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Abstract

We consider the theoretical computational complexity of finding locally optimal solutions to

bilevel linear optimization problems (BLPs), from the leader’s perspective. We show that, for

any constant c > 0, the problem of finding a leader’s solution that is within Euclidean distance

cn of any locally optimal leader’s solution, where n is the total number of variables, is NP-hard.

Our derivations exploit techniques similar to those used for the analogous result for quadratic

optimization problems (QPs). As a side observation, we also provide a BLP reformulation of the

celebrated Motzkin-Straus QP model for the maximum clique problem and thereby illuminate

the close connection of combinatorial optimization problems to both BLPs and QPs.

1 Introduction

In this paper, we consider bilevel linear optimization problems (BLPs) of the form:

max
x

c⊤x+ d⊤1 y (BLP-a)

s.t. A1x ≤ b1, x ∈ Rn1
+ , (BLP-b)

y ∈ argmax
ŷ

{
d⊤2 ŷ | A2x+Bŷ ≤ b2, ŷ ∈ Rn2

+

}
, (BLP-c)
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where A1 ∈ Qm1×n1 , A2 ∈ Qm2×n1 , B ∈ Qm2×n2 , c ∈ Qn1 , d1 ∈ Qn2 , d2 ∈ Qn2 , b1 ∈ Qm1 , and

b2 ∈ Qm2 . BLPs provide a general framework for hierarchical or game-theoretic decision-making

in which a leader chooses the values of variables x and a follower sets the values of variables

y in reaction to the leader’s choice. BLPs arise in multiple application domains, including net-

work design [Baggio et al., 2021, Marcotte et al., 2009], pricing [Panin and Plyasunov, 2023], and

defense [Borrero et al., 2019]; see also recent surveys by Kleinert et al. [2021] and Beck et al. [2023].

The problem (BLP) is considered from the leader’s point of view, and the goal is to select the

best solution for the leader under certain assumptions about the follower’s behavior. Let us define

X := {x ∈ Rn1
+ | A1x ≤ b1},

to be the set of the leader’s decisions satisfying constraints (BLP-b) (the upper-level constraints).

The set of possible reactions by the follower to a given leader’s decision x ∈ X is denoted by

R(x) := argmax
{
d⊤2 y | By ≤ b2 −A2x, y ∈ Rn2

+

}
, (1)

and we refer to it as the follower’s rational reaction set with respect to x. Naturally, R(x) is not

necessarily a singleton and different versions of (BLP), commonly known as the optimistic and

pessimistic versions, are obtained under different assumptions on the part of the leader about how

the follower selects an element of R(x); see, e.g., Lagos and Prokopyev [2023]. Our results apply to

both these variants, since in our reductions below, the rational reaction set is always a singleton.

In the considered class of BLPs, the follower’s variables do not appear in the upper-level con-

straints (BLP-b). As we demonstrate in this paper, it is difficult to construct locally optimal

solutions even for this restricted class of problems. In the remainder of the paper, we also make

the following two assumptions.

Assumption 1 (A1). The leader’s feasible set X is non-empty and bounded.

Assumption 2 (A2). For any x ∈ X , the follower’s feasible region is non-empty and bounded.

These assumptions are standard in the related literature and are made for clarity of exposition.

They guarantee that an optimal solution exists [Dempe, 2002] and that the follower’s problem

always has a finite optimal solution. In practice, some (or all) of these assumptions can be relaxed.

Computational complexity. The focus of this paper is on the theoretical computational

complexity of BLPs. Classical single-level linear programs (LPs) form a special case of BLPs and

are known to be solvable in polynomial time [Khachiyan, 1979]. In contrast, general BLPs are
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computationally difficult. In one of the earliest studies on this class of problems, Ben-Ayed and

Blair [1990] show that BLPs are NP-hard, while Buchheim [2023] showed only very recently that

a decision version of BLP is in NP and is thus NP-complete. Hansen et al. [1992] further showed

that BLPs are strongly NP-hard even for the min-max case. A general complexity hierarchy for

multilevel optimization problems is explored by Jeroslow [1985].

BLPs and more general classes of bilevel problems with LPs at the lower level can be refor-

mulated as single-level mixed integer linear optimization problems (MILPs) via the LP optimality

conditions. These reformulations enable solving BLPs using off-the-shelf MILP solvers. However,

this approach typically requires a big-M parameter that is sufficiently large; see, e.g., Audet et al.

[1997], Yang et al. [2023], Zare et al. [2019] for multiple examples of such reformulations. Buchheim

[2023] showed that an appropriate big-M parameter can be computed efficiently for BLPs, though

its magnitude is impractically large, despite being polynomially representable. In contrast, whether

a given big-M yields an equivalent reformulation of a BLP cannot be verified in polynomial time

unless P = NP ; see Kleinert et al. [2020] and the related discussion by Buchheim [2023].

To date, we are not aware of any results that concern the computational complexity of finding

locally optimal solutions to BLPs. To the best of our knowledge, the only relevant results are

provided by Marcotte and Savard [2005] and Vicente et al. [1994], where it is shown that the

problem of checking local optimality and the problem of checking strict local optimality of a given

leader’s decision are both NP-hard. Here, we close that existing gap in the literature.

Local optimality (for the leader). The notion of local optimality must be carefully defined

in the bilevel setting, since there are optimality conditions at both the upper and lower levels that

can each be modified, in principle, to arrive at different notions of local optimality. For example,

Shi et al. [2023] explore local optimality of the follower’s response in order to provide upper and

lower bounds for globally optimal solutions of the optimistic bilevel problem. The definition used in

the present study relaxes global optimality of only the leader’s decisions, which is meaningful from

the modeling perspective, given that BLPs focus on optimizing the leader’s objective function.

Let B(x̂, ϵ) = {x ∈ Rn1 | ||x− x̂||2 ≤ ϵ} be the Euclidean ball of radius ϵ centered at x̂. Then,

we say that x̂ ∈ X is a locally optimal leader’s optimistic solution to (BLP) if there exists ϵ > 0

such that for any x ∈ X ∩ B(x̂, ϵ), we have that

c⊤x̂+ max
y∈R(x̂)

d⊤1 y ≥ c⊤x+ max
y∈R(x)

d⊤1 y. (2)

Similarly, we say that x̂ ∈ X is a locally optimal leader’s pessimistic solution to (BLP) if there
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exists ϵ > 0 such that for any x ∈ X ∩ B(x̂, ϵ), we have that

c⊤x̂+ min
y∈R(x̂)

d⊤1 y ≥ c⊤x+ min
y∈R(x)

d⊤1 y. (3)

As briefly mentioned above, the optimistic and pessimistic cases coincide in our reductions and

our main result thus holds for both versions of BLP. In the remainder of the paper, we therefore

drop the terms “optimistic” and “pessimistic.” Also, to streamline the discussion, whenever we

refer to a locally optimal solution of a BLP, we mean a locally optimal leader’s solution.

