
Dual Spectral Projected Gradient Method for Generalized Log-det

Semidefinite Programming

Charles Namchaisiri∗ Makoto Yamashita†

September 27, 2024

Abstract

Log-det semidefinite programming (SDP) problems are optimization problems that often
arise from Gaussian graphic models. A log-det SDP problem with an ℓ1-norm term has been
examined in many methods, and the dual spectral projected gradient (DSPG) method by
Nakagaki et al. in 2020 is designed to efficiently solve the dual problem of the log-det SDP
by combining a non-monotone line-search projected gradient method with the step adjustment
for positive definiteness. In this paper, we extend the DSPG method for solving a generalized
log-det SDP problem involving additional terms to cover more structures in Gaussian graphical
models in a unified style. We establish the convergence of the proposed method to the optimal
value. We conduct numerical experiments to illustrate the efficiency of the proposed method.

1 Introduction

In this paper, we address the following log-determinant semidefinite programming (SDP) opti-
mization problem:

min
X∈Sn

f(X) := C •X − µ log detX +
H∑

h=1

λh∥Qh(X)∥ph

s.t. A(X) = b,X ≻ O.

(P)

We use Rn and Sn to denote the sets of n-dimensional vectors and n × n symmetric matri-
ces, respectively. The inner product between C ∈ Sn and X ∈ Sn is defined by C • X :=∑n

i=1

∑n
j=1CijXij . We use nonnegative µ and λ1, . . . , λH as weight parameters in the objective

function, Qh : Sn → Rnh for each h = 1, . . . ,H is a linear map, ∥y∥ph := (
∑nh

i=1 y
ph
i)

1
ph is the

ℓph-norm of y ∈ Rnh with ph ≥ 1. In the constraints, A : Sn → Rm is a linear map defined by
A(X) = (A1 •X,A2 •X, . . . ,Am •X)⊤ with A1,A2, . . . ,Am ∈ Sn, and the vector b ∈ Rm in
(P) is a given vector. The symbol X ≻ O (X ⪰ O) for a matrix X ∈ Sn denotes that X is a
positive definite (positive semidefinite, respectively) matrix.

∗School of Computing, Tokyo Institute of Technology, Japan. (namchaisiri.c.aa@m.titech.ac.jp)
†School of Computing, Tokyo Institute of Technology, Japan. (Makoto.Yamashita@c.titech.ac.jp)

1

namchaisiri.c.aa@m.titech.ac.jp
Makoto.Yamashita@c.titech.ac.jp

Many log-determinant SDP problems can be rewritten as the form of (P). A model (P) with
H = 1 and Q1(X) being the vector of elements of X is equivalent to the following problem:

min
X∈Sn

f(X) := C •X − µ log detX + λ
n∑

i=1

n∑
j=1

|Xij |

s.t. A(X) = b,X ≻ O.

(1.1)

Furthermore, when λ = 0 and the linear constraint is Xij = 0 for (i, j) ∈ Ω ⊆ {(i, j) | 1 ≤ i <
j ≤ n}, (1.1) turns into the Gaussian graphical models [10], which corresponds to the graphical
interpretation of sparse covariance selection model [5].

The model (P) also covers the following problem in Lin et al. [12] that estimates sparse Gaussian
graphical models with hidden clustering structures. The fourth term in the objective function
induces a clustering structure of the concentration matrix.

min
X∈Sn

f(X) := C •X − µ log detX + ρ
∑
i<j

|Xij |+ λ
∑
i<j

∑
s<t

|Xij −Xst|

s.t. A(X) = b, X ≻ O,

Another important model in (P) is the block ℓ∞-regularized log-likelihood minimization problem
in Duchi et al. [6] to estimate sparsity between entire blocks of variables:

min
X∈Sn

f(X) := C •X − log detX +
K∑
k=1

λk max{|Xij |
∣∣(i, j) ∈ Gk}, (1.2)

where entries inX are divided into disjoint subsets G1, G2, . . . , GK(K < n2). The last term in (1.2)
is the group ℓ∞-regularized covariance selection used to enforce the sparsity between blocks. Other
than this regularization, there is also the group ℓ1 and ℓ2-regularized regression, see ,e.g., [1, 18].
Extensions of model (1.2) have also been examined. Honorio et al. [8] proposed the multi-task
structure learning problem for Gaussian graphical models that consider promoting a consistent
sparseness pattern across arbitrary tasks by using the regularizer to penalize corresponding edges
across the task. Yang et al. [17] discussed a model that replaces the last term in the objective
function in (1.2) with ℓp-norm for p ∈ {1, 2,∞}.

When the regularizer is restricted to the ℓ1-norm (1.1), many methods have been proposed.
Wang et al. [16] proposed a Newton-CG primal proximal point algorithm, and Li et al. [11] modified
an inexact primal-dual path-following interior-point algorithm to solve the log-det SDP with a large
number of linear constraints. Hsie et al. [9] proposed a quadratic approximation for sparse inverse
covariance estimation (QUIC) based on the Newton method and a quadratic approximation. Wang
et al. [15] generated an initial point of the algorithm by using a proximal augmented Lagrangian
method and then computed the accurate solution by applying a Newton-CG augmented Lagrangian
method.

Nakagaki et al. [13] proposed a dual spectral projected gradient method (DSPG) for solving the
dual problem of (1.1). The method is an iterative method that uses an inexact projection to avoid
the difficulty of computing the orthogonal projection to the intersection of two convex sets, while
still having the advantages of the spectral projected gradient (SPG) method [4]. In particular, an
important advantage here is that it requires only the function values and the first-order derivatives,
making it faster than other second-order derivatives methods. However, their convergence analysis
heavily depended on the ℓ1 norm in the objective function of (1.1). In (P) that we address in this

2

paper, we do not assume a specific structure of the linear map Qh and also the number of the
terms H that corresponds to the number of variables in the dual problem, therefore, we cannot
simply apply [13] to the generalized problem (P).

In this paper, we extend the DSPG method to deal with the general form of log-determinant
optimization problems (P). To enhance the efficiency, we apply a similar reformulation technique
as in [14]. We embed the ℓp-norm structure in the objective function in (P) into constraints so
that the objective is differentiable, and we combine the projection onto the constraints related to
the ℓp-norm.

In this paper, our main contributions are as follows.

• We propose the generalized model (P), which covers many log-det models.

• We develop a numerical method (Algorithm 1) for solving (P), and present the convergence
analysis of the algorithm.

• We show the efficiency of the proposed method with numerical experiments (Section 4). For
(P) with the matrix dimension n = 2000, the method in Duchi et al. [6] demanded 163.48
seconds while the proposed method consumed only 65.88 seconds to attain the same solution
accuracy.

The remainder of this paper is organized as follows. We describe the structure of the dual
problem and the proposed DSPG-based method (Algorithm 1) in Section 2 and discuss the con-
vergence analysis in Section 3 focusing on the generalized part of (P). In Section 4, we present
the result of numerical experiments on the log-likelihood minimization problem, block constraint
problem, and multi-task structure. Finally, we conclude in Section 5.

