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Abstract

We consider a two-player Nash game in which each player represents a fleet of unmanned
aerial vehicles. Each fleet is supposed to distribute information among fleet members, while
simultaneously trying to prevent the opposite fleet from achieving this. Using the electro-
magnetic spectrum’s properties, we model each fleet’s task as a nonlinear Nash game. By
reformulating conditions for Nash equilibria, we provide a fixed-point algorithm for this game
and show its convergence under mild conditions. In practice, the game considered will often
be solved in a distributed setting, where each member of each fleet computes information
separately. We thus propose a corresponding distributed optimization algorithm and show its
convergence. Numerical results illustrate the flexibility of our approach.

Keywords: drones, unmanned aerial vehicles, jamming, electronic warfare, Nash games

1 Introduction

Electronic Warfare (EW) is a military domain that uses the electromagnetic spectrum to gain
an advantage in various operational environments. The electromagnetic spectrum encompasses a
range of frequencies, including radio waves, microwaves, infrared and visible light, among others.
An electronic attack involves the use of electromagnetic energy to disrupt, deceive, or destroy the
functionality of electronic systems, such as radars, communication systems, or sensors. In particu-
lar, jamming aims to interfere with an adversary’s ability to collect and disseminate information.
Communications jamming is directed at disrupting radio communication systems by transmitting
interfering signals on the same frequency as the targeted communication system, causing interfer-
ence and making it difficult for the intended message to be received.

Unmanned aerial vehicles (UAVs or drones) and electronic warfare represent critical components
of modern military and security strategies. Drones have revolutionized reconnaissance, surveillance,
and strike capabilities. They provide real-time data, enhance situational awareness, and reduce the
risk to human operators. In the context of electronic warfare, drones play a significant role both as
platforms for electronic warfare systems and as potential targets. Drones equipped with electronic
warfare capabilities can disrupt or manipulate communication systems, radar signals, and other
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electronic devices, offering a powerful tool for both offensive and defensive actors. Nonetheless,
drones are also susceptible to electronic warfare measures themselves: anti-drone systems can use
such electronic warfare techniques to jam or spoof the communication links between a drone, its
operator, and other units.

In this work, we consider fleets of UAVs that are antagonistic to each other. Members or agents
of each fleet are tasked with sharing information with other members of their fleet, i. e., they want
to send and receive data among each other. However, they also have the option to degrade or
interfere with the information flow between members of the other fleet. Of crucial importance in
this model is the ability of each agent to be mobile, i. e., to spend some of its energy to move
around in space. By moving closer to an agent of the same fleet, information exchange between
these two agents is improved. By moving closer to agents of the opposite fleet, interrupting the
information flow of the opposition (jamming) is ameliorated.

We model this problem as a novel Nash game, where both players control their relevant fleets and
are aware of the status and location of their agents and the location of the agents of the opposition.
For each agent, decision variables include the power expenditure to communicate with other agents
of the same fleet, power expenditure to jam communication between pairs of agents in the opposite
fleet, and power expenditure and direction of any movement. Previous attempts at modeling
this problem either use stationary agents only (see, e. g., Khanafer, Bhattacharya, Bas, et al.
(2011)) or allow only one jamming agent to move (see Bhattacharya and Başar (2011a)). Another
generalization included in our model is the consideration of communication and jamming graphs,
which can be used to represent different strategic configurations and capabilities of the different
UAVs in their fleets. Our communication and jamming model reflects the underlying physical
reality of communication within the electromagnetic spectrum and contains no linearizations.

To find an equilibrium point of our game, we use a well-known fixed-point reformulation for
Nash games (Rosen (1965)). Despite the lack of convexity, we show its convergence for a slightly
modified problem formulation, where we essentially prevent UAVs from moving too close to each
other. Next, motivated by a distributed computing approach, we provide a block-descent algorithm
for the subproblems occurring in our fixed-point formulation and show its convergence under mild
conditions. Extensive numerical experiments show the efficacy of our approach.

Our model follows the work of Bhattacharya, Khanafer, and Başar (2016), Khanafer, Bhat-
tacharya, Bas, et al. (2011), and Khanafer, Bhattacharya, and Başar (2011), who considered a
simplified version of our Nash game with two fleets of stationary agents, each fleet consisting of
exactly two agents. A. Gupta et al. (2012) consider a game with incomplete information in which
one player tries to jam the connection between a transmitter and a receiver. Bhattacharya and
Başar (2012) consider teams of agents able to move in the plane, but where movement itself incurs
no cost, and it is unclear how power allocation takes place. A scenario in which one mobile intruder
jams the communication network of a formation of several vehicles, either all ground-based or all
aerial, is considered in Bhattacharya and Başar (2010, 2011b, 2013), Bhattacharya, A. K. Gupta,
and Başar (2013), and Parras, Zazo, et al. (2017). In particular, Parras, Val, et al. (2016) describe
a stochastic version of this scenario. Strategies and counter-strategies for jamming vehicular ad-
hoc networks have been described by Lu et al. (2017). Recently, a Markov game formulation for
a jamming game has been considered by Feng et al. (2023), while tasks assignment problems for
jamming swarms have been cast in game-theoretic form by Zhang et al. (2023).

Practically all formulations discussed above lead to Nash games; in contrast, Stackelberg games
are only considered by a few authors, see e. g., Liu et al. (2024), Su et al. (2024), and Z. Yin et al.
(2024) for some recent approaches. Other game-theoretic models on jamming UAVs are discussed
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in Fu et al. (2023), Lv et al. (2017), J. Xu et al. (2021), and Yifan Xu et al. (2018), while
Mkiramweni et al. (2019) and Li et al. (2024) provide surveys of game-theoretic approaches for
jamming wireless networks.

The rest of this paper is organised as follows. In Section 2, we first derive a game between
two players, each operating a fleet of UAVs, where each player has to solve a biobjective opti-
mization problem with convex objectives, conic constraints, and nonconvex constraints, where the
nonconvexity stems either from certain bilinear terms or from a strictly concave function. After
a suitable scalarization, we arrive at the zero-sum Nash game we focus on further. Due to the
highly nonlinear nature of this game, standard tools like reformulating the game into an MPEC do
not work in this setting. Moreover, we need to expect that any solution method will be used in a
distributed fashion, i. e., by the swarm of UAVs themselves. Section 3 therefore considers specific
numerical solution methods for this game, together with corresponding convergence proofs. We
report on the computational performance of our approach in Section 4, while Section 5 provides a
discussion of our results and pointers to future research.

