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Abstract

This paper systematically surveys useful properties of the epigraph
reformulation for optimization problems, and complements them by
some new results. We focus on the complete compatibility of the orig-
inal formulation and the epigraph reformulation with respect to solv-
ability and unsolvability, the compatibility with respect to some, but
not all, basic constraint qualifications, the formulation of first order op-
timality conditions for problems with max-type objective function, and
the interpretation of feasibility and optimality cuts along epigraphs in
the framework of cutting plane methods. Finally we introduce a gener-
alized epigraph reformulation which is particularly useful for treating
summands of objective and constraint functions independently in the
reformulation.

1 Introduction

For a set X ⊆ Rn and a function f : X → R the set

epi(f,X) = {(x, α) ∈ X × R | f(x) ≤ α}

is called the epigraph of f on X (Fig. 1). Basic properties of epigraphs
characterize important properties of f on X, e.g. convexity and lower semi-
continuity.
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Figure 1: Epigraph of f on X

Indeed, the set X and the function f : X → R are convex if and only if
epi(f,X) is convex, and in particular the existence of subgradients of con-
vex functions (at points from the interior of their domain) can be shown by
proving the existence of outer normal vectors to their epigraph [4, 9]. Fur-
thermore, a function f is lower semi-continuous on X if and only if epi(f,X)
is closed relative to X × R [10]. Together with a projection argument, the
latter can, e.g., be employed to derive semi-continuity properties of opti-
mal value functions in parametric optimization [3, 10]. For concepts like
epi-convergence, epi-derivatives, epi-addition, and epi-multiplication of func-
tions, etc., we refer to [3].

This paper collects properties of epigraphs which are useful in optimization
models. Most of these properties have previously been stated elsewhere,
or are simply known as ‘folklore’, but we are not aware of a systematic
compilation of these results. The present paper aims to close this gap. It
does not, however, intend to provide original references of the single results.
Rather, for details it often refers to textbooks by the present author.

With any minimization problem

P : min
x∈Rn

f(x) s.t. x ∈ X

one can relate its epigraph reformulation (also called epigraphical reformula-
tion)

Pepi : min
(x,α)∈Rn×R

α s.t. (x, α) ∈ epi(f,X)

which in more explicit terms reads

Pepi : min
(x,α)∈Rn×R

α s.t. f(x) ≤ α, x ∈ X.
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Two major applications of the epigraph reformulation are the generation of a
linear objective function, and the algorithmic treatment of objective functions
f of max-type.

In fact, since the objective function fepi(x, α) = α of Pepi is linear in the
vector of decision variables (x, α), Pepi may be treated by algorithms which
require a linear objective function, like Kelley’s cutting plane method for
convex problems. Also, while the minimal value of a solvable nonconvex
problem cannot always be computed as the minimal value of the convex hull
problem of P , it is always identical to the minimal value of the convex hull
problem of Pepi, thanks to the linear objective function of the latter [4].

If, for some finite index set K, the objective function of P is of the form
f = maxk∈K fk with functions fk, k ∈ K, then the epigraph reformulation

min
(x,α)∈Rn×R

α s.t. max
k∈K

fk(x) ≤ α, x ∈ X

may be rewritten as

Pepi : min
(x,α)∈Rn×R

α s.t. fK(x) ≤ αe, x ∈ X,

where fK stands for the vector-valued function with entries fk, k ∈ K, e
denotes the all-ones vector of appropriate dimension, and the inequality is
understood component-wise.

While P is in general a nonsmooth optimization problem, for smooth func-
tions fk and a smooth functional description of X the latter reformulation
is a smooth problem. Also, if X is a polyhedral set and the functions fk are
affine, then the reformulation is an LP. If X and all functions fk : X → R
are convex, then the convexity of the epigraphs epi(fk, X), the identity
epi(maxk∈K fk, X) =

⋂
k∈K epi(fk, X), and the fact that intersections of con-

vex sets are again convex yield the convexity of maxk∈K fk. Therefore, both
P and Pepi are convex optimization problems.

Example 1.1. For X ⊆ Rn and z ∈ Rn the projection problem with respect
to the Chebyshev norm is

P : min
x∈Rn

∥x− z∥∞ s.t. x ∈ X.

Its minimal value is the ℓ∞-distance of z from X, and every minimal point is
called ℓ∞-projection of z to X. In view of the max-structures in the objective
function,

∥x− z∥∞ = max
k=1,...,n

|xk − zk| = max
k=1,...,n

max{±(xk − zk)},
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the epigraph reformulation can be written as

Pepi : min
x,α

α s.t. ±(x− z) ≤ αe, x ∈ X.

If, for example, the set X is polyhedral, then the nonsmooth problem P is
reformulated into the linear optimization problem Pepi.

This paper is structured as follows. In Section 2 we show that there is a one-
to-one correspondence between the solvability of P and Pepi as well as one-to-
one correspondences between the cases of unsolvability. We shall also prove
a one-to-one correspondence between local minimal points. Section 3 treats
one-to-one correspondences between the validity of three major constraint
qualifications in P and Pepi, namely the Slater, Mangasarian-Fromovitz and
Abadie constraint qualifications. It also discusses why such a correspondence
does in general not hold for the linear independence constraint qualification.
Section 4 uses these results to state necessary and sufficient first order op-
timality conditions for problems P with max-type objective functions. In
Section 5 we briefly discuss how feasibility and optimality cuts in cutting
plane methods are related to the epigraph reformulation, before Section 6
provides a useful generalization of the epigraph reformulation. Section 7
closes this paper with some final remarks.

2 Compatibility of solvability properties

The results in this section hold without any assumptions on X and f : X →
R.

In preparation for the main result of this section, we first show that local min-
imality in the problem Pepi is necessarily ‘global with respect to the epigraph
variable α’.

