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Abstract

For equality-constrained linear mixed-integer programs (MIP) defined by rational data, it is known

that the subadditive dual is a strong dual and that there exists an optimal solution of a particular

form, termed generator subadditive function. Motivated by these results, we explore the connection

between Lagrangian duality, subadditive duality and generator subadditive functions for general equality-

constrained MIPs where the vector of variables is constrained to be in a monoid. We show that strong

duality holds via generator subadditive functions under certain conditions. For the case when the monoid

is defined by the set of all mixed-integer points contained in a convex cone, we show that strong duality

holds under milder conditions and over a more restrictive set of dual functions. Finally, we provide some

examples of applications of our results.

Keywords: mixed-integer programming; Lagrangian duality; subadditive duality; generator functions; conic

programming

1 Introduction

Consider the following equality-constrained mixed-integer program (MIP)

z˚ :“ inf cTx` dT y

s.t. Ax`Gy “ b

px, yq PM,

(1)

where c P Rn1 , d P Rn2 , A P Rmˆn1 , G P Rmˆn2 , b P Rm and M Ď Zn1 ˆ Rn2 with the usual ` operation

is a monoid, that is, p0, 0q PM, px1, y1q, px2, y2q PM implies px1, y1q ` px2, y2q PM and ` is associative

in M.

In this paper, we study certain dual problems associated to the primal MIP (1) for several special cases.

Duality is a well-studied and fundamental concept in optimization theory and methodology [17, 14, 27, 11,

23, 20]. For a minimization type primal problem, a feasible solution to its dual problem can provide a lower

bound to the optimal primal value, hence, it enables to certify the quality of a feasible solution. In addition,

for a strong dual problem, its optimal value matches the optimal value of the primal problem, which can be

used as a certificate of optimality.

Encoding the dual problem can be quite different for different classes of primal optimization problems.

For example, the dual problem of a linear program (LP) or a conic program (CP) is another linear program
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or conic program, involving the dual cone in the latter case (see, e.g., [4]). Hence, these dual problems are

finite dimensional optimization problems with similar representability as their primal counterparts. However,

when integer variables are involved, the situation changes drastically. In the case of linear or conic MIPs,

one typically resorts to a subadditive dual, whose feasible region is defined over subadditive functions, rather

than finite dimensional elements as in the case of LPs and CPs (see, [17, 14, 11] for linear MIPs, and

[23, 20, 2] for conic inequality-constrained MIPs). Hence, it is incomparably more difficult to encode the

dual problem when integer variables are involved. As an example, the subadditive dual problem for the

equality-constrained linear MIP, where we have M “ Zn1
` ˆ Rn2

` in (1), is given as follows:

ρ˚ :“ sup fpbq

s.t. fpajq ď cj j “ 1, . . . , n1

f̄pgjq ď dj j “ 1, . . . , n2

fp0q “ 0, f : Rm Ñ R is subadditive.

(2)

Here, aj and gj respectively denote the j-th column of matrices A and G. The following result states that

for feasible linear MIPs with rational data, the subadditive dual is a strong dual, that is, the duality gap is

zero (i.e., ρ˚ “ z˚) and the subadditive dual is solvable (i.e., there exists a feasible dual function f such that

ρ˚ “ fpbq).

Proposition 1 ([17, 14]). Consider a feasible linear MIP (i.e., M “ Zn1
` ˆ Rn2

` ) of the form (1), where

A P Qmˆn1 , G P Qmˆn2 and b P Qm, and the subadditive dual as defined in (2). Then, the subadditive

dual (2) is a strong dual to linear MIP (1).

There have been some limited attempts to solve the subadditive dual problem in the case of linear MIPs

for special problem classes as subadditive duals do not admit practical solution procedures. For example,

[18, 19] consider a class of problems with equality constraints, rational and nonnegative data, and nonnegative

integer variables. In this case, it is shown that the optimal function can be written as the value function of

a parametric packing type of linear IP, whose feasible region is a relaxation of the original feasible region.

Then, an iterative algorithm is proposed to obtain the optimal parameters. Later, [5] generalizes the setting

to the case where there is no nonnegativity assumption on the data and continuous variables are present. In

all these three papers, the optimal dual solution has a specific functional form as described below.

Proposition 2 ([19, 5]). Consider a feasible linear MIP under the same assumptions of Proposition 1. Let

Ω :“ tAx ` Gy : px, yq P Zn1
` ˆ Rn2

` u be the set of r.h.s. that make the primal problem (1) feasible. Then,

there exists a vector α P Rm for which the optimal function Fα : Ω Ñ R is of the form

Fαpωq “ αTω ´max
 

pATα´ cqTx` pGTα´ dqT y : Ax`Gy ď ω, px, yq P Zn1
` ˆ Rn2

`

(

.

The functions appearing in Proposition 2 are called generator subadditive functions and, in principle, are

still challenging to compute as the formula requires to solve a linear MIP. Due to the following result, the

size of this linear MIP can be decreased and the computational burden can be reduced.

Proposition 3 ([19, 5]). Consider a feasible linear MIP under the same assumptions of Proposition 2. Let
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α P Rm and define the sets Ex :“ tj : αTaj ą cj or aj ě 0u and Ey :“ tj : αT gj ą dj or gj ě 0u. Then,

Fαpωq “ αTω´max

$

&

%

ÿ

jPEx

pαTaj ´ cjqxj `
ÿ

jPEy

pαT gj ´ djqyj :
ÿ

jPEx

ajxj `
ÿ

jPEy

gjyj ď ω, px, yq P Zn1
` ˆ Rn2

`

,

.

-

.