2 The Model

Suppose we have given two finite nonempty index sets F and G, with F ∩ G = ∅, denoting two
fleets of agents or UAVs. We use indices i, j, k, ℓ ∈ F ∪G to indicate agents, and will usually use
the convention i, j ∈ F and k, ℓ ∈ G, unless explicitly stated otherwise. For each i ∈ F , k ∈ G, we
have been given locations x0

i , x
0
k ∈ R2 and a maximum amount of energy to spend, Pmax

i , Pmax
k

(usually measured in Watts). Furthermore, we have given two edge sets E(F ) ⊆ F × F and
E(G) ⊆ G × G, indicating which agent needs to communicate with which other agent. In other
words, if (i, j) ∈ E(F ), then agent i needs to send some data to agent j. We assume without loss
of generality that (i, i) /∈ E(F ) for all i ∈ F and (k, k) /∈ E(G) for all k ∈ G.

Suppose that we have e = (i, j) ∈ E(F ) and consider different time slots t = 1, . . . , T for
communication. Following Khanafer, Bhattacharya, Bas, et al. (2011), if the UAV i uses pe,t
amount of power for this communication (i. e., it sends a signal of strength pe,t), then the UAV j
receives an amount of power pRe,t equal to

pRe,t = ϱpe,td
−α
e,t . (1)

Here, de,t = di,j,t = ∥xi,t − xj,t∥ is the Euclidean distance between agents i and j, which at time t
are located at xi,t and xj,t, respectively. In the above and in what follows, we always assume
xi,t ̸= xj,t, and in all formulations of optimization problems we will have constraints ensuring that
pRe,t does not grow beyond reasonable bounds. The constant α is the so-called path-loss coefficient
that depends on the environment (atmospheric conditions, terrain, etc.) in which i and j try to
communicate and is usually chosen between 2 and 4. The constant ϱ, the antenna gain, depends
on the design of the antennas of i and j and the signal wavelength in use; in what follows we will
assume that ϱ does not depend on i and j.

A crucial quantity for the communication efforts along the edge e = (i, j) is the signal-to-
interference-and-noise ratio SINRe,t, which is defined as

SINRe,t =
pRe,t

σ2 + Ie,t
, (e ∈ E(F ); t = 1, . . . T ). (2)
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Here, σ2 represents background noise due to, for instance, solar radiation. This is usually a
random variable with Gaussian distribution. However, its expected value is usually several orders of
magnitude smaller than any of the powers used by any of the agents, and can thus be approximated
by a constant. Furthermore, Ie,t is the total interference power along the edge e due to jamming
from the enemy fleet. Suppose that for each agent k from the opposite team we have given
information as to if k is capable, in principle, of jamming communications along edge e at time t.
Let J(e) ⊆ G be the set of opposite agents able to jam communications along edge e ∈ E(F ), and
denote by pJk,e,t the power used to jam communications along edge e at time t by some k ∈ J(e).
Then we have

Ie,t =
∑

k∈J(e)

ϱpJk,e,td
−α
k,j,t, (j ∈ F, e = (i, j) ∈ E(F )) (3)

with the same constants as before, dk,j,t = ∥xk,t − xj,t∥, and the summation is over all agents of
the opposite team. In total, we have

SINRe,t =
ϱpe,td

−α
e,t

σ2 + ϱ
∑

k∈J(e) p
J
k,e,td

−α
k,j,t

, (e = (i, j) ∈ E(F ); t = 1, . . . , T ). (4)

Figure 1 illustrates this concept in the plane. Here, we have given three agents a, b, and c,
located at coordinates (2, 2), (2, 8) and (8, 8), respectively. We assume that they all communicate
simultaneously with some fourth UAV. Here, we have used α = 2. Figure 1 (a) shows a heatmap
of the sum of all three SINRs that the fourth UAV experiences, depending on its location in the
plane. As it can be clearly seen, it is beneficial for the fourth agent to be as close to one of
the other agents as possible. Figure 1 (b) considers the effect of jamming. Here we have one
adversarial agent located at (2.5, 8), using a jamming power equal to the agent’s b communication
power, thus decreasing the SINR between agent b and the fourth UAV. One can observe that the
overall contribution of agent b to the sum of SINRs as experienced by the fourth UAV is greatly
diminished.

In practice, it is these quantities SINRe,t that the fleet F wants to maximise, as these are closely
related to various performance indices used in wireless communications. For example, consider the
case in which agent i communicates digital data, i. e., individual bits. Of relevance is then the
bit error rate BERe,t, the average number of bits received by agent j along e = (i, j) which are
received incorrectly. It can then be shown (Palomar, Bengtsson, and Ottersten (2005)) that in
many cases we have

BERe,t = const1Q(const2
√

SINRe,t), (e ∈ E(F ); t = 1, . . . , T ) (5)

with known positive constants and Q the tail probability of the Gaussian distribution. In other
words, BERe,t is monotonically decreasing in SINRe,t.

In total, the first objective of the fleet of agents F is thus

max

T∑
t=1

∑
e=(i,j)∈E(F )

ϱpe,td
−α
e,t

σ2 + ϱ
∑

k∈J(e) p
J
k,e,td

−α
k,j,t

, (6)

where the decision variables are the power levels pe,t (e ∈ E(F ); t = 1, . . . , T ) and the locations
xi,t, xj,t ∈ R2 determining di,j,t = ∥xi,t − xj,t∥, dk,j,t = ∥xk,t − xj,t∥. Note that the power levels
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(a) Three agents communicating
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Figure 1: Total SINR as experienced by a UAV in the plane, with three stationary agents commu-
nicating with the UAV from positions (2, 2), (2, 8) and (8, 8). Figure (a) shows the case without
jamming, Figure (b) depicts the case of one adversary agent placed at (2.5, 8), jamming the UAV
at (2, 8).

pJk,e,t are decision variables of the opposite fleet with agents indexed by k. In turn, fleet F controls

decision variables pJj,k,t (j ∈ F, k /∈ F ; t = 1, . . . , T ) that show up in the corresponding objective
of the opposite fleet.