Lemma 2.1. A point (x̄, ᾱ) is a local minimal point of Pepi if and only if the
following three conditions hold:

(x̄, ᾱ) ∈ epi(f,X), (1)

ᾱ = f(x̄), (2)

there exists a neighborhood U of x̄ with

∀ (x, α) ∈ epi(f,X) ∩ (U × R) : α ≥ f(x̄). (3)
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Proof. Let (x̄, ᾱ) be a local minimal point of Pepi, that is, (1) holds, and
there exist a neighborhood U of x̄ as well as some ε > 0 with

∀ (x, α) ∈ epi(f,X) ∩ (U × (ᾱ− ε, ᾱ + ε)) : α ≥ ᾱ. (4)

From (1) we know ᾱ ≥ f(x̄). Assuming the violation of (2) hence means
ᾱ > f(x̄). Then, after possibly reducing ε, we may assume ᾱ − ε > f(x̄).
Defining x̃ := x̄ and α̃ := ᾱ− ε/2 thus implies

(x̃, α̃) ∈ epi(f,X) ∩ (U × (ᾱ− ε, ᾱ + ε)) and α̃ < ᾱ.

This contradicts the local minimality of (x̄, ᾱ) and proves (2). In particular,
every local minimal point (x̄, ᾱ) of Pepi is of the form (x̄, f(x̄)), and (4) can
be rewritten as

∀ (x, α) ∈ epi(f,X) ∩ (U × (f(x̄)− ε, f(x̄) + ε)) : α ≥ f(x̄). (5)

To finally prove (3), consider any (x, α) ∈ epi(f,X) ∩ (U × R). In view of
(5) it remains to consider the cases α ≥ f(x̄) + ε and α ≤ f(x̄)− ε.

The case α ≥ f(x̄) + ε yields the desired inequality α ≥ f(x̄). On the other
hand, α ≤ f(x̄) − ε implies f(x) ≤ α ≤ f(x̄) − ε ≤ f(x̄) − ε/2, so that
(x, f(x̄)− ε/2) lies in epi(f,X) ∩ (U × (f(x̄)− ε, f(x̄) + ε)). Due to (5) this
yields the contradiction f(x̄)− ε/2 ≥ f(x̄). Therefore the case α ≤ f(x̄)− ε
cannot occur, and (3) is shown.

The sufficiency part of the assertion is clear, since the global statement with
respect to α in (3) implies the corresponding local statement.

Theorem 2.2. For every X ⊆ Rn and f : X → R the problems P and Pepi

are equivalent in the following sense:

a) For every local or global minimal point x̄ of P, (x̄, f(x̄)) is a local or
global minimal point of Pepi, respectively.

b) For every local or global minimal point (x̄, ᾱ) of Pepi, x̄ is a local or
global minimal point of P, respectively.

c) P is unbounded if and only if Pepi is unbounded.

d) P is infeasible if and only if Pepi is infeasible.

e) The infimum of P is finite and not attained if and only if the infimum
of Pepi is finite and not attained.

f) The infima of P and Pepi coincide.
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Proof. For the proof of part a, let x̄ be a local minimal point of P , that is,
x̄ ∈ X holds, and there is some neighborhood U of x̄ with f(x) ≥ f(x̄) for
all x ∈ X ∩ U .

In view of (x̄, f(x̄)) ∈ epi(f,X) and Lemma 2.1, it is sufficient to show (3)
for the given neighborhood U . Indeed, all (x, α) ∈ epi(f,X)∩ (U ×R) fulfill
α ≥ f(x) ≥ f(x̄).

The proof of the corresponding assertion for global minimal points follows
from the choice U = Rn in the above arguments (where, alternatively, a
direct proof would not need to rely on Lemma 2.1).

To see part b, let (x̄, ᾱ) be a local minimal point of Pepi with corresponding
neighborhood U . Then Lemma 2.1 implies (x̄, ᾱ) ∈ epi(f,X), from which
x̄ ∈ X follows, as well as (3). In view of (x, f(x)) ∈ epi(f,X) ∩ (U × R)
for all x ∈ U , the latter yields f(x) ≥ f(x̄) for these x, and thus the local
minimality of x̄ for P .

Again, the result about global minimal points can be shown by the choice
U = Rn.

In part c, the unboundedness of P is equivalent to the existence of some
sequence (xℓ) ⊆ X with f(xℓ) ≤ −ℓ for all ℓ ∈ N. The definition αℓ := f(xℓ)
thus yields a sequence (xℓ, αℓ) ∈ epi(f,X) with αℓ ≤ −ℓ, implying the
unboundedness of Pepi. For the reverse direction, any sequence (xℓ, αℓ) ∈
epi(f,X) with αℓ ≤ −ℓ enforces f(xℓ) ≤ αℓ ≤ −ℓ and, thus, the unbounded-
ness of P .

Part d is seen from the facts that X = ∅ implies epi(f,X) = ∅, and that
X ̸= ∅, with the choice ᾱ := f(x̄) for some x̄ ∈ X, implies epi(f,X) ̸= ∅.
Since apart from solvability (parts a and b), unboundedness (part c), and
infeasibility (part d), only the nonattainment of a finite infimum can occur in
any optimization problem [4], and since for the occurrence of the first three
cases we have shown one-to-one correspondences between P and Pepi, also
the statement of part e must hold.

To finally prove part f, we show that the sets of lower bounds of the problems
P and Pepi coincide. This will include the formal cases of the infima ±∞,
corresponding to infeasibility and unboundedness, respectively.