We would like to note that the above approaches are not the only attempts to solve the subadditive dual

for linear MIPs. A piecewise linear approximation of the subadditive dual problem of the mixed-integer

program of binarized neural networks is utilized in [3].

Our paper extends the main results in the three papers [18, 19, 5] mentioned above to the case of general

equality-constrained MIPs (1) as follows:

• Strong subadditive duality for conic MIPs: We generalize Proposition 1 in Proposition 6.

• Optimal generator subadditive functions: We generalize Proposition 2 in Theorem 2.

• Reducing the size for conic MIPs with block structure: We generalize Proposition 3 in Proposition 8.

The rest of the paper is structured as follows: In Section 2, we explore the connections between Lagrangian

duality, subadditive duality and generator subadditive functions for equality-constrained MIPs where the

vector of variables comes from a monoid. In Section 3, we specialize our results when the monoid is defined

as the set of the mixed-integer points contained in a regular cone. Finally, we provide illustrations of our

results in Section 4.

2 Duality for equality-constrained mixed-integer programs

The paper [19] established the relationship between generator subadditive functions with Lagrangian and

subadditive duality for integer linear programs. In this section, we generalize these results for problem (1)

and the associated dual problems.

2.1 Lagrangian duality and generator subadditive functions

Let Ωď “ tω :Ax`Gy ď ω for some px, yq PMu and for ω P Ωď defineMďpωq “ tpx, yq PM :Ax`Gy ď ωu.

Suppose S ĎMďpbq and consider the optimization problem

zď :“ inf cTx` dT y

s.t. Ax`Gy “ b

px, yq P S.

(3)

For α P Rm, define Lpαq :“ inftcTx ` dT y ` αT pb´ Ax ´Gyq : px, yq P Su. Since we are dualizing equality

constraints, it is easy to see that the value Lpαq gives a lower bound for the optimal value of (3), that is,

Lpαq ď inftcTx` dT y :Ax`Gy “ b, px, yq P Su. (4)

For a set X Ď Rn, we denote its convex hull as convpXq. In the Lagrangian duality theory (e.g., see [6, 10]

for the integer programming case), there are sufficient conditions for the existence of α˚ P R such that

Lpα˚q “ inftcTx` dT y :Ax`Gy “ b, px, yq P convpSqu. (5)
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Note that α˚ satisfies Lpα˚q “ suptLpαq :α P Rmu, and thus is an optimal solution to the Lagrangian dual

problem. In principle, the bound in (5) may be strictly less than the optimal value of problem (3) since the

minimization is over convpSq Ě S. Nevertheless, we will show in Theorem 1 below that

inftcTx` dT y :Ax`Gy “ b, px, yq P convpSqu “ inftcTx` dT y :Ax`Gy “ b, px, yq P Su. (6)

Therefore, if (5) is satisfied, then any optimal solution α˚ to the Lagrangian dual problem satisfies:

Lpα˚q “ inftcTx` dT y :Ax`Gy “ b, px, yq P Su.

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Let M Ď Rn be a set and let X Ď tx PM :Ax ď bu be a set such that convpXqXM “ X. Assume

that T “ tx P convpXq :Ax “ bu is a nonempty face of convpXq. Then convpXq X T “ convpT XMq.

Proof. By assumption and since X ĎM, we have convpXq XM “ X “ X XM. Therefore,

convpXq X T “ convpX XMq X T “ convpconvpXq XMq X T “ convpT XMq,

where the last equality follows from the well-known fact that for any set M1, convex set X 1 Ď Rn and face

T 1 of X 1, we have convpX 1 XM1q X T 1 “ convpT 1 XM1q.

Theorem 1. Assume that convpSqXM “ S and that T “ tpx, yq P Rn1ˆRn2 :Ax`Gy “ b, px, yq P convpSqu

is nonempty. Then, equation (6) is satisfied.

Proof. Denoting zconv “ inftcTx` dT y :Ax`Gy “ b, px, yq P convpSqu, we have

zconv “ inftcTx` dT y : px, yq P convpSq X T u “ inftcTx` dT y : px, yq P convpT XMqu

“ inftcTx` dT y : px, yq P T XMu “ inftcTx` dT y :Ax`Gy “ b, px, yq P Su “ zď,

where the first equality follows by definition of T , the second equality follows from applying Lemma 1

to X “ S and M “ M, the third equality follows from the fact optimizing a linear function over a set

is equivalent to optimize over its convex hull, and the last equality follows from the definition of T and

convpSq XM “ S.

Note that convpMďpωqq XM “ Mďpωq for any ω P Ω since Mďpωq are points in M contained in

the convex set tpx, yq P Rn1 ˆ Rn2 :Ax ` Gy ď ωu. Assuming that the feasible region of (1) is nonempty

and that (5) holds, we can apply Theorem 1 to S “Mďpbq and obtain that there exist α˚ P R such that

Lpα˚q “ inftcTx`dT y :Ax`Gy “ b, px, yq PMďpbqu. The relationship of Lagrangian duality and generator

subadditive functions is established by noting that

Lpα˚q “ inftcTx` dT y ` α˚
T
pb´Ax´Gyq : px, yq PMďpbqu

“ α˚
T
b` inftpc´ATα˚qTx` pd´GTα˚qT y : px, yq PMďpbqu

“ α˚
T
b´ suptpATα˚ ´ cqTx` pGTα˚ ´ dqT y : px, yq PMďpbqu.