However, note that in this objective the effect of jamming agents from the opposite fleet is not
taken into account. We therefore consider the first objective of the opposite fleet, which the opposite
fleet wants to maximize, as an objective to be minimized by fleet F . Using the same notational
conventions as before, with the roles of fleets F and G interchanged, the second objective of the
fleet F thus becomes

min

T∑
t=1

∑
e=(k,ℓ)∈E(G)

ϱpe,td
−α
e,t

σ2 + ϱ
∑

i∈J(e) p
J
i,e,td

−α
i,ℓ,t

(7)

Given that the agents are mobile, we have that their locations xi,t, xj,t, xk,t are decision variables
as well. We thus assume that each agent i has a starting position xi,0 ∈ R2. At each time step t,
the agent i first moves from xi,t−1 to xi,t before sending or jamming. The movement results in an
energy expenditure of ci∥xi,t − xi,t−1∥, where ci is a conversion factor of dimension W/m. We can
then write the two objectives of fleet F as one bi-objective optimization problem

max
pe,t,pJ

i,k,t,xi,t


T∑

t=1

∑
e=(i,j)∈E(F )

ϱpe,t∥xi,t − xj,t∥−α

σ2 + ϱ
∑

k∈J(e) p
J
k,e,t∥xk,t − xj,t∥−α

−
T∑

t=1

∑
e=(k,ℓ)∈E(G)

ϱpe,t∥xk,t − xℓ,t∥−α

σ2 + ϱ
∑

i∈J(e) p
J
i,e,t∥xi,t − xℓ,t∥−α

 , (8)
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with decision variables

• pe,t (e = (i, j) ∈ E(F ), i ̸= j; t = 1, . . . , T ) power used to communicate from i to j at time t.

• pJi,e,t (i ∈ F , e = (k, ℓ) ∈ E(G); t = 1, . . . , T ) power used to jam the communication of
opposite agents k, ℓ ∈ G along edge e = (k, ℓ) ∈ E(G) at time t.

• xi,t (i ∈ F ; t = 1, . . . , T ) location of agent i at time t, after movement and before communi-
cation and jamming takes place.

As constraints, we have the power constraint for each agent i,

T∑
t=1

 ∑
e=(i,j)∈E(F )

pe,t +
∑

e∈E(G)

pJi,e,t + ci∥xi,t − xi,t−1∥

 ≤ Pmax
i (i ∈ F ), (9)

a constraint on the movement of each agent i, essentially providing a velocity constraint,

∥xi,t − xi,t−1∥ ≤ δi (i ∈ F ; t = 1, . . . , T ), (10)

with δi > 0 some given parameter and the starting position xi,0 ∈ R2 for t = 0 predefined, a
collision avoidance constraint,

∥xi,t − xj,t∥ ≥ ϵ (i, j ∈ F ∪G, i ̸= j; t = 1, . . . , T ) (11)

with some ϵ > 0, and finally nonnegativity constraints

pe,t, p
J
i,ē,t ≥ 0 (e ∈ E(F ), i ∈ F, ē ∈ E(G); t = 1, . . . , T ). (12)

Further constraints on xi can indicate geographical constraints, constraints from modeling the
flight dynamics, mission constraints, etc.

In what follows we will assume that the set of feasible points is nonempty for all xj,t ∈ R2

(j ∈ G, t = 1, . . . , T ). These xj,t occur only in the collision avoidance constraint. In essence, we
assume here that ϵ occurring in (11) is so small that the points in space that each agent of fleet F
can reach cannot be covered by |F ∪G| balls of radius ϵ.

Remark. Without loss of generality, we can assume that the power constraint (9) will be
active, as the first objective is strictly monotone in the pe,t and the second objective is strictly
monotone in the pJi,e,t. In other words, if we are at a point where (9) is not active, we can increase

the value of a pe,t or a pJi,e,t by a small amount and arrive at a point that strictly dominates the
original one in the bi-objective problem defined above, in the sense of Pareto.

Remark. For the same reason as in the remark above, we have formally introduced decision
variables pJi,ē,t for i ∈ F and all ē ∈ E(G), and not only for those i with i ∈ J(ē). Due to the

monotonicity of both objectives, we will have pJi,ē,t = 0 for all i /∈ J(ē) at optimality. Of course,
any optimization tool can be supported in its search by adding these conditions as constraints.
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Remark. If an agent has additional known energy expenditure P̄i,t ≥ 0 at time t, we can

adapt (9) and modify the right-hand side to Pmax
i −

∑T
t=1 P̄i,t. In case of a priori unknown addi-

tional energy expenditures, we would need to include additional integer or binary variables yi,t to

the model and add a term of the form
∑T

t=1 P̄i,tyi,t to the left-hand side of (9).

Remark. Only the collision avoidance constraints are nonconvex (in fact, concave), and these
are the only constraints coupling decision variables from different fleets with each other.

For ease of notation, denote now by x the vector of decision variables of fleet F (consisting
of variables pe,t, p

J
i,ē,t, xi,t for indices e ∈ E(F ), i ∈ F, ē ∈ E(G), and t = 1, . . . , T ) and by y the

vector of decision variables of the opposite fleet (consisting of variables pe,t, p
J
k,ē,t, xk,t for indices

e ∈ E(G), k ∈ G, ē ∈ E(F ), and t = 1, . . . , T ). We can then write the two objectives involved as

f1(x, y) =

T∑
t=1

∑
e=(i,j)∈E(F )

ϱpe,t∥xi,t − xj,t∥−α

σ2 + ϱ
∑

k∈J(e) p
J
k,e,t∥xk,t − xj,t∥−α

(13)

and

f2(x, y) =

T∑
t=1

∑
e=(k,ℓ)∈E(G)

ϱpe,t∥xk,t − xℓ,t∥−α

σ2 + ϱ
∑

i∈J(e) p
J
i,e,t∥xi,t − xℓ,t∥−α

(14)

and the bi-objective problem of fleet F as

max
x∈CF (y)

[
f1(x, y)
−f2(x, y)

]
, (15)

parameterized in y, where CF (y) denotes the set of feasible points of fleet F . Then, the opposite
fleet faces the problem

max
y∈CG(x)

[
f2(x, y)
−f1(x, y)

]
, (16)

parameterized in x, with CG(x) being the set of feasible y.
A typical strategy to deal with multiobjective problems is scalarization. Here, each fleets F,G

chooses a parameter ωF , ωG ∈ [0, 1]. Fleet F then replaces the bi-objective problem above by

max
x∈CF (y)

ωF f1(x, y) − (1 − ωF )f2(x, y), (17)

and fleet G does likewise. The two parameters ωF , ωG represent the importance of the two ob-
jectives for the two fleets. Denote now by θF and θG the objectives of both fleets F and G in
minimization form, i. e., θF = −ωF f1 + (1 − ωF )f2 and θG = −ωGf2 + (1 − ωG)f2. The two fleets
then face the problems

min
x∈CF (y)

θF (x, y) (18)
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and

min
y∈CG(x)

θG(x, y). (19)

One can observe that for ωF = ωG = 1/2 the objectives of the two fleets are essentially the same;
they just ’swap’ the variables x and y around and the game becomes a zero-sum Nash game. In
the general case, we are looking for an equilibrium, i. e., a pair of feasible strategies x∗, y∗ with
x∗ ∈ CF (y∗), y∗ ∈ CF (x∗), for which we have

θF (x∗, y∗) ≤ θF (x, y∗) ∀x ∈ CF (y∗),

θG(x∗, y∗) ≤ θG(x∗, y) ∀y ∈ CG(x∗).