For a motivating numerical example, consider the following BLP instance:

z∗ = max
x,y

z(x) := x− 10y (4a)

s.t. 0 ≤ x ≤ 1, y ∈ argmax{ŷ ∈ R+ | ŷ ≤ x, ŷ ≤ 1− x}. (4b)

One can observe that if the leader’s decision x ∈ [0, 0.5], then the leader’s objective function

z(x) = −9x; also, if x ∈ [0.5, 1], then z(x) = 11x − 10. Clearly, x∗ = 1 is the unique (globally)

optimal solution for the leader, with z∗ := z(x∗) = 1. However, observe that x̂ = 0, with z(x̂) = 0,

is locally optimal for the leader according to both (2) and (3).

Contribution and outline. From what is known to date, we cannot rule out the existence of

a polynomial time algorithm that finds a locally optimal solution for BLP, or the existence of some

easily verifiable locally optimal solution for BLP. Our main contribution is to show that neither of

these is possible unless P = NP . Formally, our main result is stated as follows.

Theorem 1. For any constant c > 0, the problem of finding x ∈ X such that x ∈ B(x̂, cΘ(n1+n2))

for some x̂ ∈ X that is locally optimal to (BLP) is NP-hard.

The problem of finding locally optimal solutions is difficult for essentially the same reasons

that make finding globally optimal solutions challenging (see further discussion and an example in

Appendix A). The aforementioned study by Buchheim [2023] shows that BLP can be interpreted

as a combinatorial search over bases of the follower’s reaction problem. Similar arguments are used

by Deng [1998] to demonstrate that BLPs are polynomially solvable whenever the number of the

follower’s variables is fixed. We show that the problem of finding locally optimal solutions for BLPs

is analogously combinatorial in its essence.

Specifically, we prove the main result in Theorem 1 by reducing the problem of determining

whether a given graph has an independent set of size k to that of finding a locally optimal solution

to a particular BLP. Our approach is inspired by that of Ahmadi and Zhang [2022], who show that
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the problem of determining whether a given graph has an independent set of size k, can be reduced

to that of finding a locally optimal solution to a particular quadratic optimization problem (QP).

Ahmadi and Zhang exploit the Motzkin-Straus reformulation of the maximum clique problem as a

QP [Motzkin and Straus, 1965]. In this paper, we also show that the maximum clique problem can

be reformulated as a BLP, which, from our perspective, is an intriguing observation in itself.

The remainder of this paper is organized as follows. In Section 2, we provide the necessary

preliminary results along with some related observations. In particular, in Section 2.1, we describe

the celebrated Motzkin-Straus QP reformulation for solving the maximum clique problem. Next,

in Section 2.2, we briefly summarize how this reformulation is employed to arrive at the aforemen-

tioned complexity result for QPs by Ahmadi and Zhang [2022]. Following that, in Section 2.3 we

provide our BLP reformulation of Motzkin-Straus QP, which also highlights some essential techni-

cal results. Section 3 then contains the proof of the main result given by Theorem 1. Finally, in

Section 4 we conclude the paper with some remarks and observations.

Additional notation. For any n ∈ Z>0, let [n] := {1, . . . , n}. Denote by e = (1, . . . , 1)⊤ a

vector of all ones, and by ei = (0, . . . , 0, 1, 0, . . . , 0)⊤ the ith unit vector. Let I and J denote the

identity matrix and the matrix of all ones, respectively. For a symmetric matrix M ∈ Rn×n, we

say that M is copositive if x⊤Mx ≥ 0 for any x ≥ 0. In the remainder of the paper, all vectors

and matrices are assumed to be of conformable dimension if not specified. Finally, throughout the

paper an optimal solution is assumed to be globally optimal, while locally optimal solutions are

always designated as such.

2 Preliminaries and related observations

2.1 Motzkin-Straus QP

Given a simple undirected unweighted graph G = (V,E), a clique is a subset of vertices S ⊆ V

such that the subgraph induced by S in G is complete. Finding a clique of maximum cardinality is

one of the classical combinatorial optimization problems [Pardalos and Xue, 1994]. This problem

is known to be NP-hard, while its decision version is NP-complete [Garey and Johnson, 1979]. The

cardinality of the maximum clique in G, also known as the clique number of G, is denoted by ω(G).

Let A ∈ Bn×n be the adjacency matrix of a graph G = (V,E) with n := |V |. That is, A, is a sym-

metric matrix, where aij = 1 if {i, j} ∈ E, and aij = 0, otherwise, for all i, j ∈ [n]. Then, Motzkin

and Straus showed that the following QP yields a reformulation of the maximum clique problem:
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z∗QP := max
x

x⊤Ax (MSQP-a)

s.t. e⊤x = 1, (MSQP-b)

x ∈ Rn
+, (MSQP-c)

and the formal statement of the corresponding result is as follows.

Theorem 2 ([Motzkin and Straus, 1965]). Let G be a graph on n vertices with adjacency matrix

A and a clique number ω(G). The optimal objective function value of (MSQP) is z∗QP = 1− 1
ω(G) .

The QP model given by (MSQP) is a well-known non-convex continuous reformulation of a difficult

combinatorial optimization problem; see, e.g., De Santis and Rinaldi [2012] for the related discussion

and other examples. The reformulation involves showing that from any maximum clique of G, we

can construct a corresponding optimal solution to (MSQP). We use the same construction in the

proof of Lemma 1 below and this reformulation is also exploited in a number of algorithmic and

theoretical studies; see, e.g., Abello et al. [2001], Busygin [2006], Pardalos and Vavasis [1991].

2.2 Ahmadi-Zhang result for QP

Given graph G = (V,E), denote its complement as Ḡ = (V, Ē), where {i, j} ∈ Ē if and only if

{i, j} /∈ E. An independent set S of graph G is a subset S ⊆ V of the vertices such that for any

pair i, j ∈ S, i ̸= j, we have that {i, j} /∈ E. That is, the subgraph induced by S in G is edgeless.

The cardinality of the largest independent set in G, also known as the independence number of

G, is denoted by α(G). Clearly, α(G) = ω(Ḡ), which means that the maximum independent set

problem is also NP-hard, while its decision version is NP-complete [Garey and Johnson, 1979].

Given a scalar k and a symmetric matrix A ∈ Bn×n, let

MA,k := kA+ kI − J.

Then, the following result reduces the problem of determining whether G has an independent set

of size at most k to that of determining whether MA,k is copositive.

Proposition 1 (Ahmadi and Zhang [2022]). For a scalar k > 0 and a graph G with adjacency

matrix A, matrix MA,k := kA+ kI − J is copositive if and only if α(G) ≤ k.

The proof of Proposition 1 relies on Theorem 2 and this proposition is, in turn, one of the key

components in establishing the main result by Ahmadi and Zhang [2022]. It has long been known
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that finding a global minimizer of x⊤Qx over a polyhderal set is an NP-hard problem, even when Q

has only a single negative eigenvalue; see Pardalos and Vavasis [1991]. Also, Pardalos and Schnit-

ger [1988] show that even the problem of checking whether a given point is a local minimizer of a

quadratic function over a polyhderal set is NP-hard. However, the theoretical computational com-

plexity of finding a locally optimal solution to a nonconvex QP, posed by Pardalos and Vavasis [1992]

as one of seven open questions regarding complexity in optimization in 1992, remained open until it

was resolved by the aforementioned result by Ahmadi and Zhang [2022], stated formally as follows.