1.1 Notation and symbols

Let ∥X∥ :=
√
X •X denote the Frobenius norm for a matrix X ∈ Sn. We also use ∥y∥ to

represent the Euclidean norm of the vector y ∈ Rn, that is, ∥y∥ := ∥y∥2.
Given a linear map A. We denote the adjoint operator of A as A⊤. We define the opera-

tor norm of A : Sn → Rm and A⊤ : Rm → Sn as ∥A∥ := supX ̸=O

{
∥A(X)∥
∥X∥

}
and ∥A⊤∥ :=

supy ̸=0

{
∥A⊤

(y)∥
∥y∥

}
, respectively.

Let U be the direct product space Rm × Sn × · · · × Sn. We define the inner product of U1 =
(y1,S

1
1, . . . ,S

1
H) ∈ U andU2 = (y2,S

2
1, . . . ,S

2
H) ∈ U by ⟨U1, U2⟩ := y⊤

1 y2+S1
1•S2

1+· · ·+S1
H•S2

H .
We also define the norm of U ∈ U as ||U || :=

√
⟨U , U⟩.

For p ≥ 1 and λ > 0, we define the ℓp-ball with radius λ as

Bλp := {x | ||x||p ≤ λ}.

We use PS (·) to denote the projection onto the convex set S, i.e.,

PS (·) := arg min
X∈Ω

∥X − ·∥.

3

2 The proposed method

Let Q⊤
h : Rnh → Rm be the adjoint operators of Qh. To extend the DSPG method developed in

[13] for the dual problem of (1.1), we need the dual problem of our problem (P):

max
y∈Rm

,zh∈Rnh (h=1,...,H)
b⊤y + µ log det

(
C −A⊤(y) +

H∑
h=1

Q⊤
h (zh)

)
+ nµ− nµ logµ

s.t. ∥zh∥p∗h ≤ λh (h = 1, . . . ,H), C −A⊤(y) +

H∑
h=1

Q⊤
h (zh) ≻ O,

(2.1)

where ∥ · ∥p∗h is the dual norm of ∥ · ∥ph such that 1
ph

+ 1
p∗h

= 1. More precisely, p∗h for ph ∈ [1,∞]

is given by

p∗h =


∞ if ph = 1

ph/(ph − 1) if 1 < ph <∞
1 if ph =∞.

To increase the computational efficiency, we employ a similar approach as in Namchaisiri et
al. [14]. We introduce sets Sh = {S ∈ Sn| S = Q⊤

h (z), z ∈ B
λh
p∗h
} for h = 1, 2, . . . ,H. Denoting the

variables (y,S1, . . . ,SH) ∈ U as one composite variable U , we can rewrite (2.1) as follows:

max
U∈U

g(U) := bTy + µ log det

(
C −A⊤(y) +

H∑
h=1

Sh

)
+ nµ− nµ logµ

s.t. Sh ∈ Sh(h = 1, . . . ,H), C −A⊤(y) +
H∑

h=1

Sh ≻ O.

(D)

Note that the difficulty due to the ℓph-norm in the problem is embedded into the set Sh.
For the convergence analysis in the following section, we employ the same assumption as

[13, 14]:

Assumption 1. We assume the following statements hold for problem (P) and its corresponding
dual (D):

(i) The set of matrices A1,A2,Am is linearly independent. In the other words, A is surjective;

(ii) There exists a strictly feasible solution X̂ ≻ O of primal problem (P) that satisfies A(X̂) = b;

(iii) There exists a composite variable Û that satisfies the constraint of dual problem (D).

Let F be the feasible region of (D). We express this feasible region as the intersection F =
M∩N of M := {U ∈ U | y ∈ Rm,Sh ∈ Sh(h = 1, . . . ,H)} and N := {U ∈ U | C − A⊤(y) +∑H

h=1 Sh ≻ O}. Let X(U) := µ
(
C −A⊤(y) +

∑H
h=1 Sh

)−1
. Thus, the gradient of g(U) can be

expressed as

∇g(U) =
(
∇yg(U),∇S1

g(U), . . . , ∇SH
g(U)

)
=(b−A(X(U)),X(U), . . . , X(U)) .

4

We introduce a map

B(U) := −A⊤(y) +

H∑
h=1

Sh, where U = (y,S1, . . . ,SH),

and define Uk :=
(
yk,Sk

1, . . . ,S
k
H

)
. For solving the dual problem (D), we propose Algorithm 1

below by extending the DSPG method in [14]. The step length of Step 3 is the Barzilai-Borwein
step [3]. The advantages of this step length are mentioned in [7, 13], in particular, the linear
convergence can be obtained under a mild condition.

Algorithm 1 A DSPG algorithm for generalized log-det semidefinite programming

Step 0. Choose parameters ε > 0, τ ∈ (0, 1), γ ∈ (0, 1), 0 < β < 1, 0 < αmin < αmax < ∞ and
integer M > 0. Take U0 ∈ F and α0 ∈ [αmin, αmax]. Set the iteration number k = 0.

Step 1. Let ∆Uk
(1) :=

(
[∆yk](1), [∆Sk

1](1), . . . , [∆Sk
H](1)

)
:= PM

(
Uk +∇g(Uk)

)
− Uk. If

∥∆Uk
(1)∥ ≤ ε, terminate; otherwise, go to Step 2.

Step 2. Let Dk :=
(
∆yk,∆Sk

1, . . . ,∆Sk
H

)
:= PM

(
Uk + αk∇g(Uk)

)
− Uk. Let Lk be the

Cholesky factorization of C + B(Uk), that is LkL
⊤
k = C + B(Uk), and θ be the minimum

eigenvalue of L−1
k B(D

k)
(
L⊤

k

)−1
. Set

νk :=

{
1 if θ ≥ 0,

min{1, −τ/θ} otherwise.

Apply a line search to find the largest element σk ∈ {1, β, β2, . . .} such that

g(Uk + σkνkD
k) ≥ min

[k−M+1]+≤l≤k
g(U l) + γσkνk⟨∇g(Uk), Dk⟩.

Step 3. Let Uk+1 = Uk + σkνkD
k. Let pk := ⟨Uk+1 −Uk, ∇g(Uk+1)−∇g(Uk)⟩. Set

αk+1 :=

{
αmax if pk ≥ 0,

min
{
αmax, max

{
αmin, −∥Uk+1 −Uk∥2/pk

}}
otherwise.

Set k ← k + 1. Return to Step 1.

From the viewpoint of the convergence analysis, Algorithm 1 converges for any linear map Qh

as shown in Section 3. This is not proved in the previous DSPG papers [13, 14]. On the other
hand, the efficiency of Algorithm 1 depends on the computation of the projection PM(·). The
objective functions of the numerical experiments in Section 4 were chosen so that the projection
onto each Sh can be computed within appropriate computation costs.

3 Convergence analysis

We show the convergence of Algorithm 1 to the optimal value by extending the analysis in [14].
In particular, we focus on the proof of the part

∑H
h=1 Sh that corresponds to

∑H
h=1 λh∥Qh(X)∥ph

in the primal generalized log-det SDPs (P).