We generalize the definition in [19] as follows.
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Definition 1 (Generator subadditive function). Consider a feasible MIP of the form (1). Then, for α P Rm,

we define a generator subadditive function Fα : Ωď Ñ RY t´8u as

Fαpωq “ αTω ´ sup
 

pATα´ cqTx` pGTα´ dqT y : px, yq PMďpωq
(

. (7)

Note that by the previous discussion on Lagrangian duality from (4), we have that

Fαpbq ď inftcTx` dT y :Ax`Gy “ b, px, yq PMďpbqu “ z˚, (8)

and therefore we can use the function Fα to find a lower bound for the optimal value of the primal problem (1)

– this property is related to the subadditive dual being a weak dual, we will see this in the next section.

2.2 Subadditive duality

In order to state the subadditive dual for the primal problem (1), we need some definitions.

Definition 2 (Subadditive function). A function f : D Ñ R is subadditive if fpu` vq ď fpuq ` fpvq for all

u, v P D such that u` v P D. We denote the set of subadditive functions f : D Ñ R as FD and for f P FD,

we define f̄pxq :“ lim supδÑ0`
fpδxq
δ .

Definition 3 (Integral generating set). Let M with the usual ` operation be a monoid. A generating set of

M is a set IpMq ĎM such that for any w PM there exists h1, . . . , hp P IpMq and λ1, . . . , λp P Z` such

that w “
řp
i“1 λihi.

For a general monoid, integral generating sets are not finite. Conditions for finiteness of the generating

set are given in [15, 12, 7].

Let Ω “ tAx ` Gy : px, yq P Mu be the set of r.h.s. that make the primal problem (1) feasible. Let

D Ď Rm such that D Ě Ω. Consider the following subadditive dual problem of (1):

ρ˚ :“ sup fpbq

s.t. fpAu`Gvq ď cTu` dT v pu, vq P IpMq

fp0q “ 0, f P FD.

(9)

The following lemma shows that the choice of the generating set does not change the associated constraints

in the dual problem.

Lemma 2. Let IpMq, I 1pMq be two generating sets ofM. Then, for any f P FD with fp0q “ 0, we have that

fpAu`Gvq ď cTu`dT v for all pu, vq P IpMq is equivalent to fpAu`Gvq ď cTu`dT v for all pu, vq P I 1pMq.

Proof. Assume that fpAu ` Gvq ď cTu ` dT v for all pu, vq P IpMq and let pu1, v1q P I 1pMq. Then there

exists pu1, v1q, . . . , pup, vpq P IpMq and λ1, . . . , λp P Z` such that pu1, v1q “
řp
i“1 λipui, viq. We have

fpAu1 `Gv1q “ f

˜

A
p
ÿ

i“1

λiui `G
p
ÿ

i“1

λivi

¸

ď

p
ÿ

i“1

λif pAui `Gviq ď
p
ÿ

i“1

λipc
Tui ` d

T viq “ cTu1 ` dT v1,

where the first inequality follow from subadditivity of f and fp0q “ 0. Therefore, if the function f satisfies

the constraints for the integral generating set IpMq then it also satisfies them for the integral generating set

I 1pMq (and viceversa).
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We show next that weak duality holds for the primal (1) and dual (9).

Proposition 4 (Weak duality). For any vector px, yq feasible for (1) and for any function f feasible for (9),

we have that fpbq ď cTx` dT y.

Proof. For px, yq feasible for (1), we have that b “ Ax ` Gy. Thus, the fact that fpbq ď cTx ` dT y follows

from fpbq “ fpAx`Gyq and Lemma 2 applied to I 1pMq “M.

Sufficient conditions for functional duals like the dual (9) to be a strong dual have been given in [27, 23,

20, 9, 17, 16, 25]. A simple condition to have strong duality is to consider functions defined on D “ Ω as the

so-called value function νM defined for ω P Ω as

νMpωq “ inftcTx` dT y :Ax`Gy “ ω, px, yq PMu,

is an optimal solution to the dual problem whenever νMpωq ą ´8 for all ω P Ω (for instance, see [27]).

On the other hand, when D “ Rm, several sufficient conditions to have strong duality have been studied

in [23, 20].

We now show that under some conditions, generator subadditive functions are feasible and/or optimal

for the subadditive dual of (1) when D “ Ωď. We note here that dual feasibility requires that the functions

belong to the set FΩď and hence we must have that the function Fα : Ωď Ñ R is well-defined, that is,

Fαpωq ą ´8 for all ω P Ωď. A sufficient condition for this to happen is the boundedness of sets Mďpbq for

any b P Ωď. However, more general conditions can be given. For instance, when problem (1) is a conic MIP,

a sufficient condition is the feasibility of its subadditive dual (see [20]).

The next proposition recovers results from [19, 5].

Proposition 5. Consider a feasible conic MIP of the form (1) and the subadditive dual of the form (9) with

D “ Ωď. Then, if Fα : Ωď Ñ R is well-defined, then Fα is a feasible dual solution.

Proof. Firstly, we check that generator subadditive functions are indeed subadditive functions. Let ω1, ω2 P

Ωď. Observe that if px1, y1q PMďpω1q and px2, y2q PMďpω2q, then px1 ` x2, y1 ` y2q PMďpω1 ` ω2q, and

therefore ω1 ` ω2 P Ωď. Moreover, we obtain

sup
 

pATα´ cqTx` pGTα´ dqT y : px, yq PMďpω1 ` ω2q
(

ě sup
 

pATα´ cqTx` pGTα´ dqT y : px, yq PMďpω1q
(

` sup
 

pATα´ cqTx` pGTα´ dqT y : px, yq PMďpω2q
(

,

and hence we conclude Fαpω1 ` ω2q ď Fαpω1q ` Fαpω2q.