Theorem 3 (Ahmadi and Zhang [2022]). If there is a polynomial-time algorithm that finds a point

within Euclidean distance cn (for any constant c ≥ 0) of a local minimizer of an n-variate quadratic

function over a polytope, then P = NP .

This result is proved by exploiting Proposition 1 and the QP of the form:

min
x

x⊤MA,kx (5a)

s.t. e⊤x ≤ ⌈3cn
√
n⌉, (5b)

x ∈ Rn
+. (5c)

There are clear similarities between the Motzkin-Straus QP formulation (MSQP) and the QP

model (5). The latter provides a reduction from the decision version of the maximum clique problem

by showing that α(G) ≤ k if and only if the optimal objective function value of (5) is zero. Indeed,

the feasible region of (5) is a 1-norm ball with radius 3cn
√
n. The proof is to first observe that when

the optimal value of (5) is zero, zero is also the only local optimizer. Otherwise, constraint (5b) must

be binding for all locally optimal solutions. Indeed, without this constraint, there are no locally

optimal solutions and the problem is unbounded. By enclosing the feasible region in a ball, the un-

bounded case instead becomes the case of a locally optimal solution on the bounding ball. Thus, the

problem is reduced to simply determining which of the two aforementioned scenarios holds. The con-

stant 3cn
√
n ensures that no point can be within Euclidean distance cn of both the origin and a point

on the boundary of the feasible region. Hence, knowledge of any point that is within a Euclidean

ball of radius cn of any locally optimal solution is sufficient to decide whether or not α(G) ≤ k.

Our main result depends on a reformulation of the maximum clique problem as a BLP that is

analogous to the Motzkin-Straus reformulation of maximum clique as a QP. A slightly modified

version of this reformulation is then exploited to prove Theorem 1, our main result, in Section 3.

Specifically, the proposed approach uses a BLP analogous to (5) and bears a similar relation to the
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BLP reformulation of Motzkin-Straus QP as (5) does to (MSQP).

2.3 BLP reformulation of Motzkin-Straus QP

For a given graph G = (V,E), with its adjacency matrix A ∈ Bn×n, consider the following BLP:

z∗BP := max
(x,q,s),t

s− µe⊤t (MSBP-a)

s.t. es = Ax+ q, (MSBP-b)

e⊤x = 1, (MSBP-c)

q ≤ e, (MSBP-d)

x, q ∈ Rn
+, s ∈ R+, (MSBP-e)

t ∈ argmax
t̂

e⊤t̂ (MSBP-f)

s.t. t̂ ≤ x, (MSBP-g)

t̂ ≤ q, (MSBP-h)

t̂ ∈ Rn
+, (MSBP-i)

where µ is a sufficiently large “penalty” parameter that ensures that t = 0 in any optimal solution;

see Proposition 3 below. Note that assumptions A1 and A2 from Section 1 hold for MSBP.

Before formally showing that (MSBP) is a reformulation of (MSQP), we first briefly sum-

marize the steps in the proof to highlight the underlying intuition. The main idea is that the

constraints and the objective function of (MSBP) ensure that the optimal values of the leader’s

variables x and q represent a Karush-Kuhn-Tucker (KKT) point of (MSQP). Indeed, the follower’s

problem enforces ti = min{xi, qi} for all i ∈ [n], which implies that if the penalty parameter µ is

sufficiently large, then t must take value zero, i.e., x and q are complementary. Meanwhile, the con-

straints (MSBP-b) and (MSBP-c) ensure that s = x⊤Ax+ x⊤q. As such, for an optimal solution

(x∗, q∗, s∗, t∗) to (MSBP), we have that:

s∗ − µe⊤t∗ = x∗⊤Ax∗ + x∗⊤q∗ − µe⊤t∗ = x∗⊤Ax∗,

and hence, the optimal solutions to (MSBP) correspond to the KKT points of (MSQP).

Next, we present the full details of the proof, following the above outline. The proof is broken

into three simpler results (Lemma 1, Propositions 2 and 3) to make it easier to digest. We first

ensure that there always exists a solution to (MSBP) in which the corresponding leader’s objective
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function is non-negative, while the positive components of x and q, are bounded away from zero.

Lemma 1. Problem (MSBP) has a feasible solution (x̂, q̂, ŝ, t̂) such that ŝ− µe⊤t̂ ≥ 0.

Proof. We construct a feasible solution for (MSBP) as follows. Consider any clique S ⊆ V in G.

That is, 1 ≤ |S| ≤ ω(G). Let (x̂, q̂, ŝ, t̂) be as follows:

x̂i =


(|S|)−1 if i ∈ S,

0 otherwise,

q̂i =


0 if i ∈ S,

ŝ− (Ax̂)i otherwise,

ŝ = 1− (|S|)−1 ≥ 0, t̂i = 0 ∀i ∈ [n].

Then, (MSBP-c) is clearly satisfied for x̂. Also, for i ∈ S, we have (Ax̂)i + q̂ = (Ax̂)i = (|S| −

1)(|S|)−1 = ŝ. On the other hand, for i /∈ S, we have (Ax̂)i =
∑

j∈S\{i} aij x̂j ≤ (|S|−1)(|S|)−1 = ŝ,

which means that 0 ≤ q̂i = ŝ− (Ax̂)i ≤ 1. Consequently, (MSBP-b)-(MSBP-e) are all satisfied for

(x̂, q̂, ŝ). Finally, observe from (MSBP-g) and (MSBP-h) that the corresponding follower’s decision

t̂ = 0 is optimal for the follower’s problem since either x̂i = 0 if i /∈ S, or q̂i = 0 if i ∈ S.

Proposition 2. Let ∆ := (4n)−2n. Problem (MSBP) has an optimal solution (x∗, q∗, s∗, t∗) such

that for all i ∈ [n] either x∗i = 0 or x∗i ≥ ∆ and, similarly, for all i ∈ [n] either q∗i = 0 or q∗i ≥ ∆.

Proof. Given (x, q, t) ∈ R3n
+ , t is optimal for the lower-level LP (MSBP-f)–(MSBP-i) if and only if

for some Q ⊆ [n], ti = xi for all i ∈ Q and ti = qi for all i ∈ [n] \Q. As such, given Q ⊆ [n], denote

by P (Q) ⊆ R3n+1
+ a polytope that is described by constraints (MSBP-b)-(MSBP-d) along with

ti = xi for all i ∈ Q, ti = qi for all i ∈ [n] \Q, and the non-negativity constraints for all variables,

including s. Then, every feasible solution to (MSBP) must be contained in P (Q) for some Q ⊆ [n].

For Q ⊆ [n], P (Q) is non-empty and bounded, since x ∈ [0, 1]n from (MSBP-c) and (MSBP-e),

and q ∈ [0, 1]n from (MSBP-d) and (MSBP-e). Furthermore, recall that each element of A is

either 0 or 1; hence, s ∈ [0, 2]. Also, ti is equal to either xi or qi for all i ∈ [n]; thus, t ∈ [0, 1]n.

Consequently, all such LPs have a finite optimal solution, which implies that (MSBP) has a finite

optimal solution.

