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Abstract: Datasets collected for analysis often contain a certain amount of incomplete instances, where some feature
values are missing. Since many statistical analyses and machine learning algorithms depend on complete datasets,
missing values need to be imputed in advance. Bertsimas et al. (2018) proposed a high-performance method that com-
bines machine learning and mathematical optimization algorithms for imputing missing values. We extensively revise
this imputation method based on the nearest neighbors algorithm by using not only neighborhoods of data instances but
also neighborhoods of features. Specifically, we first formulate an optimization model using the instance-and-feature
neighborhoods for missing value imputation. We next design an alternating optimization algorithm to find high-quality
solutions to our optimization model for missing value imputation. We also develop a warm-start strategy to efficiently
find a sequence of solutions for various neighborhood sizes. Experimental results demonstrate the excellent imputation
accuracy of our method with instance-and-feature neighborhoods and the computational efficiency of our alternating
optimization algorithm with the warm-start strategy.

Keywords: missing value imputation, mathematical optimization, nearest neighbors, alternating optimization, warm
start

1. Introduction
1.1 Background

In recent years, dramatic advances in information and com-
munication technology have made a variety of datasets easily
available. Against this background, data mining and machine
learning tasks are becoming increasingly important for improv-
ing operational efficiency and business performance. In many
situations, however, the datasets collected for analysis contain a
certain amount of incomplete instances, where some feature val-
ues are missing [24].

Such missing values can arise for a variety of reasons [12],
including human error in data processing, machine error due to
equipment failure, refusal to answer questions, dropout from the
survey, and merging unrelated data. For example, it is known
that gene expression data frequently have missing values due to
experimental reasons [22].

Since many statistical analyses and machine learning algo-
rithms depend on complete datasets, missing values need to be
imputed in advance. However, imputing missing values can de-
grade prediction accuracy, impede data analysis, and bias out-
comes due to differences between missing and actual values [2].

1.2 Related Work
Various methods for missing value imputation have been

proposed to deal with incomplete datasets. These methods
can be categorized into statistical and machine learning tech-
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niques [24]. Statistical techniques include mean/mode impu-
tation, least squares methods, linear/logistic regression, and
expectation–maximization (EM) algorithms, whereas machine
learning techniques include clustering, decision trees, nearest
neighbors algorithms, and random forests; see systematic re-
views [12], [24] for detailed references to these imputation tech-
niques.

Recently, deep learning methods have been actively applied to
missing value imputation [33]; these include variational autoen-
coders [8], [27] and generative adversarial networks [23], [30],
[36]. Although deep learning methods have demonstrated over-
whelming performance in tasks such as image recognition and
natural language processing, several studies [17], [21], [33] have
reported that conventional imputation techniques (e.g., the EM
algorithm [11], [25], nearest neighbors algorithm [3], and ran-
dom forests [31]) can perform as well as powerful deep learning
methods.

In contrast to these statistical and machine learning techniques,
Bertsimas et al. [5] proposed a high-performance method that
combines machine learning and mathematical optimization al-
gorithms for missing value imputation. They formulated an
optimization model for imputing missing values based on ma-
chine learning techniques (e.g., the nearest neighbors algorithm).
This optimization model was solved by alternating optimization,
which repeats imputing missing values and training a machine
learning model.

Bertsimas et al. [5] reported that in terms of the imputation
accuracy, their method outperformed state-of-the-art methods for
missing value imputation [6], [7], [10], [29] on 84 types of ma-
chine learning datasets [19]. Bertsimas et al. [4] applied this
method to imputing clinical covariates in multivariate panel data.
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They also reported that for real-world clinical datasets, their
method achieved higher accuracy than did state-of-the-art meth-
ods for missing value imputation [7], [14], [29].

Methods for missing value imputation have also been used for
rating prediction in recommender systems [1]. Indeed, rating
prediction, which involves predicting users’ ratings for their un-
known items, is amount to imputing missing values in the user–
item rating matrix. To improve the accuracy of rating prediction,
Wang et al. [34] devised a collaborative filtering (nearest neigh-
bors) algorithm that uses neighborhoods of both users and items.

1.3 Our Contribution
The goal of this paper is to develop a high-performance method

for missing value imputation based on mathematical optimiza-
tion. Inspired by Wang et al. [34], we extensively revise the im-
putation method proposed by Bertsimas et al. [5], by using not
only neighborhoods of data instances but also neighborhoods of
features in the nearest neighbors algorithm.