Notice that for any pu, vq PM, we have

FαpAu`Gvq “ αT pAu`Gvq ´ sup
 

pATα´ cqTx` pGTα´ dqT y : px, yq PMďpAu`Gvq
(

ď αTAu´ pATα´ cqTu` αTGv ´ pGTα´ dqT v “ cTu` dT v,
(10)

where the inequality follows from the fact that pu, vq PMďpAu`Gvq. Since IpMq ĎM, this shows that Fα

satisfies the first constraint in the dual (9). Finally, since M is a monoid, we have that pu, vq “ p0, 0q PM
and thus from (10) it follows that Fαp0q ď 0. Since any subadditive function satisfies the reverse inequality,

we conclude that Fαp0q “ 0.

We now review some definitions related to cones.
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Definition 4 (Regular cone, Conic inequality, Dual cone). We call a cone K Ď Rm regular if it is closed,

convex, pointed and full-dimensional. The conic inequality with respect to K is defined as x ľK y if and

only if x´ y P K. The dual cone to a cone K Ď Rm is defined as K˚ :“ ty P Rm : xT y ě 0, for all x P Ku.

Theorem 2 (Strong duality via generator subadditive functions). Consider a feasible MIP of the form (1)

and the subadditive dual of the form (9) with D “ Ωď. Assume Fα : Ωď Ñ R is well-defined, and that

convpMďpbqq is conic representable, that is,

convpMďpbqq “ tpx, yq P Rn1 ˆ Rn2 : Dw P Rn3 s.t. Πx` Φy `Ψw ľC πu,

for some matrices Π,Φ,Ψ, a vector π and a regular cone C. Assume further that the (conic) dual of

inftcTx` dT y : Ax`Gy “ b, Πx`Φy`Ψw ľC πu is a strong dual. Then, there exists α˚ P Rm such that

the function Fα˚ : Ωď Ñ R is well-defined and it is an optimal solution to the subadditive dual (9).

Proof. Let ω P Ω. By Theorem 1, we obtain that

z˚pωq :“ inftcTx` dT y :Ax`Gy “ b, px, yq PMďpωqu

“ inftcTx` dT y :Ax`Gy “ b, px, yq P convpMďpωqqu,

and by assumption we conclude that

z˚pbq “ inftcTx` dT y : Ax`Gy “ b, Πx` Φy `Ψw ľC πu. (11)

Consider the conic dual problem associated to (11):

suptbTα` πT γ : ATα`ΠT γ “ c, GTα` ΦT γ “ d, ΨT γ “ 0, γ P C˚u.

Since strong duality holds, for any optimal pair of dual variables pα˚, γ˚q, we have z˚ “ bTα˚ ` πT γ˚.

Therefore, for px, yq PMďpbq and w such that Πx` Φy `Ψw ľC π, we obtain

pATα˚ ´ cqTx` pGTα˚ ´ dqT y “
`

´ΠT γ˚
˘T
x`

`

´ΦT γ˚
˘T
y `

`

´ΨT γ˚
˘T
w

“´ pΠx` Φy `Ψwq
T
γ˚

ď´ πT γ˚ “ bTα˚ ´ z˚,

which implies

sup
 

pATα˚ ´ cqTx` pGTα˚ ´ dqT y : px, yq PMďpbq
(

ď bTα˚ ´ z˚.

As by definition Fα˚pωq “ α˚Tω ´ sup
 

pATα˚ ´ cqTx` pGTα˚ ´ dqT y : px, yq PMďpωq
(

, the inequality

above shows that Fα˚pbq ě z˚. Hence, by (8), we conclude that Fα˚pbq “ z˚. Finally, since by assumption

Fα˚ : Ωď Ñ R is well-defined, by Proposition 5, we obtain that Fα˚ is feasible for the dual (9) with D “ Ωď,

and thus this generator subadditive function is an optimal solution to this dual problem.
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3 Duality for equality-constrained conic mixed-integer programs

3.1 Strong duality

We will show that (9) is a strong dual whenM “ KXpZn1 ˆRn2q, where K is a regular cone, and D “ Rm.

We first need a definition.

Definition 5 (Nondecreasing function). A function f : D Ñ R is nondecreasing with respect to a regular

cone K Ď Rm if for u, v P D we have u ľK v ñ fpuq ě fpvq.

Proposition 6 (Strong duality). Consider a feasible conic MIP of the form (1) and the subadditive dual of

the form (9). Assume that the conic dual of the continuous relaxation of (1) is feasible. Then, there exists

a dual feasible function f such that fpbq “ ρ˚ “ z˚.

Proof. Let us consider the equivalent conic MIP

ẑpωq :“ inf cTx` dT y

s.t. Ax`Gy ě ω

´Ax´Gy ě ´ω

px, yq ěK 0

x P Zn1 , y P Rn2 ,

(12)

and its subadditive dual (see, [23, 20])

ρ̂pωq :“ sup Hpω,´ω, 0q

s.t. Hpaj ,´aj , ejq “ ´Hp´aj , aj ,´ejq “ cj for all j “ 1, . . . , n1

H̄pgj ,´gj , en1`jq “ ´H̄p´gj , gj ,´en1`jq “ dj for all j “ 1, . . . , n2

Hp0, 0, 0q “ 0

H : Rm ˆ Rm ˆ Rn Ñ R is subadditive and nondecreasing w.r.t. Rm` ˆ Rm` ˆK.