In other words, we want to find a solution x∗ to problem (18) where we use the parameter y = y∗,
and a solution y∗ to problem (19) where we use the parameter x = x∗.

The existence of such equilibria is usually only confirmed for convex Nash games, i. e., the
sets CF and CG are assumed to be convex and compact, and f1, f2 are assumed to be smooth.
These are of course the standard conditions for Brouwer’s fixed point theorem. In our case, only
compactness of CF and CG hold. However, the nonconvexity in the constraints is concentrated
in the collision avoidance constraints ∥xi,t − xj,t∥ ≥ ϵ > 0. For appropriately chosen problem
parameters Pmax

i , ci, δi and ϵ the sets CF (y) and CG(x) are nonempty and compact and there exists
points xref ∈ CF (yref ), yref ∈ CG(xref ) from the interior of those sets. It is then straightforward
to show that the assumptions (A), (B), (C) of Pang and Scutari (2011) hold, which assures via their
Theorem 5 the existence of a quasi-Nash equilibrium, i. e., a solution to the variational inequality
associated with our game.

In the next section, we will provide a stronger result for a slightly modified version of our
problem. Namely, we will show that a Nash equilibrium always exists and that a specific fixed-
point iteration converges to such an equilibrium under some mild conditions.

3 Numerical Solution Methods

Since all functions involved are smooth, we can characterise (local) equilibria by the KKT con-
ditions for these optimization problems. To solve such conditions numerically, one often resorts
to an MPEC (Mathematical Program with Equilibrium Constraint) solver. However, preliminary
numerical tests with state-of-the-art MPEC solvers have shown that this approach does not seem
to be numerically feasible in our case, as all such solvers get stuck at infeasible points. In Subsec-
tion 3.1, we will therefore provide an alternative numerical approach, based on a natural fixed-point
formulation of the problem.

Moreover, in a practical setting, we need to expect that any such solution method will be
used in a distributed fashion, i. e., by the swarm of UAVs under consideration, which each UAV
being its own computational unit. Subsection 3.2 provides us with a distributed algorithm for the
fixed-point method described in Subsection 3.1.
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3.1 A Fixed-Point Formulation

For a given (x̂, ŷ) let us consider the optimization problem

min
x,y

θF (x, ŷ) + θG(x̂, y) (20)

subject to x ∈ CF (ŷ), y ∈ CF (x̂). (21)

Suppose that (x∗, y∗) is a solution to this problem. It is well known (see Rosen (1965)) that (x∗, y∗)
is a Nash equilibrium if (x∗, y∗) = (x̂, ŷ), i. e., if (x∗, y∗) is a fixed point of the solution mapping
of (20)–(21).

A standard approach to circumvent numerical issues related to the nonuniqueness of any opti-
mum of (20) is to add a regularisation term and consider

min
x,y

θF (x, ŷ) + θG(x̂, y) + r(∥x− x̂∥2 + ∥y − ŷ∥2) (22)

subject to x ∈ CF (y), y ∈ CG(x) (23)

with a parameter r > 0.
The following algorithm provides a fixed-point iteration for our Nash game:

1. Choose r > 0 and x̂, ŷ such that x̂ ∈ CF (ŷ) and ŷ ∈ CG(x̂).

2. Solve (22)–(23). Denote the result by (x, y).

3. Set (x̂, ŷ) := (x, y).

4. Update r.

5. Goto step 2.

Step 2 of the algorithm can obviously be split up into solving the two problems

min
x∈CF (ŷ)

θF (x, ŷ) + r∥x− x̂∥2, (24)

min
y∈CG(x̂)

θG(x̂, y) + r∥y − ŷ∥2, (25)

which can be solved in parallel. Both correspond to ”best response“ optimization problems, i. e.,
(24) computes the strategy of fleet F if it is known that fleet G will deploy strategy ŷ. The overall
algorithm is thus one of successive improvements in strategies x and y.

A convergence proof for the case of such a fixed-point algorithm applied to convex problems
can be found in Fl̊am and Antipin (1996), who also describe various adaptations like solving only
for ε-minima in each step, appropriate strategies for changing the parameter r, etc. Regarding the
convergence speed, we only have

∑
k ∥zk − zk+1∥2 < +∞ from Fl̊am and Antipin (1996) for the

sequence of iterates zk = (xk, yk) of the algorithm, leading only to the somewhat weak statement
∥zk − zk+1∥ = O(1/

√
k). Note also that for nonconvex problems as we are facing them here, the

fixed-point scheme without regularization term can cycle or stagnate. To prove the convergence of
our method, we need to modify the problem under consideration ever so slightly as follows.

Denote by C̃F and C̃G the sets of feasible points for player F and player G without the col-
lision avoidance constraints (11). Note that CF (y) ⊂ C̃F , CG(x) ⊂ C̃G and conv(CF (y)) = C̃F ,
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conv(CG(x)) = C̃G. In other words, C̃F and C̃G are the smallest convex sets that contain CF (y)
and CG(x). Next, define objective functions f̃1 and f̃2 on C̃ as follows. We set f̃1(x, y) = f1(x, y)
and f̃2(x, y) = f2(x, y) if x ∈ CF (y) and y ∈ CG(y). Otherwise, there are some indices i, j ∈ F ∪G,
i ̸= j and some t such that ∥xi,t−xj,t∥ < ϵ. In the formula for f1(x, y) and f2(x, y) we then replace
each occurrence of ∥xi,t − xj,t∥ by the parameter ϵ > 0. This is equivalent to specifying that in
the definition of f1 and f2 we replace each term ∥xi,t − xj,t∥ by max{ϵ, ∥xi,t − xj,t∥} and call the

resulting functions f̃1 and f̃2. Intuitively, this should not change the structure of the solution:
there is no incentive for two agents i, j ∈ F to decrease their distance at time t below ϵ, as there
will be no increase in received signal strength. The same can be said for jamming strengths.

