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Abstract. The restarted primal-dual hybrid gradient method (rPDHG) has recently emerged as an important tool for solving
large-scale linear programs (LPs). For LPs with unique optima, we present an iteration bound of �̃�

(
^Φ · ln

(
∥𝑤★∥
Y

))
, where Y is the

target tolerance, ^ is the standard matrix condition number, ∥𝑤★∥ is the norm of the optimal solution, and Φ is a geometric condition
number of the LP sublevel sets. This iteration bound is “accessible” in the sense that computing it is no more difficult than computing
the optimal solution itself. Indeed, we present a closed-form and tractably computable expression for Φ. This enables an analysis
of the “two-stage performance” of rPDHG: we show that the first stage identifies the optimal basis in �̃� (^Φ) iterations, and the
second stage computes an Y-optimal solution in 𝑂

(
∥𝐵−1∥∥𝐴∥ · ln

(
b
Y

))
additional iterations, where 𝐴 is the constraint matrix, 𝐵 is

the optimal basis and b is the smallest nonzero in the optimal solution. Furthermore, computational tests mostly confirm the tightness
of our iterations bounds. We also show a reciprocal relation between the iteration bound and three equivalent types of condition
measures: (i) stability under data perturbation, (ii) proximity to multiple optima, and (iii) the LP sharpness of the instance. Finally, we
analyze an “optimized” primal-dual reweighting which offers some intuition concerning the step-size heuristics used in practice.
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1. Introduction Linear Program (LP) has been a cornerstone of optimization since the 1950s, with
far-reaching applications across diverse fields, including economics (see, e.g., Greene [25]), transportation
(see, e.g., Charnes and Cooper [13]), manufacturing (see, e.g., Bowman [11], Hanssmann and Hess [27]),
computer science (see, e.g., Cormen et al. [15]), and medicine (see, e.g., Wagner et al. [54]) among many
others (see, e.g., Dantzig [16]). LP algorithms have also been extensively researched in the past several decades.
Almost all LP algorithms to date are based on either simplex/pivoting methods and/or interior-point methods
(IPMs). These classic methods form the foundation of modern solvers due to their reliability and robustness
in providing high-quality solutions. However, both of them require repeatedly solving linear equation systems
at each iteration using matrix factorizations, whose cost grows superlinearly in the size of the instance
(as measured in the dimensions of problem and/or the number of nonzeros in the data). Consequently, as
problem size increase, these methods become computationally impractical. Furthermore, matrix factorizations
cannot efficiently leverage modern computational architectures, such as parallel computing on graphics
processing units (GPUs). For these reasons, suitable first-order methods (FOMs) are emerging as attractive
solution algorithms because they are “matrix-free,” meaning they require no or perhaps only very few matrix
factorizations, while their primary computational cost lies just in computing matrix-vector products when
computing gradients and related quantities. Hence FOMs are inherently more suitable for exploiting data
sparsity, and for parallel computing using GPUs, and their iteration cost typically scales just linearly in the
size of the instance.

The restarted primal-dual hybrid gradient method (rPDHG) has emerged as a particularly successful FOM
for solving LPs. It directly addresses the saddlepoint formulation of LP (see Applegate et al. [6]), automatically
detects infeasibility (see Applegate et al. [5]), and has natural extensions to conic linear programs in Xiong and
Freund [58] and convex quadratic programs in Lu and Yang [39] and Huang et al. [30]. This algorithm has led
to various implementations on CPUs (PDLP by Applegate et al. [4]) and GPUs (cuPDLP by Lu and Yang [38]
and cuPDLP-C by Lu et al. [43]), equipped with several effective heuristics. Notably, the performance of the
GPU implementations has surpassed classic algorithms (simplex methods and IPMs) on a significant number
of problem instances as shown by Lu and Yang [38] and Lu et al. [43]. The strong practical performance
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has also sparked considerable industrial interest from mathematical optimization software companies. To
date, rPDHG has been integrated into the state-of-art commercial solvers COPT 7.1 (see Ge et al. [24]) and
Xpress 9.4 (see Biele and Gade [9]) as a new base algorithm for LP, complementing simplex methods and
IPMs. It has also been added to Google OR-Tools (see Applegate et al. [4]), HiGHS (see Ge et al. [24]), and
NVIDIA cuOpt (see Fender [21]). With rPDHG, many problems previously considered too large-scale for
classic algorithms are now solvable; for instance, it is reported by Mirrokni [45] that a distributed version
of rPDHG has been used to solve practical LP instances with more than 9.2× 1010 nonzero components
in the constraint matrix, a scale far beyond the capabilities of traditional methods. Another example is a
representative large-scale benchmark instance called zib03. This instance, which took 16.5 hours to solve
in 2021 as reported by Koch et al. [31], can now be solved in 15 minutes using rPDHG by Lu et al. [43].
Furthermore, it has recently activated the potentials of large-scale linear programming in real applications,
including making targeted marketing policies by Lu et al. [36], solving large-scale integer programming
instances by De Rosa and Khajavirad [17], and optimizing data center network traffic engineering by Lu and
Applegate [35], the latter of which has been deployed in Google’s production environment.

Despite the strong performance of rPDHG on many LP instances, certain aspects of its practical behavior
remain poorly understood. Indeed, rPDHG sometimes performs poorly, even for some very small LP instances.
Additionally, minor data perturbation of some easily solveable instances can lead to instances with substantially
increased computational cost. Also, it has been observed that rPDHG often exhibits a “two-stage performance”
phenomenon in which the second stage exhibits much faster local convergence, but this phenomenon has not
been adequately explained or otherwise addressed by suitable theory.

To better understand the underlying behavior of rPDHG, it is important to have theory that is in synch
with practical performance. However, many aspects of the existing theory cannot be adequately evaluated for
practical relevance due to the difficulty of actually computing the quantities in the theoretical computational
bounds. Applegate et al. [6] establish the linear convergence rate of rPDHG using the global Hoffman constant
of the matrix 𝐾 of the KKT system corresponding to the LP instance. Roughly speaking, the Hoffman
constant is equal to the reciprocal of the smallest nonzero singular values of the submatrices of 𝐾 , of which
there are exponentially many (see Pena et al. [48]). While intuition suggests that the Hoffman constant is
itself an overly conservative quantity in the computational complexity, we do not know this from experience
on any non-trivial LPs since the Hoffman constant is not computable in reasonable time. Xiong and Freund
[56] provide a tighter computational guarantee for rPDHG using two natural properties of the LP problem:
LP sharpness and the “limiting error ratio.” Furthermore, for LPs with extremely poor sharpness and the
broader family of conic LPs, Xiong and Freund [58] provide computational guarantees for rPDHG based on
three geometric measures of the primal-dual (sub)level set geometry. In addition, Lu and Yang [40] study the
vanilla primal-dual hybrid gradient method (PDHG) using a trajectory-based analysis approach, and shows
the two-stage performance of PDHG based on the Hoffman constant of a smaller linear system. However,
despite these studies, none provides an iteration bound that is reasonably easy to compute, and so we cannot
ascertain the extent to which any of these iteration bounds align with computational practice. To compute the
iteration bounds, all existing works require prohibitively expensive operations, such as directly computing
Hoffman constants (e.g., Applegate et al. [6], Lu and Yang [40]), solving multiple additional optimization
problems (e.g., Lu and Yang [40], Xiong and Freund [56, 58]), or running a first-order method beforehand to
obtain the solution trajectory (e.g., Lu and Yang [40]).

Due to the absence of an iteration bound that can be evaluated for its align with computational practice,
we do not know the extent to which the existing theoretical bounds align with computational practice. This
makes it more difficult to do mathematical analysis to possibly improve the practical behavior of rPDHG
either. Furthermore, the lack of a reasonably convenient expression of the iteration bound also hinders a
deeper understanding of rPDHG’s performance on specific families of LP instances, impedes theoretical
validation of some effective practical heuristics, and potentially hampers the development of further practical
enhancements.

This paper aims to make progress on the above issues by posing and trying to answer the following
questions:
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• Is there an accessible iteration bound of rPDHG that is easily computable?, we will say that an iteration
bound is accessible if, roughly speaking, the quantities in the bound depend only on some intrinsic
properties of the LP instance whose computation is not more costly than solving the LP instance itself.
(For example, the norm of the optimal solution is accessible, but the Hoffman constant is not accessible.)

• If we have an accessible iteration bound, can we use the bound to provide deeper insights into the
practical performance of rPDHG? – particularly regarding the two-stage performance phenomenon,
the sensitivity to minor data perturbations, and to possibly improve current heuristic components of
practical implementations?

This paper focuses on LP instances with unique optimal solutions (of the primal and dual) and hence
unique optimal bases, and proves an accessible iteration bound that is easily computable and indeed has
a closed-form expression. A similar unique optimum assumption is often made in studies of large-scale
LPs (e.g., Liu et al. [34] and Xiong and Freund [57]) and other optimization problems, such as semidefinite
programs (e.g., Alizadeh et al. [1]) and general convex optimization (e.g., Drusvyatskiy and Lewis [19]). The
unique optimum assumption is actually looser than the nondegeneracy assumption, because once the primal
and dual optimal basic feasible solutions are nondegenerate, then the primal and dual solutions are unique and
nondegenerate, which means the LP instance has one unique optimal basis. This nondegeneracy assumption
is also used by almost all classic optimization textbooks, such as Bertsimas and Tsitsiklis [8], to simplify
analysis and convey insights. We acknowledge the unique optimum assumption does not hold for a very
large number of LP instances occurring in practice due to special problem structures (network substructure
in particular) in very many real applications. But the property of unique optima for LP is generic (i.e., it
holds almost surely) under most models of randomly generated LP instances. Here we use our accessible
new iteration bound to provide valuable insights into the performance of rPDHG and may potentially inspire
future research generalizing this work to the broader family of LP instances.

1.1. Outline and contributions In this paper, we consider the following standard form LPs:

min
𝑥∈R𝑛

𝑐⊤𝑥 s.t. 𝐴𝑥 = 𝑏 , 𝑥 ≥ 0 . (1.1)

where 𝐴 ∈ R𝑚×𝑛 is the constraint matrix, 𝑏 ∈ R𝑚 is the right-hand side vector, and 𝑐 ∈ R𝑛 is the objective
vector. The corresponding dual problem is:

max
𝑦∈R𝑚,𝑠∈R𝑛

𝑏⊤𝑦 s.t. 𝐴⊤𝑦 + 𝑠 = 𝑐 , 𝑠 ≥ 0 . (1.2)

We will assume the optimal basis is unique, denoted by 𝐵, and let 𝑥★, 𝑦★ and 𝑠★ denote the optimal solutions.
In Section 2, we revisit its saddlepoint formulation and its symmetric reformulation on the space of 𝑥 and 𝑠.
We also review rPDHG for solving LPs.

Section 3 presents the main result of the paper: an accessible iteration bound of rPDHG that has a
closed-form expression. The bound takes the form

𝑂

(
^Φ · ln

(
^Φ
∥(𝑥★, 𝑠★)∥

Y

))
,

where Y is the target tolerance, ^ is the standard matrix condition number, and Φ is a geometric condition
number of the LP sublevel sets that admits a closed-form expression. This new bound is actually proven
equivalent to a bound in Xiong and Freund [58] (under the unique optimum assumption) but has a closed-form
expression. Furthermore, Φ has an even simpler upper bound:

Φ ≤ ∥𝑥★ + 𝑠★∥1
min1≤𝑖≤𝑛

{
𝑥★
𝑖
+ 𝑠★

𝑖

} · 𝐵−1𝐴


2 .

In Section 4, using the established accessible iteration bound, we provide a mathematical analysis of
rPDHG’s “two-stage performance.” Specifically, we show that Stage I achieves finite-time optimal basis
identification in

𝑂 (^Φ · ln (^Φ))
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iterations, and Stage II exhibits a faster local convergence rate and computes an Y-optimal solution in

𝑂

(
∥𝐵−1∥∥𝐴∥ · ln

(
min1≤𝑖≤𝑛{𝑥★𝑖 +𝑠★𝑖 }

Y

))
additional iterations. The iteration bound of Stage II is independent of Φ and may thus be significantly lower
than that of Stage I. This provides at least a partial explanation for the “two-stage performance” in theory.

In Section 5, using the expression of the new iteration bound, we study the relation between the iteration
bound of rPDHG and three equivalent types of condition measures: (i) stability under data perturbations, (ii)
proximity to multiple optima, and (iii) the LP sharpness of the instance. Specifically, we show that

Φ=
∥𝑥★∥1 + ∥𝑠★∥1
min{Z𝑝, Z𝑑}

,

where Z𝑝 and Z𝑑 denote the stability measures for the primal and dual problems. This relationship yields a
new and tighter computational guarantee of rPDHG, and also quantifies the impact of tiny data perturbations
on the convergence rate.

In Section 6, since the new iteration bounds can now be easily computed, we confirm their tightness
via computational tests on LP instances. As predicted by the new iteration bounds, experiments show that
tiny perturbations may indeed significantly alter Φ and the overall convergence rates. Additionally, the new
iterations bounds are also confirmed matching the practice as our experiments show ^Φ and ∥𝐵−1∥∥𝐴∥
indeed play important roles in the global linear convergence rates and the two-stage performance. Since our
new iteration bounds are proven equivalent to a bound in Xiong and Freund [58], the latter is also confirmed
to match the practical behavior by our experiments.

In Section 7, thanks to the accessible iteration bound expression, we demonstrate that the reweighting
that equalizes the ℓ1-norms of the primal and dual optimal solutions can approximately minimize Φ and
the overall iteration bound. This finding provides some intuition concerning the very effective heuristic of
balancing the “primal weights.”

1.2. Other related works In addition to the previously discussed papers, several other studies have
analyzed the performance of PDHG and its variants. Hinder [28] and Lu and Yang [41] present instance-
independent worst-case complexity bounds of rPDHG on totally-unimodular LPs and optimal transport
problems. Lu and Yang [37] show that the last iterate of the vanilla PDHG without restarts also exhibits a
linear convergence rate, dependent on the global Hoffman constant of the KKT system matrix. A recent
concurrent work Lu and Yang [42] propose a new restart scheme for PDHG by restarting from the Halpern
iterate instead of the average iterate. They prove an accelerated refined complexity bound compared to that of
the vanilla PDHG proven in Lu and Yang [40]. This new bound is still based on the Hoffman constant of the
reduced KKT system and employs a trajectory-based analysis approach.

There has been increasing interest in developing FOMs for LPs. Xiong and Freund [58] propose to use
central-path Hessian-based rescaling to accelerate rPDHG, and Li et al. [32] design a learning-to-optimize
method to emulate PDHG for solving LPs. Beyond PDHG, several other FOMs have been studied recently.
Lin et al. [33] and Deng et al. [18] develop ABIP (and ABIP+), an ADMM-based interior-point method that
leverages the framework of the homogeneous self-dual interior-point method and employs ADMM to solve
the inner log-barrier problems. O’donoghue et al. [47] and O’Donoghue [46] develop SCS, applying ADMM
directly to the homogeneous self-dual formulation for general CLP problems. Basu et al. [7] utilize accelerated
gradient descent to solve a smoothed dual form of LP. Wang et al. [55] use overparametrized neural networks
to solve entropically regularized LPs. Very recently, Hough and Vavasis [29] use a Frank-Wolfe method to
address the saddlepoint problem formulation, and Chen et al. [14] implement a Halpern Peaceman-Rachford
method with semi-proximal terms to solve LPs.
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1.3. Notation In this paper, we use [𝑛] as shorthand for {1,2, . . . , 𝑛}. For a matrix 𝐴 ∈ R𝑚×𝑛, Null(𝐴) :=
{𝑥 ∈ R𝑛 : 𝐴𝑥 = 0} denotes the null space of 𝐴 and Im(𝐴) := {𝐴𝑥 : 𝑥 ∈ R𝑛} denotes the image of 𝐴. For any
𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛], 𝐴·,𝑖 and 𝐴 𝑗 , · denote the corresponding 𝑖-th column and 𝑗-th row of 𝐴, respectively.
For any subset Θ of [𝑛], 𝐴Θ denotes the submatrix of 𝐴 formed by the columns indexed by Θ. We use
∥𝐴∥𝛼,𝛽 to denote the operator norm, i.e., ∥𝐴∥𝛼,𝛽 := sup𝑥≠0

∥𝐴𝑥 ∥𝛼
∥𝑥 ∥𝛽 . Specifically, ∥𝐴∥2,∞ = max1≤𝑖≤𝑚

𝐴𝑖, ·
and ∥𝐴∥1,2 = max 𝑗∈[𝑛]

𝐴·, 𝑗. We let ∥ · ∥𝑀 denote the inner product “norm” induced by 𝑀, namely,
∥𝑧∥𝑀 :=

√
𝑧⊤𝑀𝑧. Unless otherwise specified, for a vector 𝑣, ∥𝑣∥ denotes the Euclidean norm, and for a matrix

𝐴, ∥𝐴∥ denotes ∥𝐴∥2,2, the spectral norm of 𝐴. For any set X ⊂ R𝑛, 𝑃X : R𝑛→ R𝑛 denotes the Euclidean
projection onto X, namely, 𝑃X (𝑥) := arg min�̂�∈X ∥𝑥 − 𝑥∥. For any 𝑥 ∈ R𝑛 and set X ⊂ R𝑛, the Euclidean
distance between 𝑥 and X is denoted by Dist(𝑥,X) := min�̂�∈X ∥𝑥 − 𝑥∥ and the 𝑀-norm distance between 𝑥
and X is denoted by Dist𝑀 (𝑥,X) := min�̂�∈X ∥𝑥 − 𝑥∥𝑀 . For 𝑥 ∈ R𝑛, we use 𝑥+ to denote the positive part of 𝑥.
For any affine subspace 𝑉 , we use ®𝑉 to denote the associated linear subspace corresponding to 𝑉 . For any
linear subspace ®𝑆 in R𝑛, we use ®𝑆⊥ to denote the corresponding complementary linear subspace of ®𝑆. In this
paper, we use 𝑂 (·) to hide factors of only absolute constants.

2. Preliminaries and Background Throughout this paper, we consider the primal problem (1.1) and
its dual problem (1.2). For simplicity of analysis, we consistently assume that the rows of 𝐴 are linearly
independent and that (1.1) has at least one optimal solution. A primal-dual solution pair 𝑥 and (𝑦, 𝑠) is
optimal if and only if they are feasible and the duality gap is zero, i.e.,

Gap(𝑥, 𝑦) := 𝑐⊤𝑥 − 𝑏⊤𝑦 = 0 . (2.1)

Furthermore, (1.1) and (1.2) are equivalent to the following saddlepoint problem:

min
𝑥∈R𝑛+

max
𝑦∈R𝑚

𝐿 (𝑥, 𝑦) := 𝑐⊤𝑥 + 𝑏⊤𝑦 − (𝐴𝑥)⊤𝑦 . (2.2)

The optimal solutions 𝑥★ and (𝑦★, 𝑠★) of (1.1) and (1.2), are also the saddle point of (2.2), and vice versa.