(13)

Here, ei denotes the standard ith unit vector in Rn1`n2 . For ω “ b, since the conic dual of the continuous

relaxation of (1) is feasible, and conic MIPs (1) and (12) are equivalent, the conic dual of the continuous

relaxation of (12) is feasible. Then, due to [20], problem (13) is a strong dual to problem (12). Hence, there

exists a feasible function Ĥ such that Ĥpb,´b, 0q “ ρ̂pbq “ ẑpbq.

Define the function fpωq :“ Ĥpω,´ω, 0q for ω P Rm. We claim that f is an optimal feasible solution to

the subadditive dual (9). The fact that f is subadditive follows from the fact that f is the composition of a

subadditive function and a linear function. Now, we show that f satisfies the constraint in the dual (9). Let

pu, vq P IpK X pZn1 ˆ Rn2qq. Then, by considering ω “ Au ` Gv in the primal (12) and the dual (13), by

weak duality, we obtain fpAu`Gvq ď cTu` dT v. On the other hand, we have that fp0q “ Ĥp0, 0, 0q “ 0.

So f satisfies all constraints of the dual (9). Finally, by construction ẑpbq “ z˚, and therefore, we obtain

that fpbq “ Ĥpb,´b, 0q “ ẑpbq “ z˚ and by Proposition 4, we conclude that fpbq “ ρ˚ “ z˚ as by weak

duality, z˚ is an upper bound for ρ˚.

The following is an immediate consequence of the strong duality result in Proposition 6.
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Corollary 1 (Complementary slackness). Consider a feasible solution px, yq of conic MIP (1) and a feasible

dual solution f of subadditive dual (9). Then, px, yq and f are optimal solutions of the respective problems

if and only if fpAx`Gyq “ cTx` dT y.

3.2 Conic MIPs where integer and continuous variables come from different cones

In this section, we specialize our results for M “ pK1 X Zn1q ˆ K2, where K1 Ď Rn1 and K2 Ď Rn2 are

regular cones. For this case, we propose the following subadditive dual problem of (1):

ρ˚ :“ sup fpbq

s.t. fpAuq ď cTu u P IpK1 X Zn1q

f̄pGvq ď dT v v P IpK2q

fp0q “ 0, f P FD.

(14)

Similar to the case of the dual problem (9), the choice of generating set does not affect the feasible region

of the dual problem (14). In other words, a result analogous to Lemma 2 is true, but we do not state it in

this paper.

When D “ Rm, the subadditive dual (14) generalizes results from the linear MIP literature [17, 14, 11, 23]

since we can choose IpK1 X Zn1q “ te1, . . . , en1u and IpK2q “ te
n1`1, . . . , en1`n2u, and thus we recover the

constraints from the linear MIP dual (2).

We will show in Proposition 7 below that the dual (9) and the dual (14) have the same feasible solutions,

and therefore weak duality (Proposition 4), strong duality (Propositions 6) and complementary slackness

(Corollary 1) also hold. For this purpose, we need a result from the literature and a lemma.

Theorem 3 ([14, 17, 24]). If g : Rm ÞÑ R is a subadditive function such that gp0q “ 0, then for all ω P Rm

with gpωq ă 8 and for all λ ě 0, we have that gpλωq ď λgpωq.

Lemma 3. Let K Ď Rn be a cone, g : Rm Ñ R be a subadditive function such that gp0q “ 0, N P Rmˆn

and e P Rn. Then, gpNυq ď eTυ for all υ P K if and only if ḡpNυq ď eTυ for all υ P K.

Proof. (ñ): Let υ P K. Due to the definition of ḡ, we have ḡpNυq “ lim supδÑ0`
gpδNυq

δ ď lim supδÑ0`
δeT υ
δ “

eTυ, where the inequality follows from gpNpδυqq ď eT pδυq since δυ P K.

(ð): Let υ P K. Then, due to Theorem 3 with ω “ Nυ and λ “ 1, we obtain gpNυq ď ḡpNυq ď eTυ.

Proposition 7. Let M “ pK1 X Zn1q ˆK2. Suppose that IpK1 X Zn1q and IpK2q are generating sets of

the sets K1 X Zn1 and K2, respectively. Then, pIpK1 X Zn1q ˆ t0un2q Y pt0un1 ˆ IpK2qq is a generating set

of M. Moreover, dual problems (9) and (14) are equivalent.

Proof. Let px, yq PM. Since x P K1 X Zn1 and y P K2, we have that there exist u1, . . . , up P IpK1 X Zn1q

and λ1, . . . , λp P Z` such that x “
řp
i“1 λiui, and v1, . . . , vq P IpK2q and µ1, . . . , µq P Z` such that

y “
řq
j“1 µjvj . Then, we obtain px, yq “

řp
i“1 λipui, 0q `

řq
j“1 µjp0, vjq, which proves the first assertion.

To prove the second assertion, it suffices to show that for f P FD with fp0q “ 0 we have that

fpAu`Gvq ď cTu` dT v for all pu, vq P IppK1 X Zn1q ˆK2q, (15)

is equivalent to

fpAuq ď cTu for all u P IpK1 X Zn1q

f̄pGvq ď dT v for all v P IpK2q,
(16)
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We will use the fact that by Lemma 2, the constraints of the dual (9) do not depend on the integral

generating set used. Since a generating set ofM “ pK1XZn1qˆK2 is pIpK1XZn1qˆt0un2qYpt0un1ˆIpK2qq,

then if f satisfies constraint (15), we obtain that fpAuq ď cTu for pu, 0q P IpK1 X Zn1q ˆ t0un2 and

fpGvq ď dT v for p0, vq P t0un1 ˆIpK2q. Hence, by Lemma 3, we obtain that constraints (16) are satisfied by

f . For the reverse direction, we assume that f satisfies (16). We will show that constraints (15) are satisfied

for pu, vq P pIpK1 X Zn1q ˆ t0un2q Y pt0un1 ˆ IpK2qq. By the second constraint in (16) and Lemma 3, we

obtain that f̄pGvq ď dT v implies that fpGvq ď dT v. Therefore, by using subadditivity of f , we conclude

that fpAu`Gvq ď fpAuq ` fpGvq ď cTu` dT v, as desired.