5

For the convergence proof below, we will show the validity of the stopping criterion in Lemma 6,
the lower bound of step length that prevents the premature termination in Lemma 8, and the
convergence of the output sequence of Algorithm 1 to the optimal solution in Theorem 11. Let
{Uk} be the sequence generated by Algorithm 1. We use the notation Xk := X(Uk) in the proof.

We start with Lemma 2 that shows the feasibility and the boundedness of the sequence gener-
ated from Algorithm 1. We introduce a level set

L :=
{
U ∈ F : g(U) ≥ g(U0)

}
.

Lemma 2. [14, Lemma 3.1]{Uk} ⊆ L and {Uk} is bounded.

In particular, the surjectivity of A and the existence of the primal interior feasible point X̂ in
Assumption 1 play an essential part in the proof of [14].

With the boundedness of S1, . . . ,SH , we also obtain the following lemma, which will be used
in Lemma 10.

Lemma 3. [13, Lemma 3.3]The level set L is bounded.

The proof of this lemma also utilizes the surjectivity of A to derive the boundedness of the
component of y in U .

Using Lemma 2 and strict concavity of log det term in the objective function of (D), we can
show that the eigenvalues of C + B(Uk) are sandwiched with a positive lower bound and a finite
upper bound. Since Xk = µ(C + B(Uk))−1, we obtain the boundedness of the sequence {Xk}.

Corollary 4. [13, Remark 3.5] There exist bounds βmin
X and βmax

X such that O ⪯ βmin
X I ⪯ Xk ⪯

βmax
X I for all k. Thus ηX :=

√
nβmax

X is also a bound for {Xk} such that ∥Xk∥ ≤ ηX for all k.

Furthermore, we can also show the boundedness of other components related to Uk.

Lemma 5. There exist bounds ηX−1 and η∆y > 0 such that ∥(Xk)−1∥ ≤ ηX−1 and ∥∆yk∥ ≤ η∆y

for all k. There also exists η∆S > 0 that satisfies ∥∆Sk
h∥ ≤ η∆S for all h = 1, 2, . . . ,H and all k.

Proof. We can obtain ηX−1 and η∆y by applying Lemma 3.4 in [14]. For h = 1, 2, . . . ,H, since

Uk ∈M ⊂ F from Lemma 2, we have Sk
h ∈ Sh for any k ≥ 1. Therefore, due to the property of the

projection, it holds that ∥∆Sk
h∥ =

∥∥∥PSh

(
Sk
h + αkX

k
)
− Sk

h

∥∥∥ ≤ ∥αkX
k∥ ≤ αmaxηX =: η∆S .

The following lemma derives an optimality condition for the dual problem (D) from the view-
point of the projection, and this guarantees the validity of the stopping criterion in Step 1 of
Algorithm 1. The proofs in [14] cannot directly give this lemma, since the structure of setM now
includes multiple sets S1, . . . ,SH .

Lemma 6. U∗ ∈ F is an optimal solution of the dual problem (D) if and only if there exists α > 0
such that

PM(U∗ + α∇g(U∗)) = U∗.

Proof. We can see that the objective equation is equivalent to

U∗ = argmin

{
1

2
∥U − (U∗ + α∇g(U∗))∥2 + δM(U)

}
. (3.1)

6

where δM is the indicator function ofM.

Let U∗ be decomposed into U∗ = (y∗,S∗
1,S

∗
2, . . . ,S

∗
H). From the definition of the projection

onto Sh for each h = 1, . . . ,H, the equality PSh
(S∗

h + α∇Sh
g(U∗)) = S∗

h holds if and only if

S∗
h = argminSh∈Sh

1

2
∥Sh − (S∗

h + α∇Sh
g(U∗))∥2

= argmin

{
1

2
∥Sh − (S∗

h + α∇Sh
g(U∗))∥2 + δSh

(Sh)

}
.

From the definitionM := {U ∈ U | y ∈ Rm,Sh ∈ Sh(h = 1, . . . ,H)}, we can see that projection
computation for each component of U toM is independent from the other components.

Since the subgradient of the indicator function is a normal cone, (3.1) is equivalent to 0 ∈
α∇g(U∗) + NM(U∗), where NM(U∗) denotes the normal cone of M at U∗. Since N ={
U ∈ U | C −A⊤(y) +

∑H
h=1 Sh ≻ O

}
, we can see that N is an open set, which means all of

the elements in N are interior points of N . According to Theorem 3.30 in [2], we obtain that
NM(U∗) = NM ∩ N (U∗) = NF (U

∗). This implies 0 ∈ α∇g(U∗) +NF (U
∗), and this condition

is equivalent to the optimality of U∗ in the dual problem (D).

We will show in Lemma 7 that the difference between λh∥Qh(X
k)∥ph in the primal objec-

tive function and an inner product Sk
h •Xk can be estimated with ∥[∆Sk

h](1)∥. This difference
is a part of the duality gap between (P) and (D) in the kth iteration. Therefore, we employ
the limit lim infk→∞ ∥[∆Sk

h](1)∥ → 0 (which will be shown in Lemma 9) to show the limit

lim infk→∞ |g(Uk)− g∗| in Lemma 10 which leads to the convergence to the objective value.

Lemma 7. For h = 1, 2, . . . ,H, |λh∥Qh(X
k)∥ph − Sk

h • Xk| is bounded by ∥[∆Sk
h](1)∥. More

precisely,
|λh∥Qh(X

k)∥ph − Sk
h •Xk| ≤ ch∥[∆Sk

h](1)∥

holds for all k with ch := ηX + λh
√
nh(||Qh||+ ||Q⊤

h ||).

Proof. Since Uk ∈ M, we know Sk
h ∈ Sh, thus there exists zk

h ∈ Rnh such that ∥zk
h∥p∗h ≤ λh and

Sk
h = Q⊤

h (z
k
h). Therefore, we have

Sk
h •Xk = Q⊤

h (z
k
h) •Xk = Qh(X

k)⊤zk
h.

The Holder’s inequality |aTb| ≤ ∥a∥p∗∥b∥p holds for any vectors a, b with the same length and
p ≥ 1. Thus, |Sk

h •Xk| = |Qh(X
k)⊤zk

h| ≤ ||zk
h||p∗h ||Qh(X

k)||ph ≤ λh||Qh(X
k)||ph , and this leads

to λh||Qh(X
k)||p−Sk

h •Xk ≥ 0. Furthermore, we know that ||Qh(X)||ph ≤ ||Qh(X)||1 for ph ≥ 1,
thus it holds that

|λh∥Qh(X
k)∥ph − Sk

h •Xk| ≤ |λh∥Qh(X
k)∥1 − Sk

h •Xk|. (3.2)

Let Ŝ
k
h = PSh

(Sk
h+Xk). Then there exists ẑk

h ∈ Rnh such that ∥ẑk
h∥p∗ ≤ λh and Ŝ

k
h = Q⊤

h (ẑ
k
h).