2.1. Symmetric formulation of LP Given that (1.2) includes the constraint 𝐴⊤𝑦 + 𝑠 = 𝑐, it follows that
for any feasible (𝑦, 𝑠), 𝑦 = (𝐴𝐴⊤)−1𝐴(𝑐− 𝑠). Let us define 𝑞 := 𝐴⊤ (𝐴𝐴⊤)−1

𝑏; then the objective function of
𝑦 is equivalent to an objective function of 𝑠, i.e., 𝑏⊤𝑦 = 𝑞⊤(𝑐− 𝑠), and (1.2) is thus equivalent to the following
(dual) problem on 𝑠 :

max
𝑠∈R𝑛

𝑞⊤(𝑐 − 𝑠) s.t. 𝑠 ∈ 𝑐 + Im(𝐴⊤), 𝑠 ≥ 0. (2.3)

We denote the duality gap for the pair (𝑥, 𝑠) as Gap(𝑥, 𝑠) := 𝑐⊤𝑥 − 𝑞⊤(𝑐− 𝑠), which is equivalent to Gap(𝑥, 𝑦)
when 𝐴⊤𝑦 + 𝑠 = 𝑐.

Note that the feasible set of the primal problem (1.1) is the intersection of the affine subspace 𝑉𝑝 :=
𝑞 + Null(𝐴) and the nonnegative orthant. Similarly, the feasible set of (2.3) is the intersection of 𝑉𝑑 :=
𝑐 + Im (𝐴⊤) and the nonnegative orthant. We can thus rewrite the primal and dual problems in the following
symmetric form:

min
𝑥∈R𝑛

𝑐⊤𝑥 max
𝑠∈R𝑛

𝑞⊤(𝑐 − 𝑠)

s.t. 𝑥 ∈ F𝑝 :=𝑉𝑝 ∩R𝑛+ s.t. 𝑠 ∈ F𝑑 :=𝑉𝑑 ∩R𝑛+
(2.4)

Let ®𝑉𝑝 and ®𝑉𝑑 denote the linear subspaces associated with the affine subspaces 𝑉𝑝 and 𝑉𝑑, respectively.
These subspaces are orthogonal complements. We then use X★ and S★ to denote the optimal solutions for
the primal and the dual problem, respectively. Notably, any change in 𝑐 within the space of ®𝑉𝑝 does not affect
X★, S★, 𝑉𝑝, 𝑉𝑑 , F𝑝, or F𝑑 . Without loss of generality, we may sometimes assume that 𝑐 is in Null(𝐴), which
can be achieved by replacing 𝑐 with 𝑃 ®𝑉𝑝

(𝑐) beforehand. This leads to the following symmetric properties for
(1.1) and (2.3).

Fact 2.1. Suppose that 𝐴𝑐 = 0. Then ®𝑉𝑑 is the orthogonal complement of ®𝑉𝑝, i.e., ®𝑉𝑑 = ®𝑉⊥𝑝 . Furthermore,
𝑞⊤𝑐 = 0, and the objective function of (2.3) is equal to −𝑞⊤𝑠, and Gap(𝑥, 𝑠) is equal to 𝑐⊤𝑥 +𝑞⊤𝑠. Additionally,
𝑐 ∈ ®𝑉𝑝 and 𝑐 = arg min𝑣∈𝑉𝑑

∥𝑣∥, and 𝑞 ∈ ®𝑉𝑑 and 𝑞 = arg min𝑣∈𝑉𝑝
∥𝑣∥.
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This re-formulation of the dual was, to the best of our knowledge, first introduced in Todd and Ye [52]. We
will use the notationW★ to denote the primal-dual pairs, i.e.,

W★ :=X★×S★ =
{
(𝑥★, 𝑠★) : 𝑥★ ∈ X★, 𝑠★ ∈ S★

}
. (2.5)

Our focus is on computing Y-optimal solutions, which are essentially solutions sufficiently close toW★, as
defined below.

Definition 2.1 (Y-optimal solution). A solution 𝑤 is said to be Y-optimal if the Euclidean distance
between 𝑤 andW★ is less than Y, i.e.,

Dist(𝑤,W★) ≤ Y .

2.2. Restarted Primal-dual hybrid gradient method (rPDHG) The vanilla primal-dual hybrid gradient
method (abbreviated as PDHG) was introduced by Esser et al. [20], Pock et al. [49] to solve general
convex-concave saddlepoint problems, of which (2.2) is a specific subclass. For LP problems, let 𝑧 denote
the primal-dual pair (𝑥, 𝑦), and then iteration of PDHG, denoted by 𝑧𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1) ←OnePDHG(𝑧𝑘), is
defined as follows: {

𝑥𝑘+1←
(
𝑥𝑘 − 𝜏

(
𝑐 − 𝐴⊤𝑦𝑘

) )+
𝑦𝑘+1← 𝑦𝑘 +𝜎

(
𝑏 − 𝐴

(
2𝑥𝑘+1 − 𝑥𝑘

) ) (2.6)

where 𝜏 and 𝜎 are the primal and dual step-sizes, respectively.
Algorithm 1 presents the general restart scheme for PDHG. We refer to this algorithm as “rPDHG,” short

for restarted-PDHG.

Algorithm 1: rPDHG: restarted-PDHG
1 Input: Initial iterate 𝑧0,0 := (𝑥0,0, 𝑦0,0) = (0,0), 𝑛← 0, step-size 𝜏, 𝜎, and 𝛽 ∈ (0,1) ;
2 repeat
3 initialize the inner loop: inner loop counter 𝑘← 0 ;
4 repeat
5 conduct one step of PDHG: 𝑧𝑛,𝑘+1←OnePDHG(𝑧𝑛,𝑘) ;
6 compute the average iterate in the inner loop. 𝑧𝑛,𝑘+1← 1

𝑘+1
∑𝑘+1

𝑖=1 𝑧
𝑛,𝑖 ;

7 𝑘← 𝑘 + 1 ;
8 until satisfying the 𝛽-restart condition;
9 restart the outer loop: 𝑧𝑛+1,0← 𝑧𝑛,𝑘 , 𝑛← 𝑛 + 1 ;

10 until Either 𝑧𝑛,0 is a saddlepoint or 𝑧𝑛,0 satisfies some other convergence condition ;
11 Output: 𝑧𝑛,0 ( = (𝑥𝑛,0, 𝑦𝑛,0))

Line 5 of Algorithm 1 is an iteration of the vanilla PDHG as described in (2.6). For each iterate
𝑧𝑛,𝑘 = (𝑥𝑛,𝑘 , 𝑦𝑛,𝑘), we define 𝑠𝑛,𝑘 := 𝑐 − 𝐴⊤𝑦𝑛,𝑘 and 𝑠𝑛,𝑘 := 𝑐 − 𝐴⊤ �̄�𝑛,𝑘 . The double superscript indexes the
outer iteration counter followed by the inner iteration counter, so that 𝑧𝑛,𝑘 is the 𝑘-th inner iteration of the
𝑛-th outer loop. Line 8 of Algorithm 1 specifies an easily verifiable restart condition proposed by Applegate
et al. [6] and also used by Xiong and Freund [56, 58] and the practical implementation by Applegate et al.
[4]. We will discuss it in more detail when using them.

The primary computational effort of Algorithm 1 is the OnePDHG in Line 5, which involves two
matrix-vector products. In contrast to traditional methods such as simplex and interior-point methods, rPDHG
does not require any matrix factorizations. It is worth noting that the step-sizes 𝜏 and 𝜎 need to be sufficiently

small to ensure convergence. In particular, if 𝑀 :=
( 1
𝜏
𝐼𝑛 −𝐴⊤
−𝐴 1

𝜎
𝐼𝑚

)
is positive semi-definite, then Chambolle and

Pock [12] prove rPDHG’s iterates will converge to a saddlepoint of (2.2). The above requirement can be
equivalently expressed as:

𝜏 > 0, 𝜎 > 0, and 𝜏𝜎 ≤ 1
∥𝐴∥2

. (2.7)
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Furthermore, the matrix 𝑀 turns out to be particularly useful in analyzing the convergence of rPDHG
through its induced inner product norm defined as ∥𝑧∥𝑀 :=

√
𝑧⊤𝑀𝑧. This norm will be extensively employed

throughout the remainder of this paper.

2.3. LPs with unique optima This paper focuses particularly on LPs with unique optima, the problems
satisfying the following assumption:

Assumption 2.1. The linear optimization problem (1.1) has a unique optimal solution 𝑥★, and the dual
problem (1.2) has a unique optimal solution (𝑦★, 𝑠★), i.e., X★ = {𝑥★}, Y★ = {𝑦★} and S★ = {𝑠★}.
When S★ is a singleton, actuallyY★ is a singleton if and only if the rows of the constraint matrix 𝐴 are linearly
independent. This assumption is equivalent to having a unique optimal basis, and is also equivalent to the
case that the primal and dual optimal basic feasible solutions are nondegenerate. Actually, in theory “almost
all” LP instances have unique optima, as randomly generated instances are known to be nondegenerate almost
surely (see Borgwardt [10]). The unique optimum assumption and the stronger nondegeneracy assumption are
often used in large-scale linear programming (see, e.g., Liu et al. [34], Xiong and Freund [57]), semidefinite
programs (see, e.g., Alizadeh et al. [1]), and general convex optimization (see, e.g., Drusvyatskiy and Lewis
[19]). But in practice, due to special structures of real problems, this assumption does not always hold.

Under Assumption 2.1, the primal-dual pair of optimal solutions, 𝑥★ and (𝑦★, 𝑠★), are optimal basic feasible
solutions, corresponding to the optimal basis Θ := {𝑖 ∈ [𝑛] : 𝑥★

𝑖
> 0}. Let Θ̄ denote the complement of Θ, i.e.,

Θ̄ := [𝑛] \Θ. Due to strict complementary slackness, Θ̄ = {𝑖 ∈ [𝑛] : 𝑠★ > 0}. As 𝑥★ is an optimal basic feasible
solution, there are exactly 𝑚 components in Θ and 𝑛−𝑚 components in Θ̄.

Since the algorithm is invariant under permutation of the variables, for simplicity of notations in this paper
we assume that the optimal basis is {1,2, . . . , 𝑚} and use 𝐵 and 𝑁 to denote the submatrices 𝐴Θ and 𝐴Θ̄,
respectively. In other words,

Θ= [𝑚] = {1,2, . . . , 𝑚} , Θ̄ = [𝑛] \ [𝑚] = {𝑚 + 1, 𝑚 + 2, . . . , 𝑛} and 𝐴 =
(
𝐵 𝑁

)
. (2.8)

With the above Θ and Θ̄, the indices of the nonzero components of 𝑥★ are exactly [𝑚], and the indices of the
nonzero components of 𝑠★ are exactly [𝑛] \ [𝑚].

Later in the paper we will frequently use the following quantities of the matrix 𝐴:

_max := 𝜎+max(𝐴), _min := 𝜎+min(𝐴), ^ :=
_max

_min
(2.9)

where 𝜎+max(𝐴) and 𝜎+min(𝐴) denote the largest and the smallest nonzero singular values of 𝐴, respectively.
And ^ is often referred to as the matrix condition number of 𝐴.

3. Closed-form Complexity Bound of rPDHG This section presents the main result of the paper: an
iteration bound of the global linear convergence that has a closed-form expression. First of all, we define the
following quantity Φ:

Φ :=
(
∥𝑥★∥1 + ∥𝑠★∥1

)
·max

 max
1≤ 𝑗≤𝑛−𝑚

√︃(𝐵−1𝑁)·, 𝑗
2 + 1

𝑠★
𝑚+ 𝑗

, max
1≤𝑖≤𝑚

√︃(𝐵−1𝑁)𝑖, ·
2 + 1

𝑥★
𝑖

 . (3.1)

Notably, it leads to the following iteration bound of rPDHG.

Theorem 3.1. Suppose Assumption 2.1 holds and 𝐴𝑐 = 0. When running Algorithm 1 (rPDHG) with
𝜏 = 1

2^ , 𝜎 = 1
2_max_min

and 𝛽 := 1/𝑒 to solve the LP, the total number of OnePDHG iterations required to
compute an Y-optimal solution is at most

𝑂

(
^Φ · ln

(
^Φ · ∥𝑤

★∥
Y

))
. (3.2)
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This new computational guarantee for rPDHG is an accessible iteration bound, as it has a closed-form
expression that can be easily computed once the optimal solution has been identified. Examining the definition
of Φ in (3.1), 𝐵−1𝑁 is essentially the tabular of the tabular simplex method at the optimal basis 𝐵. Overall, Φ
is in closed form of the optimal solution/basis, making it very amenable to computation. Given the optimal
basis, the matrix 𝐵−1𝑁 can also be easily computed via one matrix factorization followed by one matrix
multiplication. Overall, computing Φ is almost as easy as solving the LP itself. In addition, ^ can be computed
by one singular value decomposition of 𝐴. Consequently, the bound (3.2) in Theorem 3.1 is accessible
because computing it does not require solving any additional optimization problems beyond the original LP.

Among ^ and Φ, ^ is a standard definition and easy to compute and analyze. It is solely determined by
the matrix 𝐴 and independent of the problem’s geometry. Conversely, although Φ is defined in terms of the
matrix 𝐴 and the optimal solutions, it is equivalent to an intrinsic measure of the geometry detailed later in
Section 3.1. Indeed, Φ is not affected by any parameters of Algorithm 1. In addition, replacing the constraint
𝐴𝑥 = 𝑏 with any preconditioned constraint 𝐷𝐴𝑥 = 𝐷𝑏 does not change Φ either.

Furthermore, Φ has the following simplified upper bound:
Proposition 3.1. The following inequality holds for Φ:

Φ ≤ ∥𝑥★ + 𝑠★∥1
min1≤𝑖≤𝑛

{
𝑥★
𝑖
+ 𝑠★

𝑖

} · ∥𝐵−1𝐴∥2 .

Due to complementary slackness, all components of 𝑥★ + 𝑠★ are strictly positive, and min1≤𝑖≤𝑛
{
𝑥★
𝑖
+ 𝑠★

𝑖

}
represents the minimum nonzero component of 𝑥★ and 𝑠★. This upper bound is the product of two factors:
(i) ∥𝑥★+𝑠★∥1

min1≤𝑖≤𝑛{𝑥★𝑖 +𝑠★𝑖 }
, the ratio between the ℓ1-norm and the smallest nonzero of the optimal solution, and (ii)

∥𝐵−1𝐴∥2, the spectral norm of 𝐵−1𝐴. For readers familiar with simplex methods, 𝐵−1𝐴 is the simplex tabular
at the optimal basis 𝐵. Its proof directly computes the relaxation of Φ; we defer it to Appendix A.

It should be noted that Φ is also relevant to condition numbers of other methods, beyond its connection to
the tableau in simplex methods. Firstly, min1≤𝑖≤𝑛

{
𝑥★
𝑖
+ 𝑠★

𝑖

}
and the ratio ∥𝑤★∥

min1≤𝑖≤𝑛{𝑥★𝑖 +𝑠★𝑖 }
appear in classic

complexity analyses of interior-point methods, including the convergence behavior (e.g., Güler and Ye
[26]), finite convergence to optimal solutions (e.g., Ye [60]), and identification of the optimal face (e.g,
Mehrotra and Ye [44]). Additionally, Lu and Yang [40] demonstrate that PDHG (without restarts) exhibits
faster local linear convergence within a neighborhood whose size relates to min1≤𝑖≤𝑛

{
𝑥★
𝑖
+ 𝑠★

𝑖

}
. Furthermore,

∥𝑤★∥
min1≤𝑖≤𝑛{𝑥★𝑖 +𝑠★𝑖 }

also appears in finite termination analysis of interior-point methods by Anstreicher et al.
[3], Potra [50], in the form that is multiplied by certain norms of 𝐵−1𝑁 . Later in Section 4, we will show that
Φ also plays an important role in rPDHG’s finite time identification of the optimal basis. Notably, while these
condition numbers typically appear inside logarithmic terms in the complexity of interior-point methods,
rPDHG’s complexity is linear with respect to Φ. This suggests that Φ has more profound implications for
the complexity and practical convergence rates of rPDHG compared to interior-point methods. Beyond
interior-point methods, the upper bound ∥𝑥★∥1

min1≤𝑖≤𝑚 𝑥★
𝑖

also plays a crucial role in the complexity analysis of
simplex and policy-iteration methods for discounted Markov decision problems (see Ye [62]).

The rest of this section presents the proof of Theorem 3.1. Section 3.1 recalls the sublevel set condition
numbers defined by Xiong and Freund [58] and their roles in rPDHG. Furthermore, Section 3.1 shows a key
lemma of the equivalence relationship between Φ and the sublevel set condition numbers, which helps prove
Theorem 3.1. After that, Section 3.2 proves the key lemma of the equivalence relationship.

3.1. Sublevel-set condition numbers and the proof of Theorem 3.1 Recall that F𝑝 = 𝑉𝑝 ∩ R𝑛+
and F𝑑 =𝑉𝑑 ∩R𝑛+ denote the feasible sets of the primal and dual problems, respectively. Let F := F𝑝 ×F𝑑
represent the primal-dual feasible set of the solution pair (𝑥, 𝑠). The optimal solution can then be characterized
as

W★ := F ∩ {𝑤 = (𝑥, 𝑠) ∈ R2𝑛 : Gap(𝑤) = 0} ,
the set of feasible solutions with zero duality gap. The 𝛿-sublevel set is similarly characterized as the feasible
solutions whose duality gap is less than or equal to 𝛿, formally defined as follows:
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Definition 3.1 (𝛿-sublevel setW𝛿). For 𝛿 ≥ 0, the 𝛿-sublevel setW𝛿 is defined as:

W𝛿 := F ∩ {𝑤 = (𝑥, 𝑠) ∈ R2𝑛 : Gap(𝑤) ≤ 𝛿} . (3.3)

Based onW𝛿 , Xiong and Freund [58] introduce the following two geometric condition numbers: the diameter
𝐷 𝛿 and the conic radius 𝑟 𝛿 .

Definition 3.2 (Condition numbers ofW𝛿). For 𝛿 ≥ 0, the diameter ofW𝛿 is defined as

𝐷 𝛿 := max
𝑢,𝑣∈W𝛿

∥𝑢 − 𝑣∥ . (3.4)

And the conic radius ofW𝛿 is the optimal objective value of the optimization problem

𝑟 𝛿 :=
(

max
𝑤∈W𝛿 ,𝑟≥0

𝑟 s. t.
{
�̂� : ∥�̂� −𝑤∥ ≤ 𝑟

}
⊆ R2𝑛

+

)
, (3.5)

which is also equal to
(
max𝑤∈W𝛿

Dist(𝑤, 𝜕R2𝑛
+ )

)
and

(
max𝑤∈W𝛿

min𝑖∈[2𝑛] 𝑤𝑖

)
.

These condition numbers play a crucial role in the iteration bound of rPDHG as follows:

Lemma 3.1. Under the same settings of the LP instance and Algorithm 1 with Theorem 3.1, the total number
of OnePDHG iterations 𝑇 required to obtain the first outer iteration 𝑁 such that 𝑤𝑁,0 = (𝑥𝑛,0, 𝑐 − 𝐴⊤𝑦𝑛,0) is
Y-optimal is bounded above by

𝑇 ≤ 380^
(
lim inf

𝛿↘0

𝐷 𝛿

𝑟 𝛿

) [
ln

(
380^

(
lim inf

𝛿↘0

𝐷 𝛿

𝑟 𝛿

))
+ ln

(
∥𝑤★∥
Y

)]
. (3.6)

This lemma is a simple extension of Theorem 3.5 of Xiong and Freund [58], and its complete proof is
deferred to Appendix A. For simplicity of notations, the rest of the paper uses Φ̂ to denote

(
lim inf 𝛿↘0

𝐷𝛿

𝑟𝛿

)
:

Φ̂ := lim inf
𝛿↘0

𝐷 𝛿

𝑟 𝛿
. (3.7)

Lemma 3.1 implies that the linear convergence rate is mostly determined by ^, a condition number of the
constraint matrix, and Φ̂, a condition number of the sublevel set. WhenW★ is a singleton, the sublevel set
W𝛿 is always inside the tangent cone to F at 𝑤★. Although looking similar, Φ̂ is not equivalent to the “width”
of the tangent cone at 𝑤★ (see a formal definition in Freund and Vera [23]). The latter is an inherent property
of the tangent cone, but the former is also influenced by the direction of (𝑐, 𝑞).