Indeed, let ω be a lower bound of P , that is, f(x) ≥ ω holds for all x ∈ X.
Then all (x, α) ∈ epi(f,X) satisfy α ≥ f(x) ≥ ω, so that ω is also a lower
bound for Pepi. Vice versa, if ω is a lower bound for Pepi, then α ≥ ω holds
for all (x, α) ∈ epi(f,X). In particular, with the choices α = f(x) we obtain
f(x) ≥ ω for all x ∈ X, which shows that ω is a lower bound for P .
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As employed in the proof of the above theorem, there exist exactly the three
cases of unsolvability of optimization problems from Theorem 2.2c,d,e. In [4]
also this result is shown by an epigraph argument, namely by studying the
possible outcomes of the parallel projection of epi(f,X) to the ‘α-space’. In
case of solvability one obtains a set [v,+∞) with the minimal value v ∈ R
of P , and else a set (v,+∞) with v ∈ {±∞} (for infeasible or unbounded
problems, resp.) or v ∈ R (for nonattained infima). In all four cases the
‘lower boundary point’ v of the interval is the infimum of P .

In multicriteria optimization, that is, problems P with a vector-valued ob-
jective function f : Rn → Rm, minimal points generalize to efficient points,
and minimal values to nondominated points. One can likewise define the
epigraph epi(f,X) = {(x, α) ∈ Rn × Rm | f(x) ≤ α}, where the vector
inequality is understood component-wise. Boundary points of its parallel
projection to the ‘α-space’ Rm (the so-called upper image set) determine the
set of nondominated points, in analogy to the above single-criterion case.

With respect to Theorem 2.2c we remark that for X ̸= ∅ the feasible set of
Pepi is always unbounded, but still the objective function of Pepi is bounded
from below on this set, unless the problem P is unbounded.

The intrinsic unboundedness of the feasible set of Pepi can impose a formal
problem for algorithms which require bounded feasible sets, like branch-and-
bound methods. If such an algorithm cannot be appropriately modified, an
artificial upper bound ᾱ on the epigraph variable must be introduced. A first
possibility for this is to compute an upper bound ᾱ for f on X which, at
least for a factorable function f and a box X, may be achieved by interval
arithmetic [4]. A usually more tractable approach is to choose some ᾱ such
that the lower level set {x ∈ X | f(x) ≤ ᾱ} is nonempty, e.g., ᾱ := f(x̄) with
some feasible point x̄ ∈ X. Then the minimal point sets of P and

Pᾱ : min
x

f(x) s.t. f(x) ≤ ᾱ, x ∈ X

coincide. Since the maximal value of f on the feasible set of Pᾱ cannot exceed
ᾱ, an appropriate epigraph reformulation of Pᾱ is

min
x,α

α s.t. f(x) ≤ α ≤ ᾱ, x ∈ X.

3 Compatibility of constraint qualifications

For some constraint qualifications, their validity in P can be characterized
by their corresponding validity in Pepi.
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The Slater constraint qualification

We start with the discussion of Slater’s constraint qualification, which is often
formulated for convexly described problems of the form

P : min
x

f(x) s.t. gI(x) ≤ 0, Ax = b

with a finite index set I, convex functions f, gi, i ∈ I, gI denoting the vector-
valued function with entries gi, i ∈ I, as well as a matrix A and a vector b of
appropriate dimensions. The set

X = {x ∈ Rn | gI(x) ≤ 0, Ax = b} (6)

is said to satisfy the Slater constraint qualification if there exists some point
x⋆ ∈ Rn with gI(x

⋆) < 0 and Ax⋆ = b. Every such point x⋆ is called a Slater
point of P .

Under the above assumptions, also the set

epi(f,X) = {(x, α) ∈ Rn × R | f(x) ≤ α, gI(x) ≤ 0, Ax = b} (7)

is convexly described, since the function f(x)− α is convex in (x, α).

Theorem 3.1. For a finite index set I, convex functions f, gi : Rn → R,
i ∈ I, and a matrix A and a vector b of appropriate dimensions, the set X
from (6) satisfies the Slater constraint qualification if and only if epi(f,X)
from (7) satisfies the Slater constraint qualification.

Proof. The ‘if’ part of the assertion is clear, since for every Slater point
(x⋆, α⋆) of epi(f,X) from (7), the point x⋆ is a Slater point of X from (6).
For the proof of the ‘only if’ part let x⋆ be a Slater point of X from (6).
Then the point (x⋆, α⋆) with α⋆ := f(x⋆)+1 satisfies f(x⋆) < α⋆, gI(x⋆) < 0,
and Ax⋆ = b. It is, thus, a Slater point of epi(f,X) from (7).

Note that the arguments of the above proof do not rely on the convexity
assumption for the involved functions, so that they also cover the Slater
constraint qualification for nonconvex problems, if required.

In view of the subsequent developments, we remark that the Slater constraint
qualification is a global constraint qualification on the entire set X, and that
it does not require any differentiability properties on the functions f and gi,
i ∈ I. In particular, Theorem 3.1 covers the case f = maxk∈K fk with convex
functions fk.
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On the other hand, for nonconvex problems P , usually local constraint qual-
ifications at given points x̄ ∈ X are formulated, and they require some dif-
ferentiability assumptions. While for the constraint functions we will indeed
assume differentiability, the subsequent results will also hold for certain non-
differentiable objective functions, in particular f = maxk∈K fk with differen-
tiable functions fk. More generally, the following results on the Mangasarian-
Fromovitz and Abadie constraint qualifications can also be shown for objec-
tive and constraint functions which are only one-sided directionally differ-
entiable in the sense of Hadamard. We will not pursue these results in the
framework of this tutorial, but rather refer to [7] for appropriate notions of
constraint qualifications in nonsmooth optimization.