Let ẽkh ∈ Rnh be a vector whose elements are the signs of Qh(X
k). We have

|λh∥Qh(X
k)∥1 − Sk

h •Xk| = |λh(ẽ
k
h)

⊤Qh(X
k)− Sk

h •Xk| = |λhQ⊤
h (ẽ

k
h) •Xk − Sk

h •Xk|

≤ |λhQ⊤
h (ẽ

k
h) •Xk − Ŝ

k
h •Xk|+ |(Ŝk

h − Sk
h) •Xk|

7

≤ |(λhQ⊤
h (ẽ

k
h)− Ŝ

k
h) •Xk|+ ∥[∆Sk

h](1)∥ · ∥Xk∥. (3.3)

We can see that the second term of (3.3) is bounded by ∥[∆Sk
h](1)∥ due to ∥Xk∥ ≤ ηX in

Lemma 5. Therefore, our focus here is the first term. Due to properties P1 in [7, Proposition 2.1]

as a property of the projection Ŝ
k
h = PSh

(Sk
h +Xk), we can derive an inequality(

Xk + [∆Sk
h](1)

)
•
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
=
(
Sk

h +Xk − Ŝ
k
h

)
•
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
≤ 0.

This indicates

Xk •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
≤ [∆Sk

h](1) •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
. (3.4)

We show the nonnegativity of Xk •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
= Xk •

(
λhQ⊤

h (ẽ
k
h)−Q⊤

h (ẑ
k
h)
)
= Q(Xk) •

(λhẽ
k
h − ẑk

h) =
∑nh

j=1[Qh(X
k)]j [λhẽ

k
h − ẑk

h]j . For each j, we can see that the sign of [λhẽ
k
h − ẑk

h]j

is the same as ẽkh because |[ẑk
h]j | ≤ ∥ẑk∥p∗h ≤ λh. Since ẽkh is the sign of [Qh(X

k)]j , we obtain

[Qh(X
k)]j [λhẽ

k
h − ẑk

h]j ≥ 0, hence,

Xk •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
=

nh∑
j=1

[Qh(X
k)]j [λhẽ

k
h − ẑk

h]j ≥ 0.

Applying this result into (3.4) and using Lemma 5, we obtain

|Xk •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
| ≤ |[∆Sk

h](1) •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
|. (3.5)

Since Ŝ
k
h ∈ Sh, we obtain the bound

||Ŝk
h|| ≤ ||Qh||||ẑk

h|| ≤
√
nh||Qh||||ẑk

h||∞ ≤
√
nh||Qh||||ẑk

h||p∗h ≤
√
nhλh||Qh||. (3.6)

Using (3.6) in (3.5), we have

|Xk •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
| ≤ (λh

√
nh||Q⊤

h ||+ λh
√
nh||Qh||)∥[∆Sk

h](1)∥. (3.7)

This indicates that |Xk •
(
λhQ⊤

h (ẽ
k
h)− Ŝ

k
h

)
| is bounded by ∥[∆Sk

h](1)∥. Combining (3.2), (3.3)

and (3.7), we can conclude this lemma with the value of ch = ηX + λh
√
nh(||Qh||+ ||Q⊤

h ||).

Lemma 8 shows the lower bound of the step length, which prevents the Algorithm 1 from
terminating before the stopping criterion is satisfied.

Lemma 8. There exists a bound (σν)min > 0 such that step length σkνk > (σν)min for all k.

Proof. Let B(Dk) := A⊤(∆y) +
∑H

h=1∆Sh. Using Lemma 5, we have its bound

||B(Dk)|| ≤ ||A⊤||||∆y||+
H∑

h=1

||∆Sh|| ≤ ||A⊤||η∆y +Hη∆S

≤
√
H + 1max{||A⊤||, 1}||Dk||. (3.8)

8

We divide the proof into two sections. Firstly, we show that νk has a lower bound, and then
we will show that σkνk has a lower bound.

From the definition of νk in Step 2 of Algorithm 1, we consider only the case that θ < 0. The
definition of θ that is the minimum eigenvalue of L−1

k B(D
k)(L⊤

k)
−1 implies that θ is the maximum

value that satisfies L−1
k B(D

k)(L⊤
k)

−1 ⪰ θI. Using the property LkL
⊤
k = C + B(Uk) and θ < 0,

ν ′ = −1/θ is the maximum value that satisfies

C + B(Uk) + ν ′B(Dk) ⪰ O.

On the other hand, using the bound from Corollary 4, we have

C + B(Uk) + ν ′B(Dk) = µ(Xk)−1 + ν ′B(Dk)

⪰ µ

βmax
X

I − ν ′||B(Dk)||I ⪰

(
µ

βmax
X
− ν ′

(
||A⊤||η∆y +Hη∆S

))
I.

Therefore, if we consider the interval 0 ≤ ν ′ ≤ µ/
(
βmax
X (||A⊤||η∆y +Hη∆S)

)
=: νmin, we can

guarantee the positive semidefiniteness C + B(Uk) + ν ′B(Dk) ⪰ 0. This implies a positive lower
bound νk ≥ min{1, τνmin}.

From the discussion of [14, Lemma 3.5], we have the bound∥∥∥(X(Uk + νDk)−X(Uk)
)∥∥∥ ≤ ν

µ

(
1−τ
βmax

X

)2 ∥B(D
k)∥.

Therefore, it holds for λ ≥ 0 that

∥∇g(Uk + λDk)−∇g(Uk)∥

=
∥∥∥(−A(X(Uk + λDk)−X(Uk)),X(Uk + λDk)−X(Uk), . . . ,X(Uk + λDk)−X(Uk)

)∥∥∥
≤
√
∥A∥2 +H ∥X(Uk + λDk)−X(Uk)∥

≤
√
∥A∥2 +H

µ

(
1−τ
βmax

X

)2 λ∥B(Dk)∥ ≤


√
∥A∥2 +H

µ

(
1−τ
βmax

X

)2

√
H + 1max{||A⊤||, 1}

λ||Dk|| = λL||Dk||, (3.9)

where the last inequality was due to (3.8) and we introduce L :=

√
∥A∥2+H

µ(1−τ
βmax

X
)2

√
H + 1max{||A⊤||, 1}.

We focus on the termination condition of the non-monotone Armijo rule in the line search
of Step 2 in Algorithm 1. If it terminates at σk = 1, then we obtain a lower bound as σkνk ≥
min{1, τνmin}. If it terminates at σk = βj for some j ≥ 1, this indicates that the termination
condition is not satisfied at σk = βj−1. This further implies

g(Uk + βj−1νkD
k) < min

[k−M+1]+≤l≤k
g(U l) + γβj−1νk⟨∇g(Uk), Dk⟩

≤ g(Uk) + γβj−1νk⟨∇g(Uk), Dk⟩.

Therefore, we have

γβj−1νk⟨∇g(Uk), Dk⟩ ≥ g(Uk + βj−1νkD
k)− g(Uk) (3.10)

9

= βj−1νk⟨∇g(Uk),Dk⟩+
∫ βj−1νk

0
⟨∇g(Uk + λDk)−∇g(Uk),Dk⟩dλ.