Actually, we have the following critical lemma, which states the equivalence between Φ and Φ̂:

Lemma 3.2. The geometric condition number Φ̂ and Φ are equivalent up to a constant factor of 2, i.e.,

Φ ≤ Φ̂ ≤ 2Φ . (3.8)

Because of Lemma 3.2, all previous discussions for Φ also apply to Φ̂. In addition, we can now directly
prove Theorem 3.1.

Proof of Theorem 3.1. Directly applying Lemma 3.2 in the iteration bound of Lemma 3.1 yields the
desired iteration bound (3.2). □

Furthermore, since Φ is actually equivalent to Φ̂ up to a constant, the new accessible iteration bound of
Theorem 3.1 is also equivalent to the iteration bound of Lemma 3.1 (an iteration bound of Xiong and Freund
[58]) up to a constant. Xiong and Freund [58] point out that proper central path based Hessian rescaling can
improve Φ̂ to at most 2𝑛, so Lemma 3.2 indicates that this rescaling can also improve Φ to at most 2𝑛.

We now prove Lemma 3.2 in Section 3.2.
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3.2. Proof of the equivalence between Φ and Φ̂ The sublevel set can be equivalently regarded as the
“primal sublevel set” for an artificial LP problem whose variables contain both the primal and dual variables.
Section 3.2.1 extends the definitions of the sublevel set to the primal space only and demonstrates how to
compute its condition numbers approximately. Subsequently, Section 3.2.2 illustrates how to approximate the
sublevel-set condition numbers by treating them as primal sublevel-set condition numbers of an artificial
problem, thereby proving Lemma 3.2.

3.2.1. Condition numbers of the primal sublevel set Recall that the primal feasible set is F𝑝 :=
𝑉𝑝 ∩ R𝑛+, the intersection of the nonnegative orthant R𝑛+ and the affine subspace of the linear equality
constraints. We define the objective error of 𝑥 as Ep

obj(𝑥) := 𝑐⊤𝑥 − 𝑓★, where 𝑓★ is the optimal objective 𝑐⊤𝑥★

for an optimal 𝑥★ of (1.1). The optimal primal solution is the feasible solution with zero objective error. The
primal 𝛿-sublevel set is then defined as:

X𝛿 := F𝑝 ∩
{
𝑥 ∈ R𝑛 : Ep

obj(𝑥) := 𝑐⊤𝑥 − 𝑓★ ≤ 𝛿
}
, (3.9)

the sets of feasible primal solutions whose objective error does not exceed 𝛿. Analogous to Definition 3.2, we
define the diameter and conic radius of X𝛿 as

𝐷
𝑝

𝛿
:= max

𝑢,𝑣∈X𝛿

∥𝑢 − 𝑣∥ and 𝑟
𝑝

𝛿
:= max

𝑥∈X𝛿

Dist(𝑥,R𝑛+) . (3.10)

Now we show the representation of X𝛿 and how to compute 𝐷 𝑝

𝛿
and 𝑟 𝑝

𝛿
.

Convex hull representation of the primal sublevel setX𝛿 . Under Assumption 2.1, the optimal primal and
dual solutions are unique and nondegenerate, corresponding to a unique optimal basis. Each edge emanating
from X★ = {𝑥★} connects to a basic feasible solution of an adjacent basis. There are exactly 𝑛−𝑚 entering
basic variable. Let the corresponding directions of these edges be given by the vectors 𝑢1, 𝑢2, . . . , 𝑢𝑛−𝑚 ∈ R𝑛.
Since Θ= [𝑚] and Θ̄ = [𝑛] \ [𝑚], these vectors can be computed as follows:

𝑢
𝑗

[𝑚] := −𝐵−1𝑁·, 𝑗 , 𝑢
𝑗

𝑚+ 𝑗 := 1, and 𝑢
𝑗

𝑘
:= 0 for all 𝑘 ∉ [𝑚] and 𝑘 ≠𝑚 + 𝑗 (3.11)

for each 𝑗 ∈ [𝑛−𝑚]. Therefore, the 𝑛−𝑚 edges are as follows:

E 𝑗 :=
{
𝑥★ + \ · 𝑢 𝑗 : \ ≥ 0, 𝑥★ + \ · 𝑢 𝑗 ∈ F𝑝

}
for each 𝑗 ∈ [𝑛−𝑚] . (3.12)

If 𝑢 𝑗 ≥ 0, then E 𝑗 is an extreme ray. Otherwise, E 𝑗 connects to an adjacent basic feasible solution of 𝑥★.
Based on these edges, when 𝛿 is sufficiently small so that it is no larger than the extreme points’ best nonzero
objective error 𝛿𝑝 (which is always strictly positive for LP) defined by

𝛿𝑝 :=
{

min{Ep
obj(𝑥) : 𝑥 ∈ EPF𝑝 \X★} if EPF𝑝 \X★ ≠ ∅

+∞ if EPF𝑝 \X★ = ∅ (3.13)

then X𝛿 can be represented as the convex hull of these edges. Here we use EPF𝑝 to denote the set of extreme
points of F𝑝.

Lemma 3.3. Suppose that Assumption 2.1 holds and 𝛿 ∈ (0,∞) lies in (0, 𝛿𝑝]. Then X𝛿 is represented by
the following convex hull formulation:

X𝛿 = Conv
(
{𝑥★} ∪ {𝑥 𝑗 : 𝑗 ∈ [𝑛−𝑚]}

)
(3.14)

where
𝑥 𝑗 := 𝑥★ + 𝛿

𝑠★
𝑚+ 𝑗
· 𝑢 𝑗 for each 𝑗 ∈ [𝑛−𝑚] . (3.15)
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Proof. Because 𝛿 ∈ (0, 𝛿𝑝], the halfspace {𝑥 : 𝑐⊤𝑥 < 𝑓★ + 𝛿} contains no other basic feasible solutions
of F𝑝 and intersect no other edges except the 𝑛 −𝑚 edges emanating from X★, namely E1,E2, . . . ,E𝑛−𝑚.
Therefore, in addition to 𝑥★, the other extreme points of X𝛿 are the intersection points of the hyperplane {𝑥 :
𝑐⊤𝑥 = 𝑓★+ 𝛿} and the edges E1,E2, . . . ,E𝑛−𝑚. These intersection points all exist because 𝛿 ∈ (0, 𝛿𝑝] ∩ (0,∞).
Moreover, they are precisely the {𝑥 𝑗 : 𝑗 ∈ [𝑛 −𝑚]} defined in (3.15), as the objective errors Ep

obj(𝑥
𝑗) all

equal 𝛿 (which is because Ep
obj(𝑥

𝑗) = (𝑥 𝑗)⊤𝑠★ = 𝑥
𝑗

𝑚+ 𝑗 𝑠
★
𝑚+ 𝑗 =

𝛿
𝑠★
𝑚+ 𝑗
· 𝑢 𝑗

𝑚+ 𝑗 · 𝑠★𝑚+ 𝑗 = 𝛿𝑢
𝑗

𝑚+ 𝑗 = 𝛿). Therefore, X𝛿 is
indeed the convex hull of the 𝑛−𝑚 + 1 points in {𝑥★} and {𝑥 𝑗 : 𝑗 ∈ [𝑛−𝑚]}. □

Computing the diameter and conic radius ofX𝛿 . We now provide an approximation of 𝐷 𝑝

𝛿
for sufficiently

small 𝛿.

Lemma 3.4. Suppose that Assumption 2.1 holds and 𝛿 ∈ (0, 𝛿𝑝]. Then we have

𝛿 · max
1≤ 𝑗≤𝑛−𝑚

√︃𝐵−1𝑁·, 𝑗
2 + 1

𝑠★
𝑚+ 𝑗

≤ 𝐷 𝑝

𝛿
≤ 2𝛿 · max

1≤ 𝑗≤𝑛−𝑚

√︃𝐵−1𝑁·, 𝑗
2 + 1

𝑠★
𝑚+ 𝑗

. (3.16)

Proof. The diameter of a polyhedron is the maximum distance between any two extreme points
points of the polyhedron. Thus, 𝐷 𝑝

𝛿
≤ max𝑖, 𝑗∈[𝑛−𝑚] ∥𝑥𝑖 − 𝑥★∥ + ∥𝑥 𝑗 − 𝑥★∥ ≤ 2 ·max1≤ 𝑗≤𝑛−𝑚 ∥𝑥 𝑗 − 𝑥★∥ =

2𝛿 ·max1≤ 𝑗≤𝑛−𝑚
∥𝑢 𝑗 ∥
𝑠★
𝑚+ 𝑗

, where the last equality uses Lemma 3.3. Conversely, 𝐷 𝑝

𝛿
≥max1≤ 𝑗≤𝑛−𝑚 ∥𝑥 𝑗 − 𝑥★∥,

which equals 𝛿 ·max1≤ 𝑗≤𝑛−𝑚
∥𝑢 𝑗 ∥
𝑠★
𝑚+ 𝑗

(by Lemma 3.3). Finally, note from (3.11) that ∥𝑢 𝑗 ∥ =
√︃𝐵−1𝑁·, 𝑗

2 + 1
so the proof is completed. □

Next, we show how to exactly compute 𝑟 𝛿 when 𝛿 is sufficiently small. Specifically, we study 𝛿 small
enough so that for {𝑥 𝑗 : 1 ≤ 𝑗 ≤ 𝑛−𝑚} defined in (3.15):

min
1≤𝑘≤𝑚

𝑥
𝑗

𝑘
≥ 𝑥

𝑗

𝑚+ 𝑗 for all 𝑗 ∈ [𝑛−𝑚] . (3.17)

In other words, 𝛿 is small enough such that 𝑥 𝑗
𝑚+ 𝑗 is one of the smallest nonzeros of 𝑥 𝑗 for all 𝑗 ∈ [𝑛 −𝑚].

Note that 𝑥 𝑗 is continuous with respect to the value of 𝛿, and when 𝛿 = 0, all the 𝑛−𝑚 inequalities of (3.17)
hold strictly. Therefore, there must exist a nonempty neighborhood of 0 in which all values of 𝛿 satisfy (3.17).

Lemma 3.5. Suppose that Assumption 2.1 holds and 𝛿 is sufficiently small so that 𝛿 ≤ 𝛿𝑝 and (3.17)
holds. Then we have:

𝑟
𝑝

𝛿
=

𝛿

∥𝑠★∥1
. (3.18)

Proof. By definition, 𝑟 𝑝
𝛿
= max𝑥∈X𝛿

Dist(𝑥, 𝜕R𝑛+) = max𝑥∈X𝛿
min1≤𝑙≤𝑛 𝑥𝑙. Since 𝛿 ≤ 𝛿𝑝, using the

convex hull formulation of X𝛿 presented in Lemma 3.3, 𝑟 𝑝
𝛿

can be equivalently written as:

𝑟
𝑝

𝛿
= max

_∈R𝑛−𝑚+1+∑𝑛−𝑚+1
𝑗=1 _ 𝑗=1

min
1≤𝑙≤𝑛

𝑥(_)𝑙 in which 𝑥(_) := _𝑛−𝑚+1 · 𝑥★ +
𝑛−𝑚∑︁
𝑗=1

_ 𝑗 · 𝑥 𝑗 . (3.19)

Due to the above definition of 𝑥(_) and the definition of 𝑥 𝑗 in (3.15), for each 𝑚 + 𝑗 in Θ̄ = [𝑛] \ [𝑚], the
component 𝑥(_)𝑚+ 𝑗 is given by _ 𝑗 · 𝑥 𝑗𝑚+ 𝑗 .

We now claim that a smallest component of 𝑥(_) is of an index in [𝑛] \ [𝑚]. On the one hand,

min
1≤𝑖≤𝑚

𝑥(_)𝑖
(3.19)
≥ _𝑛−𝑚+1 · min

1≤𝑖≤𝑚
𝑥★𝑖 +

𝑛−𝑚∑︁
𝑗=1

_ 𝑗 · min
1≤𝑖≤𝑚

𝑥
𝑗

𝑖
≥ 0+

𝑛−𝑚∑︁
𝑗=1

_ 𝑗 · 𝑥 𝑗𝑚+ 𝑗 . (3.20)
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where the last inequality uses (3.17) because 𝛿 is sufficiently small. On the other hand, because 𝑥(_)𝑚+ 𝑗 =
_ 𝑗 · 𝑥 𝑗𝑚+ 𝑗 ,

𝑛−𝑚∑︁
𝑗=1

_ 𝑗 · 𝑥 𝑗𝑚+ 𝑗 =
𝑛−𝑚∑︁
𝑗=1

𝑥(_)𝑚+ 𝑗 ≥ min
1≤ 𝑗≤𝑛−𝑚

𝑥(_)𝑚+ 𝑗 . (3.21)

Overall, for this small 𝛿, (3.20) and (3.21) ensure that a smallest component of 𝑥(_) is of an index in [𝑛] \ [𝑚].
Consequently, when computing 𝑟 𝑝

𝛿
we only need to consider the components in [𝑛] \ [𝑚].

𝑟
𝑝

𝛿

(3.19)
= max

_∈R𝑛−𝑚+1+∑𝑛−𝑚+1
𝑗=1 _ 𝑗=1

min
1≤𝑙≤𝑛

𝑥(_)𝑙 = max
_∈R𝑛−𝑚+1+∑𝑛−𝑚+1
𝑗=1 _ 𝑗=1

min
𝑚+1≤𝑙≤𝑛

𝑥(_)𝑙 = max
_∈R𝑛−𝑚+1+
_𝑛−𝑚+1=0∑𝑛−𝑚
𝑗=1 _ 𝑗=1

min
𝑚+1≤𝑙≤𝑛

𝑥(_)𝑙 (3.22)

where the last equality follows from 𝑥★[𝑛]\[𝑚] = 0, which implies that _𝑛−𝑚+1 in an optimal _ for 𝑟 𝑝
𝛿

must be 0.
The value of 𝑟 𝑝

𝛿
in (3.22) is then equal to the optimal objective of

©«
max

_∈R𝑛−𝑚
min

1≤ 𝑗≤𝑛−𝑚
_ 𝑗 · 𝑥 𝑗𝑚+ 𝑗

s.t.
∑︁

1≤ 𝑗≤𝑛−𝑚
_ 𝑗 = 1, _ ≥ 0

ª®®®¬ =
©«

max
_∈R𝑛−𝑚

min
1≤ 𝑗≤𝑛−𝑚

_ 𝑗 ·
𝛿

𝑠★
𝑚+ 𝑗

s.t.
∑︁

1≤ 𝑗≤𝑛−𝑚
_ 𝑗 = 1, _ ≥ 0

ª®®®®¬
(3.23)

where the equality uses 𝑥 𝑗
𝑚+ 𝑗 =

𝛿
𝑠𝑚+ 𝑗

according to (3.15) and (3.11). Finally, the optimal solution _★ of (3.23)

is given by _★
𝑗
=

𝑠★
𝑚+ 𝑗∑𝑛−𝑚

𝑘=1 𝑠★
𝑚+𝑘

=
𝑠★
𝑚+ 𝑗
∥𝑠★∥1 for each 𝑗 , and the optimal objective is equal to 𝛿

∥𝑠★∥1 . This establishes
(3.18) and completes the proof. □

It is noteworthy that if we similarly define the dual sublevel set S𝛿 and then Freund [22, Theorem 3.2.]
shows 𝛿 ≤ 𝑟 𝑝

𝛿
· max𝑠∈S𝛿

∥𝑠∥1 ≤ 2𝛿. A direct application of this result yields 1
∥𝑠★∥1 ≤ lim𝛿→0

𝑟
𝑝

𝛿

𝛿
≤ 2
∥𝑠★∥1 .

However, Lemma 3.5 provides a slightly stronger result by precisely computing 𝑟 𝑝
𝛿
.

3.2.2. Proof of Lemma 3.2 In this subsection, we prove Lemma 3.2. We begin by demonstrating that
the sublevel setW𝛿 can be regarded as a primal sublevel set of an artificial problem. Using the results of
Section 3.2.1, we then show how to approximate 𝐷 𝛿 and compute 𝑟 𝛿 , which subsequently allows us to
approximate Φ̂ and prove Lemma 3.2.

Problem (2.3) can be transformed into the subsequent standard-form problem

max
𝑠∈R𝑛

𝑞⊤(𝑐 − 𝑠) s.t. 𝑄𝑠 =𝑄𝑐, 𝑠 ≥ 0 (3.24)

for any 𝑄 ∈ R(𝑛−𝑚)×𝑛 whose rows are linearly independent and orthogonal to the rows of 𝐴 so that
Null(𝑄) = Im(𝐴⊤). This equivalence holds because Im(𝐴⊤) + 𝑐 in (2.3) is identical to {𝑠 :𝑄𝑠 =𝑄𝑐} in (3.24).
For problem (3.24), the optimal basis is Θ̄ = [𝑛] \ [𝑚], the complement of Θ. Although multiple choices of 𝑄
exist, the matrix 𝑄−1

Θ̄
𝑄Θ is always equal to −(𝐵−1𝑁)⊤.

Lemma 3.6. Suppose that Assumption 2.1 holds. The matrix 𝑄−1
Θ̄
𝑄Θ is equal to −(𝐵−1𝑁)⊤.

Proof. Given that Null(𝑄) = Im(𝐴⊤), we have 𝑄𝐴⊤ = 0, i.e.,

0 =𝑄𝐴⊤ = ( 𝑄Θ 𝑄Θ̄ )
(
𝐴⊤
Θ

𝐴⊤
Θ̄

)
=𝑄Θ𝐴

⊤
Θ +𝑄Θ̄𝐴

⊤
Θ̄
=𝑄Θ𝐵

⊤ +𝑄Θ̄𝑁
⊤ .

Since the optimal bases 𝐵 and 𝑄Θ̄ are of full rank, we obtain 𝑄−1
Θ̄
𝑄Θ = −𝑁⊤(𝐵⊤)−1 = −(𝐵−1𝑁)⊤. □
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Overall, the primal problem (1.1) and the dual problem (3.24) can be combined and reformulated as an
equivalent standard-form LP problem in the product space of 𝑥 and 𝑠:

min
𝑤=(𝑥,𝑠) ∈R2𝑛

(
𝑐

𝑞

)⊤
𝑤 s.t.

(
𝐴 0
0 𝑄

)
𝑤 =

(
𝑏

𝑄𝑐

)
, 𝑤 ≥ 0 . (3.25)

The above (3.25) is also in standard form, and satisfies Assumption 2.1. Furthermore, the duality gap Gap(𝑥, 𝑠)
of any (𝑥, 𝑠) is the same as the objective error for (3.25) because

Gap(𝑥, 𝑠) = 𝑐⊤𝑥 − 𝑞⊤(𝑐 − 𝑠) =
( 𝑐
𝑞

)⊤
𝑤 − 𝑞⊤𝑐 =

( 𝑐
𝑞

)⊤ (𝑤 −𝑤★) (3.26)

where the last equality follows from 0 = Gap(𝑤★) = 𝑐⊤𝑥★ − 𝑞⊤(𝑐 − 𝑠★) =
( 𝑐
𝑞

)⊤
𝑤★ − 𝑞⊤𝑐. The right-hand

side of (3.26) is the objective error Eobj(𝑤) of 𝑤, defined by Eobj(𝑤) :=
( 𝑐
𝑞

)⊤ (𝑤 −𝑤★). Consequently, (3.26)
implies that the 𝛿-sublevel setW𝛿 is identical to the primal 𝛿-sublevel set of (3.25). Therefore, utilizing
the results in Section (3.2.1), we can directly approximately compute 𝐷 𝛿 and 𝑟 𝛿 , by treating them as the
condition numbers of the primal sublevel set of (3.25).

