisfies

R(T ) ≤ O

 ∑
k∈[K]:∆k>0

log T/∆k

+O

 ∑
k∈[K]:∆k>0

(logK)2/∆k

 ∀T ∈ N

under all reward distributions of an environment constrained by (16) with |{k ∈ [K] : ∆k = 0}| = 1.

Proof. Corollary 5.5 readily implies that Φ(u;Bt) = ΦR(u;ψt) for every t ∈ [T ], where ψt(p) =∑K
k=1(γtg1(pk) + γtg2(pk)), g1(s) =

∫ s
0 G

−1
1 (t) dt and g2(s) =

∫ s
0 G

−1
2 (t) dt. In addition, one readily

verifies that G−1
1 (t) = −1−log(1−t) and G−1

2 (t) = −(2
√
t)−1, which implies that γtg1(s)+γtg2(s) =

−γt(
√
s+(s−1) log(1−s)). Hence, the version of DOPA at hand is equivalent to an FTRL method

with regularizer ψt(p) =
∑K

k=1−
√
t(
√
pk+(pk−1) log(1−pk)). The claim then follows from general

results on FTRL algorithms with hybrid regualrizers [Zimmert et al., 2019, Theorem 3].

The results of this section imply via Lemma 3.1 and Proposition 3.3 that there exist FTPL
algorithms that are equivalent to FTRL algorithms with hybrid regularizers (in particular opti-
mal ones).

6 Computational Efficiency of DOPA

FTPL algorithms are popular primarily because of their computational efficiency. Indeed, the
arm at to be pulled in round t is found by sampling z ∼ Q and then identifying the largest

18



component of the perturbed reward estimate ût−1+z. Recall that the components of z are usually
assumed to be i.i.d. under Q. Hence, the per-iteration complexity of FTPL is of the order O(K).
In contrast, FTRL algorithms need to solve a convex optimization problem in each round t, which
imposes a significantly higher computational burden. From Theorem 3.4 we know, however, that
every FTRL algorithm induced by an additively separable regularization function ψ is equivalent
to an FTPL algorithm induced by some disturbance distribution Q. This connection between
FTRL and FTPL is mediated by DOPA. Specifically, the noise distribution Q is a solution of
the optimization problem (2) and thus changes with the reward estimate u = ût−1. The FTPL
algorithm corresponding to a given FTRL algorithm thus needs to solve an instance of (2) in each
round t in order to compute the current noise distribution. Hence, it appears that all computational
advantages of FTPL vis-à-vis FTRL are outweighed by the time needed to solve just another
optimization problem.

We will now show that this suspicion is unwarranted. Instead of computing Q by solving
problem (2) at u = ût−1 and then sampling at from p = ∇uΦ

P (u;Q) by drawing a sample z

from Q, we propose here to compute the arm-sampling distribution p directly. This can be done
highly efficiently by recalling from Proposition 3.3 that p = ∇uΦ(u;B) and by leveraging a bisection
method inspired by [Taşkesen et al., 2023, Algorithm 2] for computing ∇uΦ(u;B); see Algorithm 3
below. This method has its roots in semi-parametric discrete choice theory, which exploits the
structure of the marginal ambiguity set B to compute the vector of optimal choice probabilities.
Algorithm 3 relies on the modulus of uniform continuity of the marginal distribution functions Fk,
k ∈ [K], with respect to a prescribed tolerance ε ≥ 0, which is defined as

δ(ε) = min
k∈[K]

max
δ>0

{
δ : |Fk(t1)− Fk(t2)| ≤ ε/(2

√
K) ∀t1, t2 ∈ R with |t1 − t2| ≤ δ

}
.

Algorithm 3 Bisection method for approximat-
ing the arm-sampling distribution p = ∇uΦ(u;B)
Require: error tolerance ε, reward estimate u,

marginal distribution functions Fk, k ∈ [K]

Set τ̄ ← maxk∈[K]{−uk − F−1
k (1− 1/K)}

Set τ ← mink∈[K]{−uk − F−1
k (1− 1/K)}

for i = 1, 2, . . . , ⌈log2((τ̄ − τ)/δ(ε))⌉ do
Set τ ← (τ + τ)/2

Set p̂k ← 1− Fk (−uk − τ) for k ∈ [K]

if
∑

k∈[K] p̂k > 1 then τ̄ ← τ else τ ← τ

end for
return p̂ with p̂k = (1 +

∑K
ℓ=1 Fℓ(−uℓ −

τ))/K − Fk (−uk − τ) for all k ∈ [K]

100 101 102 103 104
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10-4

10-2

100

102

Figure 1: Per-iteration runtime of DOPA (purple) and
FTRL (gray) as a function of the number K of arms.
The solid lines show the means, and the shaded areas
visualize the corridor between the minima and maxima
across 10 independent simulations (u is sampled uni-
formly from [0, 1]K).