Indeed, in the remainder of this section we consider the problem

P : min
x

max
k∈K

fk(x) s.t. gI(x) ≤ 0, hJ(x) = 0

with finite index sets I, J,K and differentiable functions fk, k ∈ K, gi, i ∈ I,
hj, j ∈ J , and hJ denoting the vector-valued function with entries hj, j ∈ J .
The feasible set of P is

X = {x ∈ Rn | gI(x) ≤ 0, hJ(x) = 0}, (8)

and we write the epigraph of f = maxk∈K fk on X as

epi(f,X) = {(x, α) ∈ Rn × R |fK(x) ≤ αe, gI(x) ≤ 0, hJ(x) = 0}. (9)

Since constraint qualifications are mainly applied at local or global minimal
points, in view of the results from Section 2 subsequently we shall focus
on correspondences between constraint qualifications at points x̄ ∈ X and
(x̄, f(x̄)) ∈ epi(f,X).

The Mangasarian-Fromovitz constraint qualification

In the following let I0(x̄) = {i ∈ I | gi(x̄) = 0} denote the active index set at
x̄ ∈ X, let ∇gI0(x̄)(x) be the matrix with columns ∇gi(x), i ∈ I0(x̄), as well
as ∇hJ(x) the matrix with columns ∇hj(x), j ∈ J .

The Mangasarian-Fromovitz constraint qualification (MFCQ) is said to hold
at x̄ in X from (8) if ∇hJ(x̄) possesses full column rank, and if a direction
d ∈ Rn with

∇gI0(x̄)(x̄)
⊺d < 0, ∇hJ(x̄)

⊺d = 0 (10)
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exists. Moreover, with the active index set

K0(x̄, f(x̄)) = {k ∈ K | fk(x̄) = f(x̄)}
(
= {k ∈ K | fk(x̄) = max

ℓ∈K
fℓ(x)}

)
(11)

the MFCQ holds at (x̄, f(x̄)) in epi(f,X) from (9) if and only if the vectors
(∇hj(x̄), 0), j ∈ J , are linearly independent, and if there exists a direction
(d, δ) with (10) and

∇fK0(x̄,f(x̄))(x̄)
⊺d < δe. (12)

Theorem 3.2. For finite index sets I, J,K, let the functions fk, k ∈ K, gi,
i ∈ I, hj, j ∈ J , be differentiable at x̄ ∈ X. Then the MFCQ holds at x̄ in X
from (8) if and only if the MFCQ holds at (x̄, f(x̄)) in epi(f,X) from (9).

Proof. Let the MFCQ hold at (x̄, f(x̄)) in epi(f,X) from (9). Since the
vectors (∇hj(x̄), 0), j ∈ J , are linearly independent if and only if the vectors
∇hj(x̄), j ∈ J , are, the MFCQ holds at x̄ in X from (8). For the reverse
direction, let the MFCQ hold at x̄ in X from (8) with a corresponding MF
vector d. Then the vectors (∇hj(x̄), 0), j ∈ J , are linearly independent and
(10) holds. To show the existence of some δ ∈ R with (12) it suffices to put
δ := maxk∈K0(x̄,f(x̄))⟨∇fk(x̄), d⟩+ 1.

For |K| = 1 Theorem 3.2 particularly covers the case of a differentiable
objective function f . In this case K0(x̄, f(x̄)) = K holds.

For the case that the convexly described set X from (6) is nonempty and
the matrix A possesses full column rank, we remark that the following three
properties are equivalent [5]: (i) X satisfies the Slater constraint qualification,
(ii) the MFCQ holds somewhere in X, (iii) the MFCQ holds everywhere in
X.

The Abadie constraint qualification

For the formulation of the Abadie constraint qualification at a point x̄ in X
from (8) let

L(x̄, X) = {d ∈ Rn | ∇gI0(x̄)(x̄)
⊺d ≤ 0, ∇hJ(x̄)

⊺d = 0}

denote the (outer) linearization cone to X at x̄, and

T (x̄, X) = {d ∈ Rn | ∃ (tℓ) ↘ 0, (dℓ) → d ∀ ℓ ∈ N : x̄+ tℓdℓ ∈ X}
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the (outer) tangent cone to X at x̄ (aka Bouligand tangent cone or contingent
cone). While the inclusion T (x̄, X) ⊆ L(x̄, X) is always true [5], the reverse
inclusion may fail. The Abadie constraint qualification (ACQ) is said to hold
at x̄ ∈ X if also L(x̄, X) ⊆ T (x̄, X) is true. The MFCQ implies the ACQ at
any x̄ in X from (8) ([5], and [2] for the case including equality constraints),
but the ACQ may also hold when the MFCQ is violated.

With the active index set K0(x̄, f(x̄)) from (11) we obtain the linearization
cone of epi(f,X) from (9) at (x̄, f(x̄))

L( (x̄, f(x̄)), epi(f,X) ) = {(d, δ) ∈ Rn × R | ∇fK0(x̄,f(x̄))(x̄)
⊺d ≤ δe,

∇gI0(x̄)(x̄)
⊺d ≤ 0, ∇hJ(x̄)

⊺d = 0},

and (d, δ) lies in the tangent cone T ( (x̄, f(x̄)), epi(f,X) ) if and only if there
are sequences (tℓ) ↘ 0 and (dℓ, δℓ) → (d, δ) with (x̄, f(x̄)) + tℓ(dℓ, δℓ) ∈
epi(f,X) for all ℓ ∈ N. More explicitly, the latter means x̄ + tℓdℓ ∈ X and
fk(x̄+ tℓdℓ) ≤ f(x̄) + tℓδℓ for all k ∈ K and ℓ ∈ N.

Theorem 3.3. For finite index sets I, J,K, let the functions fk, k ∈ K, gi,
i ∈ I, hj, j ∈ J , be differentiable at x̄ ∈ X. Then the ACQ holds at x̄ in X
from (8) if and only if the ACQ holds at (x̄, f(x̄)) in epi(f,X) from (9).