Lemma 3.7. Suppose that Assumption 2.1 holds. There exists a positive 𝛿 such that for any 0 ≤ 𝛿 ≤ 𝛿, it
holds that

�̂� 𝛿 ≤ 𝐷 𝛿 ≤ 2�̂� 𝛿 and 𝑟 𝛿 =
𝛿

∥𝑥★∥1 + ∥𝑠★∥1
, (3.27)

where

�̂� 𝛿 := 𝛿 ·max

 max
1≤ 𝑗≤𝑛−𝑚

√︃(𝐵−1𝑁)·, 𝑗
2 + 1

𝑠★
𝑚+ 𝑗

, max
1≤𝑖≤𝑚

√︃(𝐵−1𝑁)𝑖, ·
2 + 1

𝑥★
𝑖

 . (3.28)

Proof. Let 𝐻 denote the constraint matrix of (3.24) for simplicity of notations. We use Ω to represent the
indices of the optimal basis of (3.24), which is Θ∪ (𝑛 + Θ̄). Here 𝑛 + Θ̄ denotes {𝑛 + 𝑗 : 𝑗 ∈ Θ̄}. Similarly, the
complementary set is Ω̄ = Θ̄∪ (𝑛 +Θ). We use Ω(𝑖) to denote the 𝑖-th smallest index component of Ω and
use Ω̄( 𝑗) to denote the 𝑗-th smallest index component of Ω̄. Both Ω and Ω̄ contain exactly 𝑛 components,
and the optimal basis 𝐻Ω is given by

( 𝐴Θ 0
0 𝑄Θ̄

)
, or equivalently

( 𝐵 0
0 𝑄Θ̄

)
. By an approach similar to that used in

Section 2.1 for deriving the dual problem, the dual problem of (3.25) is symmetric with (3.25) and also has a
unique optimal solution �̃�★ equal to (𝑠★, 𝑥★).

We now prove the first half of (3.27) using Lemma 3.4. The term
√︃𝐵−1𝑁·, 𝑗

2 + 1 in (3.16) is√︂𝐻−1
Ω
𝐻·,Ω̄( 𝑗 )

2
+ 1 for problem (3.25). And 𝑠★

Θ̄
in (3.16) is �̃�Ω̄ in problem (3.25). Therefore, Lemma 3.4

implies

�̄� 𝛿 ≤ 𝐷 𝛿 ≤ 2�̄� 𝛿 , where �̄� 𝛿 := 𝛿 ·max 𝑗∈[𝑛]

√︂𝐻−1
Ω

𝐻·,Ω̄( 𝑗)

2
+1

�̃�Ω̄( 𝑗)
. (3.29)

To compute the value of �̄� 𝛿 , we consider two cases based on the structure of Ω̄ = Θ̄∪ (𝑛 +Θ). When
Ω̄( 𝑗) ∈ Θ̄, we have �̃�★

Ω̄( 𝑗 ) = 𝑠
★

Ω̄( 𝑗 ) , and 𝐻−1
Ω
𝐻·,Ω̄( 𝑗 ) = 𝐻

−1
Ω

(
𝐴·,Ω̄( 𝑗)

0

)
=

(
𝐵−1𝐴·,Ω̄( 𝑗)

0

)
. When Ω̄( 𝑗) ∈ 𝑛 +Θ, we

have �̃�★

Ω̄( 𝑗 ) = 𝑥
★

Ω̄( 𝑗 )−𝑛, and 𝐻−1
Ω
𝐻·,Ω̄( 𝑗 ) = 𝐻

−1
Ω

(
0

𝑄·,Ω̄( 𝑗)−𝑛

)
=

(
0

𝑄−1
Θ̄

𝑄·,Ω̄( 𝑗)−𝑛

)
=

(
0

−( (𝐵−1𝑁 )⊤) ·,Ω̄( 𝑗)−𝑛
)
, where the

last inequality uses Lemma 3.6. Therefore,

�̄� 𝛿 = 𝛿 ·max


max

Ω̄( 𝑗 ) ∈Θ̄

√︂( 𝐵−1𝐴·,Ω̄( 𝑗)
0

)2
+ 1

𝑠★
Ω̄( 𝑗 )

, max
Ω̄( 𝑗 ) ∈𝑛+Θ

√︂( 0
−( (𝐵−1𝑁 )⊤) ·,Ω̄( 𝑗)−𝑛

)2
+ 1

𝑥★
Ω̄( 𝑗 )−𝑛


(2.8)
= 𝛿 ·max

 max
1≤ 𝑗≤𝑛−𝑚

√︃(𝐵−1𝑁)·, 𝑗
2 + 1

𝑠★
𝑚+ 𝑗

, max
1≤𝑖≤𝑚

√︃(𝐵−1𝑁)𝑖, ·
2 + 1

𝑥★
𝑖

 = �̂� 𝛿 .
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Finally, substituting �̄� 𝛿 = �̂� 𝛿 back to (3.29) proves the first half of (3.27).
As for the second half of (3.27), note that �̃�★ = (𝑠★, 𝑥★), so by Lemma 3.5, when 𝛿 is sufficiently small we

have 𝑟 𝛿 = 𝛿
∥�̃�★∥1 =

𝛿
∥𝑥★∥1+∥𝑠★∥1 . □

Finally, we are ready to prove Lemma 3.2.
Proof of Lemma 3.2. Lemma 3.7 establishes that �̂� 𝛿 ≤ 𝐷 𝛿 ≤ 2�̂� 𝛿 for sufficiently small 𝛿, so we can

deduce lim𝛿↘0
�̂�𝛿

𝑟𝛿
≤ lim𝛿↘0

𝐷𝛿

𝑟𝛿
≤ 2 · lim𝛿↘0

�̂�𝛿

𝑟𝛿
. Note that Φ̂ = lim𝛿↘0

𝐷𝛿

𝑟𝛿
as defined in (3.7). Substituting

the values of �̂� 𝛿 and 𝑟 𝛿 in Lemma 3.7 into (3.1) yields Φ= lim𝛿↘0
�̂�𝛿

𝑟𝛿
. Therefore, Φ ≤ Φ̂ ≤ 2Φ. □

4. Finite-Time Optimal Basis Identification and Fast Local Convergence In this section, we
investigate the two-stage performance of rPDHG. It is frequently observed in practice that the behavior of
rPDHG transitions to faster local linear convergence in a neighborhood of the optimal solution, in which
the support sets of all iterates keep consistent. Lu and Yang [40] study this phenomenon for vanilla PDHG.
In the first stage, PDHG converges in a sublinear rate until identifying the active set of the converging
solution. In the second stage, PDHG turns to faster local linear convergence. Recently, Lu and Yang [42]
propose the restarted Halpern PDHG (rHPDHG), a variant of rPDHG, and prove its two-stage performance
behavior. However, the iteration bounds of the two stages proven above (for both PDHG and rHPDHG) are
not accessible because they both depend on the Hoffman constant of a linear system that is determined by
the converging solution. The Hoffman constant is hard to analyze, challenging to compute, and may be too
conservative. And computing the trajectory of the algorithm may also be difficult.

Based on the new iteration bounds obtained in Section 3 for LPs with unique optima, this section will show
an accessible refined convergence guarantee of rPDHG that avoids Hoffman constants entirely. Although
using the additional assumption of unique optimum, the new iteration bounds for the two stages both have
closed-form expressions and are thus straightforward to analyze and compute:

• In Stage I, rPDHG identifies the optimal basis within at most 𝑂 (^Φ · ln(^Φ)) iterations.
• In Stage II, having identified the optimal basis Θ, the behavior of rPDHG transitions to faster local

linear convergence that is no longer related to Φ. In this stage, components of index in Θ are sufficiently
bounded away from 0, while all other components equal 0.

The following theorem summarizes the iteration bounds of the two stages:

Theorem 4.1. Suppose Assumption 2.1 and 𝐴𝑐 = 0. Let Algorithm 1 (rPDHG) run with 𝜏 = 1
2^ , 𝜎 =

1
2_max_min

and 𝛽 := 1/𝑒 to solve the LP. Let 𝑇1 be the total number of OnePDHG iterations required to obtain
𝑁1 such that for all 𝑁 ≥ 𝑁1 the positive components of 𝑥𝑁,0 exactly correspond to the optimal basis. Then,

𝑇1 ≤ 𝑇𝑏𝑎𝑠𝑖𝑠 , in which 𝑇𝑏𝑎𝑠𝑖𝑠 :=𝑂 (^Φ · ln (^Φ)) . (4.1)

Furthermore, let 𝑇2 be the total number of OnePDHG iterations required to obtain the first 𝑁2 for which
𝑤𝑁2,0 is Y-optimal. Then,

𝑇2 ≤ 𝑇𝑏𝑎𝑠𝑖𝑠 +𝑇𝑙𝑜𝑐𝑎𝑙 , in which 𝑇𝑙𝑜𝑐𝑎𝑙 :=𝑂

(
∥𝐵−1∥∥𝐴∥ ·max

{
0, ln

(
min1≤𝑖≤𝑛

{
𝑥★
𝑖
+ 𝑠★

𝑖

}
Y

)})
. (4.2)

Theorem 4.1 demonstrates that it takes at most 𝑇𝑏𝑎𝑠𝑖𝑠 iterations for rPDHG to identify the optimal basis
(independent of Y), after which it requires at most additional 𝑇𝑙𝑜𝑐𝑎𝑙 iterations to achieve Y-optimality. Both
𝑇𝑏𝑎𝑠𝑖𝑠 and 𝑇𝑙𝑜𝑐𝑎𝑙 are accessible, because they do not contain any Hoffman constant and are easy to compute
and analyze if the optimal solution is known. Furthermore, 𝑇𝑙𝑜𝑐𝑎𝑙 is independent of Φ, which is frequently
considerably large. This provides a partial explanation for why rPDHG often becomes significantly faster in
Stage II compared to Stage I.

The first-stage iteration bound 𝑇𝑏𝑎𝑠𝑖𝑠 exhibits a linear relationship with ∥𝑤
★∥1
b

(in the expression of Φ),
where we use b to denote the smallest nonzero of 𝑥★ and 𝑠★, written as follows:

b := min
1≤𝑖≤𝑛

{
𝑥★𝑖 + 𝑠★𝑖

}
. (4.3)
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The first-stage iteration bounds of the vanilla PDHG (without restarts) and the restarted Halpern PDHG
proven by Lu and Yang [40, 42] also depend on ∥𝑤

★∥1
b

(in a different norm), but they are further multiplied by
a Hoffman constant of a linear system. A similar dependence on ∥𝑤

★∥
b

and certain norms of 𝐵−1𝐴 is also
observed in the complexity analysis of finite-termination results for IPMs, such as Anstreicher et al. [3], Potra
[50]. In those cases of IPMs, this dependence appears only within logarithmic terms, but it comes with higher
per-iteration cost.

Once the optimal basis is identified, the method’s behavior automatically transitions into the second stage
without changing the algorithm or additional “crossover” operations. Notably, the coefficient ∥𝐵−1∥∥𝐴∥ of
the linear convergence is independent of 𝑤★ and is solely determined by the optimal basis and the constraint
matrix. In other words, it can also be upper bounded by a constant that is only determined by the constraint
matrix. Similar results also hold for IPMs, proven by Vavasis and Ye [53]. One can observe that a small b may
slightly decrease 𝑇𝑙𝑜𝑐𝑎𝑙 but simultaneously significantly increase 𝑇𝑏𝑎𝑠𝑖𝑠 because 𝑇𝑏𝑎𝑠𝑖𝑠 is linear in ∥𝑤

★∥1
b

.
The significance of ^Φ and ∥𝐵−1∥∥𝐴∥ in the two-stage performance will be empirically confirmed in

Section 6. The remainder of this section will prove Theorem 4.1. The key of the proof is to utilize the adaptive
restart condition (𝛽-restart condition in Line 8 of Algorithm 1) and show that the number of inner-loop
iterations of Stage II becomes different than Stage I. To this end, Section 4.1 recalls the adaptive restart
condition and Section 4.2 proves Theorem 4.1.

4.1. Adaptive restart condition The 𝛽-restart condition is built on a metric of stationarity, called the
“normalized duality gap,” proposed by Applegate et al. [6].

Definition 4.1 (Normalized duality gap, Applegate et al. [6]). For any 𝑧 = (𝑥, 𝑦) ∈ R𝑚+𝑛 and a cer-
tain 𝑟 > 0, the normalized duality gap of the saddlepoint problem (2.2) is then defined as

𝜌(𝑟; 𝑧) :=
1
𝑟

sup
�̂�∈𝐵(𝑟 ;𝑧)

[
𝐿 (𝑥, �̂�) − 𝐿 (𝑥, 𝑦)

]
(4.4)

in which 𝐵(𝑟; 𝑧) :=
{
𝑧 := (𝑥, �̂�) : 𝑥 ∈ R𝑛+ and ∥𝑧 − 𝑧∥𝑀 ≤ 𝑟

}
.

The normalized duality gap 𝜌(𝑟; 𝑧) is also a valid measure of the optimality and feasibility errors of 𝑧, and
it can be efficiently computed or approximated in strongly polynomial time as shown by Applegate et al.
[6]. Furthermore, let the 𝑘-th iterate of PDHG be denoted as 𝑧𝑘 , and let the average of the first 𝑘 iterates
be 𝑧𝑘 := 1

𝑘

∑𝑘
𝑖=1 𝑧

𝑖. The normalized duality gap 𝜌(∥𝑧0 − 𝑧𝑘 ∥𝑀 ; 𝑧𝑘) of the average iterate 𝑧𝑘 converges to 0
sublinearly. See Applegate et al. [6], Xiong and Freund [56] for more details.

Then the 𝛽-restart condition is hold when 𝑛 = 0 and 𝑘 = 1, or

𝜌(∥𝑧𝑛,𝑘 − 𝑧𝑛,0∥𝑀 ; 𝑧𝑛,𝑘) ≤ 𝛽 · 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) , (4.5)

for a chosen value of 𝛽 ∈ (0,1). This criterion is nearly identical to the condition used by Applegate et al. [6].
It essentially stipulates that the normalized duality gap diminishes by a factor of 𝛽 between outer loop iterates
𝑧𝑛+1,0 and 𝑧𝑛,0.

For LP problems, it can be shown that there exists a constant L ≥ 0 such that the following condition holds
for all 𝑛 ≥ 1:

Dist𝑀 (𝑧𝑛,0,Z★) ≤ 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) · L . (4.6)

This condition indicates the 𝑀-distance to the optimal solutions is upper bounded by the normalized duality
gap multiplied by the fixed constant L. Applegate et al. [6] refer to this as the “sharpness” property of the
normalized duality gap. Under this condition, each inner loop requires at most

⌈
8L
𝛽

⌉
iterations to achieve

sufficient decrease in the normalized duality gap of Applegate et al. [6, Theorem 2] (see Appendix A for a
formal statement and proof). Therefore, 𝑛 outer loops contain at most 𝑂

(
𝑛L
𝛽

)
OnePDHG iterations, while

reducing the normalized duality gap to a 𝛽𝑛 fraction of its initial value. This leads to a linear convergence
rate dependent on L; see Applegate et al. [6, Theorem 2] or a more general version in Xiong and Freund [58,
Theorem 3.5]. Indeed, Lemma 3.13 of Xiong and Freund [58] demonstrates that (4.6) always holds with
L =𝑂 (^Φ̂), which then leads to the global convergence rate in Lemma 3.1.
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4.2. Technical lemmas of Theorem 4.1 The linear convergence of rPDHG relies on the condition
(4.6). If (4.6) holds for all 𝑛 ≥ 1 with a constant L ≥ 0, then the global linear convergence is established
by showing the number of iterations required for each inner loop does not exceed 𝑂 ( L

𝛽
). We will now

demonstrate the existence of a close neighborhood of the optimal solution 𝑧★ within which (4.6) holds with a
potentially much smaller L than the global L, so rPDHG requires a significantly smaller number of iterations
for the inner loops and therefore have a much faster local linear convergence rate in this neighborhood. Our
analysis will proceed in two steps with two lemmas, followed by their proofs.

In the first step, we demonstrate that the condition (4.6) indeed holds with an alternative L for the iterates
𝑧 = (𝑥, �̄�) if (i) each component of 𝑥Θ is sufficiently bounded away from 0 and (ii) each component of 𝑥Θ̄
equals zero. For simplicity, we still assume that the optimal basis is {1,2, . . . , 𝑚} for simplicity. We will use
the following step-size dependent constant:

𝑐𝜏,𝜎 := max
{

1
√
𝜎_min

,
1
√
𝜏

}
. (4.7)

When 𝜏 = 1
2^ and 𝜎 = 1

2_max_min
(the step-sizes used by Theorem 4.1), we have 𝑐𝜏,𝜎 =

√
2^.

Lemma 4.1. Under Assumption 2.1, for any 𝑧 = (𝑥, �̄�) and 𝑟 > 0 such that

(𝑖) 𝑥𝑖 ≥ 𝑟
√
𝜏 for 𝑖 ∈ [𝑚], and (𝑖𝑖) 𝑥𝑚+ 𝑗 = 0 for 𝑗 ∈ [𝑛−𝑚] , (4.8)

it holds that

∥𝑧 − 𝑧★∥𝑀 ≤
√

2𝑐𝜏,𝜎 ∥𝐵−1∥
√︂

1
𝜎
+ ∥𝐴∥

2

𝜏
· 𝜌(𝑟; 𝑧) . (4.9)

When the step-sizes are carefully chosen, (4.9) in Lemma 4.1 can be further simplified:
Remark 4.1. With the choice of step-size 𝜏 = 1

2^ and 𝜎 = 1
2_max_min

, (4.9) becomes

∥𝑧 − 𝑧★∥𝑀 ≤ 4∥𝐵−1∥∥𝐴∥ · 𝜌(𝑟; 𝑧) . (4.10)

In the second step, we show that the two conditions in Lemma 4.1 are automatically satisfied by all
average iterations 𝑧𝑁,𝑘 = (𝑥𝑁,𝑘 , �̄�𝑁,𝑘) = 1

𝑘

∑𝑘
𝑖=1 𝑧

𝑁,𝑖 once a previous outer loop iteration 𝑧𝑛,0 (with 𝑛 ≤ 𝑁) is
sufficiently close to the optimal solution 𝑧★ under the 𝑀-norm distance.