The following corollary of [Taşkesen et al., 2023, Theorem 4.9] characterizes the convergence
behavior of Algorithm 3.
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Theorem 6.1 (Convergence of Algorithm 3). Suppose that B is a marginal ambiguity set of the
form (3) and that the distribution functions Fk, k ∈ [K] are continuous and strictly increasing
in s whenever Fk(s) ∈ (0, 1). Then, for any u ∈ RK and ε > 0, Algorithm 3 outputs p̂ ∈ ∆K

with ∥p̂ − ∇uΦ(u,B)∥2 ≤ ε. If B is additionally a Fréchet ambiguity set with η = η1 for some
η > 0 and if the marginal generator F is L-Lipschitz continuous whenever F (s) ∈ [0, 1], then
Algorithm 3 terminates after at most log2(ε

−12L
√
K(ū − u)/η) iterations with ū = maxk∈[K] uk

and u = mink∈[K] uk.

Proof. For simplicity of notation, we define p = ∇uΦ(u;B). Note that the output of Algorithm 3
can be expressed as p̂ = q+d1/K, where qk = 1−Fk(−uk− τ) for all k ∈ [K] and d = 1−

∑K
k=1 qk

is a nonnegative normalization constant. By [Taşkesen et al., 2023, Theorem 4.9], we know that
|qk − pk| ≤ ε/(2

√
K) for all k ∈ [K]. This implies that

∥p̂− p∥2 =
∥∥∥∥q +

d1

K
− p

∥∥∥∥
2

≤ ∥q − p∥2 +
∥∥∥∥d1K

∥∥∥∥
2

=
ε

2
+
ε

2
= ε,

where the second equality holds because d = 1−
∑K

k=1 qk ≤ 1−
∑K

k=1 pk +Kε/(2
√
K) = ε

√
K/2.

As for the second claim, note that the L-Lipschitz continuity of F implies via the definition of Fk
in (12) that the uniform continuity parameter δ(ε) is bounded below by εη/(2L

√
K). Also, as all

components of η are identical, one readily verifies that τ − τ ≤ u− u. The number of iterations of
Algorithm 3 is therefore bounded above by log2(ε

−12L
√
K(ū− u)/η).

Note that DOPA calls Algorithm 3 with input u = ût−1 in each iteration t = 1, . . . , T of
Algorithm 1 in order to compute an arm-sampling distribution pt. As ût−1 =

∑t−1
s=1 r̂s, the range

ū − u of the reward estimates is uncertain and depends on t. In addition, as rs ∈ [−1, 0]K and
r̂s = (rs,as/ps,as)eas for all s = 1, . . . , t − 1, we have ût−1 = O(t) with high probability. This
observation implies that the t-th call of Algorithm 3 has O(log(

√
Kt/η)) iterations with high

probability. In addition, each iteration runs in time O(K). Hence, if η = O(
√
T ) (which leads

to optimal regret guarantees as explained in Corollary 5.3), then the t-th call of Algorithm 3
runs in time at most O(K log(

√
KT )) = Õ(K) with high probability, where Õ hides logarithmic

factors. The efficiency of Algorithm 3 used by DOPA is thus comparable to the sampling procedure
used by FTPL. We highlight that the marginal generators of all Fréchet ambiguity sets that were
examined in Section 5 and lead to optimal regret bounds satisfy the Lipschitz continuity condition
of Theorem 6.1.

We now compare the per-iteration complexities of DOPA and FTRL, that is, we measure the
times both methods spend on computing the arm-sampling distributions. All experiments are run
on a computer with an Apple M1 Pro processor with 16GB RAM, and all optimization problems are
modeled in MATLAB using the YALMIP interface [McCormick, 1976]. The code for reproducing
Figure 1 is available from https://anonymous.4open.science/r/bandit-experiments-FB73/.

As for DOPA, we set B to a Fréchet ambiguity set in the sense of Definition 3 with marginal
generator F (s) = (2 − s)−2 and η = 1. As for FTRL, we set ψ to the Tsallis entropy with pa-
rameter α = 1

2 . Theorem 5.1 and Corollary 5.3 then imply that Φ(u;B) = ΦR(u;ψ); see also the
proof of Theorem 5.4 for further details. Hence, DOPA and FTRL use the same arm-sampling dis-
tributions and are thus equivalent. We compute the arm-sampling distribution ∇uΦ

R(u;ψ) =
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argmaxp∈∆K p⊤u − ψ(p) of FTRL by solving the underlying second-order-cone program with
MOSEK [MOSEK ApS, 2024]. In addition, we use Algorithm 3 to compute the arm-sampling dis-
tribution ∇uΦ(u;B) of DOPA to within an error tolerance of ε = 10−8, which matches MOSEK’s
suboptimality tolerance for conic programs. Figure 1 visualizes the per-iteration runtimes of DOPA
and FTRL as a function of the number K of arms. We observe that DOPA runs almost 104 times
faster uniformly across all K.