3.3 Conic MIPs with block structure

In this section, we specialize our results for a conic MIP with block structure given as

z˚ :“ inf
L
ÿ

`“1

”

c`
T
x` ` d`

T
y`
ı

s.t.
L
ÿ

`“1

“

A`x` `G`y`
‰

“ b

px`, y`q P K` X pZn
`
1 ˆ Rn

`
2q ` “ 1, . . . , L,

(17)

where K` Ď Rn`1`n`2 is a regular cone and c` P Rn`1 , d` P Rn`2 , A` P Rmˆn`1 , G` P Rmˆn`2 , b P Rm, for

` “ 1, . . . , L. Clearly, conic MIP (17) is an instance of MIP (1) with M “
ŚL

`“1

“

K` X pZn`1 ˆRn`2q
‰

, hence,

Propositions 4 and 6, and Corollary 1 hold true. However, in this case, we can also generalize Proposition 3

as follows:

Proposition 8. Consider a feasible conic MIP of the form (17). Let a`i and g`i respectively denote the i-th

row of matrices A` and G`. Define

E1 :“

$

&

%

` :

«

c`

d`

ff

´

«

A`

G`

ffT

α P K`
˚ and

«

a`i
g`i

ff

P K`
˚ for all i “ 1, . . . ,m

,

.

-

and E :“ t1, . . . , LuzE1,

for some α P Rm. Then,

Fαpωq “ αTω ´max

"

ÿ

lPE

”

pA`
T
α´ c`qTx` ` pG`

T
α´ d`qT y`

ı

:

ÿ

`PE

“

A`x` `G`y`
‰

ď ω, px`, y`q P K` X pZn
`
1 ˆ Rn

`
2q, ` “ 1, . . . , L

*

.

(18)

Proof. For contradiction, assume that all optimal solutions px̂`, ŷ`q, ` “ 1, . . . , L to problem (18) have a

nonzero px̂`
1

, ŷ`
1

q for some `1 P E1. Now, given such a solution, let us construct a new solution px̌`, y̌`q

such that px̌`, y̌`q “ px̂`, ŷ`q for ` ‰ `1 and px̌`
1

, y̌`
1

q “ p0, 0q. Since the matrix coefficients of each row

of
”

A`
1

G`
1
ı

comes from the dual cone, the new solution px̌`
1

, y̌`
1

q is also feasible. In addition, since the

objective coefficient vector

«

A`
1

G`
1

ffT

α´

«

c`
1

d`
1

ff

of the block variables px`
1

, y`
1

q comes from the negative of the

dual cone, the objective function value of solution px̌`, y̌`q is greater than or equal to that of solution px̂`, ŷ`q.

This leads to the desired contradiction.
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3.4 Conic integer programs defined by cones with pR,Gq-finitely generated integral vectors

Unlike the case of rational polyhedral cones (see [26]), integral vectors in general convex cones may not have

a finite integral generating sets. In order to overcome this, [21] introduced the concept of the monoid of

integer points inside a convex cone to be pR,Gq-finitely generated and studied it in the particular case of the

second order cone and the positive semidefinite cone; some applications of their definition to the theory of

conic integer programming are also discussed. We give their definition below.

Definition 6 (Group Action, pR,Gq-finitely generated). Given a group G and a regular cone K, a group

action is a function from GˆK to K, that is, pg, kq ÞÑ g ¨ k satisfying: (1) Identity: I ¨ k “ k for all k P K,

and (2) Compatibility: g2 ¨ pg1 ¨ kq “ pg2g1q ¨ k for all g1, g2 P G and k P K.

We say that K X Zn is pR,Gq-finitely generated if there is a finite subset R Ď K X Zn and a finitely

generated subgroup G Ď tU P Znˆn : |detpUq| “ 1u acting on K linearly such that

(i) both the cone K and KXZn are invariant under the group action, i.e., G ¨K “ K and G ¨ pKXZnq “
K X Zn, and

(ii) for any z P K X Zm there exists r1, . . . , rp P R, g1, . . . , gp P G and λ1, . . . , λp P Zm` such that z “
řp
i“1 λigi ¨ ri.

It follows from the definition above that the set IpG,Rq “ tg ¨ r : g P G, r P Ru is an integral generating

set of M “ K X Zn. Therefore, in the pure integer case (n1 “ n, n2 “ 0), the subadditive dual problem (9)

takes the form:
ρ˚ :“ sup fpbq

s.t. fpApg ¨ rqq ď cT pg ¨ rq g P G, r P R

fp0q “ 0, f P FD.

(19)

The fact that the integral generating set in the dual (19) is pR,Gq-finitely generated may lead to some

algorithmic ideas to solve this dual or to use its feasible dual functions to generate cuts for the associated

primal problem.

4 Illustrations of our results

4.1 A numerical example

In this section, we give a numerical example and illustrate the applicability of our results. For this purpose,

we consider the conic MIP

min
px,yqPZˆR2

tx` y1 ` y2 : x ě }y}2, 4x` y1 “ 5u , (20)

whose feasible region is the singleton p1, 1, 0q. It can be checked that for the problem (20), we have that

Ω :“ tw : 4x`y1 “ ω for px, yq P L3
XpZˆR2qu “ t0uYr3, 5sY r6,8q and Ωď “ tw : 4x`y1 ď ω for px, yq P

L3
X pZˆ R2qu “ R`.