Lemma 4.2. Under Assumption 2.1, suppose that Algorithm 1 (rPDHG) has any 𝛽-restart condition, and
let the step-sizes satisfy (2.7) strictly. If there exists 𝑛 such that𝑧𝑛,0 − 𝑧★

𝑀
≤ Ȳ :=

√︁
1−
√
𝜏𝜎∥𝐴∥
3

·min
{

1
√
𝜏
,
√
𝜏

}
·
(

min
1≤𝑖≤𝑛

{
𝑥★𝑖 + 𝑠★𝑖

})
, (4.11)

then for any 𝑁 ≥ 𝑛 and 𝑘 ≥ 1, the following conditions hold:

(𝑖) 𝑥𝑁,𝑘
𝑖
≥
√
𝜏
𝑧𝑁,𝑘 − 𝑧𝑁,0

𝑀
for 𝑖 ∈ [𝑚] , and (𝑖𝑖) 𝑥𝑁,𝑘

𝑚+ 𝑗 = 0 for 𝑗 ∈ [𝑛−𝑚] . (4.12)

Moreover, the positive components of 𝑥𝑁,𝑘 correspond exactly to the optimal basis.

Lemmas 4.1 and 4.2 provide the foundation for a refined complexity analysis of rPDHG. In Stage I, rPDHG
converges to a neighborhood of the optimal solution such that condition (4.11) of Lemma 4.2 is satisfied. The
number of iterations in this stage is determined by the linear convergence rate established in Lemma 3.1. In
Stage II, rPDHG converges to the optimal solution with accelerated local linear convergence, owing to the
potentially smaller L provided by Lemma 4.1. The proof of Theorem 4.1 then uses Theorem 3.5 of Xiong
and Freund [58] on both stages with condition (4.6) with different L values. The complete proof is deferred
to Appendix B.
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Proofs of Lemmas 4.1 and 4.2. First of all, we defined the �̃�-norm

∥(𝑥, 𝑦)∥�̃� :=
√︂

1
𝜏
∥𝑥∥2 + 1

𝜎
∥𝑦∥2 where �̃� :=

( 1
𝜏
𝐼𝑛

1
𝜎
𝐼𝑚

)
. (4.13)

When 𝜏 and 𝜎 are sufficiently small, the 𝑀-norm and �̃�-norm are equivalent up to well-specified constants
related to 𝜏 and 𝜎 (Proposition 2.8 of Xiong and Freund [56]). For any point 𝑧 := (𝑥, 𝑦) ∈ R𝑛+𝑚, and
𝑤 := (𝑥, 𝑐 − 𝐴⊤𝑦), it holds that√︃

1−
√
𝜏𝜎_max · ∥𝑧∥�̃� ≤ ∥𝑧∥𝑀 ≤

√
2 · ∥𝑧∥�̃� ≤

√
2𝑐𝜏,𝜎 · ∥𝑤∥ . (4.14)

For example, if 𝜏 = 1
2^ and 𝜎 = 1

2_max_min
, then (4.14) becomes

√
2

2 ∥𝑧∥�̃� ≤ ∥𝑧∥𝑀 ≤
√

2∥𝑧∥�̃� ≤ 2
√
^∥𝑤∥. This

result will be extensively used later.
Proof of Lemma 4.1. Let 𝑠 = 𝑐 − 𝐴⊤ �̄� and �̄� = (𝑥, 𝑠). From the definition of 𝜌(𝑟; ·) we have:

𝐿 (𝑥, 𝑦) − 𝐿 (𝑥, �̄�) ≤ 𝑟𝜌(𝑟; 𝑧) for any 𝑧 = (𝑥, 𝑦) ∈ 𝐵(𝑟; 𝑧) (4.15)

where recall that 𝐵(𝑟; 𝑧) is defined in Definition 4.1.
Firstly, we prove that

∥𝑥 − 𝑥★∥ ≤ ∥𝐵
−1∥
√
𝜎
· 𝜌(𝑟; 𝑧) . (4.16)

As the optimal basis is unique, 𝑥★ is represented by its basic and nonbasic parts: 𝑥★[𝑚] = 𝐵
−1𝑏 and 𝑥★[𝑛]\[𝑚] = 0.

Consequently, due to (4.8),𝑥 [𝑚] − 𝑥★[𝑚] = 𝑥 [𝑚] − 𝐵−1𝑏
 ≤ ∥𝐵−1∥ ·

𝐵𝑥 [𝑚] − 𝑏 and
𝑥 [𝑛]\[𝑚] − 𝑥★[𝑛]\[𝑚] = 0 . (4.17)

Let 𝑢 = 𝑏 − 𝐵𝑥 [𝑚] and define 𝑦 := �̄� +
√
𝜎𝑟 · 𝑢/∥𝑢∥. Let 𝑧 := (𝑥, 𝑦), and then 𝑧 ∈ 𝐵(𝑟; 𝑧). Thus, from (4.15) we

obtain
𝑟𝜌(𝑟; 𝑧) ≥ 𝐿 (𝑥, 𝑦) − 𝐿 (𝑥, �̄�) = (𝑏 − 𝐴𝑥)⊤(𝑦 − �̄�) = (𝑏 − 𝐵𝑥 [𝑚])⊤(𝑦 − �̄�) =

√
𝜎𝑟 ∥𝑢∥, (4.18)

implying ∥𝑢∥ = ∥𝑏 − 𝐵𝑥 [𝑚] ∥ ≤ 𝜌(𝑟 ;�̄�)√
𝜎

. Substituting this result back into (4.17) yields (4.16).
Secondly, we prove that

∥ �̄� − 𝑦★∥ ≤ ∥𝐵
−1∥
√
𝜏
· 𝜌(𝑟; 𝑧) . (4.19)

Given that the optimal basis is [𝑚], we have 𝐵⊤𝑦★ = 𝑐 [𝑚] , and 𝑦★ = (𝐵⊤)−1𝑐 [𝑚] . Consequently,�̄� − 𝑦★ = �̄� − (𝐵⊤)−1𝑐 [𝑚]
 ≤ (𝐵⊤)−1 · 𝐵⊤ �̄� − 𝑐 [𝑚] = 𝐵−1 · 𝐵⊤ �̄� − 𝑐 [𝑚] . (4.20)

Let 𝑣 = 𝑐 [𝑚] − 𝐵⊤ �̄� and define 𝑥 as follows: 𝑥 [𝑚] := 𝑥 [𝑚] −
√
𝜏𝑟 · 𝑣

∥𝑣 ∥ and 𝑥 [𝑛]\[𝑚] := 0. Note that due to the
condition 𝑥𝑖 ≥ 𝑟

√
𝜏 for all 𝑖 ∈ [𝑚] in (4.8), 𝑥 remains in R𝑛+. Now, let 𝑧 := (𝑥, �̄�), and then 𝑧 ∈ 𝐵(𝑟; 𝑧). Thus,

from (4.15), we derive:

𝑟𝜌(𝑟; 𝑧) ≥ 𝐿 (𝑥, �̄�) − 𝐿 (𝑥, �̄�) = (𝑐 − 𝐴⊤ �̄�)⊤(𝑥 − 𝑥) = (𝑐 [𝑚] − 𝐵⊤ �̄�)⊤(𝑥 [𝑚] − 𝑥 [𝑚]) =
√
𝜏𝑟 ∥𝑣∥ , (4.21)

implying ∥𝑣∥ = ∥𝐵⊤ �̄� − 𝑐 [𝑚] ∥ ≤ 𝜌(𝑟 ;�̄�)√
𝜏

. Substituting this result back into (4.20) yields (4.19).
Finally, we can assert that

∥�̄� −𝑤★∥2 = ∥𝑥 − 𝑥★∥2 + ∥𝑠 − 𝑠★∥2 ≤ ∥𝑥 − 𝑥★∥2 + ∥𝐴∥∥ �̄� − 𝑦★∥2
(4.16)(4.19)
≤

(
∥𝐵−1∥2
𝜎

+ ∥𝐵
−1∥2∥𝐴∥2
𝜏

)
𝜌(𝑟; 𝑧)2 (4.22)

Due to (4.14), ∥𝑧− 𝑧★∥𝑀 ≤
√

2𝑐𝜏,𝜎 · ∥�̄�−𝑤★∥. Applying it on the left-hand side of (4.22) proves (4.9). Thus,
the proof is complete. □
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Before proving Lemma 4.2, we recall the nonexpansive property of rPDHG proven by Applegate et al. [6].
We use the more convenient format presented by Xiong and Freund [58].

Lemma 4.3 (Lemma 2.2 of Xiong and Freund [58]). For for any 𝑛, 𝑘 ≥ 0, it holds that ∥𝑧𝑛,𝑘 − 𝑧★∥𝑀 ≤𝑧𝑛,0 − 𝑧★
𝑀

. For any 𝑛1, 𝑛2 so that 𝑛2 ≥ 𝑛1 ≥ 0, it holds that ∥𝑧𝑛2,0 − 𝑧★∥𝑀 ≤ ∥𝑧𝑛1,0 − 𝑧★∥𝑀 .

Proof of Lemma 4.2. The proof contains two steps. In the first step, we prove that when𝑧𝑛,0 − 𝑧★
𝑀
≤

√︁
1−
√
𝜏𝜎∥𝐴∥

3
√
𝜏

· b , (4.23)

then for any 𝑁 ≥ 𝑛 and 𝑘 ≥ 1, item (i) of (4.12) holds.
We begin by establishing a lower bound for min1≤𝑖≤𝑚 𝑥

𝑁,𝑘
𝑖

, the left-hand side of item (i):

min
1≤𝑖≤𝑚

𝑥
𝑁,𝑘
𝑖
≥

(
min

1≤𝑖≤𝑚
𝑥★𝑖

)
−

𝑥𝑁,𝑘

[𝑚] − 𝑥
★
[𝑚]

 ≥ b − 𝑥𝑁,𝑘

[𝑚] − 𝑥
★
[𝑚]

 . (4.24)

The second term on the right-hand side of (4.24) can be bounded as follows:𝑥𝑁,𝑘

[𝑚] − 𝑥
★
[𝑚]

 ≤ 𝑥𝑁,𝑘 − 𝑥★
 (4.13)
≤
√
𝜏
𝑧𝑁,𝑘 − 𝑧★


�̃�

(4.14)
≤
√
𝜏
𝑧𝑁,𝑘 − 𝑧★


𝑀√︁

1−
√
𝜏𝜎∥𝐴∥

Lemma 4.3
≤

√
𝜏
𝑧𝑛,0 − 𝑧★

𝑀√︁
1−
√
𝜏𝜎∥𝐴∥

(4.25)
for any 𝑛 ≤ 𝑁 . In addition, due to the nonexpansive property, the right-hand side of item (i) is upper bounded
by: 𝑧𝑁,𝑘 − 𝑧𝑁,0

𝑀
≤

𝑧𝑁,𝑘 − 𝑧★

𝑀
+
𝑧★− 𝑧𝑁,0

𝑀
≤ 2

𝑧★− 𝑧𝑛,0
𝑀
≤

2
𝑧𝑛,0 − 𝑧★

𝑀√︁
1−
√
𝜏𝜎∥𝐴∥

(4.26)

where the last inequality holds because
√︁

1−
√
𝜏𝜎∥𝐴∥ ≤ 1. Finally, we have(

min
1≤𝑖≤𝑚

𝑥
𝑁,𝑘
𝑖

)
−
√
𝜏
𝑧𝑁,𝑘 − 𝑧𝑁,0

𝑀

(4.24),(4.25)
≥ b −

√
𝜏
𝑧𝑛,0 − 𝑧★

𝑀√︁
1−
√
𝜏𝜎∥𝐴∥

−
√
𝜏
𝑧𝑁,𝑘 − 𝑧𝑁,0

𝑀

(4.26)
≥ b −

√
𝜏
𝑧𝑛,0 − 𝑧★

𝑀√︁
1−
√
𝜏𝜎∥𝐴∥

− 2
√
𝜏
𝑧★− 𝑧𝑛,0

𝑀
≥ b −

3
√
𝜏
𝑧𝑛,0 − 𝑧★

𝑀√︁
1−
√
𝜏𝜎∥𝐴∥

,

(4.27)

in which the last term is nonnegative when (4.23) holds. This show that when
𝑧𝑛,0 − 𝑧★

𝑀
is small enough

and satisfies (4.23), the left-hand side of (4.27) is nonnegative, and item (i) of (4.12) holds. This completes
the first step of the proof.

In the second step, we prove that when𝑧𝑛,0 − 𝑧★
𝑀
≤
√
𝜏
√︁

1−
√
𝜏𝜎∥𝐴∥

2
· b, (4.28)

then for any 𝑁 ≥ 𝑛 and 𝑘 ≥ 1 item (ii) of (4.12) holds.
Let 𝛼 denote

(
min1≤ 𝑗≤𝑛−𝑚,𝑘≥0 𝑠

𝑁,𝑘
𝑚+ 𝑗

)
, then according to (2.6) (in Line 5 of Algorithm 1),

𝑥
𝑁,𝑘

[𝑛]\[𝑚] =
(
𝑥
𝑁,𝑘−1
[𝑛]\[𝑚] − 𝜏𝑠

𝑁,𝑘−1
)+
≤

(
𝑥
𝑁,𝑘−1
[𝑛]\[𝑚] − 𝜏𝛼

)+
and applying this inequality recursively as 𝑘 decreases to 0 yields

𝑥
𝑁,𝑘

[𝑛]\[𝑚] ≤
(
𝑥
𝑁,𝑘−1
[𝑛]\[𝑚] − 𝜏𝛼

)+
≤

(
𝑥
𝑁,𝑘−2
[𝑛]\[𝑚] − 2𝜏𝛼

)+
≤ · · · ≤

(
𝑥
𝑁,0
[𝑛]\[𝑚] − 𝑘𝜏𝛼

)+
. (4.29)
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Therefore, if 𝛼 ≥ 0 and (
max

1≤ 𝑗≤𝑛−𝑚
𝑥
𝑁,0
𝑚+ 𝑗

)
≤ 𝜏 ·

(
min

1≤ 𝑗≤𝑛−𝑚,𝑘≥0
𝑠
𝑁,𝑘
𝑚+ 𝑗

)
, (4.30)

then 𝑥
𝑁,𝑘

[𝑛]\[𝑚] = 0 for all 𝑘 ≥ 1 and thus 𝑥𝑁,𝑘

[𝑛]\[𝑚] =
1
𝑘

∑𝑘
𝑖=1 𝑥

𝑁,𝑖

[𝑛]\[𝑚] = 0 for all 𝑘 ≥ 1. Intuitively, since
Assumption 2.1 holds, and 𝑥𝑁,0 and 𝑠𝑁,𝑘 converge to the optimal solution, 𝑥𝑁,0

[𝑛]\[𝑚] should converge
to 0 and 𝑠𝑁,𝑘

[𝑛]\[𝑚] should stay away from 0. In the rest of the proof we will establish a lower bound of(
min1≤ 𝑗≤𝑛−𝑚,𝑘≥0 𝑠

𝑁,𝑘
𝑚+ 𝑗

)
and an upper bound of

(
max1≤ 𝑗≤𝑛−𝑚 𝑥

𝑁,0
𝑚+ 𝑗

)
.

Similar to the first step, for the dual iteration 𝑦𝑁,𝑘 (and 𝑠𝑁,𝑘 = 𝑐 − 𝐴⊤𝑦𝑁,𝑘), we have(
min

1≤ 𝑗≤𝑛−𝑚
𝑠
𝑁,𝑘
𝑚+ 𝑗

)
≥

(
min

1≤ 𝑗≤𝑛−𝑚
𝑠★𝑚+ 𝑗

)
−

𝑠𝑁,𝑘

[𝑛]\[𝑚] − 𝑠
★
[𝑛]\[𝑚]


= b −

𝐴⊤[𝑛]\[𝑚] (𝑦𝑁,𝑘 − 𝑦★)
 ≥ b − 𝐴[𝑛]\[𝑚] · 𝑦𝑁,𝑘 − 𝑦★

 . (4.31)

As for
𝑦𝑁,𝑘 − 𝑦★

 in the last term of the above inequality, we derive:𝑦𝑁,𝑘 − 𝑦★
 (4.13)
≤
√
𝜎

𝑧𝑁,𝑘 − 𝑧★

�̃�

(4.14)
≤
√
𝜎

𝑧𝑁,𝑘 − 𝑧★

𝑀√︁

1−
√
𝜏𝜎∥𝐴∥

Lemma 4.3
≤

√
𝜎

𝑧𝑛,0 − 𝑧★
𝑀√︁

1−
√
𝜏𝜎∥𝐴∥

. (4.32)

Combining (4.31) and (4.32) yields a valid lower bound of
(
min1≤ 𝑗≤𝑛−𝑚 𝑠

𝑁,𝑘
𝑚+ 𝑗

)
for all 𝑘 ≥ 0:(

min
1≤ 𝑗≤𝑛−𝑚

𝑠
𝑁,𝑘
𝑚+ 𝑗

)
≥ b −

√
𝜎∥𝐴[𝑛]\[𝑚] ∥ ·

𝑧𝑛,0 − 𝑧★
𝑀√︁

1−
√
𝜏𝜎∥𝐴∥

≥ b − 1
√
𝜏
·

𝑧𝑛,0 − 𝑧★
𝑀√︁

1−
√
𝜏𝜎∥𝐴∥

, (4.33)

where the second inequality holds because
√
𝜏𝜎∥𝐴[𝑛]\[𝑚] ∥ ≤

√
𝜏𝜎∥𝐴∥ ≤ 1 (due to the step-size requirement

(2.7)). The above (4.33) presents a lower bound of
(
min1≤ 𝑗≤𝑛−𝑚,𝑘≥0 𝑠

𝑁,𝑘
𝑚+ 𝑗

)
.

On the other hand, we also have the following upper bound of
(
max1≤ 𝑗≤𝑛−𝑚 𝑥

𝑁,0
𝑚+ 𝑗

)
for 𝑁 ≥ 𝑛:(

max
1≤ 𝑗≤𝑛−𝑚

𝑥
𝑁,0
𝑚+ 𝑗

)
≤

𝑥𝑁,0
[𝑛]\[𝑚]

 = 𝑥𝑁,0
[𝑛]\[𝑚] − 𝑥

★
[𝑛]\[𝑚]

 ≤ ∥𝑥𝑁,0 − 𝑥★∥
(4.25)
≤
√
𝜏
𝑧𝑛,0 − 𝑧★

𝑀√︁
1−
√
𝜏𝜎∥𝐴∥

. (4.34)

Finally, applying the upper and lower bounds (4.33) and (4.34), we find that (4.30) holds when
√
𝜏
𝑧𝑛,0 − 𝑧★

𝑀√︁
1−
√
𝜏𝜎∥𝐴∥

≤ 𝜏b −
√
𝜏 ·

𝑧𝑛,0 − 𝑧★
𝑀√︁

1−
√
𝜏𝜎∥𝐴∥

,

which is equivalent to (4.28). This completes the second step of the proof.
Finally, when both (4.23) and (4.28) hold, which is satisfied by (4.11), then for any 𝑁 ≥ 𝑛 and 𝑘 ≥ 1, both

item (i) and (ii) of (4.12) hold. Furthermore, (4.25) and (4.24) ensure 𝑥𝑁,𝑘

Θ
> 0, while the item (ii) ensures

𝑥
𝑁,𝑘

Θ̄
= 0. Therefore, the positive components of 𝑥𝑁,𝑘 correspond exactly to the optimal basis. This completes

the proof. □

5. Relationship of Φ with Stability under Data Perturbations, Proximity to Multiple Optima, and
LP Sharpness The previous two sections showed new accessible iteration bounds for rPDHG. Because Φ
has a closed-form expression, in this section we further prove that there is an exact relationship between Φ and
three equivalent types of condition measures: (i) stability under data perturbations, (ii) proximity to multiple
optima, and (iii) the LP sharpness of the instance. Furthermore, this section provides new computational
guarantees using these measures, providing new insights into the performance of rPDHG.
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We start by defining two quantities of primal and dual stabilities. For the original problem (1.1), let the
perturbed problem be as follows:

min 𝑐⊤𝑥 s.t. 𝐴𝑥 = �̃� , 𝑥 ≥ 0 (5.1)
where 𝑐 and �̃� might be the perturbed versions of 𝑐 and 𝑏 respectively. When Assumption 2.1 holds for (1.1),
we define Z𝑝 and Z𝑑 as follows:

Z𝑝 := inf
{
∥Δ𝑐∥ : Θ is not the unique optimal basis for (5.1) with 𝑐 = 𝑐 +Δ𝑐 and �̃� = 𝑏

}
, (5.2)

Z𝑝 := inf
{
∥Δ𝑏∥ (𝐴𝐴⊤ )−1 : Θ is not the unique optimal basis for (5.1) with 𝑐 = 𝑐 and �̃� = 𝑏 +Δ𝑏

}
. (5.3)

The Z𝑝 and Z𝑑 denote the size of the smallest perturbation on the cost vector 𝑐 and the right-hand side vector
𝑏, respectively, such that the optimal basis becomes different. In other words, the larger they are, the more
stable the optimal basis is under data perturbations on 𝑏 and 𝑐. Here Z𝑑 uses the (𝐴𝐴⊤)−1-norm instead of
the Euclidean norm because later we will show that Z𝑑 can be defined in the symmetric way to Z𝑝 on the
symmetric form (2.4).