Main contributions of our research are threefold. First, we for-
mulate an optimization model using the neighborhoods of both
instances and features to impute missing values. Second, we de-
sign an alternating optimization algorithm to find high-quality so-
lutions to our optimization model for missing value imputation.
Third, we develop a warm-start strategy to efficiently find a se-
quence of solutions for various neighborhood sizes.

We conduced computational experiments using incomplete
datasets generated based on three types of missing data mech-
anisms [25] from real-world datasets. Computational results
demonstrate that our method with instance-and-feature neighbor-
hoods can perform very well especially for some missing data
mechanisms. Moreover, our warm-start strategy can greatly re-
duce the computation time required by the alternating optimiza-
tion algorithm for large-sized neighborhoods.

2. Optimization Model
In this section, we formulate our optimization model using

neighborhoods of both instances and features for missing value
imputation. Throughout this paper, we denote the set of consecu-
tive integers from 1 to n as [n] B {1, 2, . . . , n}.

2.1 Incomplete Data Matrix
We focus on the following incomplete data matrix with some

missing entries:

X B (xi j)(i, j)∈[n]×[p] ∈ Rn×p,

where xi j denotes a (observed or missing) value of feature j ∈ [p]
for instance i ∈ [n]. We assume that X is a matrix of numerical
(i.e., quantitative) data, if necessary, by transforming categorical
(i.e., qualitative) features into one-hot or distributed representa-
tions [9], [28]. We also assume that each feature is standardized
to have mean zero and standard deviation one.

For such an incomplete data matrix X , we define index sets of
observed and missing entries as

O B {(i, j) ∈ [n] × [p] | xi j is observed},
M B {(i, j) ∈ [n] × [p] | xi j is missing}.

We also define index sets of instances and features containing
missing values as

M(I) B {i ∈ [n] | ∃ j ∈ [p], (i, j) ∈ M},
M(J) B { j ∈ [p] | ∃i ∈ [n], (i, j) ∈ M}.

2.2 Design Variables
We first introduce a design variable representing a complete

data matrix after missing value imputation as

W B (wi j)(i, j)∈[n]×[p] ∈ Rn×p,

where wi j denotes an imputed value of feature j ∈ [p] for instance
i ∈ [n].

We next introduce design variables for determining neighbor-
hoods of instances and features as

Z(I) B (z(I)
ik )(i,k)∈M(I)×[n] ∈ {0, 1}|M

(I) |×n,

Z(J) B (z(J)
jℓ )( j,ℓ)∈M(J)×[p] ∈ {0, 1}|M

(J) |×p,

where each entry of these matrices are defined as

z(I)
ik B

 1 instance k is a neighbor of instance i,

0 otherwise,

z(J)
jℓ B

 1 feature ℓ is a neighbor of feature j,

0 otherwise.

2.3 Objective Function
We consider minimizing the following objective function

based on the collaborative filtering (nearest neighbors) algo-
rithm [34]:

f (W ,Z(I),Z(J)) B (1 − λ)
∑

i∈M(I)

n∑
k=1

z(I)
ik

p∑
j=1

(wi j − wk j)2

+ λ
∑

j∈M(J)

p∑
ℓ=1

z(J)
jℓ

n∑
i=1

(wi j − wiℓ)2, (1)

where λ ∈ [0, 1] is a trade-off parameter between instance and
feature neighbors.

In Eq. (1), the first term represents the sum of distances be-
tween an incomplete instance i ∈ M(I) and its neighbor instances,
and the second term represents the sum of distances between an
incomplete feature j ∈ M(J) and its neighbor features. Missing
values are imputed by minimizing Eq. (1) such that imputed val-
ues get close between neighbor instances and between neighbor
features. Note that the first term in Eq. (1) corresponds to the
objective function adopted in Bertsimas et al. [5], and that the
second term is newly introduced by us.

2.4 Formulation
Let K(I) ∈ [n − 1] and K(J) ∈ [p − 1] be parameters for specify-

ing the neighborhood sizes of instances and features, respectively.
Then, our optimization model for imputing missing values based
on the instance-and-feature neighborhoods can be formulated as
follows:
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minimize f (W ,Z(I),Z(J)) (2)

subject to wi j = xi j ((i, j) ∈ O), (3)

z(I)
ii = 0 (i ∈ M(I)), (4)

z(J)
j j = 0 ( j ∈ M(J)), (5)
n∑

k=1

z(I)
ik = K(I) (i ∈ M(I)), (6)

p∑
ℓ=1

z(J)
jℓ = K(J) ( j ∈ M(J)), (7)

W ∈ Rn×p, (8)

Z(I) ∈ {0, 1}|M(I) |×n, (9)

Z(J) ∈ {0, 1}|M(J) |×p. (10)

Here, the observed values are fixed in Eq. (3). Neither instances
nor features are selected as their own neighbors due to Eqs. (4)–
(5). The neighborhood sizes are specified in Eqs. (6)–(7). Design
variables are listed in Eqs. (8)–(10).