Note that both f̃1 and f̃2 are continuous but not necessarily differentiable at ∥xi,t − xj,t∥ = ϵ.

It is straightforward to modify the definitions of f̃1 and f̃2 in such a way that for δ < ϵ we replace
∥xi,t − xj,t∥ with ϵ− δ if ∥xi,t − xj,t∥ ≤ ϵ− δ, and we provide a smooth continuation of the term
in the region ϵ− δ∥xi,t − xj,t∥ < ϵ. This does not affect the convergence result below, but it might
help any algorithmic scheme relying on the smoothness of objective functions.

Let us now set θ̃F = −f̃1 + f̃2 and θ̃G = −θ̃F and consider

min
x,y

θ̃F (x, ŷ) + θ̃G(x̂, y) + r(∥x− x̂∥2 + ∥y − ŷ∥2) (26)

subject to x ∈ C̃F , y ∈ C̃G (27)

with a regularization parameter r > 0.
To show convergence, we will make use of the following concept. Define the compact set

X := C̃F×C̃G and consider the bifunction f : X×X −→ R defined as follows. Let a = (xa, xb) ∈ X
and b = (xb, yb) ∈ X. Then we set f(a, b) = θ̃F (xa, yb) + θ̃G(xb, ya). It is easy to see that f(a, ·) is
uniform Lipschitz for all a ∈ X. Let us denote the corresponding Lipschitz constant by L.

Theorem. Consider the fixed point iteration with (22)–(23) replaced by (26)–(27). Let (rk)k
be the sequence of regularization parameters used in this fixed-point iteration, and let (xk, yk)k be
the sequence generated by this iteration.

• Assume that rk ≥ rU for some constant rU > 0 for all k and that in each iteration we compute
a global minimum of θ̃F (·, ŷ) and θ̃G(x̂, ·). Assume that we have ∥(xk+1, yk+1)−(xk, yk)∥ −→
0. Then, (xk, yk)k converges to a Nash equilibrium of the modified game with objectives θ̃F ,
θ̃G and feasible sets C̃F and C̃G.

• Suppose that the sequence (rk)k is nondecreasing and that rk > L holds for all sufficiently
large k. Then ∥(xk+1, yk+1) − (xk, yk)∥ −→ 0.

Proof.

• We use the approach and the notation of T. Nguyen, Strodiot, and V. Nguyen (2009). Set
ϵk := 1/rk and h(x) := ∥x∥2 and note that h is Lipschitz on the compact sets C̃F , C̃G and
that we have ∥x − x̂∥2 = h(x) − h(x̂) − ⟨∇h(x̂), x − x̂⟩. We can then see that the modified
fixed-point iteration above is equivalent to the General Algorithm from T. Nguyen, Strodiot,
and V. Nguyen (2009), where in each step we use θ̃F + θ̃G instead of any µ-approximation
of θ̃F + θ̃G. We then follow the proof of Theorem 1 of T. Nguyen, Strodiot, and V. Nguyen
(2009) and note that the argument does not rely on the convexity of the function f̃k as long
as in each step a global minimum of the auxiliary problem is found. We can thus invoke
Theorem 1 of T. Nguyen, Strodiot, and V. Nguyen (2009) in our setting.
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• A straightforward computation shows that the bifunction f is pseudomonotone, i. e., if
f(a, b) ≥ 0 then f(b, a) ≤ 0. Accordingly, we can invoke Proposition 1 from T. Nguyen,
Strodiot, and V. Nguyen (2009). Noting that h is strongly convex with modulus β = 2,
we can now use Theorem 2 of T. Nguyen, Strodiot, and V. Nguyen (2009) with µ = 1 and
g(x, y) = 0 to arrive at ∥(xk+1, yk+1) − (xk, yk)∥ −→ 0.

□
Corollary Consider the fixed point iteration with (22)–(23) replaced by (26)–(27). Let (rk)k

be the sequence of regularization parameters used in this fixed-point iteration, and let (xk, yk)k be
the sequence generated by this iteration. Suppose that the sequence (rk)k is nondecreasing and that
rk > L holds for all sufficiently large k. Then, (xk, yk)k converges to a Nash equilibrium of the
modified game with objectives θ̃F , θ̃G and feasible sets C̃F and C̃G.

3.2 A Distributed Algorithm for Solving the Subproblems

Let us now discuss possible ways to solve (24) and (25) and any of their counterparts in a realistic
setting. For i ∈ F , we denote by xi the vector of decision variables controlled by agent i, that
is pe,t (e = (i, j) ∈ E(F ), t = 1, . . . , T ), pJi,e,t (e ∈ E(G), t = 1, . . . , T ), and xi,t (t = 1, . . . , T ).
We can then write θF (x) = θF (x1, . . . , xm), where m := |F |. In the given setting, it appears
natural to think of each agent i acting semi-independently from all other agents j ∈ F , j ̸= i.
Accordingly, agent i will first try to optimize over the decision variables it controls, i. e., for given
x̃j (j ∈ F, j ̸= i) the agent will solve

min θF (x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃m) + r∥xi − x̂i∥2 (28)

s.t. (x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃m) ∈ CF (y). (29)

Such a localized approach has one further advantage: the nonconvexity of the problem is now
addressed at a local level with far fewer decision variables involved (i. e., only those associated with
agent i). As such, there is the potential to find the global optimum of (28)–(29) in a reasonable
amount of time, provided T is not too large and E(F ) is not too dense.

To synchronize the optimization efforts of the individual agents, we can consider a simple
block-descent algorithm as follows:

1. Choose (x
(1)
1 , . . . , x

(1)
m ) ∈ CF (y).

2. k := 1

3. For i = 1, . . . ,m:

(a) Set x̃j := x
(k+1)
j , j = 1, . . . , i− 1.

(b) Set x̃j := x
(k)
j , j = i + 1, . . . ,m.

(c) Solve (28)–(29) with result x
(k+1)
i .

(d) Communicate x
(k+1)
i to all agents j ∈ F , j ̸= i.

4. k := k + 1

5. Goto step 3.

11



Note that Step 3(d) is essentially a broadcasting step, which might not be an appropriate strat-
egy in an adversarial environment. As such, we see the contribution of this subsection as a more
theoretical one, and as a first step towards further research. For a more involved scheme with
asynchronous communication, we refer the reader to (Luigi Bobbio (2024)).

Convergence results for block-descent algorithms for nonconvex functions are discussed in At-
touch et al. (2010), Grippo and Sciandrone (2000), and Yangyang Xu and W. Yin (2013), under
quite general conditions. Here, we have the following result.