Proof. Let the ACQ hold at (x̄, f(x̄)) in epi(f,X) from (9). To show the
ACQ at x̄ in X from (8), choose some d ∈ L(x̄, X) and define

δ := max
k∈K0(x̄,f(x̄))

⟨∇fk(x̄), d⟩. (13)

Then (d, δ) lies in L( (x̄, f(x̄)), epi(f,X) ). By the assumption of ACQ at
(x̄, f(x̄)) in epi(f,X) there are sequences (tℓ) ↘ 0 and (dℓ, δℓ) → (d, δ)
with (x̄, f(x̄)) + tℓ(dℓ, δℓ) ∈ epi(f,X), ℓ ∈ N, which in particular implies
x̄+ tℓdℓ ∈ X, ℓ ∈ N. This shows d ∈ T (x̄, X) and, thus L(x̄, X) ⊆ T (x̄, X).

For the proof of the reverse direction, let the ACQ hold at x̄ in X from (8)
and choose some (d, δ) ∈ L( (x̄, f(x̄)), epi(f,X) ). Then we have d ∈ L(x̄, X)
and, by the ACQ at x̄ in X, the existence of sequences (tℓ) ↘ 0 and (dℓ) → d
with x̄ + tℓdℓ ∈ X, ℓ ∈ N. To show the validity of the ACQ at (x̄, f(x̄)) in
epi(f,X) from (9), it thus suffices to construct a sequence (δℓ) → δ with

fk(x̄+ tℓdℓ) ≤ f(x̄) + tℓδℓ for all k ∈ K, ℓ ∈ N. (14)

For each k ∈ K0(x̄, f(x̄)) the latter is equivalent to

fk(x̄+ tℓdℓ)− fk(x̄)

tℓ
≤ δℓ for all ℓ ∈ N,
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where the left hand side converges to ⟨∇fk(x̄), d⟩, since the differentiability
of the function fk at x̄ implies its one-sided directional differentiability in the
sense of Hadamard. This motivates to put

δℓ := δ + max
k∈K0(x̄,f(x̄))

(
fk(x̄+ tℓdℓ)− fk(x̄)

tℓ
− ⟨∇fk(x̄), d⟩

)
.

Indeed, we obtain (δℓ) → δ, and each k ∈ K0(x̄, f(x̄)) satisfies

δℓ ≥ δ +
fk(x̄+ tℓdℓ)− fk(x̄)

tℓ
− ⟨∇fk(x̄), d⟩ ≥ fk(x̄+ tℓdℓ)− f(x̄)

tℓ
,

where the last inequality follows from the choice (d, δ) ∈ L( (x̄, f(x̄)), epi(f,X) )
and from fk(x̄) = f(x̄) for k ∈ K0(x̄, f(x̄)).

It remains to show (14) for all k /∈ K0(x̄, f(x̄)). In this case we have fk(x̄) <
f(x̄), so that the continuity of fk at x̄, together with (tℓ) ↘ 0 and the
boundedness of (dℓ, δℓ), guarantees (14) for all sufficiently large ℓ.

Again, for |K| = 1 Theorem 3.3 covers the case of a smooth objective function
f .

We remark that also the proof of the inclusion T (x̄, X) ⊆ L(x̄, X) relies on
the one-sided directional differentiability in the sense of Hadamard of the
involved differentiable functions, gi, i ∈ I0(x̄), hj, j ∈ J [5].

Corollary 3.4. Let the set X from (8) be described by affine functions gi,
i ∈ I, hj, j ∈ J , and for a finite index set K let the functions fk, k ∈ K, be
differentiable at x̄ ∈ X. Then the ACQ holds at (x̄, f(x̄)) in epi(f,X) from
(9).

Proof. Under the polyhedrality assumption on X, the ACQ holds at every
point x̄ in X from (8) [5], so that the assertion follows from Theorem 3.3.

The linear independence constraint qualification

As seen above, in simple words, the epigraph reformulation of a minimization
problem with max-type objection function does not interfere with the validity
of the Slater, Mangasarian-Fromovitz and Abadie constraint qualifications.
In general, however, this is not true for the linear independence constraint
qualification (LICQ), which is said to hold at x̄ in X from (8) if the gradients
∇gi(x̄), i ∈ I0(x̄), ∇hj(x̄), j ∈ J , are linearly independent. The LICQ implies
the MFCQ at any x̄ in X from (8), but the MFCQ may also hold when the
LICQ is violated.
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The LICQ holds at (x̄, f(x̄)) in epi(f,X) from (9) if the vectors(
∇fk(x̄)
−1

)
, k ∈ K0(x̄, f(x̄)),

(
∇gi(x̄)

0

)
, i ∈ I0(x̄),

(
∇hj(x̄)

0

)
, j ∈ J

are linearly independent. By elementary column transformations for the
matrix formed by these columns, the latter condition is equivalent to the
linear independence of the vectors

∇fk(x̄)−∇fℓ(x̄), k ∈ K0(x̄, f(x̄)) \ {ℓ}, ∇gi(x̄), i ∈ I0(x̄), ∇hj(x̄), j ∈ J,
(15)

where ℓ is chosen arbitrarily from K0(x̄, f(x̄)).

Hence, while the LICQ at (x̄, f(x̄)) in epi(f,X) from (9) implies the LICQ
at x̄ in X from (8), vice versa this is not necessarily the case. In particular,
from (15) one sees that the LICQ in the epigraph reformulation requires the
vectors ∇fk(x̄), k ∈ K0(x̄, f(x̄)), to be affinely independent, and also that
the relation

|K0(x̄, f(x̄))| ≤ n− |I0(x̄)| − |J |+ 1

must hold. For example, in the case |I0(x̄)|+ |J | = n this is only possible for
|K0(x̄, f(x̄))| = 1. However, at least in the smooth case |K| = 1 the LICQ
at x̄ in X from (8) implies the LICQ at (x̄, f(x̄)) in epi(f,X) from (9).