Given any matrix B ∈ Rm×m for which |bij | ≤ 1 for i, j ∈ [m], |det(B)| ≤ mm/2 by Hadamard’s

Inequality [Brenner and Cummings, 1972]. For each of the aforementioned LPs, a basic feasible

solution (including an optimal one) can be found by solving a system of linear equations with

m := 3n + 1 equality constraints and m := 3n + 1 variables. Moreover, from the constraint set
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in (MSBP-b)–(MSBP-h) and the above discussion, it is clear that each element of the corresponding

square matrix is in {−1, 0, 1}. Hence, from Cramer’s rule, we conclude that for i ∈ [n], xi is either

0 or at least

1/det(B) ≥ 1/(3n+ 1)(3n+1)/2 ≥ (4n)−2n,

where the second inequality holds because n ≥ 1. Finally, we note that the same observation holds

for vector q. That is, for i ∈ [n], qi is either 0 or at least 1/det(B) ≥ (4n)−2n.

Next, we show that if the penalty parameter µ is sufficiently large, then x∗ and q∗ considered

in the discussion above, must be complementary.

Proposition 3. Let µ ≥ (4n)2n+3. Then, there exists an optimal solution (x∗, q∗, s∗, t∗) of (MSBP)

such that x∗⊤q∗ = 0, t∗ = 0 and s∗ − µe⊤t∗ = x∗⊤Ax∗.

Proof. Assume that x∗⊤q∗ > 0. First, note that by left-multiplying (MSBP-b) by x∗⊤, we obtain:

x∗⊤es∗ = x∗⊤Ax∗ + x∗⊤q∗,

which, by taking into account (MSBP-c), reduces to:

s∗ = x∗⊤Ax∗ + x∗⊤q∗, (6)

and the corresponding leader’s objective function is given by:

s∗ − µe⊤t∗ = x∗⊤Ax∗ + x∗⊤q∗ − µe⊤t∗. (7)

From (MSBP-c)–(MSBP-e), we have that both x∗, q∗ ∈ [0, 1]n and thus, min{x∗i , q∗i } ≥ x∗i · q∗i
for every i ∈ [n]. By the initial assumption, there exists j ∈ [n] such that x∗j · q∗j > 0. Then:

µe⊤t∗ − x∗⊤q∗ =
n∑

i=1

(
µmin{x∗i , q∗i } − x∗i · q∗i

)
(8a)

≥ µmin{x∗j , q∗j } − x∗j · q∗j ≥ (µ− 1) ·min{x∗j , q∗j } ≥ (µ− 1) · (4n)−2n, (8b)

where the equality in (8a) follows from (MSBP-f)–(MSBP-i), and the last inequality in (8b) follows

from Proposition 2. Next, combining (7) with (8), we obtain that:

s∗ − µe⊤t∗ = x∗⊤Ax∗ + x∗⊤q∗ − µe⊤t∗

≤ x∗⊤Ax∗ − (µ− 1) · (4n)−2n ≤ x∗⊤Jx∗ − (µ− 1) · (4n)−2n ≤ 1− (4n)2n + 2

(4n)2n
< 0,

(9)
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where the second inequality follows because A ≤ J = ee⊤ and (MSBP-c) holds for x∗; the third

inequality follows from µ ≥ (4n)2n + 3. From Lemma 1, the optimal objective function value

of (MSBP) is non-negative. Hence, (9) results in a contradiction, which implies that

x∗⊤q∗ = 0 (10)

for any optimal solution of (MSBP).

Furthermore, combining (10) with (MSBP-g) and (MSBP-h), we conclude that t∗ = 0. Finally,

from the latter and (7) we also observe that s∗ − µe⊤t∗ = x∗⊤Ax∗, which completes the proof.

We are ready to establish the main result of this section, which is analogous to Theorem 2 and

shows that (MSBP) is a reformulation of the Motzkin-Straus QP model (MSQP).

Theorem 4. Let G be a graph on n vertices with adjacency matrix A and a clique number ω(G).

If µ ≥ (4n)2n + 3, then the optimal objective function value of (MSBP) is z∗BP = 1− 1
ω(G) .

Proof. Let µ ≥ (4n)2n + 3. Using Proposition 3, we can rewrite (MSBP) as the following QP:

max
x,q,s

x⊤Ax (11a)

s.t. Ax+ q − es = 0, (11b)

e⊤x = 1, (11c)

q ≤ e, (11d)

x⊤q = 0, (11e)

x ≥ 0, q ≥ 0, s ≥ 0. (11f)

It can be verified that (11) is nothing more than (MSQP) augmented with the associated KKT

conditions (11b) and (11e), as well as an upper bound on q in (11d).

The addition of the necessary optimality (KKT) conditions to a QP cannot eliminate any

optimal solution. Furthermore, given (x∗, q∗, s∗), an optimal KKT solution to (MSQP), we have

that:

q∗ ≤ es∗ = ex∗⊤Ax∗ ≤ ex∗⊤ee⊤x∗ ≤ e,

where the first inequality follows from (11b), the first equality follows from (6) and (11e), the

second inequality follows from A ≤ J = ee⊤, and the last inequality follows from (11c). Hence,

we conclude that adding (11d) cannot eliminate any optimal solution of (MSQP). In view of the
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above discussion, the required result follows and we conclude that the optimal objective function

values of (MSQP) and (MSBP) coincide and are equal to 1− 1
ω(G) .

To conclude this section, we point out the following two observations. First, the considered

value of µ that is sufficiently large in our derivations, is (4n)2n + 3, which has a bit representation

of polynomial size, since log[(4n)2n + 3] = O(n log n). Hence, the outlined derivations provide yet

another proof that solving BLP is a strongly NP-hard problem. The other observation is concerned

with the fact that (10) holds whenever µ is sufficiently large. That is, “favorable” decisions for the

leader in the outlined BLP correspond to the KKT points of (MSQP) and hence, the underlying

bilevel optimization problem can be interpreted as the combinatorial problem of selecting the best

KKT points of (MSQP), A similar in spirit idea is used in the literature for reducing non-convex

QPs to MILPs; see, e.g., Xia et al. [2020].

3 Proof of the main result

The proof of Theorem 1 combines the ideas used in proving Theorem 3 by Ahmadi and Zhang

[2022] and Theorem 4 in Section 2.3. Note that the proof by Ahmadi and Zhang [2022] relies on the

complexity of finding a local minimizer for a degree-4 polynomial, which, in turn, exploits a Hessian

of the corresponding quartic form. In contrast, our proof requires a particular constraint structure

of the underlying BLP, along with Proposition 1 and some additional technical observations.

Formally, given some positive k ∈ Q>0 and c ∈ Q>0, we consider a BLP of the form:

z∗k,c := max
(x,q,s,h),t

s− 1

nµk,c
· h− µk,c · e⊤t (12a)

s.t. es = −(kA+ kI − J)x+ q, (12b)

e⊤x = ⌈3cn
√
n⌉h, (12c)

h ≤ 1, (12d)

q ≤
(
2k⌈3cn

√
n⌉e

)
h, (12e)

x, q ∈ Rn
+, h, s ∈ R+, (12f)

t ∈ argmax
t̂

e⊤t̂ (12g)

s.t. t̂ ≤ x, (12h)

t̂ ≤ q, (12i)
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t̂ ∈ Rn
+, (12j)

where µk,c is a positive parameter that depends on k and c; below, we specify one particular value

for µk,c, which is of polynomial size with respect to the problem’s parameters. The leader’s variables

are (x, q, s, h) ∈ R2n+2, and the follower’s variables are given by t ∈ Rn.