3. Alternating Optimization Algorithm
Our optimization model (2)–(10), which is a mixed-integer

optimization problem with the nonconvex objective function in
Eq. (1), is very difficult to solve exactly. We thus develop a re-
vised version of the alternating optimization algorithm employed
in Bertsimas et al. [5].

3.1 Outline
Our alternating optimization algorithm is described in Algo-

rithm 1. We begin by initializing a complete data matrix W ∈
Rn×p. According to conventions, we substitute the mean of the
corresponding column into each missing entry.

We next alternate between updating neighborhoods (i.e., Z(I)

and Z(J)) and updating missing values (i.e., W ). We will explain
this update procedure in more detail in the next two subsections.

Let ft ∈ R be an incumbent objective value (Eq. (1)) in the t-th
iteration. Then, we terminate the algorithm if the objective value
is not sufficiently improved, namely

ft > ft−1 − ε,

where ε ∈ R+ is a sufficiently small positive number.

3.2 Updating Neighborhoods
Our algorithm at each iteration updates the neighborhoods (i.e.,

Z(I) and Z(J)) while keeping a given data matrix W fixed.
We first focus on the procedure of updating Z(I) ∈ {0, 1}|M(I) |×n.

The corresponding optimization problem can be decomposed into
problems for each i ∈ M(I) as

minimize
n∑

k=1

d(I)
ik z(I)

ik (11)

subject to z(I)
ii = 0, (12)
n∑

k=1

z(I)
ik = K(I), (13)

z(I)
i ∈ {0, 1}

n, (14)

Algorithm 1 Alternating Optimization for Problem (2)–(10)
Input:

Incomplete data matrix X ∈ Rn×p,
Threshold for termination ε ∈ R+,
Instance–feature trade-off λ ∈ [0, 1],
Neighborhood sizes K(I) ∈ [n − 1],K(J) ∈ [p − 1].

Initialize:
Complete data matrix W ∈ Rn×p, ▷ mean imputation
Initial objective value f0 B +∞,
Iteration count t ← 0.

1: repeat
2: Set t ← t + 1.
3: for all i ∈ M(I) do
4: Update z(I)

i as in Eq. (15). ▷ updating Z(I)

5: end for
6: for all j ∈ M(J) do
7: Update z(J)

j as in Eq. (20). ▷ updating Z(J)

8: end for
9: for all (α, β) ∈ M do

10: Update wαβ as in Eq. (21). ▷ updating W

11: end for
12: Set ft B f (W ,Z(I),Z(J)). ▷ Eq. (1)
13: until ft > ft−1 − ε. ▷ termination condition

Output: Complete data matrix W ∈ Rn×p.

where

d(I)
ik B

p∑
j=1

(wi j − wk j)2 ((i, k) ∈ M(I) × [n]),

z(I)
i B (z(I)

ik )k∈[n] (i ∈ M(I)).

Problem (11)–(14) can be solved easily by setting z(I)
ik = 1 in

ascending order of d(I)
ik for k ∈ [n]\{i} until Eq. (13) is satisfied.

Specifically, we define a bijective function for each i ∈ M(I) as

σ : [n − 1]→ [n]\{i}

such that
d(I)

iσ(1) ≤ d(I)
iσ(2) ≤ · · · ≤ d(I)

iσ(n−1).

We then set

zik =

 1 if k ∈ {σ(k′) | k′ ∈ [K(I)]},
0 otherwise

(k ∈ [n]). (15)

We next move on to the procedure of updating Z(J) ∈
{0, 1}|M(J) |×p. The corresponding optimization problem can be de-
composed into problems for each j ∈ M(J) as

minimize
p∑
ℓ=1

d(J)
jℓ z(J)

jℓ (16)

subject to z(J)
j j = 0, (17)
p∑
ℓ=1

z(J)
jℓ = K(J), (18)

z(J)
j ∈ {0, 1}

p, (19)

where

d(J)
jℓ B

n∑
i=1

(wi j − wiℓ)2 (( j, ℓ) ∈ M(J) × [p]),

z(J)
j B (z(J)

jℓ )ℓ∈[p] ( j ∈ M(J)).
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Problem (16)–(19) can be solved easily in the same manner as
problem (11)–(14). In this case, we define a bijective function for
each j ∈ M(J) as

σ : [p − 1]→ [p]\{ j}

such that

d(J)
jσ(1) ≤ d(J)

jσ(2) ≤ · · · ≤ d(J)
jσ(p−1).