More importantly, Φ has a close relationship with Z𝑝 and Z𝑑 , leading to a new computational guarantee
using Z𝑝 and Z𝑑 . Below is the first main theorem of this section.

Theorem 5.1. Suppose Assumption 2.1 holds. The following relationship holds for Φ, Z𝑝, and Z𝑑:

Φ=
∥𝑥★∥1 + ∥𝑠★∥1
min

{
Z𝑝, Z𝑑

} . (5.4)

Therefore, in the identical setting of Theorem 3.1, the total number of OnePDHG iterations required to
compute an Y-optimal solution is at most

𝑂
©«^ ·
∥𝑥★∥1 + ∥𝑠★∥1
min

{
Z𝑝, Z𝑑

} · ln ©«
^
∥𝑥★∥1+∥𝑠★∥1
min{Z𝑝 , Z𝑑} · ∥𝑤

★∥

Y

ª®®¬
ª®®¬ .

This theorem implies that the less stable the optimal basis is under data perturbations, the larger the
value of Φ, and the more iterations rPDHG might require to compute an Y-optimal solution. Actually in
Section 6 we will confirm the tightness of these bounds via experiments on LP instances. Small values of
min

{
Z𝑝, Z𝑑

}
may very significantly affect the performance of rPDHG, because they stay in the denominator

in the expression of Φ in (5.4). It should be noted that Z𝑝 and Z𝑑 are not intrinsic properties of the constraint
matrix as they are also dependent on 𝑐 and 𝑏, so Z𝑝 and Z𝑑 do not affect the Stage II iteration bound 𝑇𝑙𝑜𝑐𝑎𝑙 in
Theorem 4.1.

In the rest of this section, Section 5.1 introduces three measures on the primal and dual LPs: stability
under data perturbation, proximity to multiple optima and the LP sharpness of the instance. Then we present
the second main theorem, the equivalence between these three measures. Moreover, Z𝑝 and Z𝑑 are actually
equivalent to them. These equivalence relationships provide new insights into the performance of rPDHG.
Finally, Section 5.2 presents the proof of Theorem 5.1.

5.1. Stability under data perturbations, proximity to multiple optima, LP sharpness Both the
primal and dual problems in the symmetric form (2.4) are instances of the following generic form of LP:

min 𝑔⊤𝑢 s.t. 𝑢 ∈ F𝑔𝑒𝑛𝑒𝑟𝑖𝑐 :=𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐 ∩R𝑛+ (5.5)

where the feasible set F𝑔𝑒𝑛𝑒𝑟𝑖𝑐 is the intersection of the nonnegative orthant R𝑛+ and an affine subspace
𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐. The objective function 𝑔⊤𝑢 is a linear function. We denote the optimal solution of (5.5) byU★, in
which 𝑢★ is an optimal solution. We let OPT(�̌�) denote the set of optimal solutions of the generic LP (5.5)
with the objective vector equal to �̌�. For example, OPT(𝑔) =U★. The primal problem (1.1) is an instantiation
of (5.5) with F𝑔𝑒𝑛𝑒𝑟𝑖𝑐 = F𝑝,𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐 =𝑉𝑝, and 𝑔 = 𝑐. Similarly, the dual problem (2.3) is another instantiation
of (5.5) with F𝑔𝑒𝑛𝑒𝑟𝑖𝑐 = F𝑑 , 𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐 =𝑉𝑑 , and 𝑔 = 𝑞. Now we define the three measures.

Definitions of the three measures. The first measure is the stability under data perturbation Z , the size of
the smallest data perturbation on 𝑔 such that a new optimal solution occur.
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Definition 5.1 (Stability under data perturbations). The stability under data perturbations is de-
fined as

Z := inf
Δ𝑔

{
∥Δ𝑔∥ : OPT(𝑔 +Δ𝑔) ≠ ∅ and OPT(𝑔 +Δ𝑔) ⊈ OPT(𝑔)

}
. (5.6)

The second measure is the proximity to multiple optima, defined as the size of the smallest perturbation
that leads to multiple optimal solutions.

Definition 5.2 (Proximity to multiple optima). When OPT(𝑔) is a singleton, the proximity to multi-
ple optima is defined as

[ = min
Δ𝑔

{
∥Δ𝑔∥ : |OPT(𝑔 +Δ𝑔) | > 1

}
. (5.7)

Since having multiple optima is equivalent to having degenerate dual optimal solutions, [ can also be
interpreted as the proximity to degenerate dual optima.

The third measure is LP sharpness (see Xiong and Freund [56]), which measures how quickly the objective
function grows away from the optimal solution setU★ (i.e., OPT(𝑔)) among all feasible points.

Definition 5.3 (LP sharpness). The LP sharpness of (5.5) is defined as

` := inf
𝑢∈F𝑔𝑒𝑛𝑒𝑟𝑖𝑐\U★

Dist(𝑢,𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐 ∩ {𝑢 ∈ R𝑛 : 𝑔⊤𝑢 = 𝑔⊤𝑢★})
Dist(𝑢, U★) . (5.8)

Sharpness is a useful analytical tool (for example, see Lu and Yang [37], Yang and Lin [59]), and Applegate
et al. [6] employ the sharpness of the normalized duality gap for the saddlepoint problem to prove the linear
convergence of rPDHG on LP. Sharpness for LP, denoted by LP sharpness, is a more natural and intuitive
measure of the original LP instance.

Equivalence between the three measures: Z , [ and `. We now present the second main theorem of this
section, the equivalence between the three measures whenU★ is a singleton.

Theorem 5.2. When U★ is a singleton, the following equivalence relationship holds for the stability
under data perturbations, proximity to multiple optima, and LP sharpness:

Z = [ =
`𝑃 ®𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐
(𝑔)

 . (5.9)

Here Z is normalized by the norm of 𝑃 ®𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐
(𝑔), indicating that Z and [ are equivalent to ` in a relative

sense. This normalization arises because ` is a purely geometric concept that remains invariant under positive
scaling of 𝑔. We use the norm of 𝑃 ®𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐

(𝑔) rather than 𝑔 because the complementary part 𝑃 ®𝑉⊥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

(𝑔)
does not have any impact on the optimal solution and the smallest perturbation Δ𝑔 must lie in ®𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐.

We use `𝑝 and `𝑑 to denote the ` for the primal problem (1.1) and the dual problem (2.3), for which𝑃 ®𝑉𝑝
(𝑐)

 and ∥𝑞∥ correspond to
𝑃 ®𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐

(𝑔)
 (Fact 2.1).

We now prove Theorem 5.2. The equivalence between ` and Z is already proven by Xiong and Freund [56]:

Lemma 5.1 (Theorem 5.1 of Xiong and Freund [56]). LP sharpness is equivalent to stability under
data perturbations through the relation: ` = Z · 1𝑃 ®𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐

(𝑔)
 .

With Lemma 5.1 we can prove Theorem 5.2.
Proof of Theorem 5.2. The second equality of (5.9) directly comes from Lemma 5.1. As for the first

equality of (5.9), in the case that OPT(𝑔) (i.e.,U★ = {𝑢★}) is a singleton, Z is the smallest magnitude of the
perturbation that leads to multiple optimal solutions at the threshold at which a new solution is added to
OPT(𝑔 +Δ𝑔) while 𝑢★ remains optimal. Therefore, Z is equal to [. This finishes the proof. □

We have now shown the equivalence between the above three condition measures on the generic LP (5.5).
Furthermore, the Z𝑝 and Z𝑑 we defined in (5.2) and (5.3) are actually equal to Z for (1.1) and (2.3).

Lemma 5.2. Suppose Assumption 2.1 holds. The Z for (1.1) and (2.3) is equal to Z𝑝 and Z𝑑 , respectively.
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Proof. For Z of (1.1), OPT(𝑐+Δ𝑐) ⊈ OPT(𝑐) if and only if Θ is no longer an optimal basis or the optimal
basis is no longer unique for the perturbed problem. This proves Z𝑝 is equal to Z of (1.1).

Similarly, Z of (2.3) is defined as the Euclidean norm of the smallest perturbation Δ𝑞 on the objective
function so that Θ̄ is no longer the unique optimal basis for (2.3). Since all feasible solutions are in the
affine subspace 𝑐 + Im(𝐴⊤), the smallest perturbation Δ𝑞 must lie in Im(𝐴⊤) and there exists Δ𝑏0 ∈ R𝑚 such
that Δ𝑞 = 𝐴⊤(𝐴𝐴⊤)−1Δ𝑏0. When applying the right-hand side perturbation Δ𝑏0 on (1.1), the corresponding
dual problem (2.3) has the objective vector 𝐴⊤(𝐴𝐴⊤)−1(𝑏 + Δ𝑏0) that is exactly equal to 𝑞 + Δ𝑞. In this
case ∥Δ𝑞∥ = ∥𝐴⊤(𝐴𝐴⊤)−1Δ𝑏∥ = ∥Δ𝑏∥ (𝐴𝐴⊤ )−1 . Therefore, the smallest Euclidean norm of the objective
vector perturbation Δ𝑞 on (2.3) such that Θ̄ is no longer the unique optimal basis is equal to the smallest
(𝐴𝐴⊤)−1-norm of right-hand side perturbation Δ𝑏 on (1.1) such that Θ is no longer the unique optimal basis.
This proves Z𝑑 is equal to Z of (2.3). □

The above equivalence relationships of Z𝑝, Z𝑑 with the three condition measures also provide new insights
into the performance of rPDHG. Here we detail them as follows.

It is often observed that rPDHG has good performance in some LP instances with multiple optimal
solutions, but a minor data perturbation results in a substantial degradation in rPDHG’s performance on
the perturbed problem (see Section 6 for examples). Now we have some insight and partial explanation
for this phenomenon. According to Theorem 5.2 and Lemma 5.2, Z𝑝 and Z𝑑 are equal to the proximity
to multiple optima for (1.1) and (2.3). The perturbed problem still stays in close proximity to the original
unperturbed problem, so its min{Z𝑝, Z𝑑} is at most as large as the magnitude of the perturbation. Furthermore,
min{Z𝑝, Z𝑑} lies in the denominator of the iteration bound of Theorems 5.1 (and Stage I iteration bound
of Theorem 4.1), so a small perturbation may significantly increase the iteration bound. This explanation
is complementary with Lu and Yang [40] which study the vanilla PDHG and explain the phenomenon by
the size of the region for local fast convergence. Our result shows that perturbations significantly affect the
iteration bound for Stage I of rPDHG as well. This effect of perturbations on rPDHG will be confirmed by
computational experiments in Section 6.

Moreover, Theorem 5.1 together with Lemmas 5.1 and 5.2 also provide new computational guarantees that
use ^, the size of the optimal solutions, and the LP sharpness `𝑝 and `𝑑 . They are simpler and more intuitive
guarantees than those in Xiong and Freund [56], because the latter also involves the limiting error ratio. This
simplification is due to the unique optimum assumption. Notably, despite this additional assumption, our
iteration bounds are strictly better than the iteration bounds of Xiong and Freund [57, Corollary 4.3], which
exhibit quadratic dependence on the reciprocals of `𝑝 and `𝑑 .

5.2. Proof of Theorem 5.1 The key to proving Theorem 5.1 is the following lemma:

Lemma 5.3. Suppose that Assumption 2.1 holds. The Z𝑝 and Z𝑑 have the following expression:

Z𝑝 = min
1≤ 𝑗≤𝑛−𝑚

𝑠★
𝑚+ 𝑗√︃(𝐵−1𝑁)·, 𝑗

2 + 1
and Z𝑑 = min

1≤𝑖≤𝑚

𝑥★
𝑖√︃(𝐵−1𝑁)𝑖, ·

2 + 1
. (5.10)

Before proving it, we recall how to compute the LP sharpness ` of the generic LP (5.5) by computing the
smallest sharpness along all of the edges emanating from the optimal solutions.

Lemma 5.4 (A restatement of Theorem 5.5 of Xiong and Freund [56]). Suppose that Assumption 2.1
holds. LetU★ = {𝑢★} and the directions of the edges emanating fromU★ be 𝑣1, 𝑣2, . . . , 𝑣𝑛−𝑚. Then for any
given Ȳ > 0, the LP sharpness ` is characterized as follows:

` = min
1≤ 𝑗≤𝑛−𝑚

Dist(𝑢★ + Ȳ · 𝑣 𝑗 ,𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐 ∩ {𝑢 ∈ R𝑛 : 𝑔⊤𝑢 = 𝑔⊤𝑢★})
∥
(
𝑢★ + Ȳ · 𝑣 𝑗

)
− 𝑢★∥

(5.11)

Now we are ready to prove Lemma 5.3.
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Proof of Lemma 5.3. Let `𝑝 and `𝑑 denote the LP sharpness for (1.1) and (2.3) respectively. We
first compute `𝑝 and then Z𝑝 =

𝑃 ®𝑉𝑝
(𝑐)

 `𝑝 (Lemma 5.1). For (1.1), 𝑢★ = 𝑥★, 𝑉𝑔𝑒𝑛𝑒𝑟𝑖𝑐 = 𝑉𝑝 and

{𝑢 ∈ R𝑛 : 𝑔⊤𝑢 = 𝑔⊤𝑢★} =
{
𝑥 : Ep

obj(𝑥) = 0
}

in the generic LP (5.5), with the directions of connected edges
given by {𝑢 𝑗 : 1 ≤ 𝑗 ≤ 𝑛−𝑚} as defined in (3.11). Furthermore, the following equalities hold:

Dist
(
𝑥★ + Ȳ · 𝑢 𝑗 ,𝑉𝑝 ∩

{
𝑥 : Ep

obj(𝑥) = 0
})

=
Ep

obj(𝑥
★ + Ȳ · 𝑢 𝑗)𝑃 ®𝑉𝑝
(𝑐)


=
(𝑠★)⊤(𝑥★ + Ȳ · 𝑢 𝑗) − (𝑠★)⊤𝑥★𝑃 ®𝑉𝑝

(𝑐)
 = Ȳ · (𝑠

★)⊤𝑢 𝑗𝑃 ®𝑉𝑝
(𝑐)

 = Ȳ ·
𝑠★
𝑚+ 𝑗𝑢

𝑗

𝑚+ 𝑗𝑃 ®𝑉𝑝
(𝑐)

 = Ȳ ·
𝑠★
𝑚+ 𝑗𝑃 ®𝑉𝑝
(𝑐)


(5.12)

for all 𝑗 ∈ [𝑛−𝑚]. Here the second and third equalities use the result that Ep
obj(𝑥) = Gap(𝑥, 𝑠★) = (𝑠★)⊤𝑥 −

(𝑠★)⊤𝑥★ for any 𝑥 ∈ 𝑉𝑝. The fourth equality holds because 𝑠★[𝑚] = 0 and 𝑥 𝑗[𝑛]\( [𝑚]∪{𝑚+ 𝑗 }) = 0. The final
equality uses 𝑢 𝑗

𝑚+ 𝑗 = 1. In addition, for all 𝑗 ∈ [𝑛−𝑚] we have

∥(𝑥★ + Ȳ · 𝑢 𝑗) − 𝑥★∥ = Ȳ · ∥𝑢 𝑗 ∥ = Ȳ ·
√︃(𝐵−1𝑁)·, 𝑗

2 + 1 . (5.13)

Substituting (5.12) and (5.13) into the definition (5.11) of `𝑝 yields the expression:

`𝑝 =
1𝑃 ®𝑉𝑝
(𝑐)

 · min
1≤ 𝑗≤𝑛−𝑚

𝑠★
𝑚+ 𝑗√︃(𝐵−1𝑁)·, 𝑗

2 + 1
.

Finally, substituting it back to Z𝑝 =
𝑃 ®𝑉𝑝

(𝑐)
 `𝑝 proves the first half of (5.10).

Next we compute `𝑑 and then Z𝑑 =

𝑃 ®𝑉𝑑
(𝑞)

 `𝑑 (Lemma 5.1). For (2.3), we repeat the above process

on (3.24), and then we can symmetrically obtain `𝑑 = 1𝑃 ®𝑉𝑑
(𝑞)

 · min1≤𝑖≤𝑚
𝑥★
𝑖√︂(𝑄−1

Θ̄
𝑄Θ ) ·,𝑖

2
+1

. By Lemma

3.6, 𝑄−1
Θ̄
𝑄Θ = −(𝐵−1𝑁)⊤, and thus

(𝑄−1
Θ̄
𝑄Θ)·,𝑖

 = ∥(𝐵−1𝑁)𝑖, · ∥. Combined with Z𝑑 =

𝑃 ®𝑉𝑑
(𝑞)

 `𝑑, this
completes the proof. □

With Lemma 5.3, we can now prove Theorem 5.1.
Proof of Theorem 5.1. Directly substituting the expressions of Z𝑝 and Z𝑑 into the expression (3.1) of Φ

completes the proof. □

6. Experimental Confirmation This section shows how our new theories align with the practical
performance through computational evaluations. Section 6.1 confirms the reciprocal relationship between
rPDHG complexity and the magnitude of perturbations, providing experimental evidence for our findings
in Section 5. Section 6.2 confirms the significance of ^Φ and ∥𝐵−1∥∥𝐴∥ in the two-stage performance of
rPDHG, supporting our results in Section 4.

We implement rPDHG (Algorithm 1) on standard-form LPs, adhering precisely to the setting of Theorem
3.1, with one exception: the normalized duality gap uses the �̃�-norm that is defined in (4.13), instead of the
𝑀-norm. This alternative is proven by Applegate et al. [6], Xiong and Freund [58] equivalent to the original
normalized duality gap but significantly more computationally efficient. It is also widely adopted in practice,
such as Applegate et al. [4], Lu and Yang [38], Lu et al. [43].