Two comments regarding this bilevel formulation are in order. First, there are clear similarities

with (5), but also some differences. We introduce a variable h in the right-hand side of (12c) to

make the proof cleaner. Substituting out h using (12c), one can observe that (12d) then becomes

identical to (5b). The role of this constraint is the same here as it is in (5), to constrain x to be

in a 1-norm ball, so that locally optimal solutions lie either at the origin or on the ball. Without

this constraint, the problem could simply have no locally optimal solutions. Although the same

conclusions would ultimately be reached, dealing with the possibility of unboundedness would make

the proof more difficult and we choose to impose the bounding ball, as Ahmadi and Zhang [2022]

similarly did in their work. Our second comment is about the constant parameter ⌈3cn
√
n⌉, which

determines the radius of the bounding ball. This constant could have a simpler form by using

different norms, which would simplify some of the equations to follow. However, we keep it as is to

stay as close to the approach taken by Ahmadi and Zhang [2022], as possible.

The proof of our main result, Theorem 1, which is performed in the following three main steps:

(i) First, we show that if parameter µk,c in (12) is sufficiently large, then for all locally optimal

solutions (x̂, q̂, ŝ, ĥ) to (12), x̂ and q̂ must be complementary; see Proposition 4 below.

(ii) Next, in Proposition 5, we show that for all locally optimal solutions (x̂, q̂, ŝ, ĥ) to (12), we

must have that ĥ ∈ {0, 1}. Given (12c), it implies that either x̂ = 0 or e⊤x̂ = ⌈3cn
√
n⌉.

(iii) Finally, in Propositions 6 and 7, we show that deciding whether α(G) < k, where k /∈ Z, is

equivalent to determining whether leader’s decision (x̂, q̂, ŝ, ĥ) = (0, 0, 0, 0) is locally optimal.

Because the only other possible locally optimal solutions are outside a Euclidean ball around

the origin of radius cn, constructing any point within Euclidean distance cn of any locally

optimal solution is sufficient to decide whether α(G) < k.

Each of the above steps requires additional technical lemmas along with some assumptions

outlined next. Specifically, in the remainder of this section, we assume that for some integer r ≥ 1

k := r + 0.5, (13)
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which implies that k is not integer, k > 1 and 2k is a positive integer. Furthermore, throughout this

section we also define the following parameters, which have bit representation of polynomial size:

σk,c := (2k + 1) · ⌈3cn
√
n⌉,

∆k,c := (2k⌈3cn
√
n⌉)−(3n+2)(3n+ 2)−(3n+2)/2, and

µk,c := 2σk,c(∆k,c)
−1.

(14)

We first establish the existence of a finite optimal solution for (12). We also derive lower

and upper bounds on the leader’s objective function values for globally optimal leader’s solutions.

Clearly, these bounds are also valid for locally optimal solutions.

Lemma 2. Problem (12) has an optimal solution (x∗, q∗, s∗, h∗, t∗) such that

σk,c ≥ z∗k,c = s∗ − 1

nµk,c
· h∗ − µk,c · e⊤t∗ ≥ 0. (15)

Proof. One can verify that setting all variables to zero is feasible; hence, z∗k,c ≥ 0. From (12b), we

observe that for any (x, q, s, h, t) feasible for (12), we have

s ≤ max
i∈[n]

(Jx+ q)i ≤ (2k + 1) · ⌈3cn
√
n⌉ = σk,c, (16)

where the second inequality follows from (12c)–(12e). Recall that h and t are non-negative; hence,

the objective function value of any feasible solution of (12) is upper-bounded by σk,c.

While the objective function value of any feasible solution satisfies the bounds in (15), however,

it is not sufficient to show that the optimal value is both finite and attained. Given (16) along with

(12c)–(12f), we conclude that the upper-level feasible set is bounded. Also, for any leader’s decision

(x, q, s, h), the follower’s feasible set is bounded. These observations are sufficient to ensure that the

BLP given by (12) has a finite optimal value that is attained; recall assumptions A1 and A2.

Lemma 3. If (x̂, q̂, ŝ, ĥ) is a locally optimal solution to (12), then the leader’s objective function

value is non-negative, i.e.,

ŝ− 1

nµk,c
ĥ− µk,ce

⊤t̂ ≥ 0, (17)

where t̂ is the corresponding follower’s solution.

Proof. For any δ ∈ [0, 1), one can verify that the vector (1− δ) · (x̂, q̂, ŝ, ĥ, t̂) is also feasible for (12)

and has the corresponding leader’s objective function value given by
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(1− δ) · (ŝ− 1

nµk,c
ĥ− µk,ce

⊤t̂).

Recall our assumption that (x̂, q̂, ŝ, ĥ) is locally optimal. Thus, for sufficiently small δ ∈ (0, 1):

(1− δ) · (ŝ− µk,ce
⊤t̂+

1

nµk,c
ĥ) ≤ ŝ− µk,ce

⊤t̂+
1

nµk,c
ĥ,

which can hold only if (17) is satisfied.

The next result is analogous to Proposition 2. However, instead of globally optimal solutions, it

is concerned with locally optimal ones. Also, recall that µk,c is set to be sufficiently large; see (14).

Proposition 4. If (x̂, q̂, ŝ, ĥ) is a locally optimal solution of (12), then

x̂⊤q̂ = 0, (18)

and the corresponding follower’s solution t̂ = 0. Furthermore, if ŝ > 0, then

ŝ >
1

nµk,c
ĥ. (19)

Proof. As in the proof of Proposition 2, we first note that given (x, q, t) ∈ R3n
+ , t is optimal for

the lower-level LP (12g)– (12j) if and only if for some Q ⊆ [n], ti = xi for all i ∈ Q and ti = qi

for all i ∈ [n] \ Q. As such, given Q ⊆ [n], denote by P (Q) ⊆ R3n+2
+ a polytope that is described

by constraints (12b)-(12e) along with ti = xi for all i ∈ Q, ti = qi for all i ∈ [n] \ Q, and the

non-negativity constraints for all variables, including h and s. Then, every feasible solution to (12)

must be contained in P (Q) for some Q ⊆ [n].

Now, let (x̂, q̂, ŝ, ĥ) be locally optimal for (12) and let Q̂ ⊆ [n] be such that (x̂, q̂, ŝ, ĥ, t̂) ∈ P (Q̂).

There are two cases to be considered.

Case 1: (x̂, q̂, ŝ, ĥ, t̂) is a vertex of P (Q̂). This case is similar to Proposition 2. Specifically, recall

that for any matrix B ∈ Rm×m for which |bij | ≤ β for i, j ∈ [n], we have that |det(B)| ≤ βmmm/2 by

Hadamard’s inequality [Brenner and Cummings, 1972]. A vertex of P (Q̂) can be found by solving

a system of linear equations with m := 3n+ 2 equality constraints and m := 3n+ 2 variables.