Recall the hierarchy LICQ ⇒ MFCQ ⇒ ACQ at any feasible point in X and
in epi(f,X), respectively, where the reverse directions are in general wrong,
and where for convexly described problems the MFCQ is equivalent to the
Slater constraint qualification in the sense mentioned above. In view of this
hierarchy, the LICQ can be viewed as too strong to be compatible with the
epigraph reformulation, while all discussed weaker constraint qualifications
are compatible.

4 First order optimality conditions

The previous results allow us to formulate necessary and sufficient first or-
der optimality conditions for optimization problems with max-type objective
functions. Indeed, we again consider the problem

P : min
x

max
k∈K

fk(x) s.t. gI(x) ≤ 0, hJ(x) = 0

13



with finite index sets I, J,K and differentiable functions fk, k ∈ K, gi, i ∈ I,
hj, j ∈ J . Its feasible set X is described as in (8). We consider the epigraph
reformulation of P in the form

Pepi : min
x,α

α s.t. fK(x)− αe ≤ 0, gI(x) ≤ 0, hJ(x) = 0,

that is, with a feasible set epi(f,X) described as in (9). The Karush-Kuhn-
Tucker (KKT) conditions for this formulation of Pepi at a point (x̄, f(x̄)) ∈
epi(f,X) state the existence of multipliers κk ≥ 0, k ∈ K0(x̄, f(x̄)), λi ≥ 0,
i ∈ I0(x̄), µj ∈ R, j ∈ J , with(
0
0

)
=

(
0
1

)
+

∑
k∈K0(x̄,f(x̄))

κk

(
∇fk(x̄)
−1

)
+

∑
i∈I0(x̄)

λi

(
∇gi(x̄)

0

)
+
∑
j∈J

µj

(
∇hj(x̄)

0

)
.

With the convex hull conv({∇fk(x̄), k ∈ K0(x̄, f(x̄))}), the convex conical
hull cone({∇gi(x̄), i ∈ I0(x̄)}) and the ‘linear hull’ span({∇hj(x̄), j ∈ J}) of
the corresponding vectors, the KKT conditions at (x̄, f(x̄)) ∈ epi(f,X) can
be written more briefly as

0 ∈ conv({∇fk(x̄), k ∈ K0(x̄, f(x̄))})
+ cone({∇gi(x̄), i ∈ I0(x̄)}) + span({∇hj(x̄), j ∈ J}). (16)

The sum of these sets is understood in the Minkowski sense.

Theorem 4.1. Let x̄ be a local minimal point of P at which the functions
fk, k ∈ K, gi, i ∈ I, hj, j ∈ J , are differentiable, and let the ACQ hold at x̄
in X from (8). Then the KKT condition (16) is satisfied.

Proof. By Theorem 2.2a the point (x̄, f(x̄)) is locally minimal for Pepi. The-
orem 3.3 guarantees that the ACQ holds at (x̄, f(x̄)) in epi(f,X) from (9).
The KKT theorem under ACQ [2, 5] thus yields (16).

Analogous arguments and Corollary 3.4 show the next result.

Corollary 4.2. Let X be polyhedral and let x̄ be a local minimal point of P
at which the functions fk, k ∈ K, are differentiable. Then the corresponding
KKT condition (16) is satisfied.

For convexly described problems of the form

P : min
x

max
k∈K

fk(x) s.t. gI(x) ≤ 0, Ax = b

we can state a necessary as well as a sufficient first order optimality condition.
The feasible set X of P is described as in (6).

14



Theorem 4.3. For convex functions fk, k ∈ K, gi, i ∈ I, with finite index
sets I,K, as well as a matrix A and a vector b of appropriate dimensions, let
the Slater constraint qualification hold in X from (6), and let x̄ be a minimal
point of P at which the fk, k ∈ K, gi, i ∈ I are differentiable. Then the
KKT condition (16) holds, where the vectors ∇hj(x̄), j ∈ J , are the columns
of the transposed matrix A⊺.

Proof. By Theorem 2.2a the point (x̄, f(x̄)) is minimal for Pepi. Theorem 3.1
guarantees that epi(f,X) from (7) satisfies the Slater constraint qualification.
Then also the differentiable description of the epigraph

epi(f,X) = {(x, α) ∈ Rn × R | fK(x) ≤ αe, gI(x) ≤ 0, Ax = b} (17)

satisfies the Slater constraint qualification and, therefore, the KKT theorem
for differentiably and convexly described problems [2, 5] yields the assertion.

As common in convex optimization, the following first order sufficient opti-
mality condition holds without the assumption of a constraint qualification.

Theorem 4.4. For convex functions fk, k ∈ K, gi, i ∈ I, as well as a matrix
A and a vector b of appropriate dimensions, let the KKT condition (16) hold
for Pepi at a point (x̄, f(x̄)) in epi(f,X) from (17), so that the fk, k ∈ K,
gi, i ∈ I are differentiable at x̄. Then x̄ is a minimal point of P .

Proof. By the sufficiency for minimality of the KKT condition in convexly
described problems [4], (x̄, f(x̄)) is a minimal point of Pepi. Theorem 2.2b
thus yields the assertion.

For convex differentiable functions fk, k ∈ K, in convex analysis it is shown
that the set conv({∇fk(x̄), k ∈ K0(x̄, f(x̄))}) coincides with the convex sub-
differential ∂f(x̄) of f = maxk∈K fk at x̄ [9]. For the considered convexly
described problems the KKT condition (16) may therefore be rewritten as

0 ∈ ∂f(x̄) + cone({∇gi(x̄), i ∈ I0(x̄)}) + range(A⊺).