We then set

z(J)
jℓ =

 1 if ℓ ∈ {σ(ℓ′) | ℓ′ ∈ [K(J)]},
0 otherwise

(ℓ ∈ [p]). (20)

3.3 Updating Missing Values
Our algorithm at each iteration updates a complete data ma-

trix W while keeping given neighborhoods (i.e., Z(I) and Z(J))
fixed. For each (α, β) ∈ M, differentiating the objective func-
tion in Eq. (1) with respect to wαβ yields the following first-order
optimality condition:

2(1 − λ)
( n∑

k=1

z(I)
αk(wαβ − wkβ) −

∑
i∈M(I)

z(I)
iα (wiβ − wαβ)

)
+ 2λ
( p∑
ℓ=1

z(J)
βℓ

(wαβ − wαℓ) −
∑

j∈M(J)

z(J)
jβ (wα j − wαβ)

)
= 0.

By collecting the terms containing wαβ onto the left-hand side,
we obtain(

(1 − λ)
(
K(I) +

∑
i∈M(I)

z(I)
iα

)
+ λ
(
K(J) +

∑
j∈M(J)

z(J)
jβ

))
︸                                              ︷︷                                              ︸

Dαβ

wαβ ∵ Eqs. (6)–(7)

= (1 − λ)
( n∑

k=1

z(I)
αkwkβ +

∑
i∈M(I)

z(I)
iαwiβ

)
+ λ
( p∑
ℓ=1

z(J)
βℓ
wαℓ +

∑
j∈M(J)

z(J)
jβwα j

)
︸                                                                      ︷︷                                                                      ︸

Nαβ

.

Consequently, we derive an entry-wise analytical solution of
missing values in matrix W as follows:

wαβ =
Nαβ
Dαβ

((α, β) ∈ M). (21)

3.4 Warm-Start Strategy
We develop a warm-start strategy to efficiently find a sequence

of solutions for various neighborhood sizes (K(I),K(J)) ∈ [K1] ×
[K2], where K1 ∈ [n − 1] and K2 ∈ [p − 1] are maximum neigh-
borhood sizes.

Let Ŵ (k1, k2) denote a solution of matrix W to problem (2)–
(10) with neighborhood sizes (K(I),K(J)) = (k1, k2). Our ba-
sic strategy is to speed up the computation of Ŵ (k1, k2) for
(k1, k2) ∈ [K1] × [K2] by starting our alternating optimization al-
gorithm (Algorithm 1) from

1
2

(
Ŵ (k1 − 1, k2) + Ŵ (k1, k2 − 1)

)
(22)

as the initial solution. Our warm-start strategy for Algorithm 1 is
described in Algorithm 2.

Algorithm 2 Warm-Start for Algorithm 1
Input:

Maximum neighborhood sizes K1 ∈ [n − 1],K2 ∈ [p − 1].
Initialize:

Complete data matrix Ŵ (0, 0) ∈ Rn×p. ▷ mean imputation

1: for all k1 ∈ [K1] do
2: Compute Ŵ (k1, 0) by starting Algorithm 1 from Ŵ (k1 − 1, 0).
3: end for
4: for all k2 ∈ [K2] do
5: Compute Ŵ (0, k2) by starting Algorithm 1 from Ŵ (0, k2 − 1).
6: end for
7: for all k2 ∈ [K2] do
8: for all k1 ∈ [K1] do
9: Compute Ŵ (k1, k2) by starting Algorithm 1 from Eq. (22).

10: end for
11: end for

Output: Complete data matrices Ŵ (k1, k2) for (k1, k2) ∈ ({0}∪ [K1])× ({0}∪
[K2]).

4. Experiments
In this section, we report experimental results of our method

for missing value imputation. All computations were performed
on a Windows computer with an Intel Core i9-9900K CPU (3.60
GHz) and 32 GB of RAM.

4.1 Datasets
We downloaded three real-world datasets from the UC Irvine

Machine Learning Repository [19]. Table 1 lists the datasets,
where n is the number of data instances, and p is the number
of features. These datasets contain only numerical features with
no missing values. We standardized each feature to have mean
zero and standard deviation one.