≥ βj−1νk⟨∇g(Uk),Dk⟩ − L(βj−1νk)
2

2
∥Dk∥2,

where the equality is due to Taylor’s expansion and the last inequality holds from (3.9). If ||Dk|| =
0, Algorithm 1 should be terminated in Step 1, so we can here assume ||Dk|| > 0. From β > 0
and νk ≥ min{1, τνmin}, we know that βj−1νk > 0. Therefore, (3.10) is equivalent to

βj−1νk ≥
2(1− γ)

L

⟨∇g(Uk),Dk⟩
||Dk||2

. (3.11)

Using a property of the projection (see [7, Proposition 2.1, P1]), it holds that

⟨(Uk + αk∇g(Uk))− PM(Uk + αk∇g(Uk)), Uk − PM(Uk + αk∇g(Uk))⟩ ≤ 0.

The left-hand side is

⟨−Dk + αk∇g(Uk), −Dk⟩ = −αk⟨∇g(Uk), Dk⟩+ ∥Dk∥2,

thus we obtain
⟨∇g(Uk), Dk⟩
∥Dk∥2

≥ 1

αk
≥ 1

αmax
. (3.12)

Applying (3.12) to (3.11), we obtain the positive lower bound βj−1νk ≥ 2(1−γ)
αmaxL

, which leads to

the positive lower bound σkνk := βjνk ≥ 2β(1−γ)
αmaxL

. Combining the case σk = 1, we obtain σkνk ≥
min{1, τνmin,

2β(1−γ)
αmaxL

} for all k. This completes the proof.

Lemma 9 indicates the limit of the search direction of Algorithm 1, which will be used in the
proof of Lemma 10.

Lemma 9. Algorithm 1 with the stopping criterion parameter ε = 0 terminates after reaching the
optimal value g∗, or it generates the sequence {Uk} that satisfies

lim inf
k→∞

∥∆Uk
(1)∥ = 0.

Proof. As discussed in [14, Lemma 3.6], the dual objective value increases at least in every M
iteration, where M is used in the line search of Step 2 and it has an upper bound since the level
set L is bounded from Lemma 3. Using the existence of the lower bound of σkνk from Lemma 8,
we can show lim infk→∞ ∥Dk∥ = 0. Furthermore, from the properties P4 and P5 in [7, Proposition
2.1], we can show that the inequality ∥∆Uk

(1)∥ ≤ max{1, αmax}∥Dk∥ holds. This implies the
statement of this lemma.

We now discuss the convergence of the objective value to the optimal value of (D), denoted
with g∗.

Lemma 10. Algorithm 1 with the stopping criterion parameter ε = 0 terminates after reaching
the optimal value g∗, or it generates the sequence {Uk} that satisfies

lim inf
k→∞

|g(Uk)− g∗| = 0.

10

Proof. LetX∗ be the optimal solution of (P). Due to the strict convexity of the logarithm function,
X∗ is the unique solution. We decompose the difference of |g(Uk) − g∗| into the summation of
three parts by the following inequality:

|g(Uk)− g∗| ≤ |g(Uk)− f(Xk)|+ |f(Xk)− f(X∗)|+ |f(X∗)− g∗|. (3.13)

The first part of (3.13) can be evaluated as

|g(Uk)− f(Xk)| =

∣∣∣∣∣bTyk + µ log det

(
C −A⊤(yk) +

H∑
h=1

Sk
h

)
+ nµ− nµ logµ

−C •Xk + µ log detXk −
H∑

h=1

∥Qh(X
k)∥ph

∣∣∣∣∣
=

∣∣∣∣∣(yk)⊤(b−A(Xk))−
H∑

h=1

(λh∥Q(Xk)∥p − Sk
h •Xk)

∣∣∣∣∣
≤ ∥yk∥∥A∥∥X∗ −Xk∥+

H∑
h=1

∣∣∣λh∥Q(Xk)∥p − Sk
h •Xk

∣∣∣ .
The first term is bounded by ∥Xk −X∗∥ due to the boundedness of yk from Lemma 5, and

the second summation is bounded by ∥[∆Sk
h](1)∥ as shown in Lemma 7. From [13, Lemma 3.15],

∥Xk −X∗∥ can be bounded by ||∆Uk
(1)||. Therefore, |g(Uk) − f(Xk)| is bounded by ||∆Uk

(1)||.
We can use the same discussion as [14, Lemma 3.8] to show that the second term of (3.13) is also
bounded by ∥∆Uk

(1)∥. Due to Assumption 1, the duality theorem between (P) and (D) holds, and
makes the third term in (3.13) zero. Combining three terms, we can show that |g(Uk) − g∗| is
bounded by ||∆Uk

(1)||. Finally, from Lemma 9, we have lim infk→∞ ||∆Uk
(1)|| = 0. This completes

the proof.

Combining these results, we can show the main convergence of Algorithm 1.

Theorem 11. Algorithm 1 with the stopping criterion parameter ε = 0 terminates after reaching
the optimal value g∗, or it generates the sequence {Uk} that satisfies

lim
k→∞

|g(Uk)− g∗| = 0.

Proof. We use the contradiction to prove this theorem. Suppose that there exists ϵ > 0 and an
infinite increasing sequence {k1, k2, . . . } such that g(Uki) ≤ g∗ − ϵ for all i and g(U l) > g∗ − ϵ for
all l /∈ {k1, k2, . . . }.

Firstly, we will show that ki+1 − ki ≤ M for all i. Suppose that there exists an i such that
ki+1− ki > M , which means all elements in {ki+1−M,ki+1−M +1, . . . ki+1− 1} is not contained
in the sequence of ki. Therefore, g(U l) > g∗ − ϵ for all ki+1 −M ≤ l ≤ ki+1 − 1, and this is
equivalent to g(U l) > g∗ − ϵ.

From (3.12), we obtain
αk⟨∇g(Uk), Dk⟩ ≥ ∥Dk∥2 ≥ 0.

Applying this to the inequality in Step 2 of Algorithm 1, we obtain that

g(Uki+1) ≥ min
ki+1−M≤l≤ki+1−1

g(U l) ≥ g∗ − ϵ.

11

However, this contradicts to g(Uki) ≤ g∗− ϵ for all i. Therefore, we obtain ki+1−ki ≤M for all i.

From the proof in Lemma 10, we know that |g(Uk) − g∗| is bounded by ||∆Uk
(1)||. This

means the sequence ||∆Uki
(1)|| has a lower bound ϵ̄. In addition, the proof of Lemma 9 employed

∥∆Uk
(1)∥ ≤ max{1, αmax}∥Dk∥. This leads to the existence of the lower bound of ∥Dki∥ =

ϵ̄/max{1, αmax} =: δ. From (3.12), we know
〈
∇g(Uk), Dk

〉
≥

∥∥∥Dk
∥∥∥2

αk
≥ δ2

αmax
. Therefore, we

derive

g(Uki) ≥ min
ki−M≤l≤ki−1

g(U l) + δ̄,

where δ̄ := γ(σν)min
δ2

αmax
. Let l(k) be an integer such that k −M ≤ l(k) ≤ k − 1 and g(U l(k)) =

min
k−M≤l≤k−1

g(U l). Since ki − ki−1 ≤ M , we have g(U l(ki)) ≤ g(Uki−1) ≤ g∗ − ϵ. This means l(ki)

is in the sequence {k1, k2, . . . }. Therefore, for each ki > M , there exists kj such that ki − kj ≤M
and

g(Uki) ≥ g(Ukj) + δ̄.