Moreover, for not necessarily convex, but continuously differentiable fk, k ∈
K, the function f is locally Lipschitz continuous and subdifferentially regu-
lar, so that also its Clarke subdifferential coincides with conv({∇fk(x̄), k ∈
K0(x̄, f(x̄))}) [1].
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5 Cutting plane methods

Cutting plane methods approximate algorithmically difficult by easier to han-
dle optimization problems. In comparison to an LP the difficulties can arise,
for example, from the presence of nonlinear functions or of discrete variables.
Indeed, consider an optimization problem

P : min
x

f(x) s.t. x ∈ M ∩X

with a polyhedral set X and some set M ‘hosting the difficulties’ like de-
scriptions by nonlinear functions or the discreteness of variables. We assume
f : M → R to be defined on M , but not necessarily on the entire set X.

The epigraph reformulation

Pepi : min
x,α

α s.t. f(x) ≤ α, x ∈ M ∩X

of P possesses three types of constraints on the vector (x, α) of decision
variables, namely the inequality f(x) ≤ α, the constraint x ∈ M and the
condition x ∈ X. The algorithmically difficult part of the problem is there-
fore modeled by the first two constraints, while the third constraint and the
objective function are polyhedral and linear, respectively. The two difficult
constraints describe the epigraph

epi(f,M) = {(x, α) ∈ M × R| f(x) ≤ α}

of f on M . A possible representation of the epigraph reformulation thus is

Pepi : min
x,α

α s.t. (x, α) ∈ epi(f,M) ∩ (X × R).

A cutting plane method iteratively generates polyhedral relaxations ̂epi(f,M)
of epi(f,M) and solves the relaxed optimization problems

P̂epi : min
x,α

α s.t. (x, α) ∈ ̂epi(f,M) ∩ (X × R).

It terminates if a computed optimal point (x̂⋆, α̂⋆) (approximately) lies in
epi(f,M). Else, i.e. for (x̂⋆, α̂⋆) ̸∈ epi(f,M), it adds a cut to the description
of ̂epi(f,M). Such a cut is defined by a linear inequality d⊺x + δα ≤ b with
d ∈ Rn and δ, b ∈ R, which firstly satisfies

d⊺x̂⋆ + δα̂⋆ > b
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i.e., it is violated by (x̂⋆, α̂⋆), and secondly is valid for epi(f,M). The latter
means

∀ (x, α) ∈ epi(f,M) : d⊺x+ δα ≤ b.

The fact that the set epi(f,M) is described by two separate conditions in-
duces the following effects. In the case (x̂⋆, α̂⋆) ̸∈ epi(f,M) at least one of
the two conditions f(x̂⋆) ≤ α̂⋆ and x̂⋆ ∈ M must be violated. The way in
which a cut is constructed therefore depends on which of the two conditions
is violated.

In the case f(x̂⋆) > α̂⋆ it suggests itself to exploit a property of the function
f at the point x̂⋆ to generate the cut. However, as long as it is not clear
whether x̂⋆ ∈ M holds, f may not be defined at x̂⋆ and it may, thus, not
make sense to look for such a property.

For this reason, cutting plane methods first check the condition x̂⋆ ∈ M . In
the case x̂⋆ ̸∈ M they construct a cut with respect to this feasible set, called
feasibility cut. It has the form of an inequality d⊺x ≤ b valid for M with
d⊺x̂⋆ > b, which does naturally not depend on the epigraph variable α (i.e.,
δ = 0 holds). Because of epi(f,M) ⊆ M × R this inequality is also valid
for epi(f,M). A feasibility cut can therefore be constructed independently
of the validity of the second condition f(x) ≤ α in the description of the
epigraph. For example, if M = {x ∈ Rn | gi(x) ≤ 0, i ∈ I} is described by
convex functions gi, i ∈ I, one chooses some k ∈ I with gk(x̂

⋆) > 0, some
subgradient s of gk at x̂⋆, and defines the Kelley cut

gk(x̂
⋆) + ⟨s, x− x̂⋆⟩ ≤ 0.

If no feasibility cut is required, x̂⋆ lies in the domain M of f , and in the case
f(x̂⋆) > α̂⋆ a cut can be constructed with information about f at the point
x̂⋆. The validity of the corresponding inequality d⊺x+ δα ≤ b is not required
for all (x, α) ∈ Rn×R with f(x) ≤ α, since f is only defined on M , but only
for all (x, α) ∈ M × R with f(x) ≤ α. This results in a valid inequality for
epi(f,M), called optimality cut.

If, for example, M and f : M → R are convex, then also the function f(x)−α
is convex, and with any subgradient s of f at x̂⋆ the corresponding Kelley
cut is

0 ≥ f(x̂⋆)− α̂⋆ +

〈(
s
−1

)
,

(
x
α

)
−
(
x̂⋆

α̂⋆

)〉
= f(x̂⋆) + ⟨s, x− x̂⋆⟩ − α.

The point (x̂⋆, α̂⋆) violates this inequality due to f(x̂⋆) > α̂⋆. Remarkably,
the point (x̂⋆, f(x̂⋆)) ∈ epi(f,M) satisfies the inequality with equality so that,
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̂epi(f,M)

f

Figure 2: Feasibility and optimality cuts

in contrast to Kelley feasibility cuts, the Kelley optimality cuts are deepest
possible in the sense that they define supporting hyperplanes to epi(f,M).

Figure 2 illustrates the concepts of feasibility and optimality cuts and the
resulting relaxation of an epigraph.

6 Generalized epigraph reformulation

This section generalizes the epigraph reformulation in two aspects which
are useful for establishing tractable optimization models. For example, the
generalization allows to split the objective function into summands, which
enter the reformulation separately. At the same time, we introduce this
technique for the treatment of inequality constraints.