Notice that the conic dual of the continuous relaxation of the conic MIP (20), which is given below, is

11



feasible (e.g. α “ ´1 is a feasible solution):

max
αPR

$

’

&

’

%

5α :

»

—

–

4α

α

0

fi

ffi

fl

ĺL3

»

—

–

1

1

1

fi

ffi

fl

,

/

.

/

-

.

Here, we define the Lorentz cone in dimension n` 1 as Ln`1 :“ tpx, yq P RˆRn : x ě }y}2u. Therefore, due

to Proposition 6, the subadditive dual given below is a strong dual (notice that in this case we can choose

IpL3
X pZ1 ˆ R2qq “ t1u ˆD, where D :“ tv P R2 : }v}2 ď 1u):

max tfp5q : fp4` v1q ď 1` v1 ` v2 @v P D, fp0q “ 0, f P FR3 .u (21)

Moreover, as we will show below, there exists an optimal generator function to the subadditive dual (21).

To this end, we first point out that the set convptpx, yq P L3
XpZˆR2q : 4x`y1 ď 5uq “ tpx, yq P L3 : x ď 1u

is conic representable. Since the later set is also bounded, the conic dual of the program min
 

x` y1 ` y2 :

4x` y1 “ 5, x ď 1, px, yq P L3
(

, which is given below, is a strong dual:

max
pα,βqPRˆR`

$

’

&

’

%

5α´ β :

»

—

–

4α´ β

α

0

fi

ffi

fl

ĺK

»

—

–

1

1

1

fi

ffi

fl

,

/

.

/

-

.

In fact, it can be shown that in an optimal solution of the dual problem, we have α˚ “ 10445. Now, we can

apply Theorem 2 to obtain an optimal subadditive generator function as follows:

F10445pωq “ 10445ω ´ sup
px,yqPL3XpZˆR2q

t41779x` 10444y1 ´ y2 : 4x` y1 ď ωu . (22)

In this case, it is possible to compute the generator function over Ωď based on three cases:

• ω “ 0: In this case, x˚ “ y˚1 “ y˚2 “ 0 and F10445p0q “ 0.

• ω P p0, 3q: In this case, x˚ “ y˚1 “ y˚2 “ 0 and F10445pωq “ 10445ω.

• ω P r3, 5s: In this case, x˚ “ 1, y˚1 “ ω ´ 4, y˚2 “ ´
a

1´ pω ´ 4q2 and F10445pωq “ ´3 ` ω ´
a

1´ pω ´ 4q2.

• ω P p5, 6q: In this case, x˚ “ 1, y˚1 “ 1, y˚2 “ 0 and F10445pωq “ 2` 10445pω ´ 5q.

• ω ě 6: In this case, we first obtain the solution of the continuous relaxation as x1 “
?

0.06`1.6
6 w

after eliminating y1 and y2 variables. For the conic MIP, an optimal value of x is either x˚ “ rx1s or

x˚ “ tx1u. After plugging in the values of y˚1 “ ω ´ 4x˚ and y˚2 “ ´
a

px˚q2 ´ py˚1 ´ 4q2, we obtain

F10445pωq “ max
 

´ 3rx1s` ω ´
a

rx1s2 ´ pω ´ 4rx1sq2,´3tx1u` ω ´
a

tx1u2 ´ pω ´ 4tx1uq2
(

.

The value of the generator function F10445 as computed above and the value of the function F 110445, which

is obtained by relaxing the integrality restriction of x variable in equation (22), are drawn in Figure 1 for

different r.h.s. values of ω P Ω. We also note that F 110445 provides an under-approximation of F10445, as

expected.
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Figure 1: F10445 vs. F 110445 over Ω.

4.2 Examples of sets Mďpbq with conic representable integer hull

Recall the set Mďpbq “ tpx, yq PM :Ax `Gy ď bu with M “ K X pZn1 ˆ Rn2q. When K is the cartesian

product of linear transformations of nonnegative orthants and the data is rational, by Meyer’s theorem [22],

the integer hull of Mďpbq is a rational polyhedron (see [8] for more conditions for this to happen). We now

present examples of sets Mďpbq, where the cone K is a not necessarily a rational polyhedral cone and such

that their integer hull is conic representable, and so the main assumption in Theorem 2 is satisfied.

4.2.1 Conic sets with finitely many integer fibers

Let b P Ωď and U Ď Zn1 be the projection onto Rn1 of Mďpbq. For u P U , the integer fiber defined by u is

the convex set

Rďpb, uq “ tpx, yq P K X pZn1 ˆ Rn2q :Gy ď b´Au, x “ uu.

Assume that U is a finite set (note that the condition of U being a finite set is always satisfied for conic

mixed-integer binary programs) and that all its integer fibers are conic representable, that is, for each u P U ,

there exists a regular cone Cu, matrices Πu,Φu,Ψu and a vector πu such that

Rďpb, uq “ tpx, yq P K X pZn1 ˆ Rn2q : Dwu P Rn
u
3 s.t. Πux` Φuy `Ψuwu ľCu π

u, x “ uu.