6.1. Effects of Data Perturbations To evaluate rPDHG’s sensitivity to perturbations in the objective
vector 𝑐, we construct a family of standard-form LP instances (1.1) with data

(
𝐴1, 𝑏1, 𝑐1) , where

𝐴1 = [1,1,1] , 𝑏1 = 2, and 𝑐1 = 𝑐1
𝛾 := [2,−1,−1] +

[
0,−𝛾

2
,
𝛾

2

]
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for parameter 𝛾 ≥ 0. This LP family, denoted by LP1
𝛾 , is designed to illustrate the effect of perturbations

[0,− 𝛾

2 ,
𝛾

2 ] on the objective vector 𝑐1
0. When 𝛾 = 0, LP1

𝛾 has multiple optimal solutions along the line segment
connecting (0,2,0) and (0,0,2). For 𝛾 > 0, the problem has a unique optimal solution at (0,2,0). Since Z𝑝
is equivalent to the proximity to multiple optima, we have Z𝑝 ≤𝑂 (𝛾) when 𝛾 > 0. As for ^, it is always equal
to 1 for LP1

𝛾 instances.
For the family of problems LP1

𝛾 , the values of Φ for different 𝛾 values are as follows:

𝛾 1e0 1e-1 1e-2 1e-3 1e-4
Φ of LP1

𝛾 6.4e0 4.5e1 4.3e2 4.2e3 4.2e4
These values of Φ are clearly in a reciprocal relationship with the value of 𝛾. This observation aligns
with (5.4) of Theorem 5.1. Figure 1a shows the convergence performance of rPDHG on LP1

𝛾 instances
for 𝛾 ∈ {0,0.02,0.005,0.001}. The horizontal axis reports the number of iterations, while the vertical axis
reports the relative error, defined as: E𝑟 (𝑥, 𝑦) := ∥𝐴𝑥

+−𝑏∥
1+∥𝑏∥ +

∥ (𝑐−𝐴⊤𝑦)−∥
1+∥𝑐∥ + |𝑐

⊤𝑥+−𝑏⊤𝑦 |
1+|𝑐⊤𝑥+ |+|𝑏⊤𝑦 | for iterates (𝑥, 𝑦).

We use E𝑟 (𝑥, 𝑦) because it is easy to compute, and applicable when the problem has multiple optima. It is
also a widely used standard tolerance (also used in Applegate et al. [4], Lu et al. [43]). The results clearly
demonstrate that as 𝛾↘ 0, the number of iterations (of Stage I in particular) increases significantly, exhibiting
an approximately reciprocal relationship with 𝛾. Notably, the results also indicate that neither 𝛾 nor Φ
influence the local convergence rate in Stage II. This finding is consistent with Theorem 4.1, which asserts
that the local convergence rate is solely determined by ∥𝐵−1∥∥𝐴∥.

Figure 1. Convergence performance of rPDHG on two families of LP instances.
(a) LP1

𝛾 (b) LP2
𝛾

We further construct another family of standard-form LP instances (1.1) with data
(
𝐴2, 𝑏2, 𝑐2) , where

𝐴2 =
[ 1 1 −1

1 0 1
]
, 𝑐2 = [−0.5,1,0.5], and 𝑏2 = 𝑏2

𝛾 := [1,1] + [𝛾,2𝛾]

for parameter 𝛾 ≥ 0. This LP family, denoted by LP2
𝛾 , is designed to illustrate the effect of perturbations

[𝛾,2𝛾] on the right-hand side vector 𝑏2
0. The value of ^ is always equal to 1.22 for all LP2

𝛾 instances. When
𝛾 = 0, LP2

𝛾 has a unique optimal primal solution [1,0,0]. This solution is degenerate, implying multiple dual
optimal solutions for LP2

0. When 𝛾 > 0, the problem only has a unique dual optimal solution. Since Z𝑑 is also
equivalent to the proximity to multiple dual optimal solutions, we have Z𝑑 ≤𝑂 (𝛾) when 𝛾 > 0.

For the family of problems LP2
𝛾 , the values of Φ for different 𝛾 values are as follows:

𝛾 1e0 1e-1 1e-2 1e-3 1e-4
Φ of LP2

𝛾 6.7e0 3.4e1 3.4e2 3.4e3 3.4e4
These values of Φ still exhibit a clear reciprocal relationship with 𝛾. Figure 1b shows the convergence
performance of rPDHG for LP1

𝛾 instances for 𝛾 ∈ {0,0.02,0.005,0.001}. Although the perturbations are now
on the right-hand side vector 𝑏, our observations are nearly symmetric to those for LP1

𝛾 , which match the
predictions of Theorems 5.1 and 4.1 again.
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6.2. Two-stage Performance of rPDHG This subsection presents experimental confirmations of the
implications of ^ and Φ in practical computations. We test on LP instances generated according to Todd’s
random LP model:

Definition 6.1 (Random linear program). Let 𝑢 be a random variable from the normal distribution
N(0,1) with mean 0 and variance 1. Let the components of the matrix 𝐴 be independent and identically
distributed (i.i.d.) copies of 𝑢. The primal and dual solutions 𝑥 and 𝑠 are generated as follows:

𝑥Θ ∈ R𝑚+ , 𝑠Θ̄ ∈ R𝑛−𝑚+ , 𝑥Θ̄ = 0, 𝑠Θ = 0, (6.1)

in which Θ = {1,2, . . . , 𝑚} and the components of 𝑥Θ and 𝑠Θ̄ are i.i.d. copies of |𝑢 |. The right-hand side 𝑏
is generated by 𝑏 = 𝐴𝑥, and the cost vector 𝑐 is generated by 𝑐 = 𝑠. (Optionally, the cost vector 𝑐 with the
smallest norm is generated by 𝑐 := 𝑠 + 𝐴⊤ �̂�, where �̂� = arg min𝑦∈R𝑚 ∥𝑠 + 𝐴⊤ �̂�∥.)

The random LP in Definition 6.1 is Model 1 of Todd [51]. Variants of this model have been analyzed
by Anstreicher et al. [2, 3], Ye [61] to elucidate the average performance of interior-point methods. One
can observe that 𝑥 and 𝑠 are the optimal primal-dual solution because they are feasible and satisfy the
complementary slackness condition 𝑥⊤𝑠 = 0. Components of 𝑥Θ and 𝑠Θ̄ are all nonzero almost surely, and
the LP instance has a unique optimum with optimal basis Θ almost surely. Since the optimal basis and the
optimal solution are known prior to solving the problem, ^Φ and ∥𝐵−1∥∥𝐴∥ used in the iteration bound
results can be easily computed. Furthermore, replacing the cost vector 𝑐 with the smallest-norm cost vector
𝑐 does not influence the optimality and degeneracy of 𝑥 and 𝑠, but 𝑐 lies in Null(𝐴), i.e., 𝐴𝑐 = 0. To keep
consistent with the theoretical results, we use 𝑐 in the experiments.

We run rPDHG on 100 randomly generated LP problems according to Definition 6.1 with 𝑚 = 50 and
𝑛 = 100. We use LP𝑖 to denote the 𝑖-th instance, where 𝑖 ∈ {1,2, . . . ,100}. Let (𝑥𝑛,𝑘 , 𝑦𝑛,𝑘) be the iterations of
the rPDHG, and we deem an instance solved when rPDHG computes a solution (𝑥𝑛,𝑘 , 𝑦𝑛,𝑘) whose Euclidean
distance to the optimal solution (𝑥★, 𝑦★) is smaller than 10−4. After solving the problem, we define the
number of Stage I (optimal basis identification) iterations to be the iteration counter after which the support
set of 𝑥𝑛,𝑘 remains unchanged. And we define the number of Stage II iterations (local convergence) to be the
rest of the iterations.

According to Theorem 3.1, the overall number of iterations (in Stage I and Stage II) should be upper
bounded by 𝑂

(
^Φ · ln(^Φ · ∥𝑤

★∥
Y
)
)
. Furthermore, Theorem 4.1 predicts that the number of iterations in Stage

I and Stage II should be upper bounded by 𝑂
(
^Φ · ln(^Φ)

)
and 𝑂

(
∥𝐵−1∥∥𝐴∥ · ln( b

Y
)
)

respectively.
Figure 2a presents a scatter plot of the overall number of OnePDHG iterations and ^Φ ln(^Φ), in which

the red line represents the linear prediction model

log10 (predicted iteration number) = log10
(
^Φ ln(^Φ)

)
− 2.42 . (6.2)

The empirical 𝑅2 value of this model is defined to be:

1−
∑100

𝑖=1
(
log10 (actual iteration number of LP𝑖) − log10 (predicted iteration number of LP𝑖)

)2∑100
𝑖=1

(
log10 (actual iteration number of LP𝑖) −mean of log10 (actual iteration number)

)2 ,

and is equal to 0.5367. This 𝑅2 value indicates that in these 100 instances, more than half of the variation
in log10 (actual iteration number) is accounted for by the model in (6.2). Although a few instances fall
considerably below the line, notably, no instance significantly exceeds it. On the one hand, this observation
suggests that ^Φ ln(^Φ) serves as a reliable indicator of the performance of rPDHG. On the other hand,
because Φ is equivalent to Φ̂ (Lemma 3.2), it offers direct experimental evidence supporting the role of the
level set geometry condition number Φ̂, as proposed by Xiong and Freund [58],

Similarly, we also validate Theorem 4.1 through Figures 2b and 2c. These figures illustrates the relationship
between the number of iterations in Stages I and II and the corresponding ^Φ ln(^Φ) and ∥𝐵−1∥∥𝐴∥,
respectively. One can also see a clear linear dependence in both stages. The empirical 𝑅2 values of the two
linear prediction models in Figures 2b and 2c are equal to 0.6146 and 0.6923, respectively. They are higher
than the 𝑅2 value 0.5367 in Figure 2a, indicating a tighter linear relationship. This confirms that the iteration
bounds presented in Theorem 4.1 are refined, compared to Theorem 3.1.
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Figure 2. Number of OnePDHG iterations in Stage I (optimal basis identification) and Stage II (local convergence) and
the corresponding values of ^Φ ln(^Φ) and ∥𝐵−1∥∥𝐴∥.

(a) Stage I + Stage II (b) Stage I (c) Stage II

7. Optimized Reweighting and Step-Size Ratio Having shown the new accessible iteration bounds
and confirmed their tightness via experiments, in this section, we show how to use the expression of the new
iteration bounds to derive an optimized reweighting on the right-hand side vector 𝑏 and the cost vector 𝑐. The
reweighting is also equivalent to an optimized ratio between the primal-dual step-sizes (𝜏, 𝜎).

Strategic configuration of the step-size ratio, also denoted as the “primal weight” has been observed to
yield significant improvements in rPDHG’s convergence rate (see, e.g., Applegate et al. [4], Lu and Yang
[38], Xiong and Freund [57]). Applegate et al. [4] observe the practical benefits of adaptively adjusting the
primal weight to balance the norm of accumulated updates in the primal and dual iterates. Xiong and Freund
[56] verify the value of tuning step-sizes by providing a formula for an “optimized” step-size ratio. However,
the formula incorporates the LP sharpness terms `𝑝 and `𝑑 , which are hard to approximate or compute a
priori. In this section, we examine the step-size ratio from the perspective of reweighting the primal and dual
variables. We present a simple expression of the “optimized” reweights, through which we can validate the
heuristic of balancing primal weights.

For any reweights 𝜔1, 𝜔2 > 0, the reweighed problem is as follows:

min
𝑥∈R𝑛

(𝜔1 · 𝑐)⊤𝑥 s.t. 𝐴𝑥 =𝜔2 · 𝑏 , 𝑥 ≥ 0 (7.1)

Compared to the original problem, the primal solutions are (re-)scaled by a factor of 𝜔2, while the dual
solutions are (re-)scaled by a factor of 𝜔1. We use Φ𝜔1,𝜔2 to denote the Φ value of (7.1), e.g. Φ1,1 is the value
of Φ for (1.1). Although ^ remains invariant under reweighting, Φ𝜔1,𝜔2 may become different than Φ1,1,
leading to different convergence rates of rPDHG. Applegate et al. [6] demonstrate that applying PDHG to the
reweighted problem (7.1) with primal-dual step-sizes (𝜏, �̃�) is equivalent to applying PDHG to the original
problem (1.1) with primal-dual step-sizes (𝜏, 𝜎) when the step-sizes are related by (𝜏, 𝜎) =

(
𝜔1
𝜔2
𝜏,

𝜔2
𝜔1
�̃�

)
.

For simplicity of notations, we let 𝑥★ and 𝑠★ represent the optimal solutions of the reweighted problem.
Then 𝑥★ = 𝜔2 · 𝑥★ and 𝑠★ = 𝜔1 · 𝑠★. Thus, rPDHG can directly run on (7.1) and (𝑥★, 𝑠★) is computed by
recovering from the convergent solution of rPDHG. We now present the iteration bound of an optimized
weighting of this strategy as follows:

Theorem 7.1. Let the settings of the LP instance and Algorithm 1 be identical to those in Theorem
3.1. Consider rPDHG applied to (7.1) where 𝜔1

𝜔2
=
∥𝑥★∥1
∥𝑠★∥1 , and denote its iterations by

(
𝑥𝑛,𝑘 , 𝑠𝑛,𝑘

)
. Then

the total number of OnePDHG iterations required to obtain the first outer iteration 𝑁 such that 𝑤𝑁,0 =(
1
𝜔2
𝑥𝑁,0, 1

𝜔1
𝑠𝑁,0

)
is Y-optimal for the original problem is bounded above by

𝑂
©«^ ·max

{
∥𝑥★∥1
Z𝑝

,
∥𝑠★∥1
Z𝑑

}
· ln

©«
^
∥𝑥★∥1+∥𝑠★∥1
min{Z𝑝 , Z𝑑} · ∥𝑤

★∥

Y

ª®®¬
ª®®¬ . (7.2)
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Furthermore, once 𝜔1
𝜔2

=
∥𝑥★∥1
∥𝑠★∥1 , then (𝜔1, 𝜔2) is actually an “optimal” reweighting, as it approximately

minimizes Φ𝜔1,𝜔2 .

Lemma 7.1. When �̂�1, �̂�2 > 0 and �̂�1
�̂�2

=
∥𝑥★∥1
∥𝑠★∥1 , we have

Φ�̂�1, �̂�2 = 2 ·max
{
∥𝑥★∥1
Z𝑝

,
∥𝑠★∥1
Z𝑑

}
≤ 2

(
min

𝜔1,𝜔2>0
Φ𝜔1,𝜔2

)
. (7.3)

Proof. The constraint matrix and the optimal basis remain unchanged, but the optimal primal solutions
𝑥★ and 𝑠★ are scaled by 𝜔2 and 𝜔1, respectively. Applying the definition of Φ to the reweighted problem
(7.1) and using Lemma 5.3 yield the formula of Φ𝜔1,𝜔2 :

Φ𝜔1,𝜔2 =
(
𝜔2∥𝑥★∥1 +𝜔1∥𝑠★∥1

)
·max

{
1

𝜔1Z𝑑
,

1
𝜔2Z𝑑

}
. (7.4)

Using the condition �̂�1
�̂�2

=
∥𝑥★∥1
∥𝑠★∥1 , Φ�̂�1, �̂�2 = 2 ·max

{
∥𝑥★∥1
Z𝑝

,
∥𝑠★∥1
Z𝑑

}
, which is exactly the first equality of (7.3).

On the other hand, (7.4) implies that Φ𝜔1,𝜔2 ≥max
{
∥𝑥★∥1
Z𝑝

,
∥𝑠★∥1
Z𝑑

}
for all 𝜔1, 𝜔2. This proves the inequality

of (7.3). □
With this expression of Φ�̂�1, �̂�2 presented above, the proof of Theorem 7.1 is straightforward by applying

Theorem 3.1. We delay the proof to Appendix C.
Since 𝑥★ and 𝑠★ are unknown when running rPDHG on real-world instances, the reweighting presented

in Theorem 7.1 is still not practical. But this finding demonstrates the practical effectiveness of adaptively
adjusting the primal weight to balance primal and dual norms, as observed in Applegate et al. [4], Lu and
Yang [38], Xiong and Freund [57]. Furthermore, in comparison to another impractical formula proposed by
Xiong and Freund [56], this optimized reweighting approach is more amenable to practical approximation,
as it only requires the ℓ1-norms of the optimal solutions, which can be progressively estimated using the
ℓ1-norms of the iterates.

Comparing Theorem 7.1 and Theorem 5.1, the only difference is the coefficient of the linear convergence
iteration bound. The coefficient in Theorem 7.1 is ^ ·max

{
∥𝑥★∥1
Z𝑝

,
∥𝑠★∥1
Z𝑑

}
, which is smaller (and can be much

smaller) than ^ · ∥𝑥
★∥1+∥𝑠★∥1

min{Z𝑝 ,Z𝑑 } of rPDHG for the original problem (Theorem 5.1). This distinction implies
that when ∥𝑥

★∥1
Z𝑑

and ∥𝑠
★∥1
Z𝑝

significantly exceed ∥𝑥
★∥1
Z𝑝

and ∥𝑠
★∥1
Z𝑑

, adjusting the reweights (or the equivalent
step-size ratio) may have a huge benefit for rPDHG. This observation is also consistent with the experimental
validation presented in Figure 3 of Xiong and Freund [56].

It is worth noting that our approach is complementary to the step-size ratio proposed by Xiong and Freund
[56]. In fact, the approach of Xiong and Freund [56] can also approximately minimize Φ𝜔1,𝜔2 . See a detailed
discussion in Appendix C.

Appendix A: Proofs of Section 3

A.1. Technical lemmas about the normalized duality gap and 𝛽-restart condition Note that Section
4.1 has reviewed the basic information of the 𝛽-restart condition and the normalized duality gap, which were
omitted in Section 3 but will be heavily used throughout the proofs. Here we formally present the sublinear
convergence result of the normalized duality gap summarized by Applegate et al. [6], using an equivalent
result presented by Xiong and Freund [56]:

Lemma A.1 (Corollary 2.4 of Xiong and Freund [56]). Suppose that 𝜎, 𝜏 satisfy (2.7). Then for any
𝑧0 := (𝑥0, 𝑦0) with 𝑥0 ∈ R𝑛+, the following inequality holds for all 𝑘 ≥ 1:

𝜌(∥𝑧𝑘 − 𝑧0∥𝑀 ; 𝑧𝑘) ≤ 8 Dist𝑀 (𝑧0,Z★)
𝑘

. (A.1)

Then an upper bound on the number of iterations for inner loops in rPDHG is as follows.
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Lemma A.2. Suppose that (4.6) holds for 𝑧𝑛,0 and 𝑧𝑛−1,0 with L > 0. Whenever 𝑘 ≥ 8L
𝛽

, sufficient
decrease has been made on the normalized duality gap, i.e., the restart condition (4.5) is satisfied.

Proof. For 𝑘 ≥ 1, Lemma A.1 implies:

𝜌(∥𝑧𝑛,𝑘 − 𝑧𝑛,0∥𝑀 ; 𝑧𝑛,𝑘) ≤ 8 Dist𝑀 (𝑧𝑛,0,Z★)
𝑘

. (A.2)

If 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) = 0, then 𝑧𝑛,0 is a saddle point of (2.2) and thus 𝑧𝑛,0 ∈ Z★. In this case,
𝑧𝑛,𝑘 = 𝑧𝑛,0 for all 𝑘 ≥ 1, and any 𝑘 ≥ 1 satisfies (4.5).

If 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) ≠ 0, dividing both sides of (A.2) by 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) yields:

𝜌(∥𝑧𝑛,𝑘 − 𝑧𝑛,0∥𝑀 ; 𝑧𝑛,𝑘)
𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0)

≤ 8
𝑘
· Dist𝑀 (𝑧𝑛,0,Z★)
𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0)

≤ 8
𝑘
· L (A.3)

where the last inequality follows from (4.6). Therefore, when 𝑘 ≥ 8L
𝛽

, the right-hand side is no larger than 𝛽,
i.e., 8

𝑘
· L ≤ 𝛽, and the restart condition (4.5) is satisfied. □

This lemma is essentially part of Theorem 2 of Applegate et al. [6].