If we multiply both sides of constraint (12b) by 2, then by our choice of k as in (13), all

coefficients in the constraints that define P (Q̂) are integer. Moreover, from the constraints (12b)-

(12e) and the above discussion, it is clear that each elements of the corresponding square matrix

take values in {±2k⌈3cn
√
n⌉,±⌈3cn

√
n⌉,±1, 0,±2(k − 1)}, which are all integers.

16



Hence, from Cramer’s rule, x̂i is either 0, or at least

1

det(B)
≥ ∆k,c,

for all i ∈ [n], where ∆k,c is defined in (14). Similarly, q̂i is either 0 or at least ∆k,c for all i ∈ [n].

Furthermore, t̂i is also either 0 or at least ∆k,c for all i ∈ [n]. Next, consider the corresponding

leader’s objective function value, for which we have that

0 ≤ ŝ− 1

nµk,c
ĥ− µk,ce

⊤t̂ ≤ σk,c − µk,ce
⊤t̂, (20)

where the first inequality follows from Lemma 3 and the second inequality follows from (16) in

Lemma 2, and the non-negativity of ĥ. Then, we have that

e⊤t̂ ≤
σk,c
µk.c

=
∆k,c

2
, (21)

which implies that e⊤t̂ = 0, since, otherwise, we must have e⊤t̂ ≥ ∆k,c. Thus, (18) holds.

To establish (19), using the arguments as in the discussion above, we observe that if ŝ > 0, then

ŝ ≥ ∆k,c > 0. Recall that by its definition, σk,c ≥ 1. Then, we have that

ŝ ≥ ∆k,c >
1

2σk,c
∆k,c ≥

1

µk,c
≥ ĥ

nµk,c
,

as 0 ≤ ĥ ≤ 1 and n ≥ 1. Thus, (19) holds.

Case 2: (x̂, q̂, ŝ, ĥ, t̂) is not a vertex of P (Q̂). In this case, (x̂, q̂, ŝ, ĥ, t̂) should be a convex

combination of at least two vertices of P (Q̂). Without loss of generality, assume that (x̂, q̂, ŝ, ĥ, t̂) =

αv1+(1−α)v2, where v1 := (x1, q1, s1, h1, t1) and v2 := (x2, q2, s2, h2, t2) for some α ∈ (0, 1). Since

(x̂, q̂, ŝ, ĥ) is locally optimal and the the leader’s objective function is linear, the leader’s objective

function values must be the same for all three solutions and all three solutions must be locally

optimal. By the same logic as in the proof of Case 1, we must have e⊤t1 = e⊤t2 = 0 and so also,

e⊤t̂ = 0. Thus, (18) holds. Finally, (19) can be established similarly to Case 1.

Next, we show that locally optimal solutions may occur only for h ∈ {0, 1}. Formally:

Proposition 5. If (x̂, q̂, ŝ, ĥ) is a locally optimal solution of (12), then ĥ ∈ {0, 1}.

Proof. Assume for the sake of contradiction that (x̂, q̂, ŝ, ĥ) is locally optimal, but 0 < ĥ < 1. Then,

one of the following two cases holds.

Case 1: x̂⊤(kA+ kI −J)x̂ < 0. After left-multiplying both sides of (12b) by x̂ we obtain that:
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x̂⊤eŝ = −x̂⊤(kA+ kI − J)x̂+ x̂⊤q̂, (22)

which, in view of (12c) and (18), reduces to

⌈3cn
√
n⌉ĥŝ = −x̂⊤(kA+ kI − J)x̂, (23)

which, in turn, implies that ŝ > 0.

Let (x̃, q̃, s̃, h̃) := (1 + ϵ)(x̂, q̂, ŝ, ĥ), where ϵ > 0 is chosen so that ϵ < (1 − ĥ)/ĥ and thus,

0 < h̃ < 1. Then, it is easy to verify that (12b)–(12e) hold. Furthermore, x̃⊤q̃ = (1 + ϵ)2x̂⊤q̂ = 0,

which implies that t̃ = 0 forms the corresponding follower’s decision.

By our assumption that the leader’s decision (x̂, q̂, ŝ, ĥ) is locally optimal and the fact that

ŝ > 0 (as shown above), we have from Proposition 4, see (19), that:

ϵ
(
ŝ− 1

nµk,c
ĥ
)
> 0,

which, in turn, implies that:

(1 + ϵ)ŝ− (1 + ϵ)
1

nµk,c
ĥ > ŝ− 1

nµk,c
ĥ,

and hence, (x̃, q̃, s̃, h̃) provides a strictly better objective function value than (x̂, q̂, ŝ, ĥ). Finally,

(x̃, q̃, s̃, h̃) can be made arbitrarily close to (x̂, q̂, ŝ, ĥ) by choosing ϵ sufficiently small. This obser-

vation contradicts our assumption that (x̂, q̂, ŝ, ĥ) is locally optimal.

Case 2: x̂⊤(kA + kI − J)x̂ ≥ 0. In this case, using (22) and (23), we conclude that ĥŝ =

x̂⊤(kA + kI − J)x̂ = 0. Recall that ĥ > 0; hence, ŝ = 0. Also, x̂⊤q̂ = 0 by Proposition 4. Thus,

the corresponding leader’s objective function is equal to

− 1

nµk,c
ĥ < 0,

which, in view of, Lemma 3, implies that (x̂, q̂, ŝ, ĥ) is not locally optimal. Therefore, we have a

contradiction in this case as well.

From Proposition 5, one can see that for a given Q ⊂ [n], P (Q) is a polyhedron with one

extreme point in the origin and the other on the bounding ball. Fixing the value of h determines

which of these two extreme points is a candidate for being locally optimal. Thus, the problem of

determining whether α(G) < k amounts to enumerating the subsets of [n]. It is also interesting

to note that choosing Q is equivalent to choosing a basis of the follower’s LP. Thus, the problem

of finding a locally optimal solution reduces to enumerating bases of the follower’s problem; see
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also Appendix A. It is shown by Buchheim [2023] that the same is true for the problem of finding

globally optimal solutions to general BLPs, which validates our finding that these two problems

are essentially of equal difficulty from a complexity theoretic standpoint.

The next lemma is technical and assumes thatMA,k := kA+kI−J is not copositive. The lemma

is needed for exploring the local optimality conditions of the leader’s decision given by (x̂, q̂, ŝ, ĥ) =

(0, 0, 0, 0). The lemma’s proof relies on a QP of a particular form along with the corresponding

KKT conditions for deriving the required matrix properties; this approach is similar to the one

used by Hiriart-Urruty and Seeger [2010], who exploit it in the context of Pareto eigenvalues.

Lemma 4. Let M ∈ Rn×n be a symmetric matrix that is not copositive. Then, there exist δ ∈ R>0

and y ∈ Rn
+ such that e⊤y = 1 and for any i ∈ [n], one of the two following statements holds:

(i) (My)i ≥ 0 and yi = 0; or

(ii) (My)i = −δ < 0,

Furthermore, if M := MA,k for some k > 1, then δ can be chosen such that δ ≥ ∆k,c.