Theorem. Denote by (x(k))k the sequence generated by the above block-descent algorithm. Let
the sequence of regularization parameters (rk)k be such that 0 < rL ≤ rk ≤ rU for some constants
rL, rU > 0.

1. Suppose that (x(k))k has an accumulation point. Then every accumulation point of (x(k))k
is a critical point to problem (24).

2. Denote by Ξ the set of critical points of problem (24). Then dist(x(k),Ξ) → 0. If Ξ contains
uniformly isolated points, then (x(k))k converges to a point in Ξ.

3. Let α be an even integer and let x(1) be sufficiently close to a global minimizer. Then (x(k))k
converges to a global minimizer.

Proof.

1. This follows directly from Proposition 7 in Grippo and Sciandrone (2000) or from Theorem 2.3
of Yangyang Xu and W. Yin (2013).

2. The sequence (x(k))k is bounded, as it contains only feasible points. The result then follows
from Corollary 2.4 in Yangyang Xu and W. Yin (2013).

3. Let us rewrite problem (24) as

min
z=(x,y)

f(z) + r1(x) + r2(y), (30)

where f is the original objective and ri is the indicator function of CF (y). The set CF (y)
is semi-algebraic. Likewise, it is easy to see that the function f is semi-algebraic for even
integers α. Therefore, the unconstrained problem (30) has a semi-algebraic objective which
thus fulfils the Kurdyka- Lojasiewicz inequality at every global solution. Next, we note that f
is Lipschitz-continuous on CF (y), and that the proof of Lemma 2.6 of Yangyang Xu and W.
Yin (2013) only requires this Lipschitz-continuity on the set of feasible points. Thus, all
assumptions for a slightly strengthened version of Lemma 2.6 of Yangyang Xu and W. Yin
(2013) are fulfilled, and the result follows with Corollary 2.7 of Yangyang Xu and W. Yin
(2013).

□
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3.3 A Model Predictive Control Framework to Handle Dynamic Envi-
ronments

To handle uncertain information in the environment and, in particular, dynamically changing
parameters of the underlying problem, we propose to use a rolling horizon or model predictive
control framework. By a rolling horizon approach, the acting agents or UAVs can react to changes
in the environment as soon as sensors on the UAVs detect corresponding changes or are informed
of such a change by other members of their fleet. This approach is widely used in engineering due
to its simplicity and versatility, see e. g., Findeisen, Allgöwer, and Biegler (2007) and Rawlings,
Mayne, Diehl, et al. (2017).

The rest of this section follows closely from previous work by Atayev, Fliege, and Zemkoho
(2024). Let us consider the time interval [0, T ] over which we optimise. As scheduling horizon we
chose [0, T ]. For T0 = 0 < T1 < T2 · · · we define prediction horizons [Ti, T ] and control horizons
[Ti, Ti+1], i = 0, 1, . . .. At the ith step, beginning with i = 0, we compute a solution (x(i), y(i))
to the Nash game under consideration, where the game is played over the ith prediction horizon,
[Ti, T ], and we have updated the constraints of the game by taking into account all the actions of all
agents at times t < Ti. For example, suppose that at some time step t < Ti agent j expends energy
pe,t > 0 to communicate with agent k along the edge e = (j, k). We then update the right-hand
side of the power constraint of agent j by Pmax

j := Pmax
j − pe,t, with a similar update if power is

also used for jamming or moving. Within the ith control horizon, [Ti, Ci], the agents then enact all
decisions encoded in (x(i), y(i)). The agents will update their current estimate of all uncertainties
of their environment whilst enacting these decisions. Once the agents have reached the beginning
of the next prediction horizon, that is, the end of their current control horizon, they can make use
of the updated information when solving the Nash game again over the next prediction horizon,
leading to (x(i+1), y(i+1)). Repeat this process until agents have enacted decisions over the full
interval [0, T ]. The overall control loop, to be executed for times t = 1, . . . , T can thus be written
as follows. We write x = (x1, . . . , xT ) and y = (y1, . . . , yT ), where xt, yt denote the decisions made
at time t. Moreover, we highlight the influence of dynamically changing parameters by writing the
payoff functions as θF (x, y,pt) and θF (x, y,pt) instead of θF (x, y), θG(x, y) where pt denotes all
parameters of the environment observed at time t and before.

1. We have given previous decisions x̃t−1 := (x̃1, . . . , x̃t−1) and ỹt−1 := (ỹ1, . . . , ỹt−1) and
previous parameters pt−1 := (p1, . . . , pt−1).

2. Observe the parameter vector pt and set pt := (p1, . . . , pt).

3. Update the sets of feasible points, based on x̃t−1, ỹt−1, and pt.

4. Solve the Nash game with strategies (xt, . . . , xT ) and (yt, . . . , yT ) and objectives θF (x̃t−1, •; ỹt−1, •;pt)
and θG(x̃t−1, •; ỹt−1, •;pt).

5. Denote the computed equilibrium solution by (xt, . . . , xT ) and (yt, . . . , yT ).

6. Set x̃t := xt and ỹt := xt.

We refer to Atayev, Fliege, and Zemkoho (2024) for further details, particularly concerning the
choice of the lengths of the control horizons and the possibility of adding smoothness constraints
to the overall trajectory constructed.
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4 Numerical Experiments

For our numerical experiments, we used the AMPL modelling language v. 20240606 to implement
various instances of the Nash game described here. We used KNITRO v. 14.0.0 (Byrd, Nocedal,
and Waltz, 2006) to solve the NLP problems (26)–(27) occurring in each step of our algorithm. The
following settings were applied: presolve and absolute feasibility tolerances equal to 10−6; absolute
optimality tolerance 10−6; multistart enabled. We allow a maximum of 30 fixed-point iterations
for the solution of each instance. The stopping criteria for the fixed-point algorithm was set to
ε := ∥(xk+1, yk+1)− (xk, yk)∥ ≤ 10−3. We use r = 10−2 as the starting value for the regularization
parameter r. At each fixed-point iteration, r is multiplied by 2. Our experiments were executed
on an AMD Ryzen 3 5400U laptop with 2.60GHz and 16GB of RAM running under Linux Mint
21.0 64bits.

We consider two fleets, F (’the Latins’) and G (’the Greeks’), with varying numbers of agents.
We use Latin indices for members of fleet F and Greek indices for members of fleet G. In some of
our experiments, we set the maximal velocity of some agents to zero, indicating that this agent is
a ground asset.

Table 1 shows the values of the constants of the model defined in Section 2. We note that

Parameter Value
ϱ 1.0
α 2.0
ϵ 0.2
σ 1.0

Table 1: Parameters defining the system model.

α = 2 is a typical choice for simulations and that choosing ϱ = 1 is equivalent to scaling through
all numerators and denominators in the objectives by ϱ and replacing σ2 by σ2/ϱ.

4.1 Illustrative Examples

In what follows we detail each numerical example together with their respective choice of remaining
parameters.

Example 1 In this example, fleets F = {a, b} and G = {α, β} start their missions at time t = 1
and finish at time T = 5. Table 2 shows the parameters for the different agents used in this
example, where x0 and y0 refer to the starting positions of the UAVs in the (x, y)-plane. The

Agent x0 y0 Pmax c δ
a 1.0 1.0 1.0 0.2 0.5
b -1.0 1.0 1.0 0.2 0.5
α 1.0 -1.0 1.0 0.2 0.5
β -1.0 -1.0 1.0 0.2 0.5

Table 2: Choice of UAV parameters for Example 1.
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communication network in this example is represented by the edge sets E(F ) = {(a, b), (b, a)} and
E(G) = {(α, β), (β, α)}, i. e., each agent in fleets F and G communicates with the other agent in
their fleet, respectively. Further, we use J(e) = G for all e ∈ E(F ) and J(e) = F for all e ∈ E(G),
meaning that agents in fleets F and G are capable of jamming communication along all arcs in
E(G) and E(F ), respectively. Finally, we set ωF = ωG = 10−2, meaning that both fleets are
mostly interested in jamming the communications of the other fleet.

Figure 2 shows the optimal trajectories for both fleets as computed by our fixed-point algorithm,
while Figure 3 shows the power expenditure, both for communication and for jamming, across
both fleets for all time steps. As it can be seen, the strategies deployed by the two fleets are
nonsymmetric: both fleets fly their agents close to the agents of the opposite team to facilitate
jamming, but only agent a uses a non-negligible amount of its battery power for communication.
Finally, Figure 4 depicts the objective function values observed over the steps of our fixed-point
algorithm. As it can be seen we arrive fairly quickly at θF = θG, indicating that we have achieved
convergence.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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0.0
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1.0

1.5

y

t = 5

Figure 2: Optimal trajectories as computed by our fixed-point algorithm for Example 1. All UAVs
reduce the distance to members of the opposite fleet as much as possible to increase their jamming
power.

Example 2 We modify Example 1 by considering nonsymmetric starting positions, see Table 3.
We use the same communication graphs and jamming capabilities as before.

As shown in Figures 5 and 6, in this example members of fleet F spend their power exclusively
for communication and jamming but do not move in space. In contrast, fleet G tries to jam
the communications of fleet F by shortening the distance to fleet F whilst simultaneously also
facilitating some communication between its members. Figure 7 shows the objective function
values over the course of our fixed-point algorithm, again indicating rapid convergence.
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Figure 3: Optimal power expenditure over time as computed by our fixed-point algorithm for
Example 1. Blue bars represent power used for communicating, and red and brown bars represent
power used for jamming. Power expenditures smaller than 10−2 are not included in the histogram.
As it can be seen, only the UAV a uses a non-negligible amount of power for communication.

Agent x0 y0 Pmax c δ
a 1.3 2.7 1.0 0.2 0.5
b -1.1 1.5 1.0 0.2 0.5
α 0.7 -0.9 1.0 0.2 0.5
β -2.1 -2.2 1.0 0.2 0.5

Table 3: UAV parameters for Example 2.

Example 3 In this example, fleets F = {a, b, g} and G = {α, β, γ} start at time t = 1 and
finalize their mission at time T = 5. Agents g and γ represent ground units which do not move
during the planning horizon. Table 4 provides the UAV parameters for this example. As edge sets
we use E(F ) = {(a, b), (a, g), (b, a), (b, g), (g, a), (g, b)} and E(G) = {(α, β), (α, γ), (β, α), (β, γ),
(γ, α), (γ, β)}. We allow all UAVs to jam all communication edges, but do not provide ground
units with jamming capabilities.

Figures 8 and 9 depict the computed solution. Agent a and agent α move as closely together as
possible (roughly at coordinates (-1, 0.3)). At that time, agent a jams the communication between
α and the ground unit λ. Agent a then flies back to its starting position, while agent α follows a
and jams the communication between a and ground unit g. Figure 10 shows the objective function
values computed at each step of our fixed-point algorithm.

16



0 2 4 6 8 10 12 14
iteration

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

ob
jec

tiv
e v

alu
e

Fleet F
Fleet G

Figure 4: Objective function values per fixed-point iteration for each fleet in Example 1.
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Figure 5: Optimal trajectories as computed by our fixed-point algorithm for Example 2. The two
members of fleet F (green) do not move. Both members of fleet G (red) reduce their distance to
the opposing fleet to increase their jamming capabilities, while simultaneously also shortening the
distance between themselves.

Example 4 This example highlights the effectiveness of our MPC approach in a dynamically
changing environment. Here we consider fleets with different numbers of agents. We start with
having F = {a, b, c, g} and G = {α, β, γ} starting their mission at time t = 1, while the mission
ends at time T = 10. There is also an additional UAV, c ∈ F , which is only activated at step
t = 5. As in the previous example, agents g γ represent ground units. Table 5 shows the UAV
parameters for this example. The communication network in this example is represented by the
sets E(F ) = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b), (c, g), (g, c)}. As one can see, agents a, b and c
can communicate among themselves, but only agent c can communicate with the ground unit g.
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Figure 6: Optimal power expenditure over time as computed by our block-descent algorithm for
Example 2.
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Figure 7: Objective function values per fixed-point iteration for each fleet/player in Example 2.

Thus, agent c can be seen as a relay node between agents a, b and g. In the communication graph
for fleet G, agents α and β can communicate among themselves and with the ground unit γ, i.e.,
E(G) = {(α, β), (α, γ), (β, α), (β, γ), (γ, α), (γ, β)}. The jamming capabilities are described by the
index sets J(e) = {α, β} for all e ∈ E(F ) \ I(g) and J(e) = {a, b, c} for all e ∈ E(G) \ I(γ), where
I(g) and I(γ) are the edges incident to g and γ, respectively.