To this end, a functional F : Rm → R is called monotone (on Rm), if

∀x, y ∈ Rm with x ≤ y : F (x) ≤ F (y)

holds, where the vector inequalities are understood component-wise.

For X ⊆ Rn, functions f : X → Rm and g : X → Rp as well as monotone
functionals F : Rm → R and G : Rp → R, consider the problem

P : min
x∈Rn

F (f(x)) s.t. G(g(x)) ≤ 0, x ∈ X.

With the generalized epigraph

gepi(f, g,X) := {(x, α, β) ∈ X × Rm × Rp} | f(x) ≤ α, g(x) ≤ β}.

18



we may introduce the generalized epigraph reformulation

Pgepi : min
(x,α,β)∈Rn×Rm×Rp

F (α) s.t. G(β) ≤ 0, (x, α, β) ∈ gepi(f, g,X).

More explicitly, it reads

Pgepi : min
(x,α,β)∈Rn×Rm×Rp

F (α) s.t. G(β) ≤ 0,

f(x) ≤ α, g(x) ≤ β, x ∈ X.

Rather than explicitly generalizing all previous results from the standard epi-
graph reformulation, here we only illustrate how to work with this technique
along the extension of a rudimentary version of Theorem 2.2.

Theorem 6.1. For every X ⊆ Rn, f : X → Rm, g : X → Rp and mono-
tone functionals F : Rm → R, G : Rp → R, the problems P and Pgepi are
equivalent in the following sense:

a) For every global minimal point x̄ of P, (x̄, f(x̄), g(x̄)) is a global minimal
point of Pgepi with the same minimal value.

b) For every global minimal point (x̄, ᾱ, β̄) of Pgepi, x̄ is a global minimal
point of P with the same minimal value.

Proof. For the proof of part a, let x̄ be a global minimal point of P . Define
ᾱ := f(x̄) and β̄ = g(x̄). Thus the constraints f(x) ≤ α and g(x) ≤ β of Pgepi

are satisfied at (x̄, ᾱ, β̄), and the feasibility of x̄ in P also implies G(β̄) ≤ 0
and x̄ ∈ X, so that (x̄, ᾱ, β̄) is feasible for Pgepi.

For every other feasible point (x, α, β) of Pgepi we have x ∈ X, and the
monotonicity of G yields G(g(x)) ≤ G(β) ≤ 0, so that x is feasible for
P . The minimality of x̄ for P and the monotonicity of F imply F (α) ≥
F (f(x)) ≥ F (f(x̄)) = F (ᾱ), so that the minimality of (x̄, ᾱ, β̄) is shown,
along with the identity of the minimal values.

To show part b, let (x̄, ᾱ, β̄) be a global minimal point of Pgepi. Its feasibility
yields x̄ ∈ X and, by the monotonicity of G, G(g(x̄)) ≤ G(β̄) ≤ 0. Therefore
x̄ is feasible for P . Together with the monotonicity of F the feasibility of
(x̄, ᾱ, β̄) also implies F (f(x̄)) ≤ F (ᾱ).

Let x be any other feasible point of P and define α := f(x) and β :=
g(x). Then (x, α, β) is feasible for Pgepi. The optimality of (x̄, ᾱ, β̄) for Pgepi

thus implies F (f(x)) = F (α) ≥ F (ᾱ) ≥ F (f(x̄)), which shows the global
minimality of x̄ for P .
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It remains to show equality in the last of the above inequalities. Indeed,
for F (ᾱ) > F (f(x̄)) the feasible point (x̄, f(x̄), β̄) would possess a better
objective function value than (x̄, ᾱ, β̄), which contradicts the minimality of
the latter. Therefore F (ᾱ) = F (f(x̄)) holds.

Example 6.2. For X ⊆ Rn and z ∈ Rn the projection problem with respect
to the ℓ1-norm is

P : min
x∈Rn

∥x− z∥1 s.t. x ∈ X.

Its minimal value is the ℓ1-distance of z from X, and every minimal point is
called ℓ1-projection of z to X. The structure

∥x− z∥1 =
∑

k=1,...,n

|xk − zk|

of the objective function allows us to use the generalized epigraph reformula-
tion with the monotone functional F (α) :=

∑n
k=1 αk = ⟨e, α⟩. The general-

ized epigraph reformulation can be written as

Pgepi : min
(x,α)∈Rn×Rn

⟨e, α⟩ s.t. ±(x− z) ≤ α, x ∈ X.

As in Example 1.1, if the set X is polyhedral, then the nonsmooth problem P
has been reformulated into an LP. We remark that the generalized epigraph
reformulation of the ℓ1-projection problem P doubles the number of variables,
while a different popular approach for treating the ℓ1-norm, by splitting the
vector x − z in its component-wise positive and negative parts, would even
triple the number of variables.

7 Final remarks

The epigraph reformulation is also useful for minimization problems with
objective function of sup-type, where the supremum is taken over possibly
infinitely many functions. Indeed, for X ⊆ Rn and a set-valued mapping
Y : X ⇒ Rm let f(x) = supy∈Y (x) f(x, y). If for some x ∈ X the maxi-
mization problem of f(x, ·) over Y (x) is not solvable, the usual conventions
for the supremum apply, i.e. f(x) = −∞ for Y (x) = ∅, etc. The epigraph
reformulation of the problem

P : min
x

sup
y∈Y (x)

f(x, y) s.t. x ∈ X
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can then be written as

Pepi : min
x,α

α s.t. x ∈ X, f(x, y) ≤ α ∀ y ∈ Y (x).

The inequality constraints of Pepi are of generalized semi-infinite type. The-
ory and methods for such problems may be found in [6].
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