Hence, if {k1, k2, . . . } is an infinite sequence, we know g(Uki)→∞ when we take i→∞, and this
contradicts the existence of the optimal solution g∗. This completes the proof.

4 Numerical experiments

In this section, we present numerical results of Algorithm 1 on a problem of the form of (P) with
synthetic data. In the second experiment that performs on a problem with block regularization,
we compare Algorithm 1 with the projected gradient (PG) method proposed in Duchi et al. [6,
Algorithm 3]. All experiments in this section were conducted in Matlab R2022b on a 64-bit PC
with Intel Core i7-7700K CPU (4.20 GHz, 4 cores) and 16 GB RAM.

For Algorithm 1, we set the parameters τ = 0.5, γ = 10−3, β = 0.5, αmin = 10−8, αmax = 108

and M = 5. For PG, we set the parameters α = 0.5, β = 0.5. We take an initial point of
Algorithm 1 and PG as U0 = (y0,S0

1, . . . ,S
k
H) = (0,O, . . . ,O) and W = O, respectively. We set

the stopping criterion of Algorithm 1 as ∥∆Uk
(1)∥ ≤ ε with ε = 10−12. The limit of the iterations

is 5000 iterations, and the computation time limit is 7200 seconds.

For the projection onto the Bλh
p∗h
, we use the direct computation when p∗h ∈ {1, 2,∞}:

[PBλ
p∗
h

(z)]i =


zi − (sign(zi)min{|zi|, s}) for p∗h = 1

λzi
max{||z||2,λ} for p∗h = 2

max{−λ,min{λ, zi}} for p∗h =∞.

where s for the case p∗h = 1 is a real number that satisfies
∑N

i=1max{0, |xi| − s} = λ. For
p∗h /∈ {1, 2,∞}, we use the Newton method implemented in bpdq proj lpball1.

To evaluate the performance of the algorithm, we use the relative gap defined in [14] as

Gap =
|P −D|

max{1, (|P |+ |D|)/2}
,

where P and D are the output values of primal and dual objective functions, respectively.

1https://wiki.epfl.ch/bpdq/documents/help/bpdq_toolbox/common/bpdq_proj_lpball.html

12

https://wiki.epfl.ch/bpdq/documents/help/bpdq_toolbox/common/bpdq_proj_lpball.html

4.1 Log-likelihood minimization problem with ℓp-norm extension

In this experiment, we evaluate the efficiency of the proposed method by solving the following
synthetic problem:

min
X∈Sn

C •X − µ log detX +
H∑

h=1

λh

 ∑
1≤i<j≤n

|Xij |ph

 1
ph

s.t. Xij = 0 ∀(i, j) ∈ Ω,X ≻ O.

Here, Ω ⊂ {(i, j) : 1 ≤ i ≤ j ≤ n} is a set that defines the linear constraints. We introduce a

linear map vect : Sn → R
n(n−1)

2 that reshapes a n× n symmetric matrix into a n(n−1)
2 -dimensional

vector by stacking the column vectors in the upper triangular part of the matrix. We can rewrite
the problem into the form of (P) as follows:

min
X∈Sn

f(X) := C •X − µ log detX +
H∑

h=1

λh||vect(X)||ph

s.t. Xij = 0 ∀(i, j) ∈ Ω,X ≻ O.

To generate the input matrix C and the set Ω, we used the same procedure in [13]. Firstly,
we randomly generated a n × n sparse positive matrix Σ−1 with a density parameter σ = 0.1,
and constructed the covariance matrix C ∈ Sn from max{2n, 2000} samples of the multivariate
Gaussian distribution N (0,Σ). We made a set Ω

′
:= {(i, j) | Σ−1

ij = 0, |i− j| > 5, 1 ≤ i < j ≤ n},
and randomly selected a half of entries in Ω

′
to be Ω.

Firstly, we conducted experiments on H = 1, which corresponds to the following problem:

min
X∈Sn

C •X − µ log detX + λ1||vect(X)||p1 (4.1)

s.t. Xij = 0 ∀(i, j) ∈ Ω,X ≻ O.

Here, we set λ1 = 0.001 · n1− 1
p1 .

Table 1 shows the numerical results of problem (4.1). The first column is the size n and the
number of constraints |Ω|. The second, third, and fourth columns are the number of iterations,
the computation time in seconds, and the relative gap for Algorithm 1. The other six columns are
for the different values of p1.

Table 1: Numerical results on ℓp1-norm log-likelihood minimization problem (H = 1).

p1 = 1 p1 = 2 p1 =∞

(n, |Ω|) Iterations Time Gap Iterations Time Gap Iterations Time Gap

(500, 56086) 207 15.03 3.70e-7 241 17.58 7.23e-7 193 15.62 1.66e-7

(1000, 220647) 169 57.75 2.36e-7 187 63.95 2.30e-7 153 61.40 1.46e-7

(2000, 859795) 127 292.69 7.05e-7 202 468.78 5.75e-7 155 442.88 2.55e-7

(4000, 3311218) 123 2104.99 5.66e-7 217 3662.50 6.02e-6 196 3300.02 3.09e-7

We can see that Algorithm 1 can solve the problem (4.1) in different values of p1. The original
DSPG method in Nakagaki et al. [13] can solve only the case of p1 = 1, while Table 1 indicates
Algorithm 1 can solve other p1 > 1 with enough accuracy.

13

Table 2 reports a more detailed computation time of the projection of problem (4.1). The
second column is the computation time of projection of all the iterations, the third column is
the average time of projection per iteration, and the fourth column is the average of the entire
computation per iteration. The other six columns are for p1 = 2 and p1 = ∞. We can observe
from Table 2 that even the projection time for p1 =∞ is higher than others due to the complexity
of the projection onto the ℓp∗1 = ℓ1-ball, the average times per iteration of the three experiments
are not much different. This is because the computation cost of each projection is much lower
than the cost of Cholesky factorization in Step 2 which demands O(n3) operations.

Table 2: Projection time on ℓp1-norm log-likelihood minimization problem (H = 1).

p1 = 1 p1 = 2 p1 =∞

(n, |Ω|) Time.Proj Avg.Proj. Avg.Comp. Time.Proj Avg.Proj. Avg.Comp. Time.Proj Avg.Proj. Avg.Comp.

(500, 56086) 0.27 1.31e-3 7.26e-2 0.34 1.41e-3 0.07 2.79 1.44e-2 8.09e-2

(1000, 220647) 0.87 5.19e-3 0.34 0.97 5.20e-3 0.34 6.94 4.54e-2 0.40

(2000, 859795) 2.31 1.81e-2 2.30 4.31 2.13e-2 2.32 31.1 0.20 2.57

(4000, 3311218) 9.45 7.69e-2 17.11 18.48 8.52e-2 18.88 165.22 0.84 16.84

Next, we did the experiments with H = 2:

min
X∈Sn

C •X − µ log detX + λp1 ||vect(X)||1 + λ2||vect(X)||p2 (4.2)

s.t. Xij = 0 ∀(i, j) ∈ Ω,X ≻ O.