7 Concluding Remarks and Limitations

We introduce DOPA as a new GBPA algorithm that builds a bridge between FTPL and FTRL
methods. DOPA is based on an “optimism in the face of ambiguity" principle and implicitly solves
optimization problems over marginal ambiguity sets in order to determine FTPL-type noise dis-
tributions. DOPA enables us to establish a one-to-one correspondence between FTRL algorithms
with additively separable regularization functions and FTPL algorithms. As a result, it circumvents
the challenges associated with the regret analysis of FTPL-type algorithms and with the computa-
tional complexity of FTRL-type algorithms. Indeed, DOPA provides a unified regret analysis for
perturbation-based methods by connecting them to FTRL methods, thus paving the way for new
FTPL algorithms with optimal regret guarantees. In addition, the arm-sampling distributions of
DOPA can be computed highly efficient with a bisection algorithm inspired by modern discrete
choice theory. We show that the per-iteration complexity of DOPA exceeds that of FTPL algo-
rithms only by logarithimc factors in K and T . We see potential in exploring variants of DOPA
with new Fréchet ambiguity sets that induce unconventional regularizers (see, e.g., [Taşkesen et al.,
2023, Example 3.11]) or with completely different classes of ambiguity sets.

The design principle behind DOPA extends beyond the K-armed bandit setting while preserving
BOBW capability. Notable future applications of DOPA include decoupled exploitation-exploration
[Jin et al., 2024], where a learner can choose to receive a reward from one arm while simultaneously
gathering information about the reward from another. This concept has significant implications
for the development of efficient reinforcement learning algorithms [Huang et al., 2022]. Another
potential application of our algorithm, where it can achieve a BOBW regret bound, is the dueling
bandit problem [Zimmert and Seldin, 2021]. In this setting, the learner selects two arms in each
round to “duel” and receives feedback on the arm with the higher reward. Dueling bandit models
have practical applications, such as hyperparameter tuning [Kumagai, 2017]. Furthermore, our
framework generalizes the hybrid Tsallis entropy regularizers used in an FTRL-type algorithm with
BOBW capability [Ito et al., 2024], making it applicable to both K-armed bandit and linear bandit
problems.

We also recognize several limitations of our work. First, certain types of regularizers cannot be
captured by marginal ambiguity sets of the form (3). A notable example is the log-barrier regularizer
considered by Jin et al. [2024]. [Hofbauer and Sandholm, 2002, Proposition 2.2] shows that it is
impossible to recover an FTRL algorithm with a log-barrier regularizer using any FTPL algorithm
with a stochastic perturbation whose distribution is independent of the reward estimates u. Second,
the bisection method in Algorithm 3 is efficient as long as the marginal cumulative distribution
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functions Fk and their inverses F−1
k can be computed efficiently. However, for hybrid regularizers,

computing Fk can be cumbersome, making the bisection method computationally inefficient for
certain choices of the marginal generators G1 and G2.

Appendix: Strongly Convex Regularization Functions

The following lemma borrowed from Taşkesen et al. [2023, Proposition 4.8] identifies sufficient
conditions on the distribution functions Fk, k ∈ [K], under which the regularization function
ψ(p) = −

∑K
k=1

∫ 1
1−pk F

−1
k (t) dt is strongly convex. It exploits a natural duality relation between

smoothness and strong convexity properties. We sketch the proof of this result for completeness.

Lemma 7.1. If B is a marginal ambiguity set of the form (3), and if the cumulative distribution
functions Fk, k ∈ [K], are Lipschitz continuous with Lipschitz constant L, then the regularization
function ψ(p) = −

∑K
k=1

∫ 1
1−pk F

−1
k (t) dt is L-strongly convex on [0, 1]K .

Proof. The claim holds if we can show that ψ(p)−∥p∥22/(2L) is convex in p. As Fk is non-decreasing
and Lipschitz continuous by assumption, we have

L ≥ sup
s1,s2∈R
s1>s2

Fk (s1)− Fk (s2)
s1 − s2

≥ sup
pk,qk∈(0,1)
pk>qk

(1− qk)− (1− pk)
F−1
k (1− qk)− F−1

k (1− pk)
,

where the second inequality follows from restricting s1 and s2 to the image of (0, 1) under the (left)
quantile function F−1

k . Rearranging terms in the above inequality then yields

−F−1
k (1− qk)− qk/L ≤ −F−1

k (1− pk)− pk/L ∀pk, qk ∈ (0, 1) with qk < pk.

Thus, the function −F−1
k (1− pk) − pk/L is non-decreasing in pk on the open interval (0, 1), and

its primitive −
∫ 1
1−pk F

−1
k (t)dt− p2k/(2L) is convex and continuous in pk on the closed interval [0, 1].

The claim then follows because convexity is preserved under summation.
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