Proof. Assume M ∈ Rn×n is not copositive. Then, there exists x̂ ∈ Rn such that x̂ ≥ 0 and

x̂⊤Mx̂ < 0. Clearly, we have that x̂ ̸= 0. Next, consider a QP of the form:

z̄ =
1

2
min
y

{y⊤My | e⊤y = 1, y ∈ Rn
+}, (24)

which is feasible and has a finite optimal solution as the feasible region is bounded.

Define ŷ = (e⊤x̂)−1 · x̂. Then, we observe that ŷ is feasible for (24) and ŷ⊤Mŷ < 0. Hence,

z̄ < 0. Let ȳ ∈ Rn
+ be the corresponding optimal solution for (24). As such, it must satisfy the

KKT optimality conditions. That is, there exist δ ∈ R and µ ∈ Rn such that:

eδ = −Mȳ + µ (25a)

e⊤ȳ = 1 (25b)

µ⊤ȳ = 0 (25c)

µ ≥ 0, (25d)

and similar to the derivations above, by left-multiplying (25a) by ȳ⊤, we conclude that δ = −2z̄ > 0.

Next, we make the following two observations.

• Let (My)i ≥ 0. From (25a) and the fact that δ > 0, we conclude that µi > 0. Hence, from

(25c) we have that ȳi = 0, which implies that the statement (i) holds.
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• Let 0 < ȳi ≤ 1. Then, from (25c) we have that µi = 0. Moreover, (My)i = −δ < 0 from

(25a), which implies that the statement (ii) holds.

To show that we can assume w.l.o.g that δ ≥ ∆k,c under the given assumptions, observe that

(δ, µ, ȳ) is defined by a polyhedral set given by (25) and an additional constraint δ ≥ 0. This polyhe-

dral set does not contain {0} and also does not contain a line; hence, it should have at least one ver-

tex. Next, using the arguments similar to those used in the proof of Proposition 4, by Cramer’s rule

we conclude that there exists a vertex of this polyhedral set, where a non-zero δ is at least ∆k,c. (In

fact, this bound can be tightened further; however, it is not needed for our derivations below.)

In the next two propositions we provide necessary and sufficient conditions (assuming k is not

integer) for local optimality of the leader’s decision given by (x̂, q̂, ŝ, ĥ) = (0, 0, 0, 0).

Proposition 6. If α(G) < k, then (x̂, q̂, ŝ, ĥ) = (0, 0, 0, 0) is the only locally optimal solution

of (12).

Proof. Let α(G) < k and let (x̂, q̂, ŝ, ĥ) be any locally optimal solution. Due to Proposition 5, we

must have ĥ ∈ {0, 1}. We consider each of these cases separately. First, we show that if ĥ = 0, then

we must have (x̂, q̂, ŝ, ĥ) = (0, 0, 0, 0) and (x̂, q̂, ŝ, ĥ) is locally optimal. Afterwards we demonstrate

that ĥ = 1 cannot correspond to a locally optimal solution.

Case 1: ĥ = 0. From (12c), (12e) and (12b) we conclude that x̂ = q̂ = ŝ = 0. Hence, we need

only to show that (0, 0, 0, 0) is locally optimal. For the sake of contradiction, suppose that it is not

the case. That is, we can construct another leader’s solution (x̃, q̃, s̃, h̃), which is arbitrarily close

to (0, 0, 0, 0) and provides a strictly better objective function.

Note that the leader’s solution (0, 0, 0, 0) has an objective function value of zero. Hence, we

must show that (x̃, q̃, s̃, h̃) has a leader’s objective function value that is strictly positive. Because

e⊤t ≥ 0 and h ≥ 0 in (12a) for all bilevel feasible solutions, we have that

s̃ > 0. (26)

Similar to the discussion above, by left-multiplying (12b) by x and then using (12c) we have:

⌈3cn
√
n⌉hs = −x⊤(kA+ kI − J)x+ x⊤q, (27)

which we exploit below. Next, as in the proof of Proposition 4, let Q ⊆ {1, . . . , n} be such that

(x̃, q̃, s̃, h̃, t̃) ∈ P (Q). By construction P (Q) is a polytope; hence, (x̃, q̃, s̃, h̃, t̃) can be represented

as a convex combination of the vertices of P (Q).
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Recall from the proof of Proposition 4 that any vertex v̄ := (x̄, q̄, s̄, h̄, t̄) of P (Q), for which e⊤t̄ >

0 must have a strictly negative leader’s objective function value (see (20) and the corresponding

discussion). Hence, (x̃, q̃, s̃, h̃, t̃) can provide a strictly positive leader’s objective function only if

there exists vertex v̄ := (x̄, q̄, s̄, h̄, t̄) of P (Q) such that e⊤t̄ = 0 and s̄ > 0; recall also (26). In view

of (27) and Proposition 1 (recall α(G) < k), we conclude that h̄ = 0. Then, from (12c), (12e) and

(12b) we conclude that x̄ = q̄ = s̄ = 0, which results in a contradiction.

Case 2: ĥ = 1. In view of (27), Proposition 1 (recall α(G) < k) and Proposition 4, as well as

(12c), we conclude that ŝ = 0. Thus, the corresponding leader’s solution is strictly negative, which

is a contradiction due to Lemma 3; recall that (x̂, q̂, ŝ, ĥ) is assumed to be locally optimal.

Proposition 7. If α(G) > k, then (x̂, q̂, ŝ, ĥ) = (0, 0, 0, 0) cannot be a locally optimal solution

of (12).

Proof. The proof is to construct a leader’s solution (x̃, q̃, s̃, h̃), which is feasible to (12), has a strictly

positive leader’s objective function value, and can be made arbitrarily close to zero, thereby showing

that the leader’s solution (0, 0, 0, 0) cannot be locally optimal. From Proposition 1, we observe that

matrix MA,k := kA+ kI − J is not copositive. Hence, there exist δ > 0 and y ∈ Rn
+ \ {0} such that

e⊤y = 1 and the properties (i) and (ii) in Lemma 4 hold. Given such y, let

x̃ := ϵy, h̃ :=
1

⌈3cn
√
n⌉

ϵ, s̃ := ϵδ, t̃ := 0, (28)

where ϵ > 0 is chosen so that ϵ < ⌈3cn
√
n⌉. Hence, 0 < h̃ < 1 and (12d) holds.

Next, given that e⊤y = 1, we have the following sequence of inequalities:

0 < e⊤x̃ = ϵe⊤y = ⌈3cn
√
n⌉ · 1

⌈3cn
√
n⌉

ϵ = ⌈3cn
√
n⌉ · h̃, (29)

which implies that (12c) also holds for x̃ and h̃. It remains to construct q̃ such that (x̃, q̃, s̃, h̃)

satisfies (12b) and (12e), and to show that t̃ satisfies (12g)–(12j).

First, let q̃i = 0 for all i ∈ [n] such that 0 < yi ≤ 1, (My)i < 0 and (My)i = −δ < 0 (property

(ii) in Lemma 4 holds). Then:

s̃ = −ϵ · (MA,ky)i + q̃i = −(MA,kx̃)i + q̃i. (30)

Hence, constraints (12b), (12e), and (12g)–(12j) are satisfied for all such i.