Similar to the previous problem, we set λ1 = 0.001 · n1− 1
p1 and λ2 = 0.001 · n1− 1

p2 . This problem
has different norms in the objective function so we can evaluate that Algorithm 1 can handle the
problem by summating the extension structure. We mention that the existing DSPG methods
cannot apply to this problem.

Table 3 reports the numerical results on problem (4.2). Similarly to the previous experiment,
the computation time is almost proportional to the number of iterations, thus the average time
for each iteration does not vary so much. For example, the numerical experiments at n = 4000
takes 20.03 seconds per iteration for the case (p1, p2) = (1, 2), 18.06 seconds per iteration for the
case (p1, p2) = (1,∞), and 17.54 seconds per iteration for the case (p1, p2) = (2,∞).

Table 3: Numerical results on ℓp-norm log-likelihood minimization problem (H = 2).

(p1, p2) = (1, 2) (p1, p2) = (1,∞) (p1, p2) = (2,∞)

(n, |Ω|) Iterations Time Gap Iterations Time Gap Iterations Time Gap

(500, 56086) 283 30.86 6.67e-7 202 19.36 9.25e-8 210 18.70 2.36e-7

(1000, 220647) 191 97.29 5.50e-7 164 78.58 2.69e-7 150 60.26 2.13e-8

(2000, 859795) 120 351.24 6.35e-7 124 348.99 2.45e-7 166 412.15 5.45e-7

(4000, 3311218) 105 2103.68 1.04e-6 76 1372.87 1.19e-6 212 3718.64 2.63e-6

We further conducted an experiment with the value ph that requires high costs for the projection
to ℓp∗h-ball. We examined cases with H = 1, p1 = 3/2 and 4/3, which need the projection on ℓ3-ball
and ℓ4-ball respectively.

Table 4 shows the numerical results of problem (4.1) with p1 = 3/2 and 4/3 respectively. Now
we observe that the computation time for the projection is very high compared to the previous

14

Table 4: Numerical results on ℓ3/2-norm and ℓ4/3-norm log-likelihood minimization problems.

(n, |Ω|) Iterations Time Time.Proj Avg.Comp Avg.Proj Gap

p = 3
2

(500, 56086) 337 95.42 72.92 0.28 0.22 8.32e-7

(1000, 220647) 229 292.18 207.29 1.28 0.91 8.98e-7

(2000, 859795) 166 953.22 563.64 5.74 3.40 1.53e-6

(4000, 3311218) OOT

p = 4
3

(500, 56086) 344 147.16 124.02 0.42 0.36 2.19e-6

(1000, 220647) 343 606.59 493.98 1.44 1.77 1.84e-6

(2000, 859795) 387 3103.23 2218.91 8.01 5.73 2.66e-6

(4000, 3311218) OOT

experiments with p1 = 1, 2,∞. In all pairs of (n, |Ω|), the computation time of the projection
occupies more than half of the entire computation time. This makes Algorithm 1 cannot solve the
experiments with (n, |Ω|) = (4000, 3311218) in the computation time limit of 7200 seconds.

4.2 Block ℓ∞-regularized log-likelihood minimization problem

In this experiment, we present the numerical results on the following block l∞-regularized log-
likelihood minimization problem (1.2) from Duchi et al. [6]:

min
X∈Sn

C •X − log detX +

H∑
h1,h2=1

λh1h2 max{|Xij |
∣∣(i, j) ∈ Gh1h2}. (4.3)

We constructed the covariance matrix C ∈ Sn as in Section 4.1. The sets G11, . . . , GH1H2

are the disjoint subsets of {1, . . . , n} × {1, . . . , n} that partition the inverse covariance matrix Σ.
More precisely, to inherit the symmetry of Σ ∈ Sn, we first divide the set of row/column indexes
{1, . . . , n} into Ḡ1, Ḡ2, . . . , ḠH and define Gh1h2 = (Ḡh1×Ḡh2)∪(Ḡh2×Ḡh1) for 1 ≤ h1 ≤ h2 ≤ H.

We can rewrite (4.3) into the form of (P) by defining a linear map Qh1h2(X) that stacks
{Xij

∣∣(i, j) ∈ Gh1h2} as a vector and taking its infinity norm (that is, ph1h2 = ∞). We set the
penalty λh1h2 := ρ|Gh1h2 | where ρ is a positive parameter and |Gh1h2 | is the cardinality of Gh1h2

so that λh1h2 is proportional to |Gh1h2 |. In the following result, we used ρ = 0.001.

We compare the performance of Algorithm 1 with that of the PG method. PG uses a stopping
criterion based on the KKT condition in [11]

max

{
|P −D|

1 + |P |+ |D|
, pinf, dinf

}
≤ gaptol,

where gaptol = 10−6. The values of pinf and dinf are the residuals of the constraints in the primal
and dual problems, respectively, as in [11]. For the comparison, we include Algorithm 1 that also
employs the same stopping criterion denoted as Algorithm 1 (KKT). We note that pinf = 0 holds
in this experiment since the problem is unconstrained, and dinf = 0 holds in Algorithm 1 because
the generated sequence {Uk} is always dual feasible. All algorithms can obtain the result with the
relative gap around 10−6 with these settings.

15

Table 5: Numerical results on block ℓ∞-regularized log-likelihood minimization problem (OOT is
out of time)

Algorithm 1 Algorithm 1 (KKT) Projected Gradient

(n, k) Iterations Time Gap Iterations Time Gap Iterations Time Gap

(500,10) 35 1.35 1.37e-6 35 1.72 1.37e-6 59 5.40 1.72e-6

(1000,20) 36 6.39 3.54e-7 33 8.74 1.78e-6 50 23.21 1.76e-6

(2000,50) 42 43.26 3.08e-6 44 65.88 1.64e-6 74 180.57 1.83e-6

(4000,50) 62 325.59 6.16e-6 66 511.20 8.85e-7 161 1764.43 1.85e-6

(6000,50) 104 1602.37 3.18e-5 131 3001.14 1.58e-6 OOT

Table 5 shows the performance comparison between the two algorithms on (4.3). Algorithm 1
works well in the large instance. We can also see that the number of iterations that Algorithm 1
takes is less than PG. The convergence efficiency of Algorithm 1 will be clearer for larger instances.
We can see from the experiment with (n, k) = (6000, 50) that Algorithm 1 can give the estimated
solution of (4.3) in 1602 seconds, but PG cannot solve it in the computation time limit of 7200
seconds.

It was shown in [17] that the different norm constraint of (4.3) (considering max function as the
ℓ∞-norm) can be better in some cases, thus we further investigate the following synthetic problem:

min
X∈Sn

f(X) := C •X − log detX +
∑

1≤h1≤h2≤H

λ
′
h1h2

 ∑
(i,j)∈Gh1h2

X2
ij

 1
2

, (4.4)

when λ
′
h1h2

:= ρ|Gh1h2 |
1
2 . This problem is a variant of (4.3) which changes the max function to

the Frobenious norm.