A.2. Proof of Proposition 3.1
Proof of Proposition 3.1. For the second term of multiplication in the right-hand side of (3.1), we have

max

 max
1≤ 𝑗≤𝑛−𝑚

√︃(𝐵−1𝑁)·, 𝑗
2 + 1

𝑠★
𝑚+ 𝑗

, max
1≤𝑖≤𝑚

√︃(𝐵−1𝑁)𝑖, ·
2 + 1

𝑥★
𝑖


≤

max
{
max1≤ 𝑗≤𝑛−𝑚

√︃(𝐵−1𝑁)·, 𝑗
2 + 1,max1≤𝑖≤𝑚

√︃(𝐵−1𝑁)𝑖, ·
2 + 1

}
min

{
min1≤𝑖≤𝑚 𝑥★𝑖 ,min1≤ 𝑗≤𝑛−𝑚 𝑠★𝑚+ 𝑗

}
=

max
{√︃
∥𝐵−1𝑁 ∥21,2 + 1,

√︃
∥𝐵−1𝑁 ∥22,∞ + 1

}
min1≤𝑖≤𝑛

{
𝑥★
𝑖
+ 𝑠★

𝑖

}
(A.4)

where the first equality holds because 𝑥★ and 𝑠★ are strictly complementary. Furthermore, because ∥ · ∥1,2
and ∥ · ∥2,∞ norms are upper bounded by the ∥ · ∥2 norm, we have the following inequalities:

max
{√︃
∥𝐵−1𝑁 ∥21,2 + 1,

√︃
∥𝐵−1𝑁 ∥22,∞ + 1

}
≤

√︃
∥𝐵−1𝑁 ∥22 + 1 = 𝜎+max(𝐵−1𝑁𝑁⊤𝐵−⊤) + 1

= 𝜎+max(𝐵−1(𝑁𝑁⊤ + 𝐵𝐵⊤)𝐵−⊤) = 𝜎+max(𝐵−1𝐴𝐴⊤𝐵−⊤) = ∥𝐵−1𝐴∥22 .

Applying these inequalities to the definition of Φ in (3.1) completes the proof. □

A.3. Proof of Lemma 3.1 In this subsection, we prove Lemma 3.1. We begin with the following lemma.

Lemma A.3. Suppose that 𝐴𝑐 = 0. Algorithm 1 (rPDHG) is run starting from 𝑧0,0 = (𝑥0,0, 𝑦0,0) = (0,0),
and the step-sizes 𝜎 and 𝜏 satisfy (2.7). Then for all 𝑛 ≥ 1, it holds that

Dist𝑀 (𝑧𝑛,0,Z★) ≤
√

2𝑐𝜏,𝜎 ·Dist(𝑤𝑛,0,W★) ≤ (3
√

2+ 4)𝑐2
𝜏,𝜎 · Φ̂ · 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) . (A.5)

In other words, condition (4.6) holds with L = (3
√

2+ 4)𝑐2
𝜏,𝜎Φ̂.

This lemma is Lemma 3.13 of Xiong and Freund [58] by taking limits as 𝛿 approaches 0 on both sides.

Lemma A.4 (Proposition 3.7 of Xiong and Freund [58]). Suppose that 𝐴𝑐 = 0 and 𝑧0,0 = (0,0). Then
∥𝑤0,0 −𝑤★∥ = ∥(0, 𝑐) −𝑤★∥ ≤ ∥𝑤★∥.
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Proof of Lemma 3.1. First of all, Lemma A.3 states:

∥𝑧𝑛,0 − 𝑧★∥𝑀 ≤
√

2𝑐𝜏,𝜎 · ∥𝑧𝑛,0 − 𝑧★∥ ≤ (3
√

2+ 4)𝑐2
𝜏,𝜎 · Φ̂ · 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) (A.6)

Substituting the step-sizes, we have 𝑐𝜏,𝜎 =
√

2^, (3
√

2+ 4)𝑐2
𝜏,𝜎 ≈ 16.4853^ ≤ 16.5^, and

∥𝑧𝑛,0 − 𝑧★∥ ≤ (3
√

2+ 4)
√
^Φ̂ · 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) ≤ 8.25

√
^Φ̂ · 𝜌(∥𝑧𝑛,0 − 𝑧𝑛−1,0∥𝑀 ; 𝑧𝑛,0) . (A.7)

Let 𝑇Y denote the total number of OnePDHG iterations required to obtain the first outer iteration 𝑁 that
satisfies 𝜌(∥𝑧𝑁,0 − 𝑧𝑁−1,0∥𝑀 ; 𝑧𝑁,0) ≤ Y. Theorem 3.5 of Xiong and Freund [58] and (A.6) then guarantee:

𝑇Ȳ ≤ 23 · 16.5^Φ̂ · ln
(
23∥𝑧0,0 − 𝑧★∥𝑀 )

Y

)
≤ 380^Φ̂ · ln

(
23∥𝑧0,0 − 𝑧★∥𝑀

Y

)
. (A.8)

Note that (A.7) ensures that when the normalized duality gap is sufficiently small, the distance to the optimal
solution is correspondingly small. Therefore,

𝑇 ≤ 𝑇 Y

8.25
√
^Φ̂
≤ 380^Φ̂ · ln

(
189.75

√
^Φ̂ · ∥𝑧0,0 − 𝑧★∥𝑀

Y

)
≤ 380^Φ̂ · ln

(
379.5^Φ̂ · ∥𝑤0,0 −𝑤★∥

Y

)
(A.9)

where the last inequality follows from (4.14) and 𝑐𝜏,𝜎 =
√

2^. Finally, by Lemma A.4, we have ∥𝑤0,0−𝑤★∥ ≤
∥𝑤★∥. Consequently, (A.9) leads to (3.6) of Lemma 3.1. □

Furthermore, similar results also exist for the goal of obtaining an iterate 𝑧𝑁,0 satisfying ∥𝑧𝑁,0 − 𝑧★∥𝑀 ,
which will be useful later in Appendix B.

Remark A.1. Under the same conditions as Lemma 3.1, let 𝑇 denote the total number of OnePDHG
iterations required to obtain the first outer iteration 𝑁 that satisfies both 𝜌(∥𝑧𝑁−1,0 − 𝑧𝑁,0∥𝑀 ; 𝑧𝑁,0) ≤ Y

16.5^Φ̂
and ∥𝑧𝑁,0 − 𝑧★∥𝑀 ≤ Y. Then, 𝑇 ≤ 380^Φ̂ · ln

(
760^1.5Φ̂· ∥𝑤★∥

Y

)
.

The proof of Remark A.1 is almost identical to that of Lemma 3.1, except (A.9) is replaced by the inequality
derived from 𝑇 ≤ 𝑇 Y

16.5^Φ̂
(due to (A.6)).

Appendix B: Proof of Theorem 4.1
Proof of Theorem 4.1. We first prove (4.1). According to Lemma 4.2, once 𝑁0 satisfies ∥𝑧𝑁0,0− 𝑧★∥𝑀 ≤ Ȳ,

which is equivalent to:

∥𝑧𝑁0,0 − 𝑧★∥𝑀 ≤ Ȳ =
√

2
6
· 1
√

2^
· b = b

6
√
^
, (B.1)

then for all 𝑁 > 𝑁0, we have:

(𝑖) 𝑥𝑁,0
𝑖
≥
√
𝜏∥𝑧𝑁,0 − 𝑧𝑁−1,0∥𝑀 for 𝑖 ∈ [𝑚] , and (𝑖𝑖) 𝑥𝑁,0

𝑚+ 𝑗 = 0 for 𝑗 ∈ [𝑛−𝑚] , (B.2)

and the positive components of 𝑥𝑁,0 correspond exactly to the optimal basis. Therefore, 𝑁1 ≤ 𝑁0 + 1 and 𝑇1
is bounded above by the number of OnePDHG iterations required to obtain 𝑧𝑁0+1,0.

According to Remark A.1, the number of OnePDHG iterations needed to obtain such a 𝑧𝑁0,0 is upper
bounded by the number of iterations𝑇 required to obtain 𝑧�̃�0,0 such that 𝜌(∥𝑧�̃�0−1,0− 𝑧�̃�0,0∥𝑀 ; 𝑧�̃�0,0) ≤ Ȳ

16.5^Φ̂ ,
and

𝑇 ≤ 380^Φ̂ · ln
(
4560^2Φ̂∥𝑤★∥

b

)
. (B.3)

Furthermore, Lemma A.3 implies that, with step-sizes of Theorem 3.1, for all 𝑛:

∥𝑧𝑛,0 − 𝑧★∥𝑀 ≤ 2
√
^∥𝑤𝑛,0 −𝑤★∥ ≤ (6

√
2+ 8)^Φ̂ · 𝜌(∥𝑧𝑛−1,0 − 𝑧𝑛,0∥𝑀 ; 𝑧𝑛,0) . (B.4)
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Lemma A.2 guarantees that the number of additional OnePDHG iterations before obtaining the next outer
loop iteration 𝑧�̃�0+1,0 is at most

⌈
8· (6
√

2+8)^Φ̂
𝛽

⌉
. Overall, since �̃�0 ≥ 𝑁0, the number of OnePDHG iterations

required before obtaining 𝑧�̃�0+1,0 is at most:

𝑇 +
⌈
8 · (6
√

2+ 8)^Φ̂
𝛽

⌉
(B.3)
≤ 380^Φ̂ · ln

(
4560^2Φ̂∥𝑤★∥

b

)
+
⌈
8 · (6
√

2+ 8)^Φ̂
𝛽

⌉
,

which we use 𝑇𝑏𝑎𝑠𝑖𝑠 to denote. Because Φ is equivalent to Φ̂ as demonstrated by Lemma 3.2 and ∥𝑤
★∥
b
≤Φ

from the definition, 𝑇𝑏𝑎𝑠𝑖𝑠 reduces to 𝑂 (^Φ ln(^Φ)) in (4.1).
Next, we prove (4.2). We first study how large (𝑁2 − �̃�0 − 1) could be. We mainly consider the case

𝑁2 > �̃�0 + 1; otherwise 𝑁2 ≤ �̃�0 + 1 and 𝑇2 ≤ 𝑇𝑏𝑎𝑠𝑖𝑠. In this case 𝑁2 > �̃�0 + 1, because 𝑁2 is the first iteration
such that ∥𝑤𝑁2,0 −𝑤★∥ ≤ Y, for the previous iteration we have ∥𝑤𝑁2−1,0 −𝑤★∥ > Y. By (B.4), this implies:

𝜌

(
∥𝑧𝑁2−1,0 − 𝑧𝑁2−2,0∥𝑀 ; 𝑧𝑁2−1,0

)
>

√
^Y

(3
√

2+ 4)^Φ̂
. (B.5)

On the other hand, as shown in the definition of �̃�0,

𝜌

(
∥𝑧�̃�0,0 − 𝑧�̃�0+1,0∥𝑀 ; 𝑧�̃�0+1,0

)
≤ 𝛽 · Ȳ

16.5^Φ̂
=

1
𝑒
· 1

16.5^Φ̂
· b

6
√
^
≤ b

99𝑒 · ^1.5Φ̂
≤ b

269 · ^1.5Φ̂
. (B.6)

Furthermore, due to the restart condition:

𝜌

(
∥𝑧𝑁2−1,0 − 𝑧𝑁2−2,0∥𝑀 ; 𝑧𝑁2−1,0

)
≤ 𝛽𝑁2−�̃�0−2 · 𝜌(∥𝑧𝑁0,0 − 𝑧�̃�0+1,0∥𝑀 ; 𝑧�̃�0+1,0) . (B.7)

Substituting (B.5) and (B.6) into (B.7) yields an upper bound of (𝑁2 − �̃�0 − 1):

√
^Y

(3
√

2+ 4)^Φ̂
<

(
1
𝑒

)𝑁2−�̃�0−2
· b

269 · ^1.5Φ̂
⇒ 𝑁2 − �̃�0 − 1 ≤ ln

(
𝑒 · (3
√

2+ 4)^Φ̂
269^2Φ̂

)
+ ln

(
b

Y

)
≤ ln

(
b

Y

)
.

(B.8)
Here the final inequality is due to ^ ≥ 1 and 𝑒· (3

√
2+4)^Φ̂

269^2Φ̂
≤ 1. Since we have assumed 𝑁2 > �̃�0 + 1, the upper

bound of (𝑁2 − �̃�0 − 1) in (B.8) has to be strictly positive. Once ln
(
b

Y

)
≤ 0, then it is no longer in the case

𝑁2 > �̃�0 + 1 and as previously stated before we already have 𝑁2 ≤ �̃�0 + 1 and 𝑇2 ≤ 𝑇𝑏𝑎𝑠𝑖𝑠. In conclusion, we
can assert that 𝑁2 − �̃�0 − 1 ≤max

{
0, ln

(
b

Y

)}
.

We now turn our attention to the number of OnePDHG iterations between 𝑧𝑁0+1,0 and 𝑧𝑁2,0. Remark 4.1
ensures that for all 𝑁 ≥ �̃�0 + 1:

∥𝑧𝑁,0 − 𝑧★∥𝑀 ≤ 4∥𝐵−1∥∥𝐴∥ · 𝜌
(
∥𝑧𝑁,0 − 𝑧𝑁−1,0∥𝑀 ; 𝑧𝑁,0

)
. (B.9)

Then due to Lemma A.2, the number of iterations in inner loops is at most
⌈

8·4∥𝐵−1 ∥ ∥𝐴∥
1/𝑒

⌉
. Therefore, we can

bound the overall number of iterations 𝑇2 as follows:

𝑇2 ≤ 𝑇𝑏𝑎𝑠𝑖𝑠 + (𝑁2 − �̃�0 − 1) ·
⌈
8 · 4∥𝐵−1∥∥𝐴∥

1/𝑒

⌉
(B.10)

Substituting the upper bound 𝑁2 − �̃�0 − 1 ≤max
{
0, ln

(
b

Y

)}
into (B.10) finishes the proof. □



Xiong: Accessible Theoretical Complexity of the Restarted PDHG for LPs with Unique Optima 31

Appendix C: Proofs of Section 7
Proof of Theorem 7.1. Without loss of generality, we study the case Y ≤ ∥𝑤★∥. Otherwise, 0 is sufficiently

optimal and the optimization problem is trivial.
Note that ∥�̃�★∥ ≤ max{𝜔1, 𝜔2} · ∥𝑤★∥, and ∥𝑤𝑁,0 − 𝑤★∥ ≤ Y if ∥�̃�𝑁,0 − �̃�★∥ ≤ Y

max{ 1
𝜔1

, 1
𝜔2
} = Y ·

min{𝜔1, 𝜔2}. According to Theorem 3.1, finding an (Y ·min{𝜔1, 𝜔2})-optimal solution in the reweighted
problem requires at most

𝑂
©«^ ·Φ𝜔1,𝜔2 · ln

©«
^ ·Φ𝜔1,𝜔2 ·

max{𝜔1,𝜔2}
min{𝜔1,𝜔2} · ∥𝑤

★∥
Y

ª®¬ª®¬ (C.1)

iterations. Using 𝜔1
𝜔2

=
∥𝑥★∥1
∥𝑠★∥1 , we have max{𝜔1,𝜔2}

min{𝜔1,𝜔2} =
max{ ∥𝑥★∥1,∥𝑠★∥1}
min{ ∥𝑥★∥1,∥𝑠★∥1} = max

{ ∥𝑥★∥1
∥𝑠★∥1 ,

∥𝑠★∥1
∥𝑥★∥1

}
. Next we study the

value of Φ𝜔1,𝜔2 ·max
{ ∥𝑥★∥1
∥𝑠★∥1 ,

∥𝑠★∥1
∥𝑥★∥1

}
, denoted by 𝛾 for simplicity.

Note that Φ𝜔1,𝜔2 = max
{
∥𝑥★∥1
Z𝑝

,
∥𝑠★∥1
Z𝑑

}
. Without loss of generality, we assume ∥𝑥

★∥1
Z𝑝
≥ ∥𝑠

★∥1
Z𝑑

. If ∥𝑥
★∥1
∥𝑠★∥1 ≤

∥𝑠★∥1
∥𝑥★∥1 , then 𝛾 = ∥𝑥

★∥1
Z𝑝
· ∥𝑠

★∥1
∥𝑥★∥1 =

∥𝑠★∥1
Z𝑝
≤Φ1,1. If ∥𝑥

★∥1
∥𝑠★∥1 ≥

∥𝑠★∥1
∥𝑥★∥1 , then

𝛾 ≤ 𝛾 · ∥𝑠
★∥1
Z𝑑

=
∥𝑥★∥1
Z𝑝
· ∥𝑥

★∥1
∥𝑠★∥1

· ∥𝑠
★∥1
Z𝑑

=
∥𝑥★∥1
Z𝑝
· ∥𝑥

★∥1
Z𝑑
≤Φ2

1,1.

where the first inequality is due to ∥𝑠
★∥1
Z𝑑
≥ 1 according to the formula of Z𝑑 presented in Lemma 5.3, and the

final inequality is due to the definition of Φ1,1, presented by that of Φ in Theorem 5.1. Overall, 𝛾 ≤ Φ2
1,1.

Finally, because ^ ≥ 1 and ∥𝑤
★∥
Y
≥ 1, we have

ln

(
^ ·Φ𝜔1 ,𝜔2 ·

max{𝜔1 ,𝜔2}
min{𝜔1 ,𝜔2}

· ∥𝑤★∥
Y

)
≤ ln

(
^ ·Φ2

1,1 · ∥𝑤
★∥

Y

)
≤ 2 ln

(
^ ·Φ1,1 · ∥𝑤★∥

Y

)
.

Substituting it back to (C.1) completes the proof. □
Comparing Theorem 7.1 with Remark 3.4 of Xiong and Freund [56]. Remark 3.4 of Xiong and Freund

[56] proposes the “optimized” step-sizes

𝜏 =
`𝑑 ·Dist(0,𝑉𝑝)

2^`𝑝 ·Dist(0,𝑉𝑑)
and 𝜎 =

`𝑝 ·Dist(0,𝑉𝑑)
2_max_min`𝑑 ·Dist(0,𝑉𝑝)

(C.2)

where `𝑝 and `𝑑 denote the LP sharpness of the primal and dual problems, as defined in Definition 5.3. As
demonstrated by Applegate et al. [6], setting the step-size ratio (C.2) is equivalent to setting primal weights
(�̌�1, �̌�2) such that

�̌�1

�̌�2
=
`𝑑 ·Dist(0,𝑉𝑝)
`𝑝 ·Dist(0,𝑉𝑑)

(C.3)

with the standard step-sizes 𝜏, 𝜎 of Theorem 3.1. Furthermore, due to Lemmas 5.1 and 5.3, (C.3) is actually
equivalent to �̌�1

�̌�2
=

Z𝑝
Z𝑑

. Now, substituting (𝜔1, 𝜔2) = (�̌�1, �̌�2) into (7.4) yields

Φ�̌�1, �̌�2 =
∥𝑥★∥1
Z𝑝
+ ∥𝑠

★∥1
Z𝑑

.

This is equivalent to Φ�̂�1, �̂�2 (when �̂�1
�̂�2

=
∥𝑥★∥1
∥𝑠★∥1 ) up to a constant of 2, so Remark 3.4 of Xiong and Freund

[56] is also equivalent to approximately optimizing the geometric measure Φ̂𝜔1,𝜔2 via reweighting.
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