From the property (ii) in Lemma 4 and the definition of MA,k we also have that:
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δ = −(MA,ky)i = (−kAy − kIy + Jy)i ≤ (Jy)i ≤ e⊤y = 1,

which, in turn, implies by (28) that:

s̃ = ϵ · δ ≤ ⌈3cn
√
n⌉ · h̃, (31)

and this upper bound is exploited further in the proof.

Next, consider all i ∈ [n] such that (MA,ky)i ≥ 0 and yi = 0 (property (i) in Lemma 4 holds).

The latter implies that x̃i = ϵyi = 0, so we can always select a sufficiently large q̃i > 0 such that

s̃ = −ϵ · (MA,ky)i + q̃i = −(MA,kx̃)i + q̃i, (32)

is satisfied. Also, from the above equation, it is clear that we can always pick q̃i such that

q̃i ≤ ⌈3cn
√
n⌉ · h̃+ ((kA+ kI − J)x̃)i ≤ ⌈3cn

√
n⌉ · h̃+ kϵe⊤y ≤ 2k⌈3cn

√
n⌉ · h̃,

where we use (31) and (29) for the first and the second terms, respectively, in the right-hand side of

the first inequality, as well as the fact that k > 1. Hence, (12b) and (12e) are satisfied for all such i.

As the above discussion considers all i ∈ [n], the constructed leader’s solution (x̃, q̃, s̃, h̃) is

feasible and has the corresponding objective function value given by:

s̃− 1

nµk,c
· h̃ = ϵ · δ − 1

nµk,c⌈3cn
√
n⌉

ϵ = ϵ
(
δ − 1

nµk,c⌈3cn
√
n⌉

)
≥ ϵ

(
∆k,c −

∆k,c

2σk,c⌈3cn
√
n⌉

)
= ϵ ·∆k,c ·

(
1− 1

2σk,c⌈3cn
√
n⌉

)
> 0,

where we use (14) and (28) as well as the property (iii) in Lemma 4 and the fact that σk,c ≥ 1.

Finally, as t̃i = 0 by our construction for all i ∈ [n], the outlined solution is bilevel feasible. By

changing ϵ in (28) this leader’s solution can be made arbitrarily close to (x̂, q̂, ŝ, ĥ) = (0, 0, 0, 0)

with its objective function better than ŝ = 0 as indicated in the derivations above. Hence,

(x̂, q̂, ŝ, ĥ) = (0, 0, 0, 0) is not locally optimal.

Finally, we are ready to prove the main result.

Proof of Theorem 1: First, we note that the parameter µk,c is of polynomial size:

O(logµk,c) :=O(log k + n log k + n2 log c+ n log n),

which follows from (14). Next, from (13) we observe that α(G) = k can never occur. Thus, we

need to consider only two mutually exclusive cases that is, either α(G) < k, or α(G) > k.
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Suppose (x̂, q̂, ŝ, ĥ) is locally optimal for (12). Thus, one of the two cases holds:

(i) α(G) < k. Then, from Proposition 6 we conclude that the leader’s solution (x̂, q̂, ŝ, ĥ) =

(0, 0, 0, 0) is the only locally optimal solution.

(ii) α(G) > k. Then, from Propositions 5 and 7 we conclude that ĥ = 1 and e⊤x̂ = ⌈3cn
√
n⌉.

Clearly, there exists no leader’s solution that has x within Euclidean distance cn from both the

origin x = 0 and the hyperplane e⊤x = ⌈3cn
√
n⌉. This observation completes the proof.

4 Concluding remarks

Our main result shows that producing a locally optimal leader’s decision for a BLP is no easier

(in the worst case) than producing a globally optimal one. In fact, we have not even shown that these

two problems are polynomially equivalent, since we did not formally establish the NP-completeness

of the problem of producing a locally optimal solution. Certifying local optimality for the leader

seems to require producing a (partial) basis of the lower-level LP, which, in turn, involves a combina-

torial search. Thus, it is not surprising in hindsight that the considered problem is also difficult. Our

proof illustrates this point concretely by showing that, for some specific BLP class, locally optimal

leader’s solutions are all associated with a particular basis of the lower-level LP. The upshot is that

there is little hope for the development of heuristics with the worst-case performance guarantees.

On the positive side, however, the close connection that have been demonstrated between com-

binatorial, quadratic and bilevel optimization problems, is compelling. It is clear from the existing

reductions that these three classes of problem are fundamentally equivalent. This observation could

lead to some interesting cross-fertilization.
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Y. Beck, I. Ljubić, and M. Schmidt. A survey on bilevel optimization under uncertainty. European

Journal of Operational Research, 311(2):401–426, 2023.

O. Ben-Ayed and C. E. Blair. Computational difficulties of bilevel linear programming. Operations

Research, 38(3):556–560, 1990.
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Appendix A Motivating geometric illustration

Here, we briefly motivate the geometric intuition behind our main result with a simple illustra-

tion. In the following description, we denote by P = {(x, y) | x ∈ X , By ≤ b2 −A2x, y ∈ Rn2
+ } the

feasible region of the single-level relaxation of (BLP), which is obtained by relaxing the optimality

condition on the follower’s decision. For a given x̂ ∈ X , we further denote the set of follower’s deci-

sions that are feasible with respect to the linear constraints of (BLP) as P(x̂) := {y ∈ Rn2
+ | By ≤

b2 −A2x̂}.

Set P(x̂) is itself a polyhedron contained in P and as such, R(x̂), being the optimal face of

P(x̂) with respect to the objective function vector d2, see (1), is also a polyhedron. Next, assume

for simplicity an optimistic model. Then, since the leader’s objective function is linear and there

are no coupling constraints, the bilevel feasible solutions of (BLP), which are contained in R(x̂),

are those on the face F(x̂) = argmax{d⊤1 y | y ∈ R(x̂)} of R(x̂) that are optimal with respect to

the leader’s objective function. Thus, F(x̂) is again a polyhedron, and also, a face of P(x̂), which

consists of all bilevel feasible points contained in R(x̂). Consequently, optimal solutions to (BLP)

must be contained in F(x) for some x ∈ X , which is itself contained in a face of P.
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Figure 1: An illustrative example of a bilevel feasible region

To make these concepts more concrete, consider the example in Figure 1, where the follower’s

objective function is to minimize the value of y. The bilevel feasible region is a union of faces of P

that are shown as the dashed lines on the boundary of P in the figure. In this example, for a given

x ∈ X , set F(x) is a single point in the bilevel feasible region associated with x. Furthermore, for

the considered leader’s and the follower’s objective functions, the globally optimal solution is (8, 1).

For x̂ ∈ X to be locally optimal for the leader, we must have that for any u ∈ Rn1 , the leader’s

objective function value associated with F(x + δu) is no larger than that of F(x) for δ ∈ R>0

sufficiently small. Roughly speaking, F(x) must not be close to a face of P containing points

having better leader’s objective function values than those of F(x). In this example, the locally

optimal leader’s solutions are (i) the globally optimal solution x = 8 and (ii) x ∈ [0, 2). Indeed, the

face of P containing F(x) for x ∈ [0, 2) is parallel to the leader’s objective function as depicted in

Figure 1. Hence, any x ∈ X for which F(x) is an inner point of this face must be locally optimal.
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