Table 6 shows the performance comparison between the two algorithms on (4.4). Focusing on
the computation time, Algorithm 1 again performs well in this problem. In the experiment with
(n, k) = (4000, 50), Algorithm 1 executed in 163 seconds and reached a relative gap of 4.98×10−15,
while PG executed in 1038 seconds and gives the solution with a relative gap 2.65× 10−7. We can
see that Algorithm 1 takes a shorter time and outputs a highly accurate solution than PG.

Table 6: Numerical results on (4.5)

Algorithm 1 Algorithm 1 (KKT) Projected Gradient

(n, k) Iterations Time Gap Iterations Time Gap Iterations Time Gap

(500,10) 15 0.78 2.48e-15 6 0.73 8.73e-7 6 2.01 7.65e-7

(1000,20) 16 3.11 3.07e-14 7 4.05 1.20e-6 8 11.24 5.01e-7

(2000,50) 22 20.20 3.35e-14 13 37.80 1.21e-6 22 108.16 7.86e-7

(4000,50) 31 163.00 4.98e-15 17 336.43 6.05e-7 27 1037.94 2.65e-7

16

4.3 Multi-task structure learning problem

In this experiment, we present the numerical results on the following multi-task structure learning
problem [8, Equation (3)]:

min
X1

,...,XK∈Sn

K∑
k=1

(
Ck •Xk − log detXk

)
+ λ

n∑
i,j=1

||(X1
ij , . . . ,X

k
ij)||∞, (4.5)

whereC1, . . . ,CK ∈ Sn. Following the transformation in [17, Section 1.2], we letC := diag(C1, . . . ,CK) ∈
SnK andX = diag(X1, . . . ,XK) ∈ SnK . By adding the linear constraint to the non-block diagonal
elements X, we can modify (4.5) into

min
X1

,...,XK∈Sn
C •X − log detX + λ

n∑
i,j=1

||(X1
ij , . . . , X

K
ij)||∞

s.t. Xij = 0 ∀(i, j) ∈ Ω,X ≻ O, (4.6)

where Ω := {(i, j) | 1 ≤ i, j ≤ nK, |⌈i/n⌉ − ⌈j/n⌉| ≥ 1} with ⌈x⌉ being the ceiling function that
takes the largest integer which does not exceed x. We set the penalty λ = 0.005.

Table 7 shows the performance of Algorithm 1 on (4.6) with K = 5, 10, and 15. We can observe
that Algorithm 1 generates accurate solutions even if we increase the value of K. This shows the
ability of the Algorithm 1 to solve the problem with a complicated structure by adapting the
objective function.

Table 7: Numerical results on Multi-task Structure Learning Problem

K = 5 K = 10 K = 15

n Iterations Time Gap Iterations Time Gap Iterations Time Gap

100 39 7.27 2.44e-8 39 14.73 9.79e-9 32 29.57 1.18e-8

200 42 34.57 1.75e-8 35 79.87 5.47e-9 32 213.43 1.34e-8

300 56 114.12 4.93e-6 36 253.93 2.90e-8 34 672.73 2.99e-8

400 55 221.69 1.64e-5 40 609.38 6.29e-9 34 1552.03 1.68e-8

5 Conclusion

In this paper, we addressed the generalized log-det SDP (P) that covers many existing optimization
models and proposed Algorithm 1 based on DSPG. We show the convergence of Algorithm 1
to the optimal value under the mild assumptions (Assumption 1). We also provide the results
of numerical experiments on the synthetic problem, the number of components in the extension
structure (block-constraint), and their combination (multi-task structure). Algorithm 1 can obtain
accurate solutions on the large instances within the acceptable computation time.

One of the future directions is to incorporate squared terms of the ℓp norm in the objective
function like ∥Qh(X)∥2ph . The combination of the ℓ1 norm and the squared ℓ2 norm appears
in statistics. Another important factor is to discuss the types of projection. In the numerical
experiments, the main bottleneck was the Cholesky factorization. We still have some flexibility in
choosing the projection if the cost in each iteration is at most O(n3).

17

Data Availability

The test instances in Section 4 were generated randomly following the steps described in these
sections.

Conflict of Interest

All authors have no conflicts of interest.

Acknowledgments

The research of M. Y. was partially supported by JSPS KAKENHI (Grant Number: 21K11767).

References

[1] F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning
Research, 9(6), 2008.

[2] A. Bagirov, N. Karmitsa, and M. M. Makela. Introduction to nonsmooth optimization: Theory, practice
and software. Springer, 2014.

[3] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA journal of numerical
analysis, 8(1):141–148, 1988.

[4] E. G. Birgin, J. M. Mart´inez, and M. Raydan. Nonmonotone spectral projected gradient methods on
convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.

[5] A. P. Dempster. Covariance selection. Biometrics, pages 157–175, 1972.

[6] J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning sparse gaussians. In
Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pages 153–160,
2008.

[7] W. Hager and H. Zhang. A new active set algorithm for box constrained optimization. SIAM J.
Optim., 17(2):526–557, 2006.

[8] J. Honorio and D. Samaras. Multi-task learning of gaussian graphical models. In ICML, pages 447–454,
2010.

[9] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Quic: Quadratic approximation for sparse
inverse covariance estimation. Journal of Machine Learning Research, 15(83):2911–2947, 2014.

[10] S. L. Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.

[11] L. Li and K.-C. Toh. An inexact interior point method for l 1-regularized sparse covariance selection.
Mathematical Programming Computation, 2:291–315, 2010.

[12] M. Lin, D. Sun, K.-C. Toh, and C. Wang. Estimation of sparse gaussian graphical models with hidden
clustering structure. arXiv preprint arXiv:2004.08115, 2020.

[13] T. Nakagaki, M. Fukuda, S. Kim, and M. Yamashita. A dual spectral projected gradient method for
log-determinant semidefinite problems. Computational Optimization and Applications, 76(1):33–68,
2020.

[14] C. Namchaisiri, T. Liu, and M. Yamashita. A new dual spectral projected gradient method
for log-determinant semidefinite programming with hidden clustering structures. arXiv preprint
arXiv:2403.18284, 2024.

18

[15] C. Wang. On how to solve large-scale log-determinant optimization problems. Computational Opti-
mization and Applications, 64:489–511, 2016.

[16] C. Wang, D. Sun, and K.-C. Toh. Solving log-determinant optimization problems by a newton-cg
primal proximal point algorithm. SIAM Journal on Optimization, 20(6):2994–3013, 2010.

[17] J. Yang, D. Sun, and K.-C. Toh. A proximal point algorithm for log-determinant optimization with
group lasso regularization. SIAM Journal on Optimization, 23(2):857–893, 2013.

[18] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.

19

	1 Introduction
	1.1 Notation and symbols

	2 The proposed method
	3 Convergence analysis
	4 Numerical experiments
	4.1 Log-likelihood minimization problem with lp-norm extension
	4.2 Block linfty-regularized log-likelihood minimization problem
	4.3 Multi-task structure learning problem

	5 Conclusion