Observe that

convpMďpbqq “ conv

˜

ď

uPU
Rďpb, uq

¸

. (23)

Furthermore, the recession cone of each setRďpb, uq is equal toRďp0, 0q “ tpx, yq P KXpZn1ˆRn2q :Gy ď

0, x “ 0u, so we conclude that the convex hull of the union in (23) is a closed set. The closure of the convex

hull of the (finite) union of conic representable sets is known to be conic representable, and from (23), we

obtain the following explicit formulation for convpMďpbqq (see [4]):
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convpMďpbqq “

"

px, yq P K X pZn1 ˆ Rn2q : D pxu, yu, wu, λuq P pZn1 ˆ Rn2 ˆ Rn
u
3 ˆ R`q :

Πuxu ` Φuyu `Ψuwu ľCu π
uλu, xu “ uλu, for all u P U

x “
ÿ

uPU
xu, y “

ÿ

uPU
yu, 1 “

ÿ

uPU
λu

*

.

4.2.2 Packing conic mixed-integer programs

A definition of packing conic sets is given in [1] and a definition of packing semidefinite programs involving

nonlinear mappings is given in [13]. In our setting, the definition given in [1] is as follows.

Definition 7 (Packing conic set). A packing conic set is a set Rďpbq “ tpx, yq P K :Ax`Gy ď bu such that

rows of rA Gs belong to the dual cone K˚.

It can be shown that for packing conic sets, we have that Ωď “ Rm` , that is, the setMďpωq is feasible for

any ω ě 0. If the set convpMďpbqq is bounded, then the generating subadditive functions Fα are well-defined.

In addition, by the discussion in Section 4.2.1, the set convpMďpbqq is conic representable, so we can apply

the results in Theorem 2 to conclude that there exists α˚ P Rm such that the function Fα˚ : Rm` Ñ R is an

optimal solution to the corresponding subadditive dual (9). We now give a characterization for a packing

conic set to be a bounded set. For some sufficient conditions for boundedness, see [1].

Proposition 9. Consider a packing conic set of the form Rďpbq. Then, there exists a vector µ̂ ě 0 such

that
”

A G
ıT

µ̂ P intpK˚q if and only if the set Rďpbq is a bounded set.

Proof. Note that the recession cone of Rďpbq is the set the Rďp0q “ tpx, yq P K :Ax ` Gy ď 0u and that

Rďpbq is bounded if and only if Rďp0q “ t0u. For any pkx, kyq P intpK˚q, we can consider the primal problem

suptkTx x` k
T
y y : px, yq P Rďp0qu and its dual inf

"

0 :
”

A G
ıT

µ ľK˚ pkx, kyq, µ ě 0

*

.

(ñ): Assume that there exists a vector µ̂ ě 0 such that pkx, kyq :“
”

A G
ıT

µ̂ P intpK˚q. This implies

that the dual problem is feasible with the optimal value of 0. By weak duality, we conclude that kTx x`k
T
y y ď 0

for any px, yq P K. Considering the fact that pkx, kyq P intpK˚q, we conclude that kTx x ` kTy y “ 0. This

implies that px, yq “ 0 is the only primal feasible solution, implying that Rďpbq is a bounded set.

(ð): Assume that Rďpbq is a bounded set, then Rďp0q “ t0u. Then, for any pkx, kyq P intpK˚q

the primal problem must have an optimal value of 0. By strong duality, we must have that the dual is

feasible, and therefore, there exists a vector µ̂ ě 0 such that
”

A G
ıT

µ̂´ pkx, kyq P K˚, which implies that
”

A G
ıT

µ̂ P intpK˚q.

4.3 An example of a conic MIP with block structure: clustering problem

We now give an example for conic MIP with block structure of the form (17). Suppose that we are given

points ξι P Rp, ι “ 1, . . . , I. Our aim is to group these points into Q clusters and find one representative

χq P Rp for each cluster, q “ 1, . . . , Q in such a way that the total Euclidean distance of the points assigned to

a cluster to their representative is minimized. This problem can be formulated as the following optimization
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problem

min
ζqι Pt0,1u,χqPRp

#

Q
ÿ

q“1

I
ÿ

ι“1

ζqι }χ
q ´ ξι}2 :

Q
ÿ

q“1

ζqι “ 1, ι “ 1, . . . , I

+

,

or equivalently as

min
ζ,χ,δ

#

Q
ÿ

q“1

I
ÿ

ι“1

δqι :
Q
ÿ

q“1

ζqι “ 1, }χq ´ ξι}2 ď δqι `Mp1´ ζ
q
ι q, ζ

q
ι P t0, 1u, ι “ 1, . . . , I; q “ 1, . . . , Q

+

,

with M “ maxι,ι1 }ξι ´ ξι1}. To put this formulation in the form of (17), we define new variables as in the

below formulation:

min
ζ,χ,δ,ζ̄,η̄,η

Q
ÿ

q“1

I
ÿ

ι“1

δqι

s.t.
Q
ÿ

q“1

ζqι “ 1, ηqι “ χq ´ ξι, η̄
q
ι “ δqι `Mp1´ ζ

q
ι q, ζ

q
ι ` ζ̄

q
ι “ 1 ι “ 1, . . . , I; q “ 1, . . . , Q

η̄qι ě }η
q
ι }2, ζ

q
ι ě 0, ζ̄qι ě 0 ι “ 1, . . . , I; q “ 1, . . . , Q

ζqι P Z, ζ̄qι P Z, χq P Rp, δqι P R, η̄qι P R, ηqι P Rp ι “ 1, . . . , I; q “ 1, . . . , Q,

Now, this formulation is in the form (17) with ` “ q, xq “ rpζqι qι, pζ̄
q
ι qιs P ZI`ˆZI` and yq “ rpχq, pδqι qι, pη̄

q
ι , η

q
ι qιs P

Rp ˆ RI ˆLp`1,I , where Lp`1,I is the product of I many Lorentz cones in Rp`1.
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