Table 1 Datasets

Name n p Original dataset

Rice 3810 7 Rice (Cammeo and Osmancik)[20]
Breast 569 30 Breast Cancer Wisconsin (Diagnostic) [32]
QSAR 1055 41 QSAR biodegradation [26]

4.2 Missing Data Mechanisms
There are three types of missing data mechanisms [25]: miss-

ing completely at random (MCAR), missing at random (MAR),
and not missing at random (NMAR). Table 2 lists statistical
assumptions of these missing data mechanisms, where XO B
(xi j)(i, j)∈O and XM B (xi j)(i, j)∈M are observed and missing en-
tries of data matrix X , respectively.

Table 2 Missing data mechanisms

Name Assumption

MCAR Pr(M |X) = Pr(M)
MAR Pr(M |X) = Pr(M |XO)
NMAR Pr(M |X) = Pr(M |XO,XM)

By following prior studies [13], [15], we generated incomplete
datasets based on the three mechanisms from the real-world com-
plete datasets (Table 1), where x̄ j B (

∑n
i=1 xi j)/n for j ∈ [p].
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(a) MCAR, MR = 5% (b) MCAR, MR = 10% (c) MCAR, MR = 20%

(d) MAR, MR = 5% (e) MAR, MR = 10% (f) MAR, MR = 20%

(g) NMAR, MR = 5% (h) NMAR, MR = 10% (i) NMAR, MR = 20%

Fig. 1 Mean absolute errors on the Rice dataset

MCAR Mechanism: We randomly chose a subsetM ⊆ [n] ×
[p] of a specified size and treated these entries as missing values:

xi j = missing ((i, j) ∈ M).

MAR Mechanism: We randomly sampled o,m ∈ [p] (o , m)
and made missing entries in the m-th column as

xio ≤ x̄o ⇒ xim = missing (i ∈ [n]).

We repeated this operation by resampling m ∈ [p] without re-
placement until the total number of missing entries reached a
specified number.

NMAR Mechanism: We randomly sampled m ∈ [p] and made
missing entries in the m-th column as

xim ≤ x̄m ⇒ xim = missing (i ∈ [n]).

We repeated this operation by resampling m ∈ [p] without re-
placement until the total number of missing entries reached a
specified number.

4.3 Experimental Setup
We compared the imputation accuracy of the following meth-

ods:

• MO(K(J) = ∗ ): Our method (Algorithm 1) for solving prob-
lem (2)–(10);

• MO+WS(K(J) = ∗ ): Our method (Algorithm 1) with the
warm-start strategy (Algorithm 2) for solving problem (2)–
(10);

• Mean: Imputing missing values with the corresponding col-
umn mean;

• KNN: Nearest neighbors algorithm [3] with the instance
neighborhood size K(I) for missing value imputation;

• EM: EM algorithm [11], [25] for missing value imputation;
where K(J) is the neighborhood size of features. We set ε = 0.01
as the threshold of termination, and λ = 0.5 as the instance–
feature trade-off in Algorithm 1. Considering the total number
of features (i.e., p) in Table 1, we set K(J) ∈ {0, 2, 4} for the Rice
dataset and K(J) ∈ {0, 4, 8} for the Breast and QSAR datasets. The
KNN and EM algorithms were implemented using the Impyute
library in the Python programming language.

The missing ratio (MR) of an incomplete data matrix is given
by

MR B
|M|
np
.
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(a) MCAR, MR = 5% (b) MCAR, MR = 10% (c) MCAR, MR = 20%

(d) MAR, MR = 5% (e) MAR, MR = 10% (f) MAR, MR = 20%

(g) NMAR, MR = 5% (h) NMAR, MR = 10% (i) NMAR, MR = 20%

Fig. 2 Mean absolute errors on the Breast dataset

For each pair of missing data mechanism (i.e., MCAR, MAR, or
NMAR) and missings ratio (MR ∈ {5%, 10%, 20%}), we gener-
ated incomplete datasets 10 times and averaged results over the
corresponding 10 trials.

We used the mean absolute error (MAE) as a measure of inac-
curacy in missing value imputation:

MAE B
1
|M|

∑
(i, j)∈M

∣∣∣wi j − xi j

∣∣∣ .
4.4 Results of the Imputation Accuracy

Figs. 1–3 show the mean absolute errors given by each im-
putation method on the Rice, Diag, and QSAR datasets, respec-
tively. Here, the horizontal axis K(I) is the neighborhood size of
instances employed in the MO and KNN methods. We have omit-
ted the results of our method with the warm-start strategy (i.e.,
MO+WS) because there was no significant difference in the mean
absolute errors between the MO and MO+WS methods. Note that
the MO method with the feature neighborhood size K(J) = 0 cor-
responds to the previous method proposed by Bertsimas et al. [5].