Figures 11 and 12 depict the optimal solution computed at time t = 1 for the time frame
t = 1, . . . , 10, without knowledge that a new UAV will appear at time step 5. Fleet F does not
move at all and uses all its power budget for communication and jamming. Fleet G moves closer
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Agent x0 y0 Pmax c δ
a 1.0 1.0 1.0 0.2 0.5
b -1.0 1.0 1.0 0.2 0.5
g 0.0 1.0 1.0 1.0 0.0
α 1.0 -1.0 1.0 0.2 0.5
β -1.0 -1.0 1.0 0.2 0.5
γ 0.0 -1.0 1.0 1.0 0.0

Table 4: UAV parameters for Example 3.
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Figure 8: Optimal trajectories as computed by our fixed-point algorithm for Example 3.

Agent x0 y0 Pmax c δ
a 1.0 1.0 1.0 0.2 0.5
b -1.0 1.0 1.0 0.2 0.5
c -1.5 0.5 1.0 0.2 0.5
g 0.0 2.0 1.0 1.0 0.0
α 1.0 -1.0 1.0 0.2 0.5
β -1.0 -1.0 1.0 0.2 0.5
γ 0.0 -2.0 1.0 1.0 0.0

Table 5: UAV parameters for Example 4.

to fleet F to facilitate jamming, and the two UAVs also move closer together to improve their
communications.

We now consider the situation at time t = 5, after which both fleets have executed their optimal
strategies as depicted in Figures 11 and 12 for the time steps t = 1, 2, 3, 4. The UAV c in fleet F
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Figure 9: Power allocation over time as computed by our fixed-point algorithm for Example 3.
Power values smaller than 10−2 are not depicted.
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Figure 10: Objective function values per fixed-point iteration for each fleet/player in Example 3.

is now activated and its presence is made known to both fleets. Both players now reoptimize the
remaining Nash game over time steps t = 5, . . . , 10. Figures 13 and 14 show the solutions found.
As one can see, the strategy of fleet F has changed markedly and can be described as having a
much more aggressive stance than before.
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Figure 11: Optimal trajectories as computed by our fixed-point algorithm for Example 4 at time
t = 1 for the full mission length, without knowledge of the dynamics of the setting.
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Figure 12: Optimal power expenditure over time as computed by our fixed-point algorithm for
Example 4, at time t = 1 for the full mission length, without knowledge of the dynamics of the
setting.
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Figure 13: Optimal trajectories as computed by our fixed-point algorithm for Example 4 at time
t = 5 for the remaining mission length.
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Figure 14: Optimal power expenditure over time as computed by our fixed-point algorithm for
Example 4, at time t = 5 for the remaining mission length.

22



4.2 Computational Performance

Here we investigate the computational performance of the proposed approach across different
problem instances, where we increase the problem parameter T , i. e., the number of time steps
available for the mission. Table 7 summarizes our results. The column headers of the table denote
the following:

T number of time steps in the problem,

itfp number of fixed-point iterations,

Avg. Tfp average time per fixed-point iteration (in seconds),

Avg. itnlp average number of NLP iterations (per NLP call) per fixed-point
iteration,

Avg. Tnlp average time per NLP call (in seconds),
T (s) total time for the fixed-point algorithm (in seconds).

Table 7 shows how our algorithm scales as T increases. For these experiments, we consider
a slight variant of Example 1, in which we keep the same number of agents per fleet and the
same communication and jamming capabilities, but use slightly different parameters for the UAVs.
These are presented in Table 6. Note that the NLPs solved in each step of the fixed-point algorithm
increase in size with N ; they have approximately 18T variables and 6T nonlinear constraints.

Agent x0 y0 Pmax c δ
a 1.0 1.0 1.0 0.6 0.05
b -1.0 1.0 1.0 0.5 0.1
α 1.0 -1.0 1.0 0.6 0.05
β -1.0 -1.0 1.0 0.5 0.1

Table 6: Choice of UAV parameters for the modified version of Example 1, as considered in
Subsection 4.2.

One can observe that the total computation time increases significantly for T ≥ 50. The
number of fixed-point iterations remains within a reasonable range across all instances, never
reaching the maximum of 30, thus showing that the method converges consistently. However, the
average time per fixed-point iteration grows considerably for larger values of T , indicating that
while the convergence properties remain stable, the cost of each iteration increases as the problem
size expands, as expected. The data further shows an increase in the average number of NLP
iterations per NLP call, and their corresponding time, especially for T = 100. This suggests that
while the method is efficient for smaller planning horizons, future work may need to focus on
optimizing the time per iteration or reducing the number of NLP calls to ensure scalability for
larger problems.

In summary, the proposed approach demonstrates a satisfactory convergence and effective per-
formance across all problem instances. The average time per fixed-point iteration and the total
NLP time are the primary factors contributing to the rise in computational time, particularly for
larger values of T . On the other hand, we highlight that even the largest computation time needed
in our experiments (c.a. 200s) can considered reasonable in practical applications.
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T itfp Avg. Tfp(s) Avg. itnlp Avg. Tnlp(s) T(s)
5 9 0.02 49.22 0.02 0.20
10 8 0.02 90.75 0.02 0.19
20 8 0.25 225.75 0.08 2.00
30 7 0.29 292.86 0.15 2.00
40 10 0.60 350.50 0.26 6.00
50 17 1.41 721.88 0.71 24.00
100 15 14.47 2865.80 7.23 217.00

Table 7: Results for the scenario from Example 1 with varying T .

5 Conclusion

In this paper, we introduced a novel game-theoretic model for jamming and communication between
fleets of unmanned aerial vehicles (UAVs). The problem was framed as a Nash game, where each
fleet aims to optimize its communication while simultaneously jamming the communication of
the opposing fleet. By utilizing properties of the electromagnetic spectrum and the mobility of
agents, our model captures both the complexity of jamming strategies, the dynamics of inter-agent
communication, and important spatial characteristics of the problem. We proposed a fixed-point
algorithm to solve the problem, providing convergence guarantees under mild conditions.

Our computational experiments demonstrated the effectiveness of the approach across various
problem sizes. The proposed algorithm consistently converged in all cases, indicating the efficacy
of the method even for larger instances.

The results highlight the potential of the proposed approach for real-world applications in
electronic warfare and UAV fleet management, particularly in scenarios where both communication
and jamming are key strategic objectives. Future work could focus on improving the scalability of
the method by speeding up the solution of the NLP subproblems, as well as exploring parallelization
techniques for distributed settings. Additionally, extending the model to include more complex
dynamics, such as stochastic elements to manage uncertainty or multi-fleet interactions would
further enhance its practical relevance.

In conclusion, the proposed method offers a flexible and effective framework for addressing jam-
ming games for fleets of UAVs, providing further insights into the interplay between communication
and interference in dynamic adversarial environments.
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