On the Rice Dataset (Fig. 1): For the MCAR mechanism,
the KNN method performed best overall, and our MO methods

performed better than the Mean and EM methods. Notably, our
MO methods with K(J) ∈ {2, 4} achieved good imputation accu-
racy even when K(I) was very small. For the MAR and NMAR
mechanisms, our MO methods with K(J) ∈ {2, 4} substantially
outperformed other methods when MR ∈ {5%, 10%}, and our
MO method with K(J) = 4 remained the best accuracy even when
MR = 20%.

On the Breast Dataset (Fig. 2): For the MCAR mechanism,
our MO method with K(J) = 4 outperformed other methods.
Additionally, the MO methods with K(J) ∈ {0, 8} and the KNN
method showed similar imputation accuracy when K(I) was large.
For the MAR mechanism, our MO methods with K(J) ∈ {4, 8}
outperformed other methods when MR ∈ {5%, 10%}, and our
MO method with K(J) = 8 remained the best accuracy even when
MR = 20%. For the NMAR mechanism, our MO method with
K(J) = 8 attained great accuracy when MR ∈ {5%, 10%}, whereas
the KNN method performed best when MR = 20%.

On the QSAR Dataset (Fig. 3): For the MCAR mechanism,
the previous MO (with K(J) = 0) and KNN methods performed
best overall. For the MAR mechanism, the KNN method per-
formed best overall, and our MO methods with K(J) ∈ {4, 8} per-
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(a) MCAR, MR = 5% (b) MCAR, MR = 10% (c) MCAR, MR = 20%

(d) MAR, MR = 5% (e) MAR, MR = 10% (f) MAR, MR = 20%

(g) NMAR, MR = 5% (h) NMAR, MR = 10% (i) NMAR, MR = 20%

Fig. 3 Mean absolute errors on the QSAR dataset

formed better than other methods. For the NMAR mechanism,
our MO methods with K(J) ∈ {4, 8} substantially outperformed
other methods.

From these results on the imputation accuracy, we can con-
clude that our method with instance-and-feature neighborhoods
performed relatively good on the whole. In particular, our method
performed very well for the MAR and NMAR mechanisms when
the missing rate was not large.

4.5 Results of the Computation Time
Fig. 4 shows the computation times (in seconds) required by

our method with and without the warm-start strategy when the
missing rate was MR = 20%. In some cases, the computation
time of the MO methods (without the warm-start strategy) sharply
increased as the instance neighborhood size K(I) increased. In
contrast, the increase in computation time of the MO+WS meth-
ods was reduced by using the warm-start strategy. A typical ex-
ample is Fig. 4(f): when K(I) was large, the computation times
were much longer without the warm-start strategy than with the
warm-start strategy.

5. Conclusion
We considered methods for missing value imputation using

mathematical optimization based on the nearest neighbors algo-
rithm. We formulated an optimization model using the neighbor-
hoods of both instances and features to impute missing values.
We designed an alternating optimization algorithm to find high-
quality solutions to our optimization model. We also developed a
warm-start strategy to efficiently find a sequence of solutions for
various neighborhood sizes.

Experimental results demonstrate that our method performed
very well especially for the MAR and NMAR missing data mech-
anisms when the missing rate was not large. Moreover, our warm-
start strategy successfully reduced the computation time of the al-
ternating optimization algorithm with large-sized neighborhoods.
It is known that missing values can be particularly harmful for
certain applications, especially when the distribution of missing
entries is not uniform, as in the case of MAR and NMAR mech-
anisms [13]. This fact highlights the importance of our method
being valid for MAR and NMAR mechanisms.

A future direction of study will be to develop an algorithm
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(a) Rice dataset, MCAR (b) Rice dataset, MAR (c) Rice dataset, NMAR

(d) Breast dataset, MCAR (e) Breast dataset, MAR (f) Breast dataset, NMAR

(g) QSAR dataset, MCAR (h) QSAR dataset, MAR (i) QSAR dataset, NMAR

Fig. 4 Computation times (in seconds) required by our methods for the three datasets with MR = 20%

that finds a solution to our optimization problem with a proof
of global optimality. Another direction for future research will be
to extend our imputation method to collaborative data analysis on
distributed datasets [16], [18